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Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the

Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial

uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by

seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how

differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the5

individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric

CO2 concentration, population density, land-use change, lightning and climate.

The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area

trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our

understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model10

assumptions.

Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the rep-

resentation of anthropