
Dear editor and referees, 
We want to thank you for your thoughts and comments on this manuscript. The 
reviews helped to clarify and improve the methodology, and reflect on the novel 
conclusions from this study compared to previous findings. 
 
The major changes to the manuscript therefore are:  

● A better explanation of the scope and novelty of this study (in the introduction, 
the discussion and conclusion sections)  

● A clarification of the analysis of the trend in burned area and improved 
consistency between the different forcing factors 
 

We below address the reviewer’s comments point by point. We add our replies in 
italic  and highlight suggested modifications in the manuscript in red . We number our 
replies and cross-refer to them to reduce the text if points had already been 
addressed before. 

Referee #1 

 
The manuscript "Sensitivity of simulated historical burned area to environmental and 
anthropogenic controls: A comparison of seven fire models" by Teckentrup et al 
compares several global fire schemes implemented in different global land surface 
models in a controlled setup (based on FireMIP), to analyze which processes and 
parameterizations cause differences between models. To this end, the authors 
perform a sensitivity analysis, where five different factors (CO2, population density, 
land use, lightning and climate) are individually modified. The authors identify land 
use as the most important factor for differences between models and discuss several 
potential routes to improve global fire models. The manuscript represents a 
significant contribution to attempts to improve the parameterizations of Earth system 
models. It is well written and relatively easy to understand. I have, however, one 
major concern regarding the setup of the sensitivity analysis, which also effects a 
part of the findings presented in the manuscript (see comments below). This point 
should be accounted for before submitting a revised version. 
 
General comments: 
In my opinion, the design of the sensitivity analysis is not sufficient to support all 
conclusions made in the manuscript. The setup is suitable to analyze differences 
between models with respect to one factor (e.g. CO2). This is the case, because the 
modification of the factor (e.g. keep at constant value) is the same for all models, so 
differences between models have to result from the shape of the relation between 



this factor and the examined variable, burned area, which is implemented in the 
model. This is nicely explored in the manuscript by additional analyses of how the 
respective factors affect processes in the model. However, the setup is not suitable 
to compare the relative effects, meaning the relative importance, of different factors, 
e.g. population dynamics and climate. The reason is that the factors show trends of 
different strength over the examined period (1900-2013). It is not clear to me how the 
authors separate the effect of the trend from the effect of the relation between factor 
and the simulated burned area (see specific comments below). For example, let us 
assume that both CO2 and climate have a similar effect on burned area in the 
models. However, CO2 shows a strong trend in the period 1900-2013, while climate 
does not. This is enhanced in the setup of the sensitivity analysis by choosing a low 
value for CO2 for the experiment, but average values of climate variables. 
Consequently, the slope of the relative difference in burned area (e.g. Fig. 2) will be 
larger for CO2 than for climate, although both factors are (hypothetically) equally 
important in the model. This also affects the relative differences between models: If 
the general effect of CO2 is amplified compared to climate in our hypothetical case, 
also the differences between models will be larger for CO2 than for climate. The 
authors need to clarify this, both in the methods and discussion section of the 
manuscript. 
 

1) We thank the reviewer for their assessment and the acknowledgement of our 
contributions. We address the methodological concerns by three points: 

● We agree with the reviewer that we do not separate the effect of the 
trend in the driver from the effect of the relation between factor and 
simulated burned area. We used the word term sensitivity loosely to 
mean the net response to the forcing, while the reviewer interprets it 
more formally as a change in response variable per unit change in 
forcing. To avoid confusion we adopt the reviewer’s definition and thus 
have changed the title to “Response of simulated burned area to 
historical changes in environmental and anthropogenic factors: A 
comparison of seven fire models”. As our goal was to understand 
which factors cause the response of burned area over the historical 
period we therefore need to look at the response given the present 
trends. Finding a high sensitivity for a forcing factor that has no trend 
would not directly help to understand the response over the historical 
period. We now reword the appropriate text passages accordingly and 
address which factors influenced the burned area over the historical 
period. Further, we highlight that response in burned area are caused 
by both: the sensitivity of the model and the imposed trend in the 
forcing. We also add the trends of the forcing datasets in the table 4 
and include three sentences ‘Response of simulated burned area to 
individual drivers’ section: 



The population density forcing dataset has the strongest trend in the 
relative differences between the transient forcing and the year 1920 
value followed by the land-use and land cover change dataset. The 
trend in atmospheric CO2 concentration is higher than the trend in the 
lightning dataset, which is more than twice as strong as in the air 
temperature. Wind speed shows the lowest trend of all investigated 
driving factors (see tab. 4). 

● The reviewer notes that we use an average of the climate variables. 
This is not exactly what we did. We recycle the 20 first years that are 
available as climatic forcing (1900-1920) in the climate sensitivity 
simulations. However the reviewer is right that due to this there is no 
difference between the reference and the sensitivity simulation in the 
first 20 years of our comparison. We therefore now compute the trends 
of the in burned area between reference and sensitivity simulation 
starting in 1920 until the end of the simulation (2013). As we 
investigate the trend of differences with a consistent starting point for 
all factors (not simply the differences between sensitivity and reference 
simulation) we can now also compare the importance between the 
factors for the simulated historical changes of burned area.  

 
We add in the manuscript in the Methods: 
The resulting difference in burned area between the simulations is then 
a combination of the changes in the forcing and the sensitivity of the 
model to that forcing factor. 

 
and in the Response of simulated burned area to individual drivers  
section (see also reply 21): 
The response of burned area to the individual factors is determined by 
the changes in the driving factors and the sensitivity of the model to 
these changes. 

 
We use the word sensitivity now only in these places and for “sensitivity 
experiment”. In other places sensitivity has been replaced with “response of 
simulated burned area to” . 

● As a second change we now use the absolute differences instead of 
relative differences. As the CO2 concentration for instance was fixed at 
the value of 1750, for some models the burned area that is used to 
normalized is much smaller than it would be if the value was set to the 
value of 1900. All models have a comparable magnitude of burned 
area for present day therefore the absolute changes are also 
comparable and the comparison between models is not strongly 
influenced. The reviewer did not directly request this but we think that 



this increases the comparability between the factors. Our conclusions 
are not affected by this change but the quantification of trends is more 
meaningful. We add in the Methods section 
Two of the models (CLASS--CTEM and CLM) started the simulations 
later than the others (1861 and 1850, respectively) and due to 
limitations in data availability the reference year of the forcings used in 
the spin-up varies (see tab. 1). We account for these differences in 
starting years between models and of the forcing factors by limiting our 
analysis to the period where all factors are different from the ones used 
in the spin-up (after 1921). These differences still influence the 
absolute differences, we therefore quantify the strength of the impact 
through the slope of a regression line and do not interpret the offset. 
 

Specific comments: 
P 2 L 7 Please replace ’regularly’ by a more detailed description, such as ’at least 
once in 100 years’ or similar. Does that mean that at least 60% of the land surface 
are never affected by fire?     

2) The descriptions in the literature were not hat precise, thus we have 
removed the sentence. 
 

P 2 L 12 Please put the 5.6 ppm CO2 into context: Which percentage of the total 
feedback per degree of warming does this correspond to?    

3) We now include the strength of the global land climate-carbon-cycle 
feedback (17.5 ppm K-1) as a context. It corresponds to a percentage of 
approximately 32%. 
Analyses based on observations of the pre-industrial period suggest that the 
contribution of fire to the overall climate–carbon-cycle feedback is substantial 
with 5.6 ± 3.2 ppm K-1 CO2 (Harrison et al., 2018) while the strength of the 
global land climate–carbon-cycle feedback estimated from Earth system 
simulations (Arora et al., 2013) is 17.5 ppm K-1 (Harrison et al., 2018). 
However, comparing potential fire-induced losses from terrestrial carbon pools 
and stocks of solid pyrogenic carbon in soils and ocean, fire may also be a net 
sink of carbon and Earth system simulations show a negative effect of fire on 
radiative forcing (Lasslop et al., 2019). 
 

P 2 L 26 Please explain the term ’woody thickening’ shortly. How does vegetation 
composition change? 

4) We modified the manuscript as follows: 
It can lead to an increase in the abundance of woody plants ('woody 
thickening'; Wigley et al., 2010; Bond and Midgley, 2012; Buitenwerf et al., 
2012) [...] 
 



    
P 2 L 28 Why does reduced stomata conductance lead to increased fuel moisture? 
Is it assumed that plants take up water from the litter layer? Please explain this 
shortly. 

5) It is assumed that the water saving increases soil moisture and in 
consequence fuel moisture, including the living biomass contribution to the 
fuel load and the amount of litter on the soil surface. 
On the other hand, decreased stomatal conductance and lower transpiration 
can lead to enhanced water conservation in plants. This increases the 
moisture content of soil as well as vegetation moisture content and 
consequently live and dead fuel moisture contents, which decreases 
flammability and in consequence reduces burned area. 

 
P 3 L 6 It is quite difficult to understand this sentence. Please start with the end (nr 
offires times size) and may be split into two sentences.   

6) We rephrased the sentence:      
Burned area can be expressed as the number of fires multiplied by their fire 
size. The increase in burned area due to changes in ignitions is expected to 
differ between regions with varying population density as the largest fires 
occur in unpopulated areas (Hantson et al., 2015a). 

 
P 4 L 21 Does the around 150 year shorter spin-up for two of the models have 
effects on the fuel amount? Or is the turnover of the fuel fast enough to exclude that 
the models with shorter spin-up have less fuel? 

7) The described simulations start from a spinup simulation where carbon 
pools were equilibrated. We add a sentence to describe this point in the 
Methods section:  
The baseline FireMIP experiment (SF1) is a transient simulation from 
1700-2013, in which atmospheric CO2 concentration, population density, 
land-use, lightning, and climate change through time according to prescribed 
datasets.  The baseline and sensitivity simulations start from the end of a 
spin-up simulation with equilibrated carbon pools (see Rabin et al. (2017a) for 
details of the experimental protocol).     

 
P 5 Tab1 Why are only low values of CO2, population density and land use(?) 
included in the sensitivity analysis? Would it not make more sense to either use 
intermediate values, similar to climate and lightning, or, alternatively, test high values 
in addition to the low ones?     

8) See also reply 1. The experiments were designed to understand the 
influence of the historical variation in the driving factors on the simulated 
burned area. Therefore all factors were individually held constant at the initial 
conditions, e.g. the conditions that were used in the spin-up. Lightning and 



climate varied in the historical baseline simulation from 1900 and were set to 
the first twenty years before, as no forcing dataset is available before that time 
and because the interannual variability in climate is important (so using only 
one year is not an option). We now compute the trends starting with the year 
1920, when all factors vary. Results may be slightly different when fixing the 
forcing at values of different years, but as we are interested in how the 
historical changes influenced the historical simulations in burned area we think 
the interpretation of the high values would be less direct. The sensitivity 
simulations now start with a state that existed in the past (neglecting, of course, 
any existing errors in the models and forcing datasets). Starting the simulation 
with the high values would be a hypothetical case, as the models also slightly 
depend on their history. Technically this would also mean that the sensitivity 
simulations all require a separate spin-up. They would start from different initial 
conditions and although they would end with the same forcing the model state 
would likely be different as for present day ecosystems are not in equilibrium 
due to global change. 

 
P 6 L 11 Please add a short description of how these data sets differ, beyond the 
retrieval algorithms, since this is important to understand the results (e.g. agricultural 
fires in GFED4s) 

9) We now include an improved description how these datasets differ.   
To evaluate the simulations of burned area, we compare the simulated burned 
area with remote sensing data products. Global burned area observations from 
satellites still suffer from substantial uncertainty, as reflected by the 
considerable differences in spatial and temporal patterns between different data 
products (Humber et al., 2018; Hantson et al., 2016a; Chuvieco et al., 2018; 
van der Werf et al., 2017). Using multiple satellite products in model 
benchmarking is one approach to take into account these observational 
uncertainties (Rabin et al., 2017a). In this study, we use three satellite products: 
GFED4 (Giglio et al., 2013), GFED4s (van der Werf et al., 2017) and FireCCI50 
(Chuvieco et al., 2018). GFED4 is a gridded version of the MODIS Collection 
5.1 MCD64 burned area product. It is known that this product strongly 
underestimates small fires, including cropland fires (e.g.Hall et al. (2016)). In 
GFED4s, burned area due to small fires is estimated based on MODIS active 
fire (AF) detections and added to GFED4 burned area. However, this 
methodology may introduce significant errors related to erroneous AF 
detections (Zhang et al., 2018). As a complementary product, FireCCI50 was 
developed using MODIS spectral bands with higher spatial resolution than 
MCD64. A higher resolution enhances the ability to detect smaller fires; 
however, this improvement is partially offset by suboptimal spectral properties 
of the bands. Both GFED4s and FireCCI50 have larger burned area than 
GFED4. Since all three products are based on MODIS data, the inter-product 



differences probably underestimate uncertainties associated with these 
products. A recent mapping of burned area for Africa using higher resolution 
Sentinel-2 observations indicates that all three products substantially 
underestimate burned area (Roteta et al., 2019). For the model evaluation we 
use temporally averaged burned area fraction for the years 2001–2013, the 
interval common to all three satellite products and the model simulations. 
 
Hall, J. V., T. V. Loboda, L. Giglio and G. W. McCarty (2016). "A MODIS-based 
burned area assessment for Russian croplands: Mapping requirements and 
challenges." Remote sensing of environment 184: 506-521. 
 
Roteta, E., A. Bastarrika, M. Padilla, T. Storm and E. Chuvieco (2019). 
"Development of a Sentinel-2 burned area algorithm: Generation of a small fire 
database for sub-Saharan Africa." Remote Sensing of Environment 222: 1-17. 
 
Zhang, T., Wooster, M., de Jong, M., and Xu, W.: How Well Does the ‘Small 
Fire Boost’ Methodology Used within the GFED4.1s Fire Emissions Database 
Represent the Timing, Location and Magnitude of Agricultural Burning?, 
Remote Sensing, 10, 823, https://doi.org/10.3390/rs10060823, 2018. 

 
P 6 L 16 In which direction is the distribution skewed? Does the model resolution 
have an effect on the shape of the distribution? 

10) The distribution of burned area has a very large fraction of  0  and small 
burned area, high fractions of burned area have a very low frequency. We add 
a plot indicating the influence of individual datapoint in the comparison between 
GFED4 and FireCCI50 in the supplement. Without transformation a very small 
fraction of the data points determines the correlation, this is improved with the 
squareroot transformation and would be further improved using a log 
transformation, but that would mean that grid cells with 0 would be excluded. 
As the correlation should provide a global evaluation of the model a much 
higher influence of individual grid cells is not desirable. As the models are all 
aggregated to the same spatial resolution the model resolution does not have 
an influence on the distribution. 

 
Figure A9: Scatter plots for the GFED4 and FireCCI50 dataset without 
transformation, square root transformation and log transformation (a), the color 



indicates the influence of individual data points on the correlation (computed as 
the difference in the correlation with and without that datapoint). Cumulative 
influence of data points in the dataset on the correlation (b). Without 
transformation a very small fraction has a strong influence on the correlation, 
these are grid cells with high burned area fraction (as can be seen in a). 
 
We also modify the text in the main paper: 
We quantify the agreement between models and observations by providing the 
global burned area and the Pearson correlation coefficient for the between grid 
cell variation (see tab. 3). We choose the Pearson correlation as it quantifies 
the covariation of the spatial patterns, and is less sensitive to the highly 
uncertain absolute burned area values. Burned area has a strongly skewed 
distribution, with few high values and many small values close to, or equal to, 
zero. These few high values have a much higher contribution to the overall 
correlation (see figure A9 in Appendix) and therefore the metric is strongly 
determined by the performance of the model in areas with high burning. Square 
root or logarithmic transformation leads to more normally distributed values, 
that reduce this bias (see figure A9 in Appendix). As the logarithm 
transformation excludes grid cells with zero burned area, we adopt the square 
root transformation. 

    
P 6 L 21 The values 0.01 and 0.2 refer to the GFED4 and FireCCI50 data sets, I 
assume? Please make this clear.    

11) We clarify in the manuscript 
[...] yields uncertainty estimates of 0.01% (GFED4) and 0.2% (Fire CCI50) 

 
P 8 L 9 - P 9 L 2 I think this part should be shifted to the discussion.   

 
12) We did not separate Results and Discussion but directly discuss the 
results following the presentation. We shortened the indicated paragraphs 
slightly to have more emphasis on the results and moved part of it to the 
“Implications for model development and applications” section. 
 

P 9 L 4ff I do not understand the line of argument: In the first three experiments 
(CO2,population,land use), relatively strong trends and large model differences 
throughout the 20th century are reported. In the other two experiments, the trends 
are weaker. However, this result may be influenced from the setup of the sensitivity 
analysis, since there are trends in CO2, land use and population density over the 
20th century. Population density, for instance, is kept at the low value of 1900 in the 
experiment, so it is logical that the rel. diff. BA increases over the 20th century for 
models, which assume a positive effect of population density on BA (e.g. 
LPJ-GUESS-SPITFIRE), due to the trend in population density. For models which 



assume a negative effect of population density on BA (e.g. 
LPJ-GUESS-SIMFIRE-BLAZE), the opposite is the case.  
However, it is not described how the effect of the trends (e.g. increase in population 
density) is separated from the effect of the factor in the model (e.g. effect of 
population density on fire).  

13) See also reply 1). Population density is kept at the value of 1700. We now 
use the absolute differences. The initial values of land use, CO2 and climate 
stem from different years. This is because climate data were only available 
from 1900 onwards. We now compute the trends starting in 1920 when all 
factors vary, with low influence on the results. Fig. 2 already showed the 
strong interannual variability of climate and lightning and the absence of 
trends over the whole period. Qualitatively the spread between models for 
population density is logical considering the different assumptions in the 
models, but note that most models assume a curve with a maximum and 
therefore include positive and negative effects. Quantification of the net effect 
and also the magnitude of the effect therefore requires the sensitivity 
simulations provided in this study. As we aim to quantify the effect of forcing 
factors over the simulation period we quantify the response in burned area 
given the historical trend. Quantification of the burned area response with a 
hypothetical trend (for instance a doubling) would not allow to understand the 
historical simulated trends. 

 
Figure 2 and Table 4 are only suitable to compare the relative effect of one factor 
between models, but not the relative importance of different factors. Maybe the 
relations between rel.diff. BA and lightning, and also rel.diff. BA and climate, are 
weak because the trends over the 20th century are not as pronounced as for the 
other factors, and also average values (1901-1920) are used for the experiments. In 
this case, the mean values of baseline scenario and the experiments would be very 
similar to each other, and variations would be randomly distributed over the 20th 
century, which is partly consistent with Fig. 2. Therefore, I am not convinced that the 
slope of the rel. diff. BA over the 20th century (Tab 4, Fig 2) is a good measure of the 
strength or importance of a certain factor in the model, compared to other factors. 

14) We now use the absolute differences, see reply 1. We assume this may 
also again relate to the fact that we did not separate out the strength of the 
trend in the driving factor. See previous comment and reply 1 and 8. We now 
clarify that we are interested to understand which factors cause the simulated 
trends over the historical period. Note that the climate was not averaged over 
the 1900-1920 period but recycled. We now compute the trends for the 
absolute differences and for the period 1920 to 2013 for which all factors vary.  
   

P 12 L 11 Please add ’concentrations,’ after ’CO2’. 



15) We replaced all occurrences of ‘CO2’ with 'atmospheric CO2 
concentration' to be precise. 

P 16 L 3 Please explain shortly why the presence of lightning always leads to a net 
suppression of fire by humans. 

16) The effect of increasing human ignitions is strongest if no other ignitions 
are present. If lightning already ignited a fire and additional human ignition has 
little effect. This was tested with the CTEM model, which is also part of this 
intercomparison study. We include in the text: 
The presence of lightning ignitions reduces the limiting effect of a lack of 
human ignitions on burned area. For the CLASS-CTEM model as soon as 
lightning ignitions are present, the net effect of humans is to suppress fires, 
even though the underlying relationship assumes an increase in ignitions with 
population density (Arora and Melton, 2018, supplement). This may explain 
why global models assuming an increase of ignitions with increases in 
population density are able to capture the burned area variation along 
population density gradients (Lasslop and Kloster, 2017; Arora and Melton, 
2018) and why global statistical analyses find a net human suppression also 
for low population density (Bistinas et al., 2014). 

 
P 18 L 15ff From the listed parameters, only the first two (precipitation and 
temperature) are climate variables. The others are dependent variables, which are 
also influenced by other factors (e.g. CO2). Please explain why you include them in 
the test. Moreover,I would like to see an analysis of the effects of wind speed. Is 
there a trend in wind speed from 1900 to 2013 ?  

17) We include the vegetation parameters in addition to the climate 
parameters as climate influences fire not only directly but also through its 
influence on vegetation. We modify the included explanation: “The influence of 
climate on burned area is complex; it influences burned area through the 
meteorological conditions and through effects on vegetation conditions that 
influence fuel load and fuel characteristics (Scott et al., 2014). We therefore 
correlated for each grid cell changes in physical parameters (precipitation, 
temperature, wind speed  and soil moisture) and vegetation parameters (litter, 
vegetation carbon and grass biomass) with changes in burned area.” 
Note that CO2 is not different between the simulations compared here, only 
climate differs. In addition, we add the linear regression slope and the 
standard deviation for wind speed in table 4; over 1921 - 2013, the relative 
difference in wind speed has a significant negative linear regression slope 
(-0.012 +- 0.006).  We add ‘Wind speed shows the lowest trend of all 
investigated driving factors (see tab. 4).’     

 
P 18 L 30 The word ’is’ occurs one time too often.     

18) Removed. 



 
P 19 L 10-12 I am not sure that this statement is valid, given my concerns on the 
setup of the sensitivity analysis above. 

19) See reply 1, 8, 13, 14. This refers to “Representing human influence on 
fire is the major challenge for long-term projections. Our analyses of the 
controls on the variability of fire suggest that human activities drive the long 
term (decadal to centennial) trajectories, while considering climate variability 
may be sufficient for short-term projections.” 
We have now improved the computation of trends. To assess the importance 
of certain factors in trajectories the underlying trend is important, a separation 
of the trend in forcing from the sensitivity of the model would therefore not 
improve the assessment. However changes in the trends of the forcing factors 
for future can change the results we therefore included:    
Changes in the trends of the driving factors may change this balance. For 
instance, stronger changes in climate into the future may increase the relative 
importance of climate for long term fire projections in the future. 
 

P 19 L 32 The word ’Table’ is missing in the brackets.     
20) It is included now. 

 
P 21 L 14 How strong is the trend in changing climate compared to other trends, 
e.g.population density and CO2? 

21) We now quantify the trends in the forcing factors. It is however 
questionable how comparable these changes are between factors. Also the 
global increases in CO2 are more meaningful than global changes in 
temperature as CO2 is fairly similar in different locations while the changes in 
temperature vary regionally. For text modifications, see reply 1. 



Dear editor and referees, 
We want to thank you for your thoughts and comments on this manuscript. The 
reviews helped to clarify and improve the methodology, and reflect on the novel 
conclusions from this study compared to previous findings. 
 
The major changes to the manuscript therefore are:  

● A better explanation of the scope and novelty of this study (in the introduction, 
the discussion and conclusion sections)  

● A clarification of the analysis of the trend in burned area and improved 
consistency between the different forcing factors 
 

We below address the reviewer’s comments point by point. We add our replies in 
italic  and highlight suggested modifications in the manuscript in red . We number our 
replies and cross-refer to them to reduce the text if points had already been 
addressed before. 

Referee #2 

 
General comments 
The study is a useful compilation of the analysis of sensitivity experiments in the 
FireMIP output, but it is largely a technical report of the sensitivity of FireMIP model 
simulations of burned area since 1900. Philosophically, there is nothing really offered 
by the authors in terms of specific testing of improvements/changes needed with 
firemodels beyond what has been pointed out in the literature in papers such as Van 
Marle et al 2017 and Andela et al 2017, and hinted at in the Hantson et al 2016 
FireMIP overview paper and the Forkel et al 2019 paper. While I appreciate the 
depth of the dissection of the causes for the discrepancies among FireMIP models in 
this study, I find myself with no questions about FireMIP that have new or interesting 
answers, which is a concerning lack of momentum from the initially promising 
FireMIP effort. For example, did the FireMIP sensitivity experiments produce 
knowledge that the modeling groups could leverage for specific technical advances 
on, say, a future set of experiments? If anything, this paper makes me increasingly 
skeptical about the utility of FireMIP other than to show precisely what these authors 
stated in their conclusions: “Although burned area in most models compares 
reasonably well with satellite observations, there is a huge spread in transient 
simulations before the satellite era and a huge spread in the influence of the driving 
factors between models.” Again, however, many FireMIP related papers have 
already pointed this out.I recommend that the paper be published and I think that my 
comments fall somewhere between a minor and major revision, so I labeled it as 



minor revisions even though some of my comments might require some major 
discussion amongst the authors in terms of structuring a reply or rebuttal. The 
challenge that I offer to the authors is this: I do not see what we gain beyond now 
knowing that the sensitivity experiments areas confusingly inconclusive as the core 
experiments. If I were re-formulating my firemodel and looking to this study, I would 
have little idea as to what the focus point should be other than simply acknowledging 
weaknesses such as the representation of human use of fire or needed better data 
for model parameterizations. The authors may need to make their case more clearly 
for this paper to stand out beyond being a technical report out. 

1) We thank the reviewer for the critical review and take the chance to reflect 
and rework our conclusions. We include improvements in the Introduction, the 
discussion and the conclusions to clarify the novelty of our study. 
In the introduction we clarify how our work relates to previous work: 
Fire-enabled vegetation models simulate fire regimes in response to the 
combination of individual forcings, including atmospheric CO2 concentration, 
population density, land-use change, lightning and climate. 
Individual fire-enabled vegetation models have been shown to simulate 
observed global patterns of burned area and fire emissions reasonably well 
(Kloster et al., 2010; Prentice et al., 2011; Li et al., 2012; Lasslop et al., 2014; 
Yue et al., 2014), but there are large differences between models in terms of 
regional patterns, fire seasonality and interannual variability, historical trends 
(Kelley et al., 2013; Andela et al., 2017) and responses to individual factors 
(Kloster et al., 2010; Knorr et al., 2014, 2016; Lasslop and Kloster, 2017, 
2015). The fire model intercomparison project (FireMIP, Hantson et al., 2016a; 
Rabin et al., 2017a) provides a systematic framework to consistently analyse 
and understand the causes of these differences and to relate them to 
differences in the treatment of key drivers of fire in individual models. The 
FireMIP project provides simulations for a systematic comparison of fire-model 
behaviour based on outputs of a large range of models with identical forcing 
inputs. In addition to a reference historical simulation, sensitivity simulations 
were conducted for individual forcings, specifically atmospheric CO2 
concentration, population density, land-use change, lightning and climate. A 
recent evaluation of the FireMIP models indicates that the relationship with 
climatic parameters is captured well by models, the response to human 
factors is captured by some models and the response to vegetation 
productivity or the allocation of carbon to fuels needs refinement for most 
models (Forkel et al., 2019a). Comparisons of the FireMIP historical 
simulations found differences in transient model behaviour in the 20th century 
(Andela et al., 2017; van Marle et al., 2017). The causes of the differences 
and the reasons why different models show different responses are not yet 
understood. 
 



Our study shows in detail which model responses of burned area to 
environmental factors can be understood, how these are related to the model 
equations and how these translate into certain trends of burned area. The 
understanding on how certain model assumptions lead to trends in burned 
area is novel, the need for this was emphasized by the previous publications 
(but they do not provide it) and the recently detected trends in the satellite 
data. We improved the sections discussing the new possibilities for model 
reparameterization:  
The main concern for model applications is the large spread of the historical 
simulated burned area. It remains difficult to evaluate and optimize the 
transient burned area simulations as the period observed by satellites is still 
short and the trends are not robust (Forkel et al., 2019b). Fire proxies 
(charcoal and ice-cores) give information on biomass burning over longer time 
scales. They do not confirm the recent decrease in burned area detected by 
satellites, but also only contain very few datapoints for that period (Marlon et 
al., 2016). For a valid comparison with the long term fire proxies, including 
estimates of deforestation fires in the models will be crucial, as land-use 
change fire emissions likely have a strong contribution to the signal (Marlon et 
al., 2008). An improved understanding of uncertainties in observed trends of 
fire regimes is therefore necessary. Only robust information should be 
included in models.  
Our analysis shows which parts of the models are particularly important to 
simulate changes in burned area and need additional observational 
constraints or improved process understanding. In line with previous research 
(Bistinas et al., 2014; Hantson et al., 2016a, b; Andela et al., 2017), the large 
divergence in the response to human activities between the FireMIP models 
shows that the human impact on fires is still insufficiently understood and 
therefore not constrained in current models. 
 
specifically for the effect of land-use change on burned area:   
We identify land-use change as the major cause of inter-model spread. Only 
one model explicitly includes fires associated with land-use and land cover 
change (cropland and deforestation fires), all the other models only include 
such effects through changes in vegetation parameters and structure. The 
inclusion of cropland fires is certainly important to understand and project 
changes in emissions, air pollution and the carbon cycle (Li et al., 2018; Arora 
and Melton, 2018). Cropland fires are, due to their small extent and low 
intensity, still a major uncertainty in our current understanding of global burned 
area (Randerson et al., 2012). Biases in the spatial patterns of burned area 
and the relationship between cropland fraction and burned area can therefore 
be expected. High resolution remote sensing may help to improve the 
detection (Hall et al., 2016). Moreover, understanding why and when humans 



burn croplands on a regional scale may help to find an adequate 
representation of cropland fires within models and avoid overfitting to 
observational datasets. As croplands are simply excluded from burning in 
most models (except two), the spread of the other models is likely related to 
the treatment of pastures. Fires on pasturelands have been estimated to 
contribute over 40% of the global burned area (Rabin et al., 2015). Pasture 
fires are not treated explicitly in any of the models, although some models 
slightly modify the vegetation on pastures by harvesting or changing the fuel 
bulk density (see tab. 5). Expansion of pastures is mostly implemented by 
simply increasing the area of grasslands. Information on how fuel properties 
differ between pastures and natural grasslands could therefore help to 
improve model parametrisations. Prescribing fires on anthropogenic land 
covers can be a solution for certain applications of fire models (Rabin et al., 
2018). Grazing intensity was found to be related to decreases in burned area 
(Andela et al., 2017). Models so far represent the area that is converted due to 
land cover change but not the intensity of land-use. This was partly due to the 
lack of global data regarding land use intensity which is now becoming 
available and provides new opportunities for fire model development (e.g. the 
LUH2 dataset; Hurtt et al., 2017). In the sensitivity simulations shown here, 
even models that decrease burned area due to land-use and land cover 
change do not show a further decrease over the last decade. This indicates 
that model input datasets, explicit in time and space, for land-use intensity and 
grazing intensity are necessary for fire projections. The level of socioeconomic 
development also modifies the relationship between humans and burned area 
(Andela et al., 2017; Forkel et al., 2017). Regional analysis of remote sensing 
data could be highly useful, as a global relationship between burned area and 
individual human factors as assumed in many models and also statistical 
analysis is not likely. Assumptions on how different human groups 
(hunter-gatherers, pastoralists, and farmers) use fire have been included in a 
paleofire model (Pfeiffer et al., 2013). The development of such an approach 
for modern times would be highly valuable for fire models that aim to model 
the recent decades and future.  

 
for the effect of CO2 on burned area: 
We show that, although all models show an overall increase in biomass as a 
consequence of increasing atmospheric CO2 concentration, models disagree 
about whether this results in an increase or decrease in burned area. The 
disagreement reflects the complex ways in which changes in atmospheric 
CO2 concentration influence vegetation properties, which results in different 
responses in different ecosystems. For LPJ-GUESS-SPITFIRE and 
JSBACH-SPITFIRE the CO2 fertilization effect considerably contributed to an 
increase in burned area. Such an effect is so far only supported for fuel limited 



areas (Forkel et al., 2019b). The assumption that the influence of higher fuel 
load on burned area levels off for high fuel loads as used in other models 
could help to reduce this increase in burned area in regions with higher fuel 
load.  
 
for the effect of climate and lightning on burned area in general: 
Climate and lightning have a much lower effect on the trends than the other 
factors. While this study focuses on the trends, research on the short term 
variability and extreme events will be highly useful to investigate fire risks. The 
influence of climate and lightning on fire are therefore important research 
topics even if we find a comparably low influence on the long term trends. 
Moreover the trends in climate parameters may increase for the future and 
therefore the influence on burned area might increase.  
 
and for the effect of lightning on burned area specifically: 
But not only spatial patterns of lightning are important, the co-variation with 
climate as well as the temporal resolution of the input dataset determine the 
influence on burned area (Felsberg et al., 2018). Although we do not detect 
large signals in global burned area due to changes in lightning, lightning is 
known to be an important cause of ignitions regionally and is potentially 
involved in more complex interactions between fire, vegetation and climate, 
which can speed up the northward expansion of trees to the north in boreal 
regions (Veraverbeke et al., 2017). Thus, although our results suggest that the 
influence of increasing lightning is negligible at a global scale, it is a potentially 
important factor for process-based models that aim to model interactions 
between fire, vegetation and climate. 
 
In addition, we point to datasets that can be used for model evaluation: 
Recent advances in remote sensing products have high potential to support 
model development. However, remotely sensed burned area datasets alone 
are not a sufficient basis to evaluate fire models as many model structures 
can lead to reasonable burned area patterns. The emergence of longer 
records of burned area and the increasing availability of information on other 
aspects of the fire regime considerably improve opportunities to evaluate and 
improve our models. The FRY database (Laurent et al., 2018) and the global 
fire atlas (Andela et al., 2018), for example provide information on fire size, 
numbers of fire, rate of spread, and the characteristics of fire patches. These 
datasets will be useful to, for instance, separate effects of ignition and 
suppression. Rate of spread equations in global fire models are at present 
either very simple empirical representations tuned to improve burned area or 
based on laboratory experiments (Hantson et al., 2016). The mentioned 
datasets now offer the opportunity to derive parameters for rate of spread 



equations at the spatial scales these models operate on. Fire size and rate of 
spread are important target variables besides burned area that can determine 
the impacts of fire. The effects on vegetation (combustion of biomass and tree 
mortality; Williams et al., 1999; Wooster et al., 2005) and on the atmosphere 
(Veira et al., 2016) are a function of fire intensity, which is also included in the 
FRY database (Laurent et al., 2018). A better evaluation of such parameters 
can enhance the usability of fire model simulations.  
The specific model application has a strong influence on judging the validity of 
a model. Our analyses of the controls on the variability of fire suggest that 
human activities drive the long term (decadal to centennial) trajectories, while 
considering climate variability may be sufficient for short-term projections. 
Changes in the trends of the driving factors may change this balance. For 
instance, stronger changes in climate into the future may increase the relative 
importance of climate for long term fire projections in the future. 
 
We change our Summary and conclusions to: 
This comprehensive analysis of the influences of climate, lightning, CO2, 
population density and land-use and land cover change provides improved 
understanding of the relation between simulated historical trends in burned 
area and process representations in the models. It shows in detail which 
model responses of burned area to environmental factors can be understood, 
how these are related to the model equations, and how these translate into 
trends of burned area for the historical period. 
 
Followed by the summary of insights for the individual factors. We add for the 
effect of population density: 
It would be useful to develop an approach that represents local human-fire 
relationships, but this will likely remain a long term challenge and requires the 
synthesis of knowledge from various research fields. 
 
We add for the effect of land use and land cover change: 
Improved knowledge on the effects of land-use intensity on burned area and 
the development of appropriate forcing datasets could strongly support model 
development. 
 
And end with: 
The uncertainties in global fire models need to be taken into account in model 
applications, for instance if model simulations are to be used to support 
climate adaptation strategies. Model ensemble simulations can give 
indications of such uncertainties. Therefore the results of this study provide a 
basis to interpret uncertainties in global fire modelling studies. The spatial 
patterns of burned area and its drivers are already well explored and 



understood. We here provide a summary of which model assumptions need 
additional constraints to efficiently reduce the uncertainty in temporal trends. 
 

Specific comments  
Figures in the Supplement – please make larger versions of the maps in figures 
a1-a8. Another improvement would be to include a continuous rather than binary 
scale of values of the correlation coefficient in a2-a8. Painting the world with binary 
correlation coefficients would mask areas of potential weak and strong linear 
correlation. The strength of this study is the technical report-out of FireMIP sensitivity 
studies, so by making figures a1-a8 so hard to read, the authors are undermining the 
very purpose of the work. Read another way, the community may gain more with 
more detail in the manuscript. 

2) Figure a2-a8 are not correlations but the slope coefficients. It only shows 
significant changes to identify regions with weak relationships. We wanted to 
emphasize the spatial distribution of decreases and increases and therefore 
chose this color scale. We now provide the graphs with the more detailed 
color scale and larger versions of the maps, because, as the reviewer 
suggests, it will be useful for the community. 

 
Page 6 line 16-17 – authors stated they used a square root transformation to reduce 
the skewness of the distribution, but it is unclear why. Please expand on both the 
reasons and what this transformation accomplishes. Perhaps a supplemental figure? 

3) See also reply 10 for reviewer 1. The correlation coefficient is most useful 
for normally distributed variables. The burned area varies over several orders 
of magnitude and the skewed distribution gives the highest importance to 
values with very high burned area. We transformed the data to improve the 
applicability of the metric. We include now a figure illustrating the influence of 
individual data points to the correlation, showing that the outliers in the 
untransformed data have a really high contribution and determine the 
correlation (figure A9 in the Appendix). This is improved with the squareroot 
transformation and would be further improved using a log transformation, but 
that would mean that grid cells with 0 would be excluded. With the 
transformation the contribution is better distributed to all data points, it is 
therefore more useful for global modelling where a too strong focus on only 
grid cells with high burned area can be distracting. 

 



Figure A9: Scatter plots for the GFED4 and FireCCI50 dataset without 
transformation, square root transformation and log transformation (a), the color 
indicates the influence of individual data points on the correlation (computed as 
the difference in the correlation with and without that datapoint). Cumulative 
influence of data points in the dataset on the correlation (b). Without 
transformation a very small fraction has a strong influence on the correlation, 
these are grid cells with high burned area fraction (as can be seen in a). 
 
We also modify the text in the main paper: 
We quantify the agreement between models and observations by providing the 
global burned area and the Pearson correlation coefficient for the between grid 
cell variation (see tab. 3). We choose the Pearson correlation as it quantifies 
the covariation of the spatial patterns, and is less sensitive to the highly 
uncertain absolute burned area values. Burned area has a strongly skewed 
distribution, with few high values and many small values close to, or equal to, 
zero. These few high values have a much higher contribution to the overall 
correlation (see figure A9 in Appendix) and therefore the metric is strongly 
determined by the performance of the model in areas with high burning. Square 
root or logarithmic transformation leads to more normally distributed values, 
that reduce this bias (see figure A9 in Appendix). As the logarithm 
transformation excludes grid cells with zero burned area, we adopt the square 
root transformation. 

 
Page 6 line 19 – major uncertainties is a subjective phrasing that requires more 
qualifications. Humber et al 2018 clearly discussed the nuanced and important ways 
that observed burned area data sets agree and disagree when using global, 
regional, and varying temporal scales. Looking at Figure 3 in Humber et al 2018 and 
Figure 1 in this paper, however, the implication is that FireMIP models have even 
more than “major” uncertainties in the sense that even at an annual time scale, there 
is more spread amongst models than amongst the observations. Furthermore, the 
three burned area data sets discussed in this study (GFED4, GFED4s, and 
FireCCI50) show that there is agreement unless the specific methodological 
approach is augmented with the small fires approach described in Randerson et al 
2012. Is that really a major disagreement or just a difference in analysis? Please be 
more specific or careful in the discussion around observational uncertainties. Also, 
please see my comment about Figure 1 below. 

4) See also reply 9 for reviewer 1. In Figure 1, the models are largely within 
the range of the observations for the evaluation period. The section shows 
that the models are largely in the range of satellite observed burned area and 
have a reasonable spatial distribution (see appendix figure A1). There is 
methodological uncertainty in satellite burned area products and this is 
reflected in the variation between the products due to the methodological 



approach applied. The spread between these products still underestimates 
the uncertainty in the satellite products as all are based on the same sensor 
(MODIS). This is already mentioned in the manuscript on p.6 l. 23. We 
improve the paragraph with more details on the differences between the 
sensors and also link it to more recent burned area estimation using the high 
resolution Sentinel-2 data, which gives insights in the huge uncertainty of 
satellite products (see also reply 9 for reviewer 1).  
To evaluate the simulations of burned area, we compare the simulated burned 
area with remote sensing data products. Global burned area observations 
from satellites still suffer from substantial uncertainty, as reflected by the 
considerable differences in spatial and temporal patterns between different 
data products (Humber et al., 2018; Hantson et al., 2016a; Chuvieco et al., 
2018; van der Werf et al., 2017). Using multiple satellite products in model 
benchmarking is one approach to take into account these observational 
uncertainties (Rabin et al., 2017a). In this study, we use three satellite 
products: GFED4 (Giglio et al., 2013), GFED4s (van der Werf et al., 2017) and 
FireCCI50 (Chuvieco et al., 2018). GFED4 is a gridded version of the MODIS 
Collection 5.1 MCD64 burned area product. It is known that this product 
strongly underestimates small fires, including cropland fires (e.g.Hall et al. 
(2016)). In GFED4s, burned area due to small fires is estimated based on 
MODIS active fire (AF) detections and added to GFED4 burned area. 
However, this methodology may introduce significant errors related to 
erroneous AF detections (Zhang et al., 2018). As a complementary product, 
FireCCI50 was developed using MODIS spectral bands with higher spatial 
resolution than MCD64. A higher resolution enhances the ability to detect 
smaller fires; however, this improvement is partially offset by suboptimal 
spectral properties of the bands. Both GFED4s and FireCCI50 have larger 
burned area than GFED4. Since all three products are based on MODIS data, 
the inter-product differences probably underestimate uncertainties associated 
with these products. A recent mapping of burned area for Africa using higher 
resolution Sentinel-2 observations indicates that all three products 
substantially underestimate burned area (Roteta et al., 2019). For the model 
evaluation we use temporally averaged burned area fraction for the years 
2001–2013, the interval common to all three satellite products and the model 
simulations. 
 
Hall, J. V., T. V. Loboda, L. Giglio and G. W. McCarty (2016). "A 
MODIS-based burned area assessment for Russian croplands: Mapping 
requirements and challenges." Remote sensing of environment 184: 506-521. 
 
Roteta, E., A. Bastarrika, M. Padilla, T. Storm and E. Chuvieco (2019). 
"Development of a Sentinel-2 burned area algorithm: Generation of a small 



fire database for sub-Saharan Africa." Remote Sensing of Environment 222: 
1-17. 
 
Zhang, T., Wooster, M., de Jong, M., and Xu, W.: How Well Does the ‘Small 
Fire Boost’ Methodology Used within the GFED4.1s Fire Emissions Database 
Represent the Timing, Location and Magnitude of Agricultural Burning?, 
Remote Sensing, 10, 823, https://doi.org/10.3390/rs10060823, 2018. 
 
Moreover we now include a new publication (Forkel et al. 2019) in the 
discussion which shows that the trends as  observed by satellites are still 
highly uncertain and not robust. 
Satellite records show a decline in global burned area since 1996 (Andela et 
al., 2016). However, as Forkel et al. (2019b) have shown, the significance of 
the observed global decline is strongly affected by the length of the sampled 
interval because of the high interannual variability in burned area and trends 
between products show only a low correlation (Forkel et al., 2019b). 
No observations document the longer term trends in burned area. Charcoal 
records (Marlon et al., 2008, 2016) and carbon monoxide data from ice-core 
records (Wang et al., 2010) are a proxy for biomass burning and show a 
global decrease in biomass burning over most of the 20th century. However, 
the charcoal records show an increase in burning since 2000 CE, but this 
discrepancy might reflect regional undersampling (for instance in Africa) or 
taphonomic issues of the charcoal record. A recent fire emission dataset (van 
Marle et al., 2017) merges information from satellites, charcoal records, airport 
visibility records and if no other information was available uses simulation 
results of the FireMIP models. This dataset is not included to evaluate the 
models here as it is partly based on the simulations of the FireMIP models and 
as it provides only estimates for emissions not burned area. 
The understanding of the drivers on simulated trends that we give below 
provides insights on what causes the simulated trends and which assumptions 
control the trend. These insights will help to understand which observational 
constraints and process understanding is required to improve global fire 
models. 

 
Page 6 line 20-21 – please explain what is meant by 0.01 and 0.2%. I am not 
following what the values refer to.  

5) We clarify in the manuscript, see also reply 11 for reviewer 1: 
[...] yields uncertainty estimates of 0.01 % (GFED4) and 0.2% (Fire CCI50) 

 
Figure 1 would benefit from being split into a two-part plot: one part could remain 
asis, but the other would show the present day subset of the full analysis period. This 
is the evaluation period, but it is buried under too many curves. 



6) Unfortunately this suggestion would lead to us exactly reproducing the 
figure number 3 of the Andela et al 2017 paper and contradicts the general 
suggestion of the reviewer to go beyond previous studies. We do agree, 
however, that the satellite datasets are buried under the curves in our plot. We 
now include a shaded area for the range of the satellite datasets as this is the 
main point we wish to convey here. As well, since we do not want to focus on 
evaluation of the models (which has been the focus of Andela et al. 2017 and 
Forkel et al. 2019 already) we rephrase the heading of this section to 
“Simulated historical burned area” to reflect the focus on the longer term 
trends and understanding the reasons for the divergence between models, 
independent of their correctness. We add a reference to Forkel et al. (2019) 
for more details. 
    

Table 3 and page 7 – are these spatial correlation coefficients that compare the 
gridcell to grid cell agreement on a map? Or are they temporal correlation 
coefficients? It does not seem that Figure 1 temporal correlation is this high, but 
please clarify in the text. If this is a spatial correlation, please include the figure in the 
Appendix as it could be valuable to modelers in identifying regional weaknesses in 
the FireMIP simulated burned area. 

7) We conduct a gridcell to gridcell comparison here, however spatial 
correlation coefficient is not a statistical term and may be confused with spatial 
auto-correlation. It implies some consideration of the geographical location. 
For table 3, we average burned area fraction over 2001 - 2013 (compare 
figure A1) and then correlate all individual grid cells of the remotely sensed 
product with the respective model. Therefore there is only one value, we did 
not analyse the spatial distribution or regional variation. For example, the first 
value in table 3, column 'R(GFED4, model)' is the Pearson correlation 
coefficient between the square root-transformed burned area fraction 
averaged over 2001 - 2013 in GFED4 and the square root-transformed burned 
area fraction averaged over 2001 - 2013 in CLASS-CTEM. We now include 
the “correlation over grid cells” to indicate it is not over time and change the 
caption of table 3 to “Global burned area averaged over 2001–2013 in Mha 
yr-1 and the Pearson correlation coefficients between burned area fraction 
averaged over 2001 - 2013  in the baseline experiment SF1 for all 
FireMIP-models and the respective observation data  over all grid cells . We 
use a square root transformation on both model and observations. All 
correlation coefficients are significant (p-value < 0.05). 
    

Table A2 is missing statistics relative to GFED4s.  
8) GFED4s does not provide uncertainty estimates and therefore is not 
included in table A2. (We change the table caption from  ‘GFED4 and 
FireCCI50 provide uncertainty estimates’ to ‘ Only GFED4 and FireCCI50 



provide uncertainty estimates, therefore GFED4s is not included ’ to clarify 
this.)  

 
Page 9 – the first sentence on this page highlights a major problem in the approach 
with modeling. Aiming at trends without a full understanding of the drivers in the 
simulations is . 

9) One sentence in this comment is incomplete. It refers to the following 
sentence „The better understanding of the drivers of simulated trends that we 
provide below can inform us on how certain trends can be achieved in 
models.“ We speculate that the reviewer wants to indicate, that the possibility 
to achieve a trend based on a certain driver, does not necessarily mean that 
this is correct. Being aware however of how trends can be achieved is a useful 
information for model development. Whether the changes are plausible still 
needs to be addressed before implementing them.  
We add: 
The understanding of the drivers on simulated trends that we give below 
provides insights on what causes the simulated trends and which assumptions 
control the trend. These insights will help to understand which observational 
constraints and process understanding is required to improve global fire 
models. 
 

Table 4 – while the M-K test is likely fine, the uncertainties (standard error or 
confidence intervals) in the slopes need to be included to understand the results 
better. 

10) We include the uncertainties of the slope parameter. However the 
Mann-Kendall test is better suited to understand whether the trend is 
significant. 

 
Page 9 and Section 3.2.4 – I thought that FireMIP only used a repeated lightning 
scaled to changes in modeled convection? While there is likely something to gain in 
the lightning sensitivity experiment, I would like to see some clearer discussion of the 
important caveats in interpreting the results. For example, would it be safe to 
surmise that there is no sensitivity to lightning changes since 1900 only if the 
modeled lightning is anything close to reality? Determining a lightning climatology 
from an untestable climate-model based parameterization and then drawing 
conclusions from that testing is prone to some circular or flawed logic.  

11) The limitation of uncertainty in the lightning data is already included on 
p.20 line 10 where we see a major problem in conserving the correlation 
between lightning and other climate variables. We include now that the CAPE 
anomalies are derived from a global numerical weather prediction model. 
However, we don’t see a flawed logic in showing that although the imposed 
lightning was strongly increasing the model results don’t necessarily show 



increases. That the present trend in the imposed lightning leads to a small 
change in burned area shows that the models have a low sensitivity to 
lightning. Lightning parameterizations of climate models are tested (see for 
instance Krause et al. (2014)). Krause et al. (2014) only show a decrease of 
lightning of 3.3% in pre-industrial times compared to present day. We add this 
information to give the reader an insight on the uncertainty. The results in 
Krause et al. (2014) however support our conclusion of the low sensitivity as 
they also only find small influences on burned area. Using the lightning 
dataset from Krause et al. (2014) instead of ours would likely reduce the 
response in burned area. 
We add in the manuscript: 
Most of the models show a low response of burned area to lightning (see fig. 
2), although lightning rates increase by 20% over the simulation period - an 
increase that is much larger than the 3.3% change between pre-industrial 
times and the present estimated from a recent modelling study (Krause et al., 
2014) 

 
Figure 2 – please retitle these with something that is easier to quickly interpret 
without cross-referencing the table. For example, I suggest (a) Constant CO2 
(SF2_CO2), (b) Constant Population (SF2_FPO), (c) Constant Land Cover 
(SF2_FLA), (d) Constant Lightning (SF2_FLI), (e) Constant climate (SF2_CLI). Also 
please make figure 2 much wider to avoid the visual clutter of overlaid zigzagging 
lines. & Figure 2 – change the y-axes ranges so they are constant. It is hard to 
understand the sensitivity if the plotted range is variable.  

12) We changed the Figure according to the suggestions. 
 
Page 11 line 9 – I agree that the statistics suggest individual trends are significant 
but this does not preclude the massive spread (both positive and negative) in the 
trends amongst models (table 4). I think this statement needs to include that caveat 
for an honest accounting of the FireMIP output. 

13) The preceding sentence in the manuscript describes the details of the 
directions of the trends, including positive and negative trends. 

 
Section 3.3 – the first paragraph makes no sense. What I am reading in this study is 
that the models barely agree on any trend, but yet the authors propose here that the 
models are important for understanding projected trends and supporting land 
management strategies. To me, a land management practice cannot be based on 
model trends that do not agree on trend and cannot be of much use if there is lack of 
agreement at country scales, let alone finer spatial scales. 

14) We agree to some extent, that is why we wrote that the models need to be 
improved to be useful. We rephrase the paragraph and remove the reference 
to land management.  



Global vegetation models are an important tool for examining the impacts of 
climate change and are used in policy-relevant contexts (IPCC, 2014; 
Schellnhuber et al., 2014; IPBES, 2016). Given the various influences of fire 
on the ecosystems (Bond et al., 2015), the carbon cycle and climate (Lasslop 
et al., 2019), improvements of global fire models are particularly important. 

 
Section 3.3, second paragraph – the results presented in the manuscript clearly 
show that models only agree in magnitude in the present day, but the quick 
microscope analysis of the present day trends show that observations and models 
do not agree in trends. Some models predict a positive slope, some negative. Unless 
the authors intend to propose that one FireMIP model is more physically realistic 
than another, then the results of the sensitivity studies are inconclusive. 

15) We agree with the reviewer that we cannot conclude from these analyses 
how the drivers caused real trends in fire regimes as the divergence between 
the models is too big. Only a few years ago it was not possible to detect any 
trends in the satellite data, the satellite estimate is still far from robust. The 
result of our sensitivity study is an improved understanding of how the trends 
are caused in the models and how certain trends can be achieved. We have 
rephrased the paragraph substantially, see reply 1. 
 

Section 3.3 or 4 – it would be useful if these authors were to comment directly on fire 
models that did not contribute to FireMIP but that have contributed significantly to 
discussions of human-driven fire both in the present day and over the more distant 
past. This includes studies by Pfeiffer et al 
https://www.geosci-model-dev.net/6/643/2013/, Rabin et al 
https://www.geosci-model-dev.net/11/815/2018/, and Hantson et al 
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-15-00319.1 . All of these either 
echo or predict the results discussed by Andela et al 2017 and Bistinas et al 2014 
related to a need to quantitatively represent the human use of fire on our planet in 
the modeling framework.  

16) The previous papers acknowledged that the understanding of the 
human-fire relationship was rather low. However they could not provide the 
insight that this causes the largest divergence between global fire models as 
they were not based on a systematic comparison of simulation results. 
Moreover, we attribute specific model behaviour to the underlying model 
assumptions. We agree that some of these previous models give important 
information regarding incorporation of human-fire relationships (but Hantson et 
al. 2016 only summarizes the discussions of a workshop). Pfeiffer et al. (2013) 
deal with pre-industrial fire regimes. Rabin et al. (2018) is limited to the period 
of satellite observations, as they prescribe the agricultural burning based on 
satellite observations. 



We integrate these earlier studies in section 3.3 and improve the discussion of 
the implications for model development. For the full context, see reply 1. 
Our analysis shows which parts of the models are particularly important to 
simulate changes in burned area and need additional observational 
constraints or improved process understanding. In line with previous research 
(Bistinas et al., 2014; Hantson et al., 2016a, b; Andela et al., 2017), the large 
divergence in the response to human activities between the FireMIP models 
shows that the human impact on fires is still insufficiently understood and 
therefore not constrained in current models. 
[...] 
Fires on pasturelands have been estimated to contribute over 40% of the 
global burned area (Rabin et al., 2015). Pasture fires are not treated explicitly 
in any of the models, although some models slightly modify the vegetation on 
pastures by harvesting or changing the fuel bulk density (see tab. 5). 
Expansion of pastures is mostly implemented by simply increasing the area of 
grasslands. Information on how fuel properties differ between pastures and 
natural grasslands could therefore help to improve model parametrisations. 
Prescribing fires on anthropogenic land covers can be a solution for certain 
applications of fire models (Rabin et al., 2018).  
[...] 
Regional analysis of remote sensing data could be highly useful, as a global 
relationship between burned area and individual human factors as assumed in 
many models and also statistical analysis is not likely. Assumptions on how 
different human groups (hunter-gatherers, pastoralists, and farmers) use fire 
have been included in a paleofire model (Pfeiffer et al., 2013). The 
development of such an approach for modern times would be highly valuable 
for fire models that aim to model the recent decades and future.  
[...] 
 

Conclusions – the conclusions are already evident in the Andela et al 2017 paper,so 
I do not see what we gain in this study. The authors conclude “further analyses are 
required to better disentangle” factors, but this is the same conclusion so many 
firemodel and FireMIP papers have arrived at. Could the authors make a clearer 
argument about what we gain in this manuscript? 

17) The cited phrase is not part of our conclusion sections, but part of the 
discussion. We delete it as it was not a substantial remark. For the gains of 
the manuscript see reply 1, 9, 16.  
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✿
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✿✿✿✿✿✿✿✿✿✿✿✿✿✿

historical

✿✿✿✿✿✿✿✿✿✿✿✿

changes
✿✿✿

in
✿

environmental and anthropogenic controls
✿✿✿✿✿✿✿✿✿✿
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Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the

Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial

uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made

by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand

how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact5

of the individual drivers of fire
✿✿

on
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

burned
✿✿✿

area, which are prescribed in the simulations. Specifically these drivers are

atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration, population density, land-use change, lightning and climate.

The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area

trends since 1900.
✿✿✿✿

1921.
✿

We analyse the trajectories of differences between the sensitivity and reference simulation to improve

our understanding of what drives the global trend
✿✿✿✿✿

trends in burned area. Where it is possible, we link the inter-model differences10

to model assumptions.

Overall, these analyses reveal that the strongest differences leading to diverging trajectories
✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿✿✿✿✿✿

simulating

✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿

burned
✿✿✿

area
✿

are related to the way
✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of
✿

anthropogenic ignitions and suppression , as well as the
✿✿✿

and

effects of land-use on vegetation and fire, are incorporated in individual models. This points to a
✿

.
✿✿

In
✿✿✿

line
✿✿✿✿

with
✿✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿

studies

✿✿✿

this
✿✿✿✿✿✿✿✿

highlights
✿✿✿

the need to improve our understanding and model representation of the relationship between human activities and15

fire to improve our abilities to model fire for global change
✿✿✿✿✿

within
✿✿✿✿✿

Earth
✿✿✿✿✿✿

system
✿✿✿✿✿✿

model applications. Only two models show a

1



strong response to
✿✿✿✿✿✿✿✿✿✿

atmospheric CO2 and the
✿✿✿✿✿✿✿✿✿✿✿✿

concentration.
✿✿✿

The
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿

on
✿✿✿

fire
✿✿✿

are

✿✿✿✿✿✿✿

complex
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿✿✿✿✿

information
✿✿

of
✿✿✿✿

how
✿✿✿✿

fuel
✿✿✿✿

loads
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

flammability
✿✿✿✿✿✿✿

change
✿✿✿

due
✿✿

to
✿✿✿

this
✿✿✿✿✿✿

factor
✿

is
✿✿✿✿✿✿✿✿

missing.
✿✿✿

The
✿

response to

lightning on global scale is lowfor all models. The sensitivity to climate shows a spatially heterogeneous response and globally

only two models show a significant trend. It was not possible to attribute the climate-induced changes
✿

.
✿✿✿

The
✿✿✿✿✿✿✿✿

response
✿✿

of
✿✿✿✿✿✿

burned

✿✿✿

area
✿✿

to
✿✿✿✿✿✿✿

climate
✿

is
✿✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿

and
✿✿✿

has
✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿

variation.
✿✿✿✿✿✿✿

Climate
✿✿

is
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

likely
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

important
✿✿✿✿

than5

✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

factors
✿✿✿

for
✿✿✿✿✿

short
✿✿✿✿

term
✿✿✿✿✿✿✿✿✿

variations
✿✿✿

and
✿✿✿✿✿✿✿✿

extremes in burned areato model assumptions or specific climatic parameters.

However, the strong influence of climate on the inter-annual variability in burned area, shown by all the models, shows that

we need to pay attention to the simulation of fire weather but also meteorological influences on biomass accumulation and

fuel properties in order to better capture extremes in fire behavior.
✿✿✿✿

This
✿✿✿✿✿

study
✿✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿

basis
✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties

✿✿

in
✿✿✿✿✿

global
✿✿✿✿

fire
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

necessary
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

in
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿

to
✿✿✿✿✿✿

reduce10

✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿

trends.

Copyright statement. TEXT

1 Introduction

About 4of the global vegetated area burns each year (Giglio et al., 2013) , but between 30-40of the land surface is affected

by fire regularly (Chapin et al., 2002; Chuvieco et al., 2008) . Thus, over large parts of the world, wildfires
✿✿✿✿✿✿✿

Wildfires
✿

are an15

important cause of vegetation disturbance
✿✿✿✿✿

driver
✿✿

of
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿✿

distribution, and regulate ecosystem functioning, biodiversity

and carbon storage
✿✿✿

over
✿✿✿✿✿

large
✿✿✿✿

parts
✿✿

of
✿✿✿

the
✿✿✿✿✿

world
✿

(Bond et al., 2005; Hantson et al., 2016a). Fire has strong impacts on climate

through changing land surface properties, atmospheric chemistry and hence radiative forcing, as well as biogeochemical cycling

(Bowman et al., 2009; Randerson et al., 2012; Ward et al., 2012; Yue et al., 2016; Li and Lawrence, 2017; Li et al., 2017)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bowman et al., 2009; Randerson et al., 2012; Ward et al., 2012; Yue et al., 2016; Li and Lawrence, 2017; Li et al., 2017; Lasslop et al., 2019)20

✿✿✿✿✿✿✿✿

Estimates
✿✿

of
✿✿✿

the
✿✿✿✿

net
✿✿✿✿✿

effect
✿✿✿

of
✿✿✿

fire
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

Earth
✿✿✿✿✿✿✿

system
✿✿✿✿

vary. Analyses based on observations of the pre-industrial period

suggest that the contribution of fire to the overall climate–carbon-cycle feedback is substantial (
✿✿✿✿

with
✿

5.6 ± 3.2 ppm
✿✿✿

K-1

CO2 per degree of land temperature change; Harrison et al., 2018 )
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Harrison et al., 2018) while
✿✿✿

the
✿✿✿✿✿✿✿

strength
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿

land

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

climate–carbon-cycle
✿✿✿✿✿✿✿✿

feedback
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

from
✿✿✿✿✿

Earth
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Arora et al., 2013) is
✿✿✿✿

17.5
✿✿✿✿

ppm
✿✿✿

K-1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Harrison et al., 2018) .
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿✿

fire-induced
✿✿✿✿✿

losses
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿

carbon
✿✿✿✿✿

pools
✿✿✿✿

and
✿✿✿✿✿✿

stocks
✿✿

of
✿✿✿✿✿

solid25

✿✿✿✿✿✿✿✿

pyrogenic
✿✿✿✿✿✿

carbon
✿✿

in
✿✿✿✿

soils
✿✿✿

and
✿✿✿✿✿✿

ocean,
✿✿✿

fire
✿✿✿✿

may
✿✿✿✿

also
✿✿

be
✿✿

a
✿✿✿

net
✿✿✿

sink
✿✿✿

of
✿✿✿✿✿✿

carbon
✿✿✿

and
✿✿✿✿✿

Earth
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

show
✿✿

a
✿✿✿✿✿✿✿

negative
✿✿✿✿✿

effect

✿✿

of
✿✿✿

fire
✿✿✿

on
✿✿✿✿✿✿✿

radiative
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lasslop et al., 2019) . In addition to these consequences for the Earth System, wildfires directly

impact society and economy (Gauthier et al., 2015) and human health can be seriously impaired (Johnston et al., 2012; Finlay

et al., 2012).

Given the various impacts that fire has
✿

of
✿✿✿✿

fire on natural and human systems
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

uncertainties, it is important to30

understand
✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

on
✿

what controls the occurrence of wildfires and to know how fire regimes might

2



change in the future.

The fire model intercomparison project (FireMIP, Hantson et al., 2016a; Rabin et al., 2017a ) provides simulations for a systematic

comparison of fire-model behaviour based on outputs from a large range of multiple model runs with identical forcing inputs.

Sensitivity simulations were conducted for individual forcings, specifically CO2, population density, land-use change, lightning

and climate.Based on current process understanding these drivers may influence burned area in the following ways
✿✿✿

the
✿✿✿✿✿✿✿✿

following5

✿✿✿✿✿

drivers
✿✿✿✿✿✿✿✿✿

influenced
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

over
✿✿✿

the
✿✿✿

last
✿✿✿✿✿✿✿

decades
✿✿

to
✿✿✿✿✿✿✿✿

centuries:

Increasing atmospheric CO2 concentration leads to increases in net primary production (Hickler et al., 2008; Knorr et al., 2016)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hickler et al., 2008) and decreased stomatal conductance reduces the plant transpiration
✿✿✿

and
✿✿✿✿✿✿✿✿

enhances
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

conservation
✿✿

in

✿✿✿✿✿

plants (Morison, 1985). It can lead to changes in vegetation composition
✿✿

an
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿

abundance
✿✿

of
✿✿✿✿✿✿

woody
✿✿✿✿✿✿

plants (’woody

thickening’; Wigley et al., 2010; Bond and Midgley, 2012; Buitenwerf et al., 2012) because C3 plants are generally more com-10

petitive than C4 plants under higher
✿✿✿✿✿✿✿✿✿✿

atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration (e.g. Ehleringer and Björkman, 1977; Ehleringer et al.,

1997; Wand et al., 2001; Sage and Kubien, 2007). The impact of these various changes on burned area is complex. Increased

productivity can lead to increased fuel availability, which can lead to increased burned area in water- and fuel-limited regions

(Kelley and Harrison, 2014). On the other hand, decreased stomatal conductance
✿✿✿

and
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿✿

transpiration can lead to increased

soil and
✿✿✿✿✿✿✿✿

enhanced
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿✿

conservation
✿✿

in
✿✿✿✿✿✿

plants.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

increases
✿✿✿✿

the
✿✿✿✿✿✿✿

moisture
✿✿✿✿✿✿✿

content
✿✿

of
✿✿✿✿

soil
✿✿

as
✿✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿

moisture15

✿✿✿✿✿✿

content
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

consequently
✿✿✿✿

live
✿✿✿

and
✿✿✿✿✿

dead fuel moisture contentsand hence to a reduction in burned area in more humid regions
✿

,

✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿✿✿✿✿

flammability
✿✿✿✿

and
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

consequence
✿✿✿✿✿✿

reduces
✿✿✿✿✿✿

burned
✿✿✿✿

area. Woody thickening can lead to a reduction in burned

area through changing the nature of fuel loads (Kelley and Harrison, 2014).

There is still controversy about whether humans increase or decrease fire overall: Although there is broad agreement that hu-

mans suppress fires in regions with high population density, observational studies are less clear about what happens in areas20

of low population density and show both increases or decrease
✿✿✿✿✿✿✿✿

decreases
✿

due to human activities (see for instance Marlon

et al., 2008; Bowman et al., 2011; Marlon et al., 2013; Vannière et al., 2016; Andela et al., 2017; Balch et al., 2017). Studies

of the covariation between population density and number of fires have shown that increasing population density leads to an

increase in the number of ignitions or in the number of individual fires until peaking at inter-mediate
✿✿✿✿✿✿✿✿✿✿

intermediate population

densities and drop subsequently (Syphard et al., 2009; Archibald et al., 2010).
✿✿✿✿✿✿

Burned
✿✿✿✿

area
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

expressed
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of25

✿✿✿

fires
✿✿✿✿✿✿✿✿✿

multiplied
✿✿✿

by
✿✿✿✿

their
✿✿✿

fire
✿✿✿✿

size. The increase in burned area for low population density
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿

ignitions
✿

is expected

to differ from the one found for number of fires
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿

as the largest fires occur in

unpopulated areas (Hantson et al., 2015a)and burned area can be expressed as number of fires times fire size. Global analysis

✿

.
✿✿✿✿✿

Global
✿✿✿✿✿✿✿✿

analyses find that the net effect of population density is a decrease in burned area (Bistinas et al., 2014; Knorr et al.,

2014), with high uncertainties for low population density if the method allows for non-monotonic relationships (Knorr et al.,30

2014). Regional analysis tends
✿✿✿✿✿✿

analyses
✿✿✿✿

tend
✿

to confirm this, but positive relationships between burned area and population

density have been shown, for instance, for the least disturbed areas in the USA (Parisien et al., 2016).

Fire was used to manage croplands in pre-industrial times (e.g. Dumond, 1961; Otto and Anderson, 1982; Johnston, 2003)

and it is still common practice in mainly in non-industrialized areas (i.e. Sub-Saharan Africa, parts of South East Asia, In-

donesia and Latin America; e.g. Conklin, 1961; Rasul and Thapa, 2003). However fires in agricultural areas are common on35
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all over the world (Korontzi et al., 2006). The influence of land-use on fire on global scale is not well studied. Severe data

gaps and an unsatisfactory level of understanding characterize our knowledge on how humans use fire in land management

(Erb et al., 2017) . Analysis of satellite data
✿✿✿✿✿✿

Global
✿✿✿✿✿✿✿

analyses
✿

indicate a decrease of burned area (Bistinas et al., 2014; An-

dela and van der Werf, 2014) and fire size (Hantson et al., 2015b) with increases in cropland fraction. Fires on pastures

✿✿✿✿✿✿✿✿✿✿

pasturelands
✿✿✿✿

have
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿

estimated
✿✿

to
✿

contribute over 40% of the global burned area (Rabin et al., 2015). Analysis
✿✿✿✿✿✿✿✿

Analyses5

of global datasets find an increase of burned area with increases in pasture cover fraction Bistinas et al. (2014)
✿✿✿✿✿✿

grazing
✿✿✿✿

land

✿✿✿✿

cover
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bistinas et al., 2014) but reduced burned area on intensely grazed areas (Andela et al., 2017).
✿✿✿✿✿✿

Despite
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

analyses,

✿✿

the
✿✿✿✿✿✿

severe
✿✿✿✿

data
✿✿✿✿

gaps
✿✿✿✿

limit
✿✿✿

our
✿✿✿✿✿

level
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

on
✿✿✿✿

how
✿✿✿✿✿✿✿

humans
✿✿✿

use
✿✿✿

fire
✿✿

in
✿✿✿✿

land
✿✿✿✿✿✿✿✿✿✿✿

management
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Erb et al., 2017) .

Lightning is the main source of natural ignitions (Scott et al., 2014). It is connected to convective activity and is therefore

expected to change with global warming (Krause et al., 2014). Most of total
✿✿✿

the burned area in boreal regions , for example,10

results from a few large fires (Stocks et al., 2002); these large fires are frequently ignited by lightning (Peterson et al., 2010).

Veraverbeke et al. (2017) have shown that lightning ignitions drive
✿✿

the
✿

interannual variability as well as
✿✿✿

the long-term trends

of the ignitions in boreal regions.

Climate can influence
✿✿✿✿✿✿✿✿

influences burned area through weather conditions and
✿✿✿✿✿✿

through
✿✿✿

its
✿✿✿✿✿✿✿

influence
✿✿✿

on vegetation (Bistinas et al.,

2014; Forkel et al., 2017). Weather conditions (precedent precipitation, temperature and wind speeds
✿✿✿✿✿

speed) influence fuel dry-15

ing, while wind speed
✿✿✿✿

wind
✿✿✿✿✿

speed
✿✿✿✿✿✿✿✿✿✿

additionally
✿

affects the rate of fire spread (Harrison et al., 2010; Scott et al., 2014). Fuel

loads and vegetation type are also
✿✿✿✿✿✿✿✿✿

Vegetation
✿✿✿✿

type
✿✿✿

and
✿✿✿✿

fuel
✿✿✿✿

load
✿✿✿

are driven by climate and both strongly determine
✿✿✿✿✿✿✿✿

influence

fire occurrence (Chuvieco et al., 2008; Pettinari and Chuvieco, 2016). As fires are limited at low moisture
✿✿✿✿

Fires
✿✿✿

are
✿✿✿✿✿✿✿

limited

✿✿✿✿✿

under
✿✿✿

dry
✿

conditions due to low
✿✿✿✿✿✿✿✿

vegetation
✿

productivity and therefore insufficient fuel, and at high moisture conditions due

to the fuel being
✿✿✿✿

under
✿✿✿✿

wet
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿

fuel
✿✿

is
✿

too wet to burn, the
✿

.
✿✿✿✿

The highest burned areas are
✿✿✿✿✿✿✿

therefore
✿

found20

in areas with medium
✿✿✿✿✿✿✿✿✿✿

intermediate moisture conditions (Krawchuk and Moritz, 2011). There is no obvious controversy in

literature on
✿✿✿✿✿✿✿✿✿✿✿

disagreement
✿✿

in
✿✿✿✿✿✿✿✿

literature
✿✿✿✿✿

about how specific climatic factors drive
✿✿✿✿✿✿✿✿

influence fire. However, the strength of single

factors and balance between factors
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿✿✿

each
✿✿✿✿✿

factor, e.g. weather vs. vegetation, is still uncertain and varies

spatially (Forkel et al., 2017). Fire models are sensitive to the meteorological forcing, different forcing datasets already lead to

large differences in simulated burned area (Rabin et al., 2017a; Lasslop et al., 2014). Wind speed for instance strongly varies25

between datasets and although wind
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿✿✿✿

factors
✿✿✿✿

also
✿✿✿✿✿

varies
✿✿✿✿✿✿✿

between
✿✿✿✿✿

small
✿✿✿✿

and
✿✿✿✿

large
✿✿✿✿✿✿

scales.
✿✿✿✿✿

Wind
✿

speed is an

obvious driver of fire spread ,
✿✿

on
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿

scale,
✿✿✿✿

but it is difficult to extract this influence on the spatial resolution of global

models (Lasslop et al., 2015).

Fire-enabled vegetation models generally
✿✿✿✿✿✿✿

simulate
✿✿✿

fire
✿✿✿✿✿✿✿

regimes
✿✿

in
✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿

forcings,
✿✿✿✿✿✿✿✿

including

✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration,
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿✿

density,
✿✿✿✿✿✿✿

land-use
✿✿✿✿✿✿

change,
✿✿✿✿✿✿✿✿

lightning
✿✿✿

and
✿✿✿✿✿✿✿

climate.
✿✿✿✿✿✿✿✿✿

Individual
✿✿✿✿✿✿✿✿✿✿

fire-enabled
✿✿✿✿✿✿✿✿✿

vegetation30

✿✿✿✿✿✿

models
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿

shown
✿✿

to simulate observed global patterns of burned area and fire emissions reasonably well (Kloster et al.,

2010; Prentice et al., 2011; Li et al., 2012; Lasslop et al., 2014; Yue et al., 2014), but there are large differences between models

in terms of regional patterns, fire seasonality and interannual variability, and historical trends (Kelley et al., 2013; Andela et al.,

2017)
✿✿✿

and
✿✿✿✿✿✿✿✿

responses
✿✿

to
✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

factors
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kloster et al., 2010; Knorr et al., 2014, 2016; Lasslop and Kloster, 2017, 2015) .
✿✿✿

The

✿✿✿

fire
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

intercomparison
✿✿✿✿✿✿

project
✿✿✿✿✿✿✿✿

(FireMIP,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hantson et al., 2016a; Rabin et al., 2017a )
✿✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿✿✿✿✿✿

framework
✿✿

to35
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✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿✿✿

analyse
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿

causes
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿

and
✿✿

to
✿✿✿✿✿

relate
✿✿✿✿✿

them
✿✿

to
✿✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿

key

✿✿✿✿✿

drivers
✿✿✿

of
✿✿✿

fire
✿✿✿

in
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿

models.
✿✿✿✿

The
✿✿✿✿✿✿✿

FireMIP
✿✿✿✿✿✿

project
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿

of
✿✿✿✿✿✿✿✿✿

fire-model

✿✿✿✿✿✿✿✿

behaviour
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

outputs
✿✿

of
✿✿

a
✿✿✿✿✿

large
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿

models
✿✿✿✿

with
✿✿✿✿✿✿✿✿

identical
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

inputs.
✿✿

In
✿✿✿✿✿✿✿

addition
✿✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿

historical

✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

conducted
✿✿✿

for
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿

forcings,
✿✿✿✿✿✿✿✿✿✿

specifically
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration,

✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density,
✿✿✿✿✿✿✿✿

land-use
✿✿✿✿✿✿✿

change,
✿✿✿✿✿✿✿

lightning
✿✿✿✿

and
✿✿✿✿✿✿

climate. A recent evaluation of the FireMIP models indicates that the re-5

lationship with climatic parameters is captured well by models, the response to human factors is captured by some models

and the response to vegetation productivity
✿✿

or
✿✿✿

the
✿✿✿✿✿✿✿✿✿

allocation
✿✿

of
✿✿✿✿✿✿

carbon
✿✿✿

to
✿✿✿✿

fuels
✿

needs refinement for most models (Forkel

et al., 2019a).
✿✿✿✿✿✿✿✿✿✿

Comparisons
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

FireMIP
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿

found
✿✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

behaviour
✿✿✿

in
✿✿✿

the
✿✿✿✿

20th

✿✿✿✿✿✿

century
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Andela et al., 2017; van Marle et al., 2017) .
✿✿✿

The
✿✿✿✿✿✿

causes
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

differences
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

reasons
✿✿✿✿

why
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

models
✿✿✿✿✿

show

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

responses
✿✿✿

are
✿✿✿

not
✿✿✿

yet
✿✿✿✿✿✿✿✿✿✿

understood.10

In this study we briefly assess how well the FireMIP models simulated present day burned area
✿✿✿✿✿✿✿✿✿✿

multi-model
✿✿✿✿✿

study
✿✿✿

we
✿✿✿

use
✿✿✿

the

✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿✿✿✿

simulation
✿✿

to
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿✿✿✿

response
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

environmental
✿✿✿

and
✿✿✿✿✿✿

human
✿✿✿✿✿✿

factors. We

then
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿

of
✿✿✿

the
✿✿✿✿

five
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿

used
✿✿✿✿✿✿✿

driving
✿✿✿✿✿✿

factors
✿✿

to document how simulated burned

area responds to
✿✿

the
✿

individual forcing factors and relate inter-model differences of the burned area response to differences

in model assumptions or parametrisation. We finally discuss the model limitations and
✿✿✿✿✿✿

suggest
✿

implications of our results for15

model development and application.

2 Methods

The baseline FireMIP experiment (SF1) is a transient simulation from 1700–2013, in which
✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration,

population density, land–use
✿✿✿✿✿✿

land-use, lightning, and climate change through time according to prescribed datasets.
✿✿✿✿

The
✿✿✿✿✿✿✿

baseline

✿✿✿

and
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

start
✿✿✿✿✿

from
✿✿✿

the
✿✿✿

end
✿✿

of
✿✿

a
✿✿✿✿✿✿

spin-up
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

equilibrated
✿✿✿✿✿✿

carbon
✿✿✿✿

pools
✿

(see Rabin et al. (2017a)20

for details of the experimental protocol). The five sensitivity experiments (SF2) are designed to isolate differences in model

behaviour associated with individual forcing factors. The model inputs and setup are the same as in SF1, but one of the

forcings is kept constant
✿✿

at
✿✿✿

the
✿✿✿✿✿

value
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

spin-up throughout the simulation in each experiment (see tab. 1). Thus, for

example, in SF2_CO2, population density, land–use
✿✿✿✿✿✿✿

land-use, lightning and climate inputs change each year, but
✿✿✿✿✿✿✿✿✿✿

atmospheric

CO2
✿✿✿✿✿✿✿✿✿✿

concentration
✿

is held constant at 277.33 ppm for the whole of the simulation.
✿✿✿

The
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿

difference
✿✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area25

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

is
✿✿✿✿

then
✿

a
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

sensitivity
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿

to
✿✿✿

that
✿✿✿✿✿✿✿

forcing

✿✿✿✿✿

factor.
✿

Not all models performed every sensitivity experiment due to limitations in model structure (see tab. 2).
✿✿✿✿✿✿✿

Detailed
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿✿

descriptions
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

found
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿

literature
✿✿✿✿✿

listed
✿✿

in
✿✿✿✿✿

table
✿✿✿

A1.
✿

Two of the models (CLASS–CTEM and CLM)

started the simulations later than the others (1861 and 1850, respectively) . Since our analyses are confined to differences in

behavior during the 20th century, this difference in the length of the simulations between the models should have little impact30

✿✿✿

and
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

limitations
✿✿✿

in
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

availability
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

year
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forcings
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

spin-up
✿✿✿✿✿

varies
✿✿✿✿

(see
✿✿✿

tab.
✿✿✿

1).
✿✿✿

We
✿✿✿✿✿✿✿

account

✿✿

for
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿✿✿

starting
✿✿✿✿

years
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

models
✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

factors
✿✿✿

by
✿✿✿✿✿✿

limiting
✿✿✿✿

our
✿✿✿✿✿✿

analysis
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

period
✿✿✿✿✿

where
✿✿✿

all

5



✿✿✿✿✿

factors
✿✿✿

are
✿✿✿✿✿✿✿✿

different
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

ones
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

spin-up
✿✿✿✿✿

(after
✿✿✿✿✿

1921).
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

still
✿✿✿✿✿✿✿✿

influence
✿✿✿

the
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

differences,

✿✿

we
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

quantify
✿✿✿

the
✿✿✿✿✿✿✿

strength
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿

slope
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿

regression
✿✿✿

line
✿✿✿✿

and
✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿

interpret
✿✿

the
✿✿✿✿✿

offset.

Table 1. Overview over the sensitivity experiments conducted by FireMIP-models (Rabin et al., 2017a). Rptd indicates the forcing was re-

peated over the given years. SF2_CO2 stands for fixed CO2
✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿

concentration, SF2_FPO for fixed population density, SF2_FLA

for fixed land use
✿✿✿✿✿✿

land-use, SF2_FLI for fixed lightning, and SF2_CLI for fixed climate.

Driving factor Sensitivity Experiments

SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CO2 277.33 ppm transient transient transient transient

Population density (PD) transient
Fixed

Year 1
transient transient transient

Land-use change (LUC) transient transient
Fixed

Year 1
transient transient

Lightning transient transient transient
Rptd:

1901–1920
transient

Climate transient transient transient transient
Rptd:

1901–1920

Table 2. Sensitivity experiments conducted by FireMIP models.

Model Sensitivity Experiments

SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM x x x x x

CLM x x x x x

INFERNO x x x

JSBACH–SPITFIRE x x x x x

LPJ–GUESS–SIMFIRE–BLAZE x x x x

LPJ–GUESS–SPITFIRE x x x x x

ORCHIDEE–SPITFIRE x x x x x

Detailed model descriptions can be found in the corresponding literature listed in table A1.

2.1 Data processing and analysis of simulation results

Our analyses of the SF1 and SF2 simulations focus on the simulation of burned area but are complemented by effects on5

vegetation carbon pools for the SF2_CO2 simulation. We focus on the time series of global burned area over the historical

6



simulation and the spatial patterns of differences in burned area between 1900
✿✿✿✿

1921
✿

and 2013, as in this period all forcings

are transient
✿✿

and
✿✿✿✿✿✿✿✿

different
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

values
✿✿✿✿

used
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spin-up. Annual global values are an area weighted average using the

grid cell area. We quantify the sensitivity
✿✿✿✿✿✿✿

response of the models to each driving factor using the relative
✿✿✿✿✿✿✿

absolute
✿

difference

in burned area between the baseline and the respective sensitivity experiment (SF1-SF2_i/SF2_i, with i in CO2, FPO, FLA,

FLI, CLI).
✿✿✿✿✿✿✿

Positive
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿

mean
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿

change
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

factor
✿✿✿✿

lead
✿✿

to
✿✿✿

an
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿

We use the5

climate data operators (CDO version 2018: Climate Data Operators. Available at: http://www.mpimet.mpg.de/cdo) to process

and remap the simulated outputs. We test the relative difference time series for trends over the period from 1900
✿✿✿✿

1921
✿

to 2013

using the Mann-Kendall test, implemented in the R package Kendall (McLeod, 2011). We quantify the global trend as the slope

of a linear regression and summarize the spatial distribution of trends by quantifying the area with significant positive trends

and the area with significant negative trends.10

Due to a postprocessing error, INFERNO lacks two years in SF2_CO2 (2002 and 2003
✿✿✿✿

2001
✿✿✿

and
✿✿✿✿

2002).

2.2 Model-data comparison

To evaluate the realism of the simulations of burned area, we compare the simulated burned area with remote sensing data

products. We used
✿✿✿✿✿✿

Global
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

from
✿✿✿✿✿✿✿

satellites
✿✿✿✿

still
✿✿✿✿✿

suffer
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿✿✿✿

uncertainty,
✿✿

as
✿✿✿✿✿✿✿

reflected
✿✿✿

by
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

considerable
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿✿

spatial
✿✿✿✿

and
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

different
✿✿✿

data
✿✿✿✿✿✿✿✿

products15

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Humber et al., 2018; Hantson et al., 2016a; Chuvieco et al., 2018; van der Werf et al., 2017 ).
✿✿✿✿✿

Using
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿

products

✿✿

in
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

benchmarking
✿✿

is
✿✿✿✿

one
✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿

take
✿✿✿✿

into
✿✿✿✿✿✿✿

account
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rabin et al., 2017a) .
✿✿

In
✿✿✿✿

this

✿✿✿✿✿

study,
✿✿

we
✿✿✿

use
✿

three satellite products: GFED4 (Giglio et al., 2013), GFED4s (Randerson et al., 2012)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(van der Werf et al., 2017)

and FireCCI50 (Chuvieco et al., 2018). These three data sets use different retrieval algorithms, which cause differences in

spatial and temporal patterns in burned area (Hantson et al., 2016a; Humber et al., 2018) . Since there is no agreement about20

which is most reliable, using
✿✿✿✿✿✿

GFED4
✿✿

is
✿✿

a
✿✿✿✿✿✿✿

gridded
✿✿✿✿✿✿

version
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

Collection
✿✿✿✿

5.1
✿✿✿✿✿✿✿

MCD64
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿

product.
✿✿

It

✿

is
✿✿✿✿✿✿

known
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿

product
✿✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿✿✿✿✿

underestimates
✿✿✿✿✿

small
✿✿✿✿✿

fires,
✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿✿✿

cropland
✿✿✿✿

fires
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hall et al., 2016 ).
✿✿✿

In
✿✿✿✿✿✿✿✿

GFED4s,

✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

due
✿✿

to
✿✿✿✿✿

small
✿✿✿✿

fires
✿✿

is
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

active
✿✿✿✿

fire
✿✿✿✿

(AF)
✿✿✿✿✿✿✿✿✿

detections
✿✿✿

and
✿✿✿✿✿✿

added
✿✿

to
✿✿✿✿✿✿✿

GFED4
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.

✿✿✿✿✿✿✿✿

However,
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

methodology
✿✿✿✿

may
✿✿✿✿✿✿✿✿

introduce
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿

errors
✿✿✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿✿✿✿

erroneous
✿✿✿✿

AF
✿✿✿✿✿✿✿✿✿

detections
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Zhang et al., 2018) .
✿✿✿

As
✿✿

a

✿✿✿✿✿✿✿✿✿✿✿✿

complementary
✿✿✿✿✿✿✿✿

product,
✿✿✿✿✿✿✿✿✿

FireCCI50
✿✿✿

was
✿✿✿✿✿✿✿✿✿

developed
✿✿✿✿✿

using
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿

spectral
✿✿✿✿✿

bands
✿✿✿✿

with
✿✿✿✿✿✿

higher
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

than
✿✿✿✿✿✿✿✿

MCD64.25

✿

A
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿✿

enhances
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

to
✿✿✿✿✿

detect
✿✿✿✿✿✿✿

smaller
✿✿✿✿

fires;
✿✿✿✿✿✿✿✿

however,
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

is
✿✿✿✿✿✿✿

partially
✿✿✿✿✿✿

offset
✿✿

by
✿✿✿✿✿✿✿✿✿✿

suboptimal

✿✿✿✿✿✿

spectral
✿✿✿✿✿✿✿✿✿

properties
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

bands.
✿✿✿✿

Both
✿✿✿✿✿✿✿✿

GFED4s
✿✿✿

and
✿✿✿✿✿✿✿✿✿

FireCCI50
✿✿✿✿✿

have
✿✿✿✿✿

larger
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

than
✿✿✿✿✿✿✿

GFED4.
✿✿✿✿✿

Since
✿

all three products

provides a measure of the uncertainty in the observations
✿✿✿

are
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

MODIS
✿✿✿✿

data,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

inter-product
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿

probably

✿✿✿✿✿✿✿✿✿✿✿

underestimate
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿

these
✿✿✿✿✿✿✿✿

products.
✿✿

A
✿✿✿✿✿

recent
✿✿✿✿✿✿✿✿

mapping
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

for
✿✿✿✿✿✿

Africa
✿✿✿✿✿

using
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

resolution

✿✿✿✿✿✿✿✿

Sentinel-2
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

indicates
✿✿✿✿

that
✿✿✿

all
✿✿✿✿

three
✿✿✿✿✿✿✿✿

products
✿✿✿✿✿✿✿✿✿✿

substantially
✿✿✿✿✿✿✿✿✿✿✿✿

underestimate
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Roteta et al., 2019) . For the30

comparison
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

evaluation we use temporally averaged burned
✿✿✿

area
✿

fraction for the years 2001–2013, which is
✿✿✿✿✿✿✿✿✿✿

2001–2013,

the interval common to all three satellite data sets
✿✿✿✿✿✿✿

products
✿

and the model simulations. For this comparison, we scale
✿✿✿

We

✿✿✿✿✿✿✿

resample
✿

the model outputs to the lowest model resolution (CLASS-CTEM: 2.8125 x 2.8125◦) with first order conservative

remapping. Due to the strongly skewed distribution of burned area fraction we apply a square root transformation on both

7



observations and model output. We quantify the agreement between models and observations with
✿✿

by
✿✿✿✿✿✿✿✿✿

providing
✿✿✿

the
✿✿✿✿✿✿

global

✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

and
✿

the Pearson correlation coefficient
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

between
✿✿✿✿

grid
✿✿✿✿

cell
✿✿✿✿✿✿✿✿

variation (see tab. 3).
✿✿

We
✿✿✿✿✿✿✿

choose
✿✿✿

the
✿✿✿✿✿✿✿

Pearson

✿✿✿✿✿✿✿✿✿

correlation
✿✿

as
✿✿

it
✿✿✿✿✿✿✿✿

quantifies
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

covariation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns,
✿✿✿

and
✿✿

is
✿✿✿✿

less
✿✿✿✿✿✿✿

sensitive
✿✿✿

to
✿✿✿

the
✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿

uncertain
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿

burned

✿✿✿

area
✿✿✿✿✿✿

values.
✿✿✿✿✿✿✿

Burned
✿✿✿✿

area
✿✿✿

has
✿

a
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

skewed
✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿

with
✿✿✿✿

few
✿✿✿✿

high
✿✿✿✿✿

values
✿✿✿✿

and
✿✿✿✿

many
✿✿✿✿✿

small
✿✿✿✿✿✿

values
✿✿✿✿✿

close
✿✿

to,
✿✿

or
✿✿✿✿✿

equal
✿✿✿

to,

✿✿✿✿

zero.
✿✿✿✿✿

These
✿✿✿

few
✿✿✿✿

high
✿✿✿✿✿✿

values
✿✿✿✿

have
✿

a
✿✿✿✿✿

much
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿

(see
✿✿✿✿✿

figure
✿✿✿

A9
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix)
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore5

✿✿

the
✿✿✿✿✿✿

metric
✿✿

is
✿✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿✿

determined
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

model
✿✿

in
✿✿✿✿✿

areas
✿✿✿✿✿

with
✿✿✿✿

high
✿✿✿✿✿✿✿

burning.
✿✿✿✿✿✿

Square
✿✿✿✿

root
✿✿✿

or
✿✿✿✿✿✿✿✿✿✿

logarithmic

✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿

leads
✿✿✿

to
✿✿✿✿

more
✿✿✿✿✿✿✿✿

normally
✿✿✿✿✿✿✿✿✿

distributed
✿✿✿✿✿✿

values,
✿✿✿✿

that
✿✿✿✿✿✿

reduce
✿✿✿

this
✿✿✿✿

bias
✿✿✿✿

(see
✿✿✿✿✿

figure
✿✿✿

A9
✿✿

in
✿✿✿✿✿✿✿✿✿✿

Appendix).
✿✿

As
✿✿✿

the
✿✿✿✿✿✿✿✿✿

logarithm

✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿✿✿

excludes
✿✿✿✿

grid
✿✿✿✿

cells
✿✿✿✿

with
✿✿✿✿

zero
✿✿✿✿✿✿

burned
✿✿✿✿

area,
✿✿✿

we
✿✿✿✿✿

adopt
✿✿✿

the
✿✿✿✿✿✿

square
✿✿✿✿

root
✿✿✿✿✿✿✿✿✿✿✿✿

transformation.
✿

In spite of major advances in mapping burned area based on satellite data, these data products include major uncertainties.

GFED4 and FireCCI50 provide uncertainty estimates for the burned area. Applying Gaussian error propagation, which assumes10

that errors are independent and normally distributed, yields uncertainty estimates of 0.01%
✿✿✿✿✿✿✿

(GFED4)
✿

and 0.2%
✿✿✿✿✿✿✿✿✿✿

(FireCCI50) of

the global burned area, which is certainly an underestimation. The assumptions of normal distribution and independence are

likely violated. The spread between global burned area data sets is probably a more realistic estimate. Since all the products

rely on the MODIS sensor, this approach will , however, also not capture the full uncertainty. Nevertheless, to investigate the

effect of data quality in the observations on the model-data comparison we use the burned area product uncertainty estimates15

(aggregated to model resolution assuming independence) to group the observations into points with low, medium and high

uncertainty (low: within the 0–33rd percentile, medium: within the 33rd–66th percentile, and high: within the 66th–99th per-

centile of the relative uncertainty estimates = uncertainty / burned area). We then compute the correlations for data points with

low, medium and high uncertainty separately.

3 Results and discussion20

3.1 Evaluation of the baseline experiment
✿✿✿✿✿✿✿✿

Simulated
✿✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿✿

burned
✿✿✿✿

area

The models show magnitudes of annual global burned area between 354–530
✿✿✿✿✿✿✿

354–531
✿

Mha/yr for present day. This is com-

parable to the estimates obtained from the satellite products, which range from 345–480 Mha/yr (see fig. 1, tab. 3). The

correlation coefficients between all of the simulations and the satellite observations are reasonable, with values ranging from

0.51 (CLASS–CTEM, GFED4s) to 0.8 (ORCHIDEE–SPITFIRE, GFED4; see tab. 3). In general, the correlations with GFED425

are highest and with GFED4s lowest for almost all models - which may reflect the fact that most models do not explicitly sim-

ulate agricultural fires or may reflect an overestimation or not sufficiently precise estimation of the contribution of such fires

to burned area
✿✿✿✿✿✿✿

indicate
✿✿✿✿✿✿✿✿✿✿

inaccuracies
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

mapping
✿✿

of
✿✿✿✿✿✿✿✿✿✿

agricultural
✿✿✿✿

fires
✿

in the GFED4s data set. The correlation coefficients

strongly decrease with increasing observational relative uncertainty (see tab. A2), showing .
✿✿✿✿

This
✿✿✿✿✿✿

shows
✿

that part of the mis-

match in the spatial patterns between simulations and observations is a consequence of uncertainties in the satellite products30

themselves. The FireMIP models simulate the broad scale patterns in burned area reasonably well (see fig. A1), with maxima

in the major fire-affected regions of the Sahel, southern Africa, northern Australia and the western USA. All of the models tend

to overestimate the burned area in South America and also in the temperate regions of the USA.
✿✿

For
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿

evaluation
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✿✿

of
✿✿✿

the
✿✿✿✿✿✿

burned
✿✿✿

area
✿✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Forkel et al. (2019a) .

1900 1920 1940 1960 1980 2000
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 y
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1 ]
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CLM
INFERNO
JSBACH-SPITFIRE

LPJ-GUESS-SIMFIRE-BLAZE
LPJ-GUESS-SPITFIRE
ORCHIDEE-SPITFIRE

GFED4s
GFED4
ESA-CCI

Figure 1. Annual global burned area (BA) in Mha yr−1 for all FireMIP-models for 1900–2013
✿✿✿✿✿✿✿✿

1921–2013 for the baseline experiment SF1.

✿✿✿

The
✿✿✿✿✿

shaded
✿✿✿✿

area
✿✿✿✿✿✿✿

indicates
✿✿

the
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿

annual
✿✿✿✿✿

global
✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿

values
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations.

Table 3. Global burned area averaged over 2001–2013 in Mha yr-1 and the Pearson correlation coefficients between the baseline experiment

SF1 for all FireMIP-models and the respective observation data. Due to the skewed distribution of burned area, we
✿✿✿

We use a square root

transformation on both model and observations. All correlation coefficients are significant (p-value < 0.001
✿✿✿

0.05).

Model
Burned Area

(Mha yr-1)
R(GFED4, model) R(GFED4s, model) R(FireCCI50, model)

CLASS–CTEM 531 0.58 0.51 0.56

CLM 451 0.73 0.68 0.74

INFERNO 354 0.70 0.64 0.69

JSBACH–SPITFIRE 455 0.66 0.57 0.62

LPJ–GUESS–SIMFIRE–BLAZE 482 0.67 0.60 0.62

LPJ–GUESS–SPITFIRE 404 0.55 0.56 0.59

ORCHIDEE–SPITFIRE 474 0.80 0.72 0.79

GFED4 345

GFED4s 480

FireCCI50 389

The simulated trend in burned area of the historical reference
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

historical
✿

simulation differs between the models (see fig.

1). All models , except CLM, have a significant trend over the time series from 1900–2013
✿✿✿✿✿✿✿✿✿

1921–2013
✿

(see tab. 4). Models that

have a relatively high total burned area initially (LPJ–GUESS-SIMFIRE–BLAZE, CLASS–CTEM) show a decline in burned5
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area over the 20th century. Most models that have a low burned area (INFERNO, ORCHIDEE–SPITFIRE, LPJ-GUESS-

SPITFIRE) show an increasing trend. JSBACH–SPITFIRE and CLM have intermediate levels in burned area and show a weak

decreasing trend over the 20th century. Only half of the models

✿✿✿✿✿✿✿

Satellite
✿✿✿✿✿✿

records
✿

show a decline in burned area after 2000 CE (see Andela et al., 2017 ). The global decline in satellite data is

strongly dominated by savanna ecosystems and the spatial pattern of trends is very heterogeneous (Andela et al., 2017) . The5

short
✿✿✿✿✿

global
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

since
✿✿✿✿✿

1996
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Andela et al., 2017) .
✿✿✿✿✿✿✿✿

However,
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Forkel et al. (2019b) have
✿✿✿✿✿✿

shown,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

significance
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

global
✿✿✿✿✿✿

decline
✿✿

is
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

affected
✿✿✿

by
✿✿✿

the length of the satellite record leads to uncertainties in the trends, which

are in most regions statistically not significant (Andela et al., 2017) .Few datasets exist for
✿✿✿✿✿✿

sampled
✿✿✿✿✿✿✿

interval
✿✿✿✿✿✿✿

because
✿✿

of
✿✿✿

the
✿✿✿✿

high

✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

and
✿✿✿✿✿

trends
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

products
✿✿✿✿✿

show
✿✿✿✿

only
✿

a
✿✿✿

low
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019b) .

✿✿

No
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿

document
✿

the longer term trend. Charcoal data
✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿✿✿✿✿✿✿

Charcoal
✿✿✿✿✿✿✿

records10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Marlon et al., 2008, 2016) and
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿✿

monoxide
✿✿✿✿

data
✿✿✿✿

from
✿✿✿✿✿✿✿

ice-core
✿✿✿✿✿✿✿

records
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Wang et al., 2010) are a proxy for fire occurrence

over longer time scales (Marlon et al., 2008, 2016) . These charcoal records
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿

burning
✿✿✿✿

and
✿

show a global decrease in

biomass burning over most of the 20th century(Marlon et al., 2008, 2016) , which is consistent with carbon monoxide data

from ice-core records (Wang et al., 2010) . However, the charcoal records appear to show an increase in burning since 2000 CE,

contrary to the decline shown by satellite-based records of burned area (Andela et al., 2017) . This
✿✿

but
✿✿✿

this
✿

discrepancy might15

reflect sampling
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿✿✿✿✿

undersampling
✿✿✿✿

(for
✿✿✿✿✿✿✿

instance
✿✿

in
✿✿✿✿✿✿

Africa)
✿

or taphonomic issues of the charcoal record. For instance the

continents that contribute most to the global burned area (Africa) is heavily undersampled. A recently developed fire emissions

✿

A
✿✿✿✿✿✿

recent
✿✿✿

fire
✿✿✿✿✿✿✿✿

emission dataset (van Marle et al., 2017) merges information from satellites, charcoal records, airport visibility

records and if no other information was available uses simulation results of the FireMIP models. This dataset is not included

✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿

models
✿

here as it is partly based on the simulations of the models used in this study
✿✿✿✿✿✿✿

FireMIP
✿✿✿✿✿✿

models
✿

and as it20

does not provide estimates of burned area. A decline in global burned areaover the 20th century might be more realistic than

the increase shown by several models. Further evaluation of historical trends in fire proxies and longer satellite time series will

help to gain more confidence in observed trends of fire regimes.The better
✿✿✿✿✿✿✿

provides
✿✿✿✿

only
✿✿✿✿✿✿✿✿

estimates
✿✿✿

for
✿✿✿✿✿✿✿✿

emissions
✿✿✿✿

not
✿✿✿✿✿✿

burned

✿✿✿✿

area.

✿✿✿

The
✿

understanding of the drivers of
✿✿

on simulated trends that we provide below can inform us on how certain trends can be25

achieved in models.
✿✿✿✿

give
✿✿✿✿✿

below
✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿

insights
✿✿

on
✿✿✿✿✿

what
✿✿✿✿✿

causes
✿✿✿

the
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

trends
✿✿✿

and
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿✿

control
✿✿✿

the
✿✿✿✿✿

trend.

✿✿✿✿✿

These
✿✿✿✿✿✿

insights
✿✿✿✿

will
✿✿✿✿

help
✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿

and
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

is
✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿✿✿✿

global

✿✿✿

fire
✿✿✿✿✿✿

models.
✿

3.2 Sensitivity of models to individual drivers

There are large differences in sign and magnitude between modelsin the temporal response of global burned area from30

1900–2013 to each individual driving factor when compared to the baseline experiment (see fig. 2,
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Table 4.
✿✿✿✿✿

Trends
✿✿✿✿

(slope
✿✿✿✿

and
✿✿✿✿✿✿

standard
✿✿✿✿

error
✿✿

of
✿✿

a
✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

regression, [
✿✿✿

Mha
✿✿✿✿

yr−1])
✿✿

in
✿✿✿✿✿

annual
✿✿✿✿✿

global
✿✿✿✿✿✿

burned
✿✿✿

area
✿✿✿

for
✿✿✿

the
✿✿✿✿

years
✿✿✿✿✿✿✿✿

1921-2013
✿✿✿

for
✿✿✿

the

✿✿✿✿✿✿

baseline
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿

SF1
✿✿✿

and
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿

difference
✿✿✿✿

time
✿✿✿✿

series
✿✿

of
✿✿✿✿✿✿

annual
✿✿✿✿✿

burned
✿✿✿✿

area.
✿✿✿✿

The
✿✿✿✿✿

trends
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿

data
✿✿✿

sets
✿✿✿

are
✿✿✿✿✿

based
✿✿

on
✿✿✿

the

✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

transient
✿✿✿✿✿

forcing
✿✿✿

and
✿✿✿✿

year
✿✿✿✿

1920
✿✿✿✿

value
✿✿✿

for
✿✿✿✿✿✿✿✿

SF2_CO2,
✿✿✿✿✿✿✿✿

SF2_FPO
✿✿✿

and
✿✿✿✿✿✿✿

SF2_FLA
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿

difference

✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

transient
✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿

recycled
✿✿✿✿✿✿

forcing
✿✿✿

for
✿✿✿✿✿✿✿

SF2_FLI
✿✿✿

and
✿✿✿✿✿✿✿

SF2_CLI
✿✿

for
✿✿✿

the
✿✿✿✿

years
✿✿✿✿✿✿✿✿✿

1921-2013
✿✿✿

[%]
✿✿✿

(see
✿✿✿

tab.
✿✿

1).
✿✿✿✿

Bold
✿✿✿✿✿

values
✿✿✿✿✿✿✿

indicate

✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿

based
✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

Mann-Kendall
✿✿

test
✿✿✿✿✿✿✿

(p-value
✿

<
✿✿✿✿✿

0.05).
✿✿✿✿✿✿✿✿✿✿

Experiments
✿✿✿

that
✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿

specific
✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿✿✿✿✿

indicated
✿✿✿

with
✿✿✿✿

n.a..

Model Sensitivity Experiments

SF1 SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM
✿✿✿✿✿

-2.238
✿✿✿✿✿

-0.059
✿✿✿✿✿✿

-0.754
✿✿✿✿✿✿

-0.922
✿✿✿✿

0.000
✿ ✿✿✿✿

0.072
✿

✿✿

±
✿✿✿✿✿

0.116
✿

±
✿✿✿✿✿

0.008
✿ ✿✿

±
✿✿✿✿✿

0.052
✿✿

±
✿✿✿✿✿

0.049
✿

±
✿✿✿✿✿

0.001
✿ ✿✿

±
✿✿✿✿✿

0.134

CLM
✿✿✿✿✿

-0.277
✿✿✿✿

0.065
✿✿✿✿

-1.05
✿✿✿✿✿

-0.065
✿ ✿✿✿✿✿

-0.048
✿✿✿✿

0.046
✿

✿✿

±
✿✿✿✿✿

0.083
✿

±
✿✿✿✿✿

0.018
✿ ✿✿

±
✿✿✿✿✿

0.044
✿✿

±
✿✿✿✿✿

0.027
✿

±
✿✿✿✿✿

0.023
✿ ✿✿

±
✿✿✿✿

0.05
✿

INFERNO
✿✿✿✿✿

0.256
✿✿✿✿

0.118
✿✿✿✿✿✿

-0.571
✿✿✿✿

0.303
✿✿✿

n.a.
✿✿✿

n.a.

✿✿

±
✿✿✿✿✿

0.063
✿

±
✿✿✿✿✿

0.007
✿ ✿✿

±
✿✿✿✿✿

0.031
✿

±
✿✿✿✿

0.01
✿

JSBACH–SPITFIRE
✿✿✿✿✿

-0.304
✿✿✿✿

0.574
✿✿✿✿✿✿

-0.182
✿✿✿✿✿✿

-0.873
✿✿✿✿✿

-0.074
✿✿✿✿✿

0.097

✿✿

±
✿✿✿✿✿

0.077
✿

±
✿✿✿✿✿

0.020
✿ ✿✿

±
✿✿✿✿✿

0.038
✿✿

±
✿✿✿✿✿

0.051
✿✿✿✿✿✿

±0.014
✿ ✿✿

±
✿✿✿✿✿

0.099

LPJ–GUESS–SIMFIRE–BLAZE
✿✿✿✿✿

-2.161
✿✿✿✿✿

-0.145
✿✿✿✿✿✿

-0.847
✿✿✿✿✿✿

-1.485
✿✿✿

n.a.
✿✿✿✿✿

0.249

✿✿

±
✿✿✿✿✿

0.138
✿

±
✿✿✿✿✿

0.016
✿ ✿✿

±
✿✿✿✿✿

0.047
✿✿

±
✿✿✿✿✿

0.067
✿✿

±
✿✿✿✿✿

0.144

LPJ–GUESS–SPITFIRE
✿✿✿✿✿

2.351
✿✿✿✿

0.986
✿✿✿✿

1.345
✿✿✿✿

1.845
✿✿✿✿✿

0.015
✿✿✿

n.a.

✿✿

±
✿✿✿✿✿

0.087
✿

±
✿✿✿✿✿

0.032
✿ ✿✿

±
✿✿✿✿✿

0.050
✿✿

±
✿✿✿✿✿

0.044
✿

±
✿✿✿✿✿

0.006
✿

ORCHIDEE–SPITFIRE
✿✿✿✿✿

1.383
✿✿✿✿

0.035
✿✿✿✿

0.520
✿✿✿✿

0.859
✿✿✿✿✿

0.334
✿✿✿✿

0.033
✿

✿✿

±
✿✿✿✿✿

0.113
✿

±
✿✿✿✿✿

0.026
✿ ✿✿

±
✿✿✿✿✿

0.022
✿✿

±
✿✿✿✿✿

0.036
✿

±
✿✿✿✿✿

0.072
✿ ✿✿

±
✿✿✿✿✿

0.120

✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿

Population
✿✿✿✿✿✿

density
✿ ✿✿✿✿

Land
✿✿✿✿✿

cover
✿ ✿✿✿✿✿✿✿✿

Lightning
✿ ✿✿✿✿✿✿✿✿✿✿

Temperature
✿

Forcing

✿✿✿✿✿

0.946

✿✿

±
✿✿✿✿✿

0.033
✿✿✿✿✿✿

13.868

✿✿

±
✿✿✿✿✿

1.363
✿✿✿✿✿

0.903

✿✿

±
✿✿✿✿✿

0.033
✿✿✿✿✿

0.219

✿✿

±
✿✿✿✿✿

0.037
✿✿✿✿✿

0.086

✿✿

±
✿✿✿✿✿

0.009

✿✿✿✿

Wind
✿✿✿✿✿

speed

✿✿✿✿✿

0.012

✿✿

±
✿✿✿✿✿

0.006

3.2
✿✿✿✿✿✿✿✿

Response
✿✿✿

of
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

to
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

drivers

✿✿✿

The
✿✿✿✿✿✿✿✿

response
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

factors
✿✿

is
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

driving
✿✿✿✿✿✿

factors
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

of

✿✿

the
✿✿✿✿✿✿

model
✿✿

to
✿✿✿✿✿

these
✿✿✿✿✿✿✿

changes.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

dataset
✿✿✿

has
✿✿✿

the
✿✿✿✿✿✿✿✿

strongest
✿✿✿✿✿

trend
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between

✿✿

the
✿✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿

forcing
✿✿✿

and
✿✿✿

the
✿✿✿✿

year
✿✿✿✿✿

1920
✿✿✿✿

value
✿✿✿✿✿✿✿✿

followed
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

land-use
✿✿✿

and
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

change
✿✿✿✿✿✿

dataset.
✿✿✿✿

The
✿✿✿✿

trend
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

is
✿✿✿✿✿✿

higher
✿✿✿

than
✿✿✿

the
✿✿✿✿✿

trend
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

lightning
✿✿✿✿✿✿✿

dataset,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

more
✿✿✿

than
✿✿✿✿✿

twice
✿✿

as
✿✿✿✿✿✿

strong
✿✿

as
✿✿

in
✿✿✿

the
✿✿

air
✿✿✿✿✿✿✿✿✿✿✿

temperature.5
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✿✿✿✿

Wind
✿✿✿✿✿

speed
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿✿

trend
✿✿

of
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿✿✿✿

driving
✿✿✿✿✿✿

factors
✿✿✿✿

(see tab. 4). Population density (SF2_FPO) and land-use

change (SF2_FLA) cause the largest inter-model spread in trends
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

models
✿✿✿

in
✿✿✿✿✿

trends
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿

(slope

between -0.156 and 0.441
✿✿✿✿✿

-1.05
✿✿✿

and
✿✿✿✿✿

1.345
✿✿✿✿

Mha
✿

year−1 and between -0.204 and 0.686
✿✿✿✿✿

-1.485
✿✿✿

and
✿✿✿✿✿✿

1.845
✿✿✿✿

Mha year−1, respec-

tively), all trends are statistically significant
✿✿✿

.All
✿✿✿✿✿✿✿

models
✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿

trend
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

for
✿✿✿✿✿✿✿✿

SF2_FPO
✿✿✿

as

✿✿✿

well
✿✿✿

as
✿✿✿

for
✿✿✿✿✿✿✿✿

SF2_FLA , except for CLM for SF2_FLA (see tab. 4, fig. 2 b and c). For SF2_CO2 all models have a significant5

trend, however, only
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿

trend
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿

the
✿✿✿✿

trend
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿✿✿

factors.
✿

LPJ–

GUESS–SPITFIRE and JSBACH–SPITFIRE have a clear positive trend
✿✿✿✿✿

strong
✿✿✿✿✿

trends
✿

(> 0.13
✿✿✿

0.5
✿✿✿✿

Mha
✿

year−1), for all other

models the slope is close to zero (< 0.03
✿✿✿✿

0.15
✿✿✿✿

Mha
✿

year−1; see tab. 4, fig. 2 a). The differences between models are increas-

ing over the 20th century for these first three experiments. The response to changes in lightning and climate generally shows

much smaller trends : only two models have
✿✿

but
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿✿

inter-annual
✿✿✿✿✿✿✿✿✿

variability:
✿✿✿✿✿

none
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

models
✿✿✿✿

has a significant trend for10

climate, with increases in burned area due to changing climate (0.054 and 0.028 year−1). Three models show significant (but

inconsistent -0.017, 0.005 and 0.074
✿✿✿✿✿

0.014,
✿✿✿✿✿

0.334
✿✿✿✿

and
✿✿✿✿✿✿

-0.074
✿✿✿✿

Mha
✿

year−1) trends for lightning (see tab. 4). The time series

of differences between these latter two experiments and the baseline experiment show a strong inter-annual variability. This

✿✿✿✿✿✿✿✿✿

interannual variability is stronger for climate(up to .
✿✿✿✿

The
✿✿✿✿✿

mean
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

averaged
✿✿✿✿

over
✿✿✿

all

✿✿✿✿✿✿

models
✿✿

is 30 in several years) than lightning (up to 20for very few years and only one model
✿✿✿

Mha
✿✿✿

for
✿✿✿✿✿✿✿

climate
✿✿✿

and
✿✿

7
✿✿✿✿

Mha
✿✿✿

for15

✿✿✿✿✿✿✿

lightning
✿✿✿✿✿

(only
✿

3
✿✿✿✿✿

Mha
✿

if
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

strongest
✿✿✿✿✿✿✿✿

response
✿✿

is
✿✿✿✿✿✿✿✿

excluded; see fig. 2 d and e).
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Figure 2. Relative
✿✿✿✿✿✿

Absolute
✿

difference in annual global burned area (∆BA) in
✿✿✿✿

Mha across 1900
✿✿✿✿

1921 to 2013 between the baseline experi-

ment SF1 and and the sensitivity experiments SF2_CO2 (a), SF2_FPO (b), SF2_FLA (c), SF2_FLI (d) and (e) SF2_CLI ,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

specific

✿✿✿✿✿

forcing
✿✿✿✿✿✿

factors
✿✿✿

were
✿✿✿

set
✿✿

to
✿✿

the
✿✿✿✿✿

values
✿✿✿✿

used
✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿

spin-up
✿✿✿✿✿✿✿✿

simulation (see tab. 1).Note that the y-axis range differ between the panels.

The spatial patterns of trends in burned area are mostly heterogeneous (see supplement figures A3–A7). Limited
✿✿✿

The
✿✿✿✿✿✿

global

✿✿✿✿

trend
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

dominated
✿✿

by
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿

limited areas of the worldcan dominate ,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿

lack
✿✿

of a global trend or the trends can

cancel out when aggregating to the global burned area sum. A
✿✿✿

can
✿✿✿✿✿

reflect
✿✿✿✿✿✿✿✿

opposing
✿✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

regions.
✿✿

A
✿✿✿✿✿✿✿

detailed
✿

re-

gional analysis is beyond the scope of this study, but we provide an alternative global view on the trends by quantifying the area

affected by positive or negative trends (see fig. 3). This comparison shows that for most models larger areas show significant5

positive trends for the reference simulation (5 models), rising
✿✿✿✿✿✿✿✿✿

increasing atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration (5 models) and vary-

ing climate (all models ), whereas there
✿

5
✿✿✿✿✿✿

models
✿✿✿

and
✿✿

1
✿✿✿✿✿

equal
✿✿✿✿✿

areas).
✿✿✿✿✿

There
✿

is no clear signal across models of either positive or

negative trends across the models for the other simulations. For climate and lightning smaller areas show
✿✿✿✿

have significant trends

(see fig. 3). For ORCHIDEE– and LPJ–GUESS–SPITIFRE
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ORCHIDEE–SPITFIRE
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

LPJ–GUESS–SPITFIRE
✿

all factors

but climate cause a significant positive trend globally (see tab. 4) and larger areas have positive trends for all factors, except10

lightning for LPJ–GUESS–SPITFIRE (see fig. 3). On the other end of the model range LPJ–GUESS–SIMFIRE–BLAZE only

shows a positive global trend for climate (see tab. 4), CO2 and climate induce
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

induced

positive trends in larger areas than negative trends (see fig. 3).
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Figure 3. Area with a significant positive trend (red bar) or with a significant (Mann-Kendall test p<0.05) negative change (blue bar) in

burned area fraction averaged over 1901–2013
✿✿✿✿✿✿✿✿

1921–2013
✿

for the baseline experiment SF1 and
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿

burned
✿✿✿✿

area

✿✿✿✿✿✿

fraction
✿✿✿✿✿✿

between the sensitivity experiments SF2
✿✿

and
✿✿✿

SF1
✿

(see tab. 1). Compare fig. A2 - A7.

In the following paragraphs we detail the inter-model differences and their causes for each sensitivity experiment.

3.2.1 Sensitivity
✿✿✿✿✿✿✿✿

Response
✿

of models
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area to
✿✿✿✿✿✿✿✿✿✿✿

atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration

The overall changes in burned area in individual simulations as a result of atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration changes are a com-

plex response to multiple changes in vegetation: changes in land cover, fuel load, fuel characteristics and fuel moisture. Burned

area can either increase due to higher availability of fuel loads or decrease due to changes in flammability caused by different5

fuel characteristics including moisture (Rabin et al., 2017a)
✿✿✿✿✿✿✿✿

properties. The FireMIP-models react to increasing
✿✿✿✿✿✿✿✿✿✿

atmospheric

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration in different ways: some models (JSBACH–SPITFIRE and LPJ–GUESS–SPITFIRE) show a strong in-

crease in burned area, some (CLM and INFERNO) show a moderate increase, CLASS–CTEM shows a slight decrease, and

LPJ–GUESS–SIMFIRE–BLAZE and ORCHIDEE–SPITFIRE show a non-monotonic response (see fig. 2, a)). For all models,

the trends over the 20th century are significant (see tab. 4).10

We use changes in vegetation carbon to understand changes in fuel load and composition because information on the amount

of fuel used within the fire models was not available for individual plant functional types (PFTs). All models show an increase

in total vegetation biomass (’total’, solid lines; see fig. 4),
✿✿

as
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿✿

because
✿✿

of
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿✿

productivity

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Farquhar et al., 1980; Hickler et al., 2008) and
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿

water
✿✿✿

use
✿✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(De Kauwe et al., 2013) . The response of spe-

cific types of vegetation carbon to increasing
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2
✿✿✿✿✿✿✿✿✿✿

concentration
✿

varies between the vegetation models. The15

biomass of C3 vegetation (trees and C3 grasses) increases in all of the models. The biomass of C4 grasses increases in CLASS–

CTEM, INFERNO, and JSBACH–SPITFIRE, but does not change in ORCHIDEE–SPITFIRE. Since ORCHIDEE–SPITFIRE
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was run with fixed vegetation distribution, changes in the extent of different PFTs can be ruled out as a cause of changes in

vegetation carbon. There is a decrease in burned area in regions with abundant C4 grasses (Sahel and North Australia) in this

model, suggesting that
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

fuel
✿✿✿✿

type
✿

(increased C3 tree biomass
✿

) results in changes in flammability in these regions. The

carbon stored in C4 grasses is reduced in response to increasing
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

in CLM and LPJ–GUESS–

SIMFIRE–BLAZE and is fairly constant in LPJ–GUESS–SPITFIRE. This can be a result of a decrease in C4 grass cover5

in LPJ–GUESS–SIMFIRE–BLAZE and LPJ–GUESS–SPITFIRE. However, since CLM was run with prescribed vegetation

cover, the reduction in C4 carbon must reflect the fact that any increase in C4 grass biomass due to higher
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2

✿✿✿✿✿✿✿✿✿✿✿

concentration is offset by greater losses through burning due to the increased total fuel load.
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Figure 4. Relative difference in global carbon stored in C4 grasses (dashed lines), in C3 trees (dotted lines), in C3 grasses (dash-dotted lines)

and in total global carbon stored in vegetation (solid lines) between the baseline experiment SF1 and the sensitivity experiment SF2_CO2

(see tab. 1; CV,CO2
) for 1950–2013 in % (annual averages). C4 and C3 grasses as well as C3 trees only include natural PFTs (pastures and

croplands excluded). Note that the y-axis limits differ between the panels. Due to a postprocessing error, INFERNO lacks two years
✿✿✿✿

(2001

✿✿✿

and
✿✿✿✿

2002) (2002 and 2003 .

CLM and LPJ–GUESS–SIMFIRE–BLAZE include an interactive nitrogen cycle, CLASS–CTEM a non-interactive nitrogen10

down-regulation. Effects of
✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

on vegetation biomass for these three models are therefore at the

lower end of the model ensemble.
✿✿✿✿

The
✿✿✿✿✿✿

strength
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿

effects
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

productivity
✿✿

is
✿✿✿

still
✿✿✿✿✿✿✿✿

uncertain
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

about
✿✿✿✿✿✿

effects
✿✿✿

on
✿✿✿

fuel
✿✿✿✿✿

loads
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

available.
✿✿✿✿✿✿✿✿✿✿✿

Comparisons
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

experimental
✿✿✿✿

data
✿✿✿✿✿✿✿

suggest
✿✿✿

that
✿✿✿✿✿✿✿

models

✿✿✿

that
✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

include
✿✿✿

the
✿✿✿✿✿✿✿

nitrogen
✿✿✿✿

cycle
✿✿✿✿✿✿✿✿✿✿✿

overestimate
✿✿✿

the
✿✿✿✿✿

effect
✿✿

on
✿✿✿✿✿✿✿✿✿✿

productivity
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hickler et al., 2015) .
✿✿✿✿✿✿✿✿

However,
✿✿

an
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

using

✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observation-based
✿✿✿✿✿✿✿✿

emergent
✿✿✿✿✿✿✿✿✿

constraint
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿✿

land
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

storage
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿✿✿✿✿

models
✿✿✿✿✿

from
✿✿✿

the15

✿✿✿✿✿✿✿

Coupled
✿✿✿✿✿✿✿

Climate
✿✿✿✿✿

Model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Intercomparison
✿✿✿✿✿✿

Project
✿✿✿✿✿✿✿✿

(CMIP5)
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

that
✿✿✿✿✿✿✿✿

included
✿✿

an
✿✿✿✿✿✿✿✿✿

interactive
✿✿✿✿✿✿✿

nitrogen
✿✿✿✿✿

cycle
✿✿✿✿✿✿✿✿✿✿✿✿

underestimate
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✿✿

the
✿✿✿✿✿✿

impact
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

on
✿✿✿✿✿✿✿✿✿✿

productivity
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Wenzel et al., 2016) .

Soil moisture is used by several models to compute fuel moisture (see fig. 5). Soil moisture can be influenced by different at-

mospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

as reductions in stomatal conductance can lead to increases in soil moisture, whereas increases

in LAI
✿✿

the
✿✿✿✿

leaf
✿✿✿✿

area
✿✿✿✿

index
✿✿✿✿✿✿

(LAI) caused by increased biomass of increased tree cover lead to higher transpiration and therefore

lower soil moisture. Soil moisture increases slightly in four models (INFERNO, CLASS–CTEM, CLM, JSBACH–SPITFIRE),5

and decreases slightly in ORCHIDEE–SPITFIRE. Only LPJ–GUESS–SPITFIRE shows a strong decrease (5% in global aver-

age) in soil moisture (see fig. 6)
✿

.

Models which include fuel load and moisture effects through threshold functions (see fig. 5, CLASS–CTEM, INFERNO,

CLM) tend to show muted responses. Decreases in burned area appear to be largely caused by increases in soil moisture or

tree cover. Increases associated with increasing fuel load are limited to regions with low biomass. The balance between these10

effects differs between the models. CLASS-CTEM shows a small decrease in burned area globally, and the spatial pattern is

dominated by areas with negative trends in burned area, but there are positive trends in dry regions (see fig. A3). The small

global increase of burned area in INFERNO is likely related to increased fuel loads, negative trends in burned area only occur

in the tropical regions (see fig. A3). INFERNO uses a constant burned area per PFT that is set to 0.6, 1.4 and 1.2 km2 for

trees, grass and shrubs
✿

,
✿✿✿✿✿✿✿✿✿✿

respectively. CLM shows increased global burned area, but increases are located in dry areas while15

the boreal regions show decreases. JSBACH–SPITFIRE and LPJ-GUESS–SPITFIRE respond to elevated
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2

✿✿✿✿✿✿✿✿✿✿✿

concentration with a strong increase in burned area, likely driven by increases in fuel load. LPJ–GUESS–SPITFIRE addition-

ally shows a strong decrease in soil moisture, which might explain why this model shows the strongest increase in burned area.

ORCHIDEE–SPITFIRE shows lower burned area in response to elevated atmospheric CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

but the decreases

are mainly localized in the regions with very high burned area (Sahel and Northern Australia; see fig. A3) and are likely driven20

by the increase in C3 woody biomass (see fig. 4) as SPITFIRE is very sensitive to the type of fuel (Lasslop et al., 2014).

LPJ–GUESS–SIMFIRE–BLAZE shows an initial increase and a decrease in burned area at the end of the simulation. The

spatial pattern is mixed, the decrease in C4 grass biomass indicates that woody thickening, either due to changes in land cover

fraction or fuel composition is the reason for this reduction in burned area. The higher vegetation biomass shown by all models

is expected as studies showed that elevated CO2 increases the productivity (Farquhar et al., 1980; Hickler et al., 2008) and25

water-use efficiency (De Kauwe et al., 2013) . Increased productivity and vegetation storage leads to higher and faster fuel

build-up. The higher water-use efficiency can decrease flammability through increased soil moisture. Additionally an
✿✿✿

An
✿

in-

crease in woody plants
✿✿✿✿

with
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

is expected (Wigley et al., 2010; Buitenwerf et al., 2012;

Bond and Midgley, 2012), which have
✿

.
✿✿✿✿✿

Their coarser and less flammable fuel . Decreases in flammability
✿✿✿

can lead to reduced

burned area. The strength of CO2 effects on productivity and allocation is still uncertain. Comparisons with experimental30

data suggest that models that do not include the nitrogen cycle overestimate the effect on productivity (Hickler et al., 2015) .

However, an analysis using an observation-based emergent constraint on the longterm sensitivity of land carbon storage shows

that models from the Coupled Climate Model Intercomparison Project (CMIP5) ensemble that included an interactive nitrogen

cycle underestimate the impact of CO2 on productivity (Wenzel et al., 2016) .
✿✿

A
✿✿✿✿✿

recent
✿✿✿✿✿

study
✿✿✿✿✿

using
✿✿✿

an
✿✿✿✿✿✿✿✿✿

optimized
✿✿✿✿✿✿✿✿

empirical
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✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿✿✿✿✿✿

increases
✿✿

in
✿✿✿✿✿✿✿

biomass
✿✿✿

led
✿✿

to
✿✿✿✿✿✿✿✿

decreases
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

in
✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿

high
✿✿✿

fuel
✿✿✿✿✿✿

loads,
✿✿✿✿✿

likely
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

increases

✿✿

in
✿✿✿✿✿✿

coarser
✿✿✿✿

fuels
✿✿✿✿

and
✿✿✿✿✿✿✿

increases
✿✿

in
✿✿✿✿✿✿✿

burned
✿✿✿

area
✿✿

in
✿✿✿✿

fuel
✿✿✿✿✿✿

limited
✿✿✿✿✿✿✿

regions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019b) .

Figure 5. Impact of fuel load on the probability of fire (Pb) for CLASS-CTEM, on the fuel load index (fL,PFT ) for INFERNO and on fuel

availability (fb) for CLM (top panels). Impact of soil moisture content and soil wetness on fire for CLASS-CTEM, CLM, and INFERNO

(bottom panels). In order to facilitate comparability, the soil moisture function for CLM is scaled to the value range [0,1].
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Figure 6. Annual average of the relative difference in volumetric soil moisture (CLM) and total soil moisture content (remaining models)

between the baseline experiment SF1 and and the sensitivity experiment SF2_CO2 (see tab. 1; ∆θCO2
) for 1950–2013 in %. Due to a

postprocessing error, INFERNO lacks two years
✿✿✿✿

(2001
✿✿✿✿

and
✿✿✿✿

2002) (2002 and 2003 .
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3.2.2 Sensitivity
✿✿✿✿✿✿✿✿

Response
✿

of models
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area to population density

The population density forcing used for FireMIP increases in every region of the globe over time as well as in annual global

values (Goldewijk et al., 2010). This increasing population density is associated with a monotonic increase of global burned

area for LPJ–GUESS–SPITFIRE, and a monotonic decrease for LPJ–GUESS–SIMFIRE–BLAZE and CLM. The remaining

models show a peak in the impact of population density on burned area around 1950 and a subsequent decline (see fig. 2, b).5

✿✿✿✿✿✿

Models
✿✿✿✿✿✿✿

however
✿✿✿✿✿✿

largely
✿✿✿✿✿

agree
✿✿✿

on
✿

a
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿

trend
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿✿

since
✿✿✿✿

1921
✿✿✿✿

(see
✿✿✿✿

tab.
✿✿

4)
✿✿✿

and
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿

that
✿✿✿✿

show
✿✿

a

✿✿✿✿✿✿

positive
✿✿✿✿✿

trend
✿✿✿

did
✿✿✿

not
✿✿✿✿✿✿✿✿

reproduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿

and
✿✿✿✿✿✿

burned
✿✿✿

area
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

evaluation

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019a) .
✿✿✿✿✿✿✿

Changes
✿✿

in
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿

very
✿✿✿✿✿

likely
✿✿✿✿✿✿✿✿✿

contributed
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿

global
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿

since

✿✿✿✿✿

1921.

All the models, except LPJ–GUESS-SIMFIRE–BLAZE, include the number of anthropogenic ignitions (IA) or the prob-10

ability of fire due to anthropogenic ignitions (Pi,h in CLASS–CTEM) in the calculation of burned area. Most of the models

represent the number of anthropogenic ignitions with an increase up to a certain threshold number and then a decline, im-

plicitly assuming that for high population densities humans tend to suppress fires (SPITFIRE–models, INFERNO and CLM;

see fig. 7). CLASS–CTEM, JSBACH–SPITFIRE and CLM include explicit terms to account for the effects of suppression

not only on ignitions but also on fire size, or duration, or both (see fig. 8). The combination of the ignition and suppression15

term in CLASS–CTEM leads to a maximum impact of humans on burned area at intermediate population density. The com-

bination of ignition and suppression mechanisms dependant on population thresholds explains why most of the models have

non-monotonic changes in burned area as population increases during the 20th century. LPJ–GUESS–SPITFIRE is the only

model that shows a monotonic increase in burned area in response to increasing population density; other models that include

the SPITFIRE fire module (JSBACH, ORCHIDEE) show the non-monotonic trajectory that results from the shift from the20

dominance of ignitions to that of suppression on burned area. ORCHIDEE–SPITFIRE has a much lower contribution from

anthropogenic ignitions than LPJ–GUESS–SPITFIRE and therefore different spatial patterns of burned area (see fig. A1);

JSBACH–SPITFIRE has an additional suppression term
✿✿✿✿✿

based
✿✿

on
✿✿✿

fire
✿✿✿✿

size
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hantson et al., 2015a) . The inclusion of addi-

tional suppression mechanisms may also explain the behavior of CLM, which shows a monotonic decrease in burned area over

the 20th century.25

LPJ–GUESS–SIMFIRE–BLAZE does not include anthropogenic ignitions explicitly but rather treats the net effect of

changes in population density, which was optimized using burned-area satellite data (Knorr et al., 2014). This optimized

net effect is a monotonic decrease of burned area with increases in population density. This explains why this model shows a

monotonic decrease overall and indeed is the only model that shows almost no grid cell with a positive trend in burned area

(see fig. 3, A4).30
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Figure 7. Variation in probability of fire due to human ignitions (Pi,h), anthropogenic ignitions (No IA) or number of fires (No IF ) for

changes in population density. Since all models use different units, the values are scaled to the value range [0,1].

Figure 8. Suppressive
✿✿✿✿✿✿✿✿

Suppression
✿

effects of population density on fire duration (SPD,tfire
) for CLASS-CTEM and JSBACH SPITFIRE

and suppressive
✿✿✿✿✿✿✿✿

suppression
✿

effects on fire size (SPD,ba) for CLASS-CTEM and CLM. All models are scaled to the value range [0,1].

The models all agree that for
✿

at
✿

high population density fire is suppressed, but differ on their assumptions what happens

✿

.
✿✿✿✿

This
✿✿✿✿✿

leads
✿✿

to
✿✿✿✿✿✿✿✿✿✿

similarities
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

effect
✿✿✿

of
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿✿

changes
✿✿✿✿

(see
✿✿✿

fig.
✿✿✿✿

A4)
✿✿✿✿

but
✿✿✿✿

they
✿✿✿✿✿

differ
✿✿

in
✿✿✿✿✿

their

✿✿✿✿✿✿✿✿✿✿

assumptions for low population densityand ,
✿

the threshold where humans start to suppress fire and whether explicit suppression

is included. This leads to some similarities in the spatial patterns of the effect of population changes (see fig. A4). The net or

emerging effect of humans on burned area in models, however, also depends on the presence of lightning ignitions. As
✿✿✿

The5

✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿✿✿✿✿✿

lightning
✿✿✿✿✿✿✿

ignitions
✿✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿✿✿✿

limiting
✿✿✿✿✿

effect
✿✿

of
✿

a
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿

human
✿✿✿✿✿✿✿✿

ignitions
✿✿

on
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

CLASS-CTEM

✿✿✿✿✿

model
✿✿

as
✿

soon as lightning ignitions are present, the net effect of humans is to suppress fires, even when
✿✿✿✿✿✿

though the underlying

relationship assumes an increase in ignitions with population density (Arora and Melton, 2018, supplement). This may explain

why global models assuming an increase of ignitions with increases in population density are able to capture the burned area

variation along population density gradients (Lasslop and Kloster, 2017; Arora and Melton, 2018) although global statistical10

analysis support
✿✿✿

and
✿✿✿✿

why
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

analyses
✿✿✿✿

find
✿

a net human suppression also for low population density (Bistinas

et al., 2014).

3.2.3 Sensitivity
✿✿✿✿✿✿✿✿

Response
✿

of models
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area to land-use change

The land-use change imposed in SF2_FLA over the recent centuries is characterized by a strong decrease in forested areas, and

an increase in pastures and croplands (Hurtt et al., 2011). The FireMIP-models do not show a uniform response of burned area15

to land-use change. LPJ–GUESS–SPITFIRE shows the strongest reaction with a monotonic increase in burned area with land-

use change. INFERNO and ORCHIDEE–SPITFIRE also show an increasing trend, but of lower magnitude. CLASS–CTEM,
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JSBACH–SPITFIRE and LPJ–GUESS–SIMFIRE–BLAZE show a decreased burned area due to increased land-use. CLM also

shows a decrease in burned area but this change is comparatively muted
✿✿

not
✿✿✿✿✿✿✿✿✿

significant
✿

(see fig. 2, c)).

The FireMIP-models handle land-cover dynamics, the expansion of agricultural areas and fire in agricultural areas differently.

Some of the models (CLASS–CTEM, CLM, JSBACH–SPITFIRE, ORCHIDEE–SPITFIRE) prescribe the vegetation distribu-

tion, so that the land cover fraction for all PFTs does not change through time in SF2_FLA while in the SF1 simulation the5

cover fractions of natural PFTs are reduced according to the expansion of agricultural areas. The other models simulate the

distribution of the natural vegetation dynamically, but prescribe the agricultural areas. All models decrease the tree cover to

represent the expansion of croplands over time. Land conversion due to the expansion of pasture is not represented in CLASS–

CTEM. Only CLM includes cropland fires, INFERNO treats croplands as natural grasslands and all the other models exclude

croplands from burning (see tab. 5). Therefore for all models except CLM and INFERNO, increases in cropland area lead to10

a reduction in burned area and the reasons for the divergence of
✿✿✿✿✿✿

between
✿

the other models must be caused by the treatment of

pastures.

Table 5. Treatment of agricultural fires (Rabin et al., 2017b). ’None’ indicates the vegetation type does not burn or that deforestation fires

are not represented in the model. The models treating pasture fire the same as grassland do not treat pasture as a specific PFT. The indication

’no pasture’ means that there is no land cover change due to pastures.

Model Cropland fire Pasture fire Deforestation fire

CLASS-CTEM None no pasture None

CLM Yes Same as grassland Yes

INFERNO Same as grasslands Same as grassland None

JSBACH-SPITFIRE None Higher fuel bulk density than grasslands None

LPJ-GUESS-SIMFIRE-BLAZE None Harvest of biomass None

LPJ-GUESS-SPITFIRE None Same as grassland None

ORCHIDEE-SPITFIRE None Same as grassland None

In LPJ–GUESS–SIMFIRE–BLAZE pastures are harvested; this reduction in biomass leads to a decrease in burned area in

addition to the decrease caused by exclusion of fire in croplands. In JSBACH–SPITFIRE, the expansion of pastures occurs

preferentially at the expense of natural grassland and does not affect tree cover until all the natural grassland has been replaced15

(Reick et al., 2013). This assumption decreases the effect of land cover conversion on tree cover. Additionally
✿

, in JSBACH–

SPITFIRE the fuel bulk density of pastures is higher than that of natural grass by a factor of two, which decreases fire spread

and thus burned area (Rabin et al., 2017b). This difference reduces burned area in pastures compared to natural grassland. In

CLASS–CTEM, which also shows a decline, pastures are not included, the only land conversion is due to the expansion of

croplands.20

LPJ–GUESS–SPITFIRE and ORCHIDEE–SPITFIRE react with an increase in burned area to the expansion of land-use

since they treat pastures as natural grasslands. The SPITFIRE fire module is very sensitive to the vegetation type with very
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high burned area for natural grasslands due to higher flammability compared to woody PFTs (Lasslop et al., 2014, 2016). Fuel

bulk density is an important parameter but additionally grass fuels dry out faster leading to an increase in flammability and

therefore burned area if forested areas are converted to grasslands. LPJ–GUESS–SPITFIRE computes the vegetation cover

dynamically, so that an increase in burned area reduces the cover fraction of woody types, which might explain the stronger

response compared to ORCHIDEE–SPITFIRE. In CLM
✿

, pastures are represented by increased grass cover. The biomass scaling5

function does not distinguish fuel types (see fig. 5), therefore the lower fuel amount of grasslands could lead to a decrease in

fire probability, while the maximum fire spread rate depends on the vegetation type and is higher for grasslands (Rabin et al.,

2017b). The inclusion of cropland and deforestation fires dampen the effect of land-cover change on global burned area. In

INFERNO, agricultural regions are not defined explicitly. Instead, woody PFT types are excluded on agricultural area (Clark

et al., 2011). INFERNO includes an average burned area for each PFT in the calculation of the burned area per PFT which10

leads directly to increasing grass cover resulting in higher burned area (Mangeon et al., 2016; Rabin et al., 2017b).

Land-use was already identified as a main reason for inter-model spread in the CMIP5 ensemble (Kloster and Lasslop, 2017).

We have shown
✿✿✿✿

show
✿

that this largely reflects the way pastures are treated, as most models used here (except CLM and

INFERNO) simply exclude croplands from burning.

3.2.4 Sensitivity
✿✿✿✿✿✿✿✿

Response
✿

of models
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area to lightning15

Most of the models show a low sensitivity of burning rates
✿✿✿✿✿✿✿

response
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿

to lightning (see fig. 2), although light-

ning rates increase by 20% over the simulation period
✿

–
✿✿✿

an
✿✿✿✿✿✿✿✿

increase
✿✿✿

that
✿✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿✿

the
✿✿✿

3.3%
✿✿✿✿✿

change
✿✿✿✿✿✿✿✿

between

✿✿✿✿✿✿✿✿✿✿✿

pre-industrial
✿✿✿✿✿

times
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿

recent
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿

study
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Krause et al., 2014) . ORCHIDEE–SPITFIRE

shows an increase in burned area between 1940–1960 and towards the end of the simulation. The reason can most reasonably

be found in
✿

In
✿

comparison to the other SPITFIRE-models and seems
✿✿

the
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

seem
✿

to be related to two points. Firstly,20

it
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ORCHIDEE–SPITFIRE
✿

uses a 12 times higher factor to convert lightning strikes to actual ignitions and anthropogenic ig-

nitions that are 100 times lower than for the other models . Therefore, the partitioning of natural and anthropogenic ignitions

is different from other SPITFIRE models (see Rabin et al., 2017b). Secondly, although a partitioning factor (SGFED) varies

regionally, the per-capita
✿✿

per
✿✿✿✿✿✿

capita ignition frequency is constant; in JSBACH–SPITFIRE and LPJ–GUESS–SPITFIRE, the

per-capita
✿✿

per
✿✿✿✿✿✿

capita ignition frequency varies regionally. This results in strong differences in the spatial patterns of burned25

area (see fig. A1). In consequence
✿

, the strength of regions contributing to the global burned area varies between the mod-

els; ORCHIDEE–SPITFIRE shows much more burning in the tropical and far less burning in the temperate region.
✿✿✿✿✿✿✿

Whether
✿✿

a

✿✿✿✿✿✿✿

lightning
✿✿✿✿✿

turns
✿✿✿

into
✿

a
✿✿✿

fire
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

conditions
✿

at
✿✿✿

the
✿✿✿✿

time
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

lightning
✿✿✿✿✿

strike.
✿✿✿✿✿✿✿✿✿✿

Differences
✿✿

in
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution

✿✿✿

and
✿✿✿✿✿✿

timing
✿✿

of
✿✿✿✿

fires
✿✿✿

can
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿

lead
✿✿

to
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

responses
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

models
✿✿✿✿✿

even
✿

if
✿✿✿✿✿✿✿✿

lightning
✿✿

is
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

way
✿✿✿✿✿✿

within

✿✿

the
✿✿✿✿✿✿

model.
✿

Our results show that even a substantial increase (20%) in lightning has little influence on
✿✿✿✿✿✿✿✿

simulated
✿

global burned30

area. However, lightning is known to be an important cause of ignitions regionally and is potentially involved in more complex

interactions between fire, vegetation and climate, which can speed up the northward expansion of trees to the north in boreal

regions (Veraverbeke et al., 2017) . Thus, although we have shown that the influence of increasing lightning is negligible at a
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global scale, it is a potentially important factor for regional impacts
✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Krause et al., 2014) who
✿✿✿✿✿

found
✿✿✿✿

that

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

pre-industrial
✿✿

to
✿✿✿✿✿✿

present
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿✿✿

lightning,
✿✿✿✿✿✿✿✿

although
✿✿✿

this
✿✿✿✿✿✿✿

increase
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿✿

smaller,
✿✿✿

had
✿✿✿✿

little
✿✿✿✿✿✿

impact
✿✿✿

on
✿✿✿✿✿✿

burned
✿✿✿✿

area.

3.2.5 Sensitivity
✿✿✿✿✿✿✿✿

Response
✿

of models
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿

burned
✿✿✿✿

area to climate

Simulated burned area in FireMIP responds to changes in climate with strong interannual variability but only weak trends in

burned area (see fig. 2, e). Only three models show a statistically significant trend in the global burned area according to a5

Mann-Kendall test (CLM, LPJ–GUESS–SIMFIRE–BLAZE,ORCHIDEE–SPITFIRE; see tab. 4). However, in all models the

area showing an increased burned area in response to climate is higher
✿✿✿

than
✿✿✿

the
✿✿✿✿

area
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

decreased
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿

(see fig. 3).

Agreement in spatial patterns of trends between the models is however low (see fig. A7).

The influence of climate on burned area is complex; it influences burned area through the meteorological conditions and through

effects on
✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿

that
✿✿✿✿✿✿✿✿

influence
✿

fuel load and fuel characteristics (Scott et al., 2014). We therefore correlated10

for each grid cell changes in physical parameters (precipitation, temperature
✿

,
✿✿✿✿✿

wind
✿✿✿✿✿

speed and soil moisture) and vegetation

parameters (litter, vegetation carbon and grass biomass) with changes in burned area. We find that the correlation between the

individual parameters and burned area is low (see fig. A8). The absolute rank correlations are lower at the monthly scale than at

the annual scale. However, at the monthly scale the number of grid cells showing significant correlations with physical param-

eters is higher than the number showing significant correlations with vegetation parameters, indicating that changes in physical15

parameters have more influence at shorter time scales than changes in vegetation parameters. This difference disappears with

the aggregation to annual time scale. On the annual time scale, however, the mean absolute rank correlation is slightly higher

for the vegetation parameters. Soil moisture which is also influenced by vegetation has a slightly higher correlation compared

to precipitationand temperature
✿

,
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿

wind
✿✿✿✿✿

speed too. This indicates that vegetation parameters are more influential

on the longer annual time step and physical parameters on the monthly time step. The relationship between precipitation or soil20

moisture and burned area is expected to be negative, while the impact of temperature is expected to be positive. This is clearly

reflected in the percentage of positively significant correlations at the annual scale, but is less clear at the monthly time step.

This might reflect that the seasonality of temperature, precipitation and vegetation parameter
✿✿✿✿✿✿✿✿✿

parameters
✿

is often synchronized

and therefore the effects of the parameters cannot be separated. The low correlation between individual parameters and burned

area reflects the complex interactions between the climatic drivers, vegetation conditions and fire weather.25

The impact of climate on the interannual variabilityis, however, is strongly expressed in the simulated burned area. This is

consistent with the finding that recent precipitation changes influence interannual variability in fire but have little impact on

recent longer-term trends (Andela et al., 2017)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Andela et al., 2017) . To fully understand the impact of the changes in climate, a

number of simulations would be necessary, where only individual climate parameters change while the others are kept constant.

In addition, simulations where combinations of variables change, might give further insights on the synergies between the30

variables. An alternative approach, given the complex interactions between climate variables
✿✿✿

and
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿

parameters, might

be to disentangle the model signals using multivariate analysis (see e.g. Forkel et al., 2019a)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see e.g. Forkel et al., 2019a; Lasslop et al., 2018) .
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3.3 Implications for model development and applications

The huge spread of simulated burned area trends for any of the forcing factors indicates the high uncertainties in burned area

trajectories. With the current state of knowledge, the use of a model ensemble that covers the model structural uncertainties is

clearly the best approach for projections. Nevertheless, our analyses suggest a number of promising avenues for further model

development and indicates which analysis of observational data would be useful to constrain global models. Improvements5

of global
✿✿✿✿✿✿

Global
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿

tool
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

examining
✿✿✿

the
✿✿✿✿✿✿✿

impacts
✿✿✿

of
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿

change
✿✿✿✿

and
✿✿✿

are
✿✿✿✿

used
✿✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿

policy-relevant
✿✿✿✿✿✿✿

contexts
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(IPCC, 2014; Schellnhuber et al., 2014; IPBES, 2016) .
✿✿✿✿✿✿

Given
✿✿✿

the
✿✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿

influences
✿✿

of
✿✿✿✿

fire
✿✿

on
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

ecosystems
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bond et al., 2005) ,
✿✿✿

the
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle
✿✿✿

and
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lasslop et al., 2019) ,
✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿

of
✿✿✿✿✿✿

global
✿✿✿

fire
✿✿✿✿✿✿✿

models
✿✿✿

are

✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿✿✿✿✿

important.

✿✿✿

The
✿✿✿✿✿

main
✿✿✿✿✿✿✿

concern
✿✿✿

for
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

applications
✿✿

is
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿

It
✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿

difficult
✿✿✿

to10

✿✿✿✿✿✿✿

evaluate
✿✿✿

and
✿✿✿✿✿✿✿✿

optimize
✿✿✿

the
✿✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

period
✿✿✿✿✿✿✿✿

observed
✿✿

by
✿✿✿✿✿✿✿✿

satellites
✿✿

is
✿✿✿✿

still
✿✿✿✿

short
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

trends

✿✿

are
✿✿✿✿

not
✿✿✿✿✿

robust
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019b) .
✿✿✿✿

Fire
✿✿✿✿✿✿

proxies
✿✿✿✿✿✿✿✿

(charcoal
✿✿✿✿

and
✿✿✿✿✿✿✿✿

ice-cores)
✿✿✿✿

give
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

on
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿

burning
✿✿✿✿

over
✿✿✿✿✿✿

longer

✿✿✿✿

time
✿✿✿✿✿✿

scales.
✿✿✿✿

They
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

confirm
✿✿✿✿

the
✿✿✿✿✿

recent
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿

detected
✿✿

by
✿✿✿✿✿✿✿✿✿

satellites,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿

only
✿✿✿✿✿✿✿

contain
✿✿✿✿

very
✿✿✿✿

few

✿✿✿✿✿✿✿✿

datapoints
✿✿✿

for
✿✿✿✿

that
✿✿✿✿✿✿

period
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Marlon et al., 2016) .
✿✿✿

For
✿✿

a
✿✿✿✿

valid
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿

long
✿✿✿✿

term
✿✿✿

fire
✿✿✿✿✿✿✿

proxies,
✿✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿✿✿

estimates

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

deforestation
✿✿✿✿

fires
✿✿

in
✿✿✿

the models will be particularly important to improve the future projections of fire-enabled models to15

support land management strategies for instance in the context of climate change mitigation. Representing human influence

on fire is the major challenge for long-term projections. Our analyses of the controls on the variability of fire suggest that

human activities drive the long term (decadal to centennial) trajectories, while considering climate variability may be sufficient

for short-term projections. The
✿✿✿✿✿

crucial,
✿✿✿

as
✿✿✿✿✿✿✿✿

land-use
✿✿✿✿✿✿

change
✿✿✿✿

fire
✿✿✿✿✿✿✿✿

emissions
✿✿✿✿✿✿

likely
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

signal

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Marlon et al., 2008) .
✿✿✿

An
✿✿✿✿✿✿✿✿

improved
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

trends
✿✿

of
✿✿✿

fire
✿✿✿✿✿✿✿

regimes
✿✿

is
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿

necessary.20

✿✿✿✿

Only
✿✿✿✿✿✿

robust
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿✿✿✿✿

models.

✿✿✿

Our
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

shows
✿✿✿✿✿✿

which
✿✿✿✿

parts
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿✿✿✿

simulate
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

and
✿✿✿✿

need
✿✿✿✿✿✿✿✿✿

additional

✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿

constraints
✿✿

or
✿✿✿✿✿✿✿✿

improved
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿✿

understanding.
✿✿

In
✿✿✿✿

line
✿✿✿✿

with
✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿

research

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bistinas et al., 2014; Hantson et al., 2016a, b; Andela et al., 2017) ,
✿✿✿✿

the large divergence in the response to human activities

between the FireMIP models shows that the human impact on fires is still insufficiently understood and therefore poorly25

represented
✿✿

not
✿✿✿✿✿✿✿✿✿✿

constrained
✿

in current models. There is strong inter-model agreement that burned area is suppressed at high

population densities, which means that most models show a similar spatial distribution of fire-prone areas (see fig. A4) and

a reduction of the burned area in the last decades of the simulation due to increases in population density. However, the

reduction in global burned area in the reference simulation is for most models still much smaller than shown by satellite

observations (Andela et al., 2017) . This could be solved by increasing the suppression effect of humans through population30

density in the models, however, it could also be related to land-use and for LPJ-GUESS-SPITFIRE and JSBACH-SPITFIRE to

overestimation of the CO2 fertilization effect. The level of socioeconomic development also modifies the relationship between

population density and burned area (Andela et al., 2017; Forkel et al., 2017) ; further analyses are required to better disentangle

the balance of the different driving factors.
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We have identified
✿✿✿✿✿✿

identify
✿

land-use change as the major cause of inter-model spread. Only one model included
✿✿✿✿✿✿✿✿

explicitly

✿✿✿✿✿✿✿

includes fires associated with land use
✿✿✿✿✿✿✿

land-use
✿

and land cover change (cropland and deforestation fires), all the other models

only included
✿✿✿✿✿✿

include such effects through changes in vegetation parameters and structure. Croplands are simply excluded

from burning in all but one model. The spread of the other models is therefore likely related to the treatment of pastures.

The inclusion of cropland fires is certainly important to understand and predict
✿✿✿✿✿

project
✿

changes in emissions, air pollution5

and the carbon cycle (Li et al., 2018)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Li et al., 2018; Arora and Melton, 2018) . Cropland fires are,
✿

due to their small extent

and low intensity
✿

, still a major uncertainty in remote sensing datasets (Randerson et al., 2012) .
✿✿

our
✿✿✿✿✿✿✿

current
✿✿✿✿✿✿✿✿✿✿✿✿

understanding

✿✿

of
✿✿✿✿✿

global
✿✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Randerson et al., 2012) .
✿✿✿✿✿✿

Biases
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between

✿✿✿✿✿✿✿

cropland
✿✿✿✿✿✿✿

fraction
✿✿✿

and
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

can
✿✿✿✿✿✿✿✿

therefore
✿✿

be
✿✿✿✿✿✿✿✿

expected. High resolution remote sensing may help to improve the detection

. But increased understanding in regional differences
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hall et al., 2016) .
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿✿✿✿✿✿✿✿✿

understanding why and when people burn10

croplands
✿✿✿✿✿✿✿

humans
✿✿✿✿

burn
✿✿✿✿✿✿✿✿✿

croplands
✿✿

on
✿✿

a
✿✿✿✿✿✿✿

regional
✿✿✿✿✿

scale
✿

may help to find an adequate representation of cropland fires within

models . Pastures
✿✿✿

and
✿✿✿✿✿

avoid
✿✿✿✿✿✿✿✿✿

overfitting
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿

datasets.
✿✿✿

As
✿✿✿✿✿✿✿✿✿

croplands
✿✿✿

are
✿✿✿✿✿✿

simply
✿✿✿✿✿✿✿✿

excluded
✿✿✿✿✿

from
✿✿✿✿✿✿✿

burning
✿✿

in
✿✿✿✿✿

most

✿✿✿✿✿✿

models
✿✿✿✿✿✿

(except
✿✿✿✿✿

two),
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

models
✿✿

is
✿✿✿✿✿

likely
✿✿✿✿✿✿

related
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿✿✿✿✿

pastures.
✿✿✿✿

Fires
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

pasturelands
✿✿✿✿✿

have

✿✿✿✿

been
✿✿✿✿✿✿✿✿

estimated
✿✿

to
✿

contribute over 40% of the global burned area (Rabin et al., 2015). Pasture fires are not treated explicitly

in any of the models, although some models slightly modify the vegetation on pastures , by harvesting or changing the fuel15

bulk density (see
✿✿✿

tab. 5). Since most models implement expansion of pastures simply by
✿✿✿✿✿✿✿✿✿

Expansion
✿✿

of
✿✿✿✿✿✿✿

pastures
✿✿✿

is
✿✿✿✿✿✿

mostly

✿✿✿✿✿✿✿✿✿✿

implemented
✿✿✿

by
✿✿✿✿✿✿

simply
✿

increasing the area of grasslands, information
✿

.
✿✿✿✿✿✿✿✿✿✿

Information
✿

on how fuel properties differ between

pastures and natural grasslands could
✿✿✿✿✿✿✿

therefore
✿

help to improve model parametrisations.
✿✿✿✿✿✿✿✿✿

Prescribing
✿✿✿✿

fires
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic

✿✿✿

land
✿✿✿✿✿✿

covers
✿✿✿✿

can
✿✿

be
✿✿

a
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿✿✿✿

applications
✿✿

of
✿✿✿✿

fire
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Rabin et al., 2018) .
✿

Grazing intensity was found to be

related to decreases in burned area (Andela et al., 2017). It therefore may be necessary to include information on grazing20

intensity , or better information on pasture management in general, to represent pastures realistically within global fire models

✿✿✿✿✿✿

Models
✿✿

so
✿✿✿

far
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿

area
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿

converted
✿✿✿

due
✿✿✿

to
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

change
✿✿✿

but
✿✿✿

not
✿✿✿

the
✿✿✿✿✿✿✿✿

intensity
✿✿

of
✿✿✿✿✿✿✿✿

land-use.
✿✿✿✿

This
✿✿✿

was
✿✿✿✿✿✿

partly

✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿✿✿✿✿✿

global
✿✿✿✿

data
✿✿✿✿✿✿✿✿

regarding
✿✿✿✿

land
✿✿✿

use
✿✿✿✿✿✿✿✿

intensity
✿✿✿✿✿

which
✿✿

is
✿✿✿✿

now
✿✿✿✿✿✿✿✿✿

becoming
✿✿✿✿✿✿✿✿

available
✿✿✿

and
✿✿✿✿✿✿✿✿

provides
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿✿✿

opportunities

✿✿

for
✿✿✿

fire
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿✿✿

(e.g.
✿✿✿

the
✿✿✿✿✿

LUH2
✿✿✿✿✿✿✿

dataset;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hurtt et al., 2017 ).
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

sensitivity
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿

shown
✿✿✿✿

here,
✿✿✿✿

even
✿✿✿✿✿✿✿

models

✿✿✿

that
✿✿✿✿✿✿✿✿

decrease
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

due
✿✿✿

to
✿✿✿✿✿✿✿

land-use
✿✿✿✿

and
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

change
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

show
✿

a
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

decrease
✿✿✿✿

over
✿✿✿

the
✿✿✿✿

last
✿✿✿✿✿✿

decade.
✿✿✿✿✿
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✿✿✿✿✿✿✿

indicates
✿✿✿✿

that
✿✿✿✿✿✿

model
✿✿✿✿✿

input
✿✿✿✿✿✿✿

datasets,
✿✿✿✿✿✿✿

explicit
✿✿

in
✿✿✿✿✿

time
✿✿✿✿

and
✿✿✿✿✿

space,
✿✿✿

for
✿✿✿✿✿✿✿✿

land-use
✿✿✿✿✿✿✿✿

intensity
✿✿✿

and
✿✿✿✿✿✿✿

grazing
✿✿✿✿✿✿✿✿

intensity
✿✿✿

are
✿✿✿✿✿✿✿✿✿

necessary

✿✿

for
✿✿✿✿

fire
✿✿✿✿✿✿✿✿✿✿

projections.
✿✿✿✿

The
✿✿✿✿✿

level
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

socioeconomic
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿✿✿

also
✿✿✿✿✿✿✿✿

modifies
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

humans
✿✿✿

and
✿✿✿✿✿✿✿

burned

✿✿✿

area
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Andela et al., 2017; Forkel et al., 2017) .
✿✿✿✿✿✿✿✿

Regional
✿✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿✿✿✿

remote
✿✿✿✿✿✿

sensing
✿✿✿✿

data
✿✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿

highly
✿✿✿✿✿✿

useful,
✿✿

as
✿✿

a
✿✿✿✿✿✿

global

✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

and
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿

human
✿✿✿✿✿✿

factors
✿✿

as
✿✿✿✿✿✿✿

assumed
✿✿

in
✿✿✿✿✿

many
✿✿✿✿✿✿✿

models
✿✿✿

and
✿✿✿✿

also
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

analysis
✿✿

is
✿✿✿

not

✿✿✿✿✿

likely.
✿✿✿✿✿✿✿✿✿✿✿

Assumptions
✿✿✿

on
✿✿✿✿

how
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

human
✿✿✿✿✿✿

groups
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(hunter-gatherers,
✿✿✿✿✿✿✿✿✿✿

pastoralists,
✿✿✿✿

and
✿✿✿✿✿✿✿

farmers)
✿✿✿

use
✿✿✿✿

fire
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿

included30

✿✿

in
✿

a
✿✿✿✿✿✿✿✿

paleofire
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pfeiffer et al., 2013) .
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿

of
✿✿✿✿

such
✿✿✿

an
✿✿✿✿✿✿✿

approach
✿✿✿

for
✿✿✿✿✿✿✿

modern
✿✿✿✿✿

times
✿✿✿✿✿

would
✿✿✿

be
✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿

valuable

✿✿

for
✿✿✿

fire
✿✿✿✿✿✿✿

models
✿✿✿

that
✿✿✿✿

aim
✿✿

to
✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿✿

recent
✿✿✿✿✿✿✿

decades
✿✿✿

and
✿✿✿✿✿✿

future.
✿✿✿✿✿✿✿✿✿✿✿

Deforestation
✿✿✿✿

fires
✿✿✿

are
✿✿✿✿

only
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿✿

one
✿✿✿✿✿

model
✿✿✿✿✿✿✿

(CLM).
✿✿✿

As

✿✿✿✿✿✿✿✿✿✿

deforestation
✿✿✿✿

fires
✿✿✿

are
✿✿✿✿✿

likely
✿✿

a
✿✿✿✿✿

strong
✿✿✿✿✿✿

source
✿✿

of
✿✿✿✿✿✿✿

biomass
✿✿✿✿✿✿✿

burning
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

longer
✿✿✿✿

time
✿✿✿✿✿✿

scales,
✿✿✿✿✿✿✿✿✿

accounting
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

deforestation
✿✿✿✿

fires

✿✿✿

will
✿✿

be
✿✿✿✿✿✿

crucial
✿✿✿

for
✿✿

a
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

charcoal
✿✿✿✿✿✿

record.

✿✿✿

We
✿✿✿

also
✿✿✿✿

find
✿✿✿✿✿✿✿✿✿✿

inter-model
✿✿✿✿✿✿✿✿✿

agreement
✿✿✿

for
✿✿✿✿✿✿

certain
✿✿✿✿✿✿✿

aspects.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

is
✿✿✿✿✿✿✿✿✿

suppressed
✿✿

at
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿✿✿

densities,35
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✿✿✿✿✿

which
✿✿✿✿✿

leads
✿✿

to
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿

(see
✿✿✿

fig.
✿✿✿✿

A4).
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿✿

most
✿✿✿✿✿✿

models
✿✿✿✿✿

show
✿

a
✿✿✿✿✿✿✿✿

reduction
✿✿✿

of
✿✿✿

the

✿✿✿✿✿

global
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿✿

density.
✿✿✿✿

The
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿

functions
✿✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

to
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿

of
✿✿✿

the

✿✿✿

two
✿✿✿✿✿✿

models
✿✿✿✿

that
✿✿✿✿✿✿✿

increase
✿✿✿✿✿✿

burned
✿✿✿

area
✿✿

is
✿✿✿✿

less
✿✿

in
✿✿✿

line
✿✿✿✿

with
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿✿

derived
✿✿✿✿

from
✿✿✿✿✿✿

global
✿✿✿✿✿✿

datasets
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019a) .

✿✿

As
✿✿

a
✿✿✿✿✿

strong
✿✿✿✿✿✿

human
✿✿✿✿✿✿✿✿✿✿

suppressive
✿✿✿✿✿

effect
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿✿✿

supported
✿✿

by
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Andela et al., 2017; Hantson et al., 2015b) ,

✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

reparametrisation
✿✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿✿

responses
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿✿✿✿✿

reasonable.5

✿✿✿

We
✿✿✿✿✿

show
✿✿✿✿

that,
✿✿✿✿✿✿✿

although
✿✿✿

all
✿✿✿✿✿✿✿

models
✿✿✿✿✿

show
✿✿

an
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿✿

biomass
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿✿

consequence
✿✿✿

of
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

CO2

✿✿✿✿✿✿✿✿✿✿✿

concentration,
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿

disagree
✿✿✿✿✿

about
✿✿✿✿✿✿✿

whether
✿✿✿

this
✿✿✿✿✿✿

results
✿✿

in
✿✿

an
✿✿✿✿✿✿✿✿

increase
✿✿

or
✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

disagreement
✿✿✿✿✿✿✿

reflects

✿✿

the
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿

ways
✿✿

in
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

changes
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿✿

influence
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿✿

properties,
✿✿✿✿✿

which
✿✿✿✿✿✿

results
✿✿✿

in

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

responses
✿✿

in
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

ecosystems.
✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

LPJ-GUESS-SPITFIRE
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

JSBACH-SPITFIRE
✿✿✿

the
✿✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿

fertilization
✿✿✿✿✿

effect

✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿✿✿✿✿✿✿✿

contributed
✿✿

to
✿✿

an
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿✿

area.
✿✿✿✿

Such
✿✿✿

an
✿✿✿✿✿

effect
✿

is
✿✿✿

so
✿✿

far
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

supported
✿✿✿

for
✿✿✿

fuel
✿✿✿✿✿✿

limited
✿✿✿✿✿

areas10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Forkel et al., 2019b) .
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿✿✿

higher
✿✿✿✿

fuel
✿✿✿✿

load
✿✿

on
✿✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿

levels
✿✿✿

off
✿✿✿

for
✿✿✿✿

high
✿✿✿✿

fuel
✿✿✿✿

loads
✿✿✿

as

✿✿✿✿

used
✿✿

in
✿✿✿✿

other
✿✿✿✿✿✿✿

models
✿✿✿✿✿

could
✿✿✿

help
✿✿✿

to
✿✿✿✿✿

reduce
✿✿✿✿

this
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

in
✿✿✿✿✿✿

regions
✿✿✿✿

with
✿✿✿✿✿✿

higher
✿✿✿

fuel
✿✿✿✿✿

load.

✿✿✿✿✿✿

Climate
✿✿✿✿

and
✿✿✿✿✿✿✿✿

lightning
✿✿✿✿

have
✿✿

a
✿✿✿✿✿

much
✿✿✿✿✿

lower
✿✿✿✿✿

effect
✿✿

on
✿✿✿✿

the
✿✿✿✿✿

trends
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

factors.
✿✿✿✿✿✿

While
✿✿✿

this
✿✿✿✿✿

study
✿✿✿✿✿✿✿

focuses
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

trends,

✿✿✿✿✿✿✿

research
✿✿

on
✿✿✿

the
✿✿✿✿✿

short
✿✿✿✿

term
✿✿✿✿✿✿✿✿

variability
✿✿✿✿

and
✿✿✿✿✿✿✿

extreme
✿✿✿✿✿

events
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿

highly
✿✿✿✿✿

useful
✿✿

to
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿

fire
✿✿✿✿✿

risks.
✿✿✿

The
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿✿✿✿

climate

✿✿✿

and
✿✿✿✿✿✿✿✿

lightning
✿✿✿

on
✿✿✿

fire
✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

research
✿✿✿✿✿

topics
✿✿✿✿✿

even
✿✿

if
✿✿✿

we
✿✿✿✿

find
✿

a
✿✿✿✿✿✿✿✿✿✿

comparably
✿✿✿✿

low
✿✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿

the
✿✿✿✿

long
✿✿✿✿✿

term15

✿✿✿✿✿

trends.
✿✿✿✿✿✿✿✿✿

Moreover
✿✿✿

the
✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

may
✿✿✿✿✿✿✿

increase
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

future
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿

the
✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿

might

✿✿✿✿✿✿✿

increase.

In contrast to many model simulations that use a lightning climatology based on satellite observations, the FireMIP experiments

were driven by a transient dataset of lightning activity created by scaling a mean monthly climatology of lightning activity using

convective available potential energy (CAPE) anomalies . Although we do not detect large signals in global burned area due to20

changes in lightning, the impact of changes in lightning at a regional scale (and particularly in boreal regions) is considerable
✿✿

of

✿

a
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿

model. Since climate changes can be expected to cause changes in lightning, it will be

important to develop transient lightning datasets for climate change studies on fire. Using present day lightning patterns, for

example, will certainly lead to an overestimation of lightning strikes in regions with drier climate projected in the future. The

covariation
✿✿✿

But
✿✿✿✿

not
✿✿✿✿

only
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿✿

of
✿✿✿✿✿✿✿

lightning
✿✿✿

are
✿✿✿✿✿✿✿✿✿

important,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

co-variation
✿

with climate as well as the temporal res-25

olution are important (Felsberg et al., 2018) . The FireMIP dataset was developed using only a limited amount of information

about the covariation of precipitation, CAPE and lightning; further analyses of these relationships would be useful.
✿

of
✿✿✿

the
✿✿✿✿✿

input

✿✿✿✿✿✿

dataset
✿✿✿✿✿✿✿✿

determine
✿✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

on
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Felsberg et al., 2018) .
✿✿✿✿✿✿✿✿

Although
✿✿

we
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

detect
✿✿✿✿

large
✿✿✿✿✿✿

signals
✿✿

in
✿✿✿✿✿✿

global
✿✿✿✿✿✿

burned

✿✿✿

area
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿

lightning,
✿✿✿✿✿✿✿✿

lightning
✿

is
✿✿✿✿✿✿

known
✿✿

to
✿✿✿

be
✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿

cause
✿✿

of
✿✿✿✿✿✿✿✿

ignitions
✿✿✿✿✿✿✿✿

regionally
✿✿✿✿

and
✿

is
✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿✿✿✿

involved

✿✿

in
✿✿✿✿

more
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿✿

interactions
✿✿✿✿✿✿✿

between
✿✿✿✿

fire,
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿

and
✿✿✿✿✿✿✿

climate,
✿✿✿✿✿

which
✿✿✿✿

can
✿✿✿✿✿

speed
✿✿

up
✿✿✿

the
✿✿✿✿✿✿✿✿✿

northward
✿✿✿✿✿✿✿✿

expansion
✿✿✿

of
✿✿✿✿

trees
✿✿

to
✿✿✿

the30

✿✿✿✿

north
✿✿

in
✿✿✿✿✿✿

boreal
✿✿✿✿✿✿

regions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Veraverbeke et al., 2017) .
✿✿✿✿✿

Thus,
✿✿✿✿✿✿✿✿

although
✿✿✿

our
✿✿✿✿✿

results
✿✿✿✿✿✿✿

suggest
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿

lightning

✿

is
✿✿✿✿✿✿✿✿✿

negligible
✿✿

at
✿✿

a
✿✿✿✿✿✿

global
✿✿✿✿✿

scale,
✿✿

it
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿

factor
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

process-based
✿✿✿✿✿✿

models
✿✿✿✿

that
✿✿✿✿

aim
✿✿

to
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

interactions

✿✿✿✿✿✿✿

between
✿✿✿

fire,
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿

and
✿✿✿✿✿✿✿

climate.

It is obvious that
✿✿✿✿✿✿

Recent
✿✿✿✿✿✿✿✿

advances
✿✿

in
✿✿✿✿✿✿

remote
✿✿✿✿✿✿✿

sensing
✿✿✿✿✿✿✿

products
✿✿✿✿✿

have
✿✿✿✿

high
✿✿✿✿✿✿✿✿

potential
✿✿

to
✿✿✿✿✿✿

support
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

development.
✿✿✿✿✿✿✿✿✿

However,

remotely sensed burned area datasets alone are not a sufficient basis to evaluate fire models as many model structures can35

25



lead to reasonable burned area patterns. It is important to test how well current models represent the number of fires, the

size of individual fires and fire intensity. Both the effects of fire on vegetation (combustion of biomass and tree mortality;

Williams et al., 1999; Wooster et al., 2005 ) and of plume heights for fire emissions to the atmosphere (Veira et al., 2016) are

a function of fire intensity. The emergence of longer records of burned area and the increasing availability of informa-

tion on other aspects of the fire regime should considerably improve opportunities to evaluate and improve our models.5

The FRY database (Laurent et al., 2018) and the global fire atlas (Andela et al., 2018), for example provide information

on fire size, numbers of fire,
✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿

spread,
✿

and the characteristics of fire patches. Exploiting such datasets should help

toconstrain the internal mechanisms of fire models and hopefully allow to improve the balance of different drivers.
✿✿✿✿✿

These

✿✿✿✿✿✿

datasets
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿

useful
✿✿✿

to,
✿✿✿

for
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿✿✿✿

separate
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿✿✿✿

ignition
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

suppression.
✿✿✿✿✿

Rate
✿✿

of
✿✿✿✿✿✿

spread
✿✿✿✿✿✿✿✿

equations
✿✿✿

in
✿✿✿✿✿

global
✿✿✿✿

fire

✿✿✿✿✿✿

models
✿✿✿

are
✿✿

at
✿✿✿✿✿✿✿

present
✿✿✿✿✿

either
✿✿✿✿✿

very
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿

empirical
✿✿✿✿✿✿✿✿✿✿✿✿✿

representations
✿✿✿✿✿✿

tuned
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

or
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿

laboratory10

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hantson et al., 2016a) .
✿✿✿

The
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿✿

datasets
✿✿✿✿

now
✿✿✿✿

offer
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

opportunity
✿✿

to
✿✿✿✿✿

derive
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿

for
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿

spread

✿✿✿✿✿✿✿✿

equations
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿

scales
✿✿✿✿✿

these
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿

operate
✿✿✿✿

on.
✿✿✿✿

Fire
✿✿✿✿

size
✿✿✿

and
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿

spread
✿✿✿

are
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿

target
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿

besides

✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

that
✿✿✿✿

can
✿✿✿✿✿✿✿✿✿

determine
✿✿✿

the
✿✿✿✿✿✿✿

impacts
✿✿

of
✿✿✿✿

fire.
✿✿✿✿

The
✿✿✿✿✿✿

effects
✿✿✿

on
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿✿✿✿

(combustion
✿✿

of
✿✿✿✿✿✿✿✿

biomass
✿✿✿

and
✿✿✿✿

tree
✿✿✿✿✿✿✿✿✿

mortality;

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Williams et al., 1999; Wooster et al., 2005 )
✿✿✿

and
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

atmosphere
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Veira et al., 2016) are
✿

a
✿✿✿✿✿✿✿

function
✿✿✿

of
✿✿✿

fire
✿✿✿✿✿✿✿

intensity,
✿✿✿✿✿✿

which
✿✿

is

✿✿✿

also
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿

FRY
✿✿✿✿✿✿✿✿

database
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Laurent et al., 2018) .
✿✿

A
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

can
✿✿✿✿✿✿✿

enhance
✿✿✿

the
✿✿✿✿✿✿✿✿

usability
✿✿

of15

✿✿✿

fire
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

simulations.
✿

✿✿✿

The
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

application
✿✿✿✿

has
✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿✿✿✿✿

judging
✿✿✿

the
✿✿✿✿✿✿✿

validity
✿✿

of
✿✿

a
✿✿✿✿✿✿

model.
✿✿✿✿

Our
✿✿✿✿✿✿✿

analyses
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

controls
✿✿✿

on

✿✿

the
✿✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿✿

fire
✿✿✿✿✿✿

suggest
✿✿✿✿

that
✿✿✿✿✿✿

human
✿✿✿✿✿✿✿✿

activities
✿✿✿✿

drive
✿✿✿

the
✿✿✿✿✿

long
✿✿✿✿

term
✿✿✿✿✿✿✿

(decadal
✿✿

to
✿✿✿✿✿✿✿✿✿✿

centennial)
✿✿✿✿✿✿✿✿✿✿

trajectories,
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿✿✿

considering

✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿✿✿

sufficient
✿✿✿

for
✿✿✿✿✿✿✿✿✿

short-term
✿✿✿✿✿✿✿✿✿✿

projections.
✿✿✿✿✿✿✿✿

Changes
✿✿

in
✿✿✿

the
✿✿✿✿✿

trends
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

driving
✿✿✿✿✿✿

factors
✿✿✿✿

may
✿✿✿✿✿✿

change
✿✿✿✿

this

✿✿✿✿✿✿✿

balance.
✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿✿✿✿✿✿

stronger
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿

climate
✿✿✿

into
✿✿✿

the
✿✿✿✿✿

future
✿✿✿✿

may
✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿✿✿✿✿

climate
✿✿✿

for
✿✿✿✿

long
✿✿✿✿

term20

✿✿✿

fire
✿✿✿✿✿✿✿✿✿

projections
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

future.

4 Summary and conclusions

The analysis presented here improves our understanding of global modelling of burned area and uncertainties associated with

specific drivers and process representations in the models. The identified differences in fire models also provide information

to focus analysis of observations that aim to provide constraints for global fire models. Although burned area in most models25

compares reasonably well with satellite observations, there is a huge spread in transient simulations before the satellite era

and a huge spread in the influence of the driving factors between models.
✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿

comprehensive
✿✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

influences
✿✿✿

of

✿✿✿✿✿✿

climate,
✿✿✿✿✿✿✿✿✿

lightning,
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿✿

concentration,
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿

density
✿✿✿✿

and
✿✿✿✿✿✿✿

land-use
✿✿✿

and
✿✿✿✿

land
✿✿✿✿✿

cover
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿

improved

✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

relation
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

and
✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿✿✿

representations
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

models.
✿✿

It

✿✿✿✿✿

shows
✿✿

in
✿✿✿✿✿

detail
✿✿✿✿✿

which
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

responses
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

environmental
✿✿✿✿✿✿

factors
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

understood,
✿✿✿✿

how
✿✿✿✿✿

these
✿✿✿

are
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the30

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

equations,
✿✿✿

and
✿✿✿✿

how
✿✿✿✿✿

these
✿✿✿✿✿✿✿

translate
✿✿✿

into
✿✿✿✿✿✿

trends
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

historical
✿✿✿✿✿✿

period.

The analysis of the sensitivity experiments showed that: (1)
✿✿✿✿✿

shows
✿✿✿✿

that: The increase in atmospheric CO2 concentration over the

20th century leads to increased burned area in regions where fuel loads increase, but to decreased burned area in regions where

26



tree density or coarse fuels with lower flammability increase or increases
✿✿✿✿✿✿✿✿

elevations in soil moisture decrease flammability.

Although models agree that the
✿✿✿✿✿✿

amount
✿✿

of available fuel increases, the type of fuel and vegetation composition are , however,

critical to understand the influence of
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration on simulated burned area.

(2)
✿✿✿✿

Most
✿✿✿✿✿✿

models
✿✿✿✿✿

agree
✿✿✿

on
✿

a
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

increases
✿✿

in
✿✿✿✿✿✿✿✿✿

population
✿✿✿✿✿✿✿

density. Most models link the number of

ignitions to population in a way that ignitions increase initially at low population densities. In densely populated regions, all5

models assume that the effect of anthropogenic ignitions is outweighed by fire suppression and the increased fragmentation

of the landscape by anthropogenic land use. Whether the model shows an overall increase, a decrease or an initial increase

followed by a decrease in burned area over the 20th century depends largely on the population threshold assumed for the

transition from increasing ignitions to increasing suppression, and the complexity of the treatment of fire suppression
✿✿✿✿✿✿✿✿

land-use.

✿

It
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿

useful
✿✿

to
✿✿✿✿✿✿✿

develop
✿✿✿

an
✿✿✿✿✿✿✿

approach
✿✿✿✿

that
✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

human-fire
✿✿✿✿✿✿✿✿✿✿✿

relationships,
✿✿✿

but
✿✿✿✿

this
✿✿✿

will
✿✿✿✿✿

likely
✿✿✿✿✿✿

remain
✿✿

a
✿✿✿✿

long
✿✿✿✿

term10

✿✿✿✿✿✿✿✿

challenge
✿✿✿

and
✿✿✿✿✿✿✿

requires
✿✿✿

the
✿✿✿✿✿✿✿✿

synthesis
✿✿

of
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿✿✿

from
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿

research
✿✿✿✿✿

fields.

(3) The simulated response of burned area to land-use and land cover change depends on how fires in cropland and pastureland

are treated in each model. Most models simply exclude croplands from the burnable area, therefore the treatment of pastures

contributes
✿✿✿✿✿✿

causes the largest part of the model spread. Models that do not allow fire in croplands, and either harvest biomass

in pastures or assume specific vegetation parameters, show a reduction in burned area. Models that treat pastures as natural15

grasslands and distinguish different fuel types or strongly increase burned area for grasslands show an increase in burned area.

✿✿✿✿✿✿✿✿

Improved
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

effects
✿✿✿

of
✿✿✿✿✿✿✿

land-use
✿✿✿✿✿✿✿✿

intensity
✿✿

on
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿

of
✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

datasets

✿✿✿✿

could
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

support
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

development.

(4) The models are comparatively insensitive to changes in lightning, likely because lightning ignitions are not a limiting factor

in many regions with very high burning
✿✿✿✿✿✿

activity. Previous studies however show the importance of lightning and changes in20

lightning for burned area in the boreal region. Therefore especially regional studies should pay attention to this factor.

(5) None of the models shows a strong trend due to changing climate but all of them show a strong influence
✿✿

of
✿✿✿✿✿✿

climate
✿

on

the interannual variability. Climatic and ecosystem parameters are only able to explain a rather small part of this variation,

with stronger correlations for the ecosystem parameters on the longer annual time scale and stronger relationship with climatic

parameters on the monthly time scale.25

Different drivers of burned area affect different time scales: the anthropogenic factors influence long term variability, while

climate, and lightning affect short-term variability. Understanding the influence of climate and lightning is especially important

for interannual variability and extreme events. On the other hand understanding the impact of anthropogenic drivers are likely

more important for the longer term changes of fire as for instance needed , for instance, in Earth system models.
✿✿✿✿✿✿✿

Changes
✿✿

in

✿✿

the
✿✿✿✿✿✿

trends
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿

might
✿✿✿✿✿✿✿

however
✿✿✿✿✿

affect
✿✿✿

the
✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿

them.30

The uncertainties in global fire models need to be taken into account in model applications, for instance if model simulations

are to be used to design
✿✿✿✿✿✿

support
✿

climate adaptation strategies. Using model ensembles can be suitable to provide estimates

of the uncertainties
✿✿✿✿✿✿

Model
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

can
✿✿✿✿

give
✿✿✿✿✿✿✿✿✿

indications
✿✿

of
✿✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿✿

uncertainties.
✿✿✿✿✿✿✿✿

Therefore
✿✿✿

the
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿

this
✿✿✿✿✿

study

✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿

basis
✿✿

to
✿✿✿✿✿✿✿

interpret
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

in
✿✿✿✿✿✿

global
✿✿✿

fire
✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿

studies.
✿✿✿

The
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

patterns
✿✿

of
✿✿✿✿✿✿

burned
✿✿✿✿

area
✿✿✿

and
✿✿✿

its
✿✿✿✿✿✿

drivers
✿✿✿

are
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✿✿✿✿✿✿

already
✿✿✿✿

well
✿✿✿✿✿✿✿

explored
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

understood.
✿✿✿

We
✿✿✿✿

here
✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿✿✿

summary
✿✿✿

of
✿✿✿✿✿

which
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿

need
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿

constraints
✿✿

to

✿✿✿✿✿✿✿✿

efficiently
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

in
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿

trends.

Code availability. TEXT

Data availability. Datasets will be available after acception of the paper

Code and data availability. TEXT5

Sample availability. TEXT
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Appendix A

A1

Figure A1. Spatial distribution
✿✿

of annual burned area fraction (BAF) of a grid cell in % for the baseline experiment SF1 and observation

data, averaged over 2001-2013.
30



Figure A2. Regression slope
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution of a grid cell
✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the baseline experiment SF1 over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A3. Regression slope
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution of a grid cell
✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the difference between the baseline experiment SF1 and

the sensitivity experiment SF2_CO2 (SF1–SF2_CO2; see tab. 1) over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A4. Regression slope
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution of a grid cell
✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the difference between the baseline experiment SF1 and

the sensitivity experiment SF2_FPO (SF1–SF2_FPO; see tab. 1) over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A5. Regression slope
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution of a grid cell
✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the difference between the baseline experiment SF1 and

the sensitivity experiment SF2_FLA (SF1–SF2_FLA; see tab. 1) over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A6. Regression slope of a grid cell
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution
✿✿

or
✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the difference between the baseline experiment SF1

and the sensitivity experiment SF2_FLI (SF1–SF2_FLI; see tab. 1) over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A7. Regression slope
✿✿✿✿✿

Spatial
✿✿✿✿✿✿✿✿✿

distribution of a grid cell
✿✿✿✿✿✿✿

regression
✿✿✿✿✿

slopes
✿

for the difference between the baseline experiment SF1 and

the sensitivity experiment SF2_CLI (SF1–SF2_CLI; see tab. 1) over 1901-2013
✿✿✿✿✿✿✿✿

1921-2013.
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Figure A8. Spearman rank-order correlation coefficient for each grid cell over 1901–2013
✿✿✿✿✿✿✿✿

1921–2013 between the relative difference be-

tween the baseline experiment SF1 and the sensitivity experiment SF2_CLI (see tab. 1) for annual burned area fraction and precipitation,

temperature,
✿✿✿

wind
✿✿✿✿✿

speed,
✿

carbon stored in litter, carbon stored in vegetation, carbon stored in grass and in soil moisture, respectively. The

upper panel shows the mean absolute rank correlation, i.e. the spatial average over the absolute and significant
✿✿✿✿✿✿

(p-value
✿✿

<
✿✿✿✿

0.05)
✿

Spearman

rank-order correlation coefficients where the relative difference in burned area fraction is > 0.1. The second panel shows the proportion of

grid cells with a significant correlation. The lowest panels indicate the percentage of significant grid cells with a positive correlation.
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Figure A9.
✿✿✿✿✿

Scatter
✿✿✿✿

plots
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

GFED4
✿✿✿

and
✿✿✿✿✿✿✿✿✿

FireCCI50
✿✿✿✿✿

dataset
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿✿✿

transformation,
✿✿✿✿✿

square
✿✿✿

root
✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿

and
✿✿✿

log
✿✿✿✿✿✿✿✿✿✿✿

transformation

✿✿

(a),
✿✿✿

the
✿✿✿✿✿

color
✿✿✿✿✿✿✿

indicates
✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿✿✿✿✿

individual
✿✿✿

data
✿✿✿✿✿

points
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

(computed
✿✿✿

as
✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

with
✿✿✿✿

and

✿✿✿✿✿✿

without
✿✿✿

that
✿✿✿✿✿✿✿✿

datapoint).
✿✿✿✿✿✿✿✿

Cumulative
✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿

data
✿✿✿✿✿

points
✿

in
✿✿✿

the
✿✿✿✿✿

dataset
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿

correlation
✿✿✿

(b).
✿✿✿✿✿✿✿

Without
✿✿✿✿✿✿✿✿✿✿✿

transformation
✿

a
✿✿✿

very
✿✿✿✿✿

small
✿✿✿✿✿✿

fraction

✿✿

has
✿✿

a
✿✿✿✿✿

strong
✿✿✿✿✿✿✿

influence
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

correlation,
✿✿✿✿

these
✿✿✿

are
✿✿✿

grid
✿✿✿✿

cells
✿✿✿✿

with
✿✿✿

high
✿✿✿✿✿✿

burned
✿✿✿

area
✿✿✿✿✿✿

fraction
✿✿✿

(as
✿✿✿

can
✿✿

be
✿✿✿✿

seen
✿

in
✿✿✿

a).

Table A1. Reference literature for FireMIP models.

Model Land/ Vegetation model Fire model

CLASS-CTEM
Arora and Boer (2005)

Melton and Arora (2016)

Arora and Boer (2005)

Melton and Arora (2016)

CLM Oleson et al. (2013) Li et al. (2012, 2013, 2014)

INFERNO J. Best et al. (2011), Clark et al. (2011) Mangeon et al. (2016)

JSBACH-SPITFIRE Reick et al. (2013)
Lasslop et al. (2014)

Hantson et al. (2015a)

LPJ-GUESS-SIMFIRE-BLAZE
Smith et al. (2001, 2014)

Lindeskog et al. (2013)
Knorr et al. (2016)

LPJ-GUESS-SPITFIRE

Smith et al. (2001)

Sitch et al. (2003)

Ahlström et al. (2012)

Lehsten et al. (2009, 2015)

ORCHIDEE-SPITFIRE Krinner et al. (2005) Yue et al. (2014, 2015)
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Table A2. Correlation coefficients between burned area simulated by the FireMIP-models within the baseline experiment SF1 and the

respective observation data. Due to the very skewed distribution of burned area, we use a square root transformation on both model and

observations. Numbers in brackets show the Pearson correlation coefficients for not-transformed data.
✿✿✿

Only
✿

GFED4 and FireCCI50 provide

uncertainty estimates
✿

,
✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿

GFED4s
✿✿

is
✿✿

not
✿✿✿✿✿✿✿

included. Correlation coefficients for 33% show the correlation between all grid points that lie

within the 0–33% percentile of the relative standard error; values for 66% lie within the 33–66% percentile of the relative standard error and

values for 99% lie within the 66–99% percentile. Bold numbers indicate correlation coefficients that are significant (p-value < 0.001
✿✿✿✿

0.05).

Model
GFED4 FireCCI50

33% 66% 99% 33% 66% 99%

CLASS–CTEM 0.59 (0.41)
✿✿✿✿✿

-0.08 (-0.07) 0.04 (-0.03) 0.58 (0.38) -0.02 (-0.04) 0.06 (0.003)

CLM 0.78 (0.72)
✿✿✿✿

0.13
✿

(
✿✿✿

0.14) 0.09 (-0.03) 0.80 (0.73)
✿✿✿

0.11
✿

(
✿✿✿

0.10)
✿✿✿

0.09 (-0.03)

INFERNO 0.76 (0.68) -0.18 (
✿✿✿✿

-0.13) 0.05 (-0.02) 0.77 (0.64) -0.01 (0.01) 0.05 (0.03)

JSBACH–SPITFIRE 0.69 (0.62) -0.08 (
✿✿✿✿

-0.11) 0.02 (-0.05) 0.68 (0.56) -0.01 (-0.04) 0.06 (0.01)

LPJ–GUESS–SIMFIRE–BLAZE 0.70 (0.55) -0.06 (-0.07) -0.05 (
✿✿✿✿

-0.10) 0.67 (0.48) 0.03 (0.04) -0.04 (-0.08)

LPJ–GUESS–SPITFIRE 0.56 (0.46) 0.42 (0.41) 0.31 (
✿✿✿

0.17) 0.61 (0.48) 0.40 (0.33) 0.47 (0.34)

ORCHIDEE–SPITFIRE 0.82 (0.74) 0.51 (0.35) 0.48 (0.36) 0.81 (0.74) 0.49 (0.31) 0.47 (0.30)
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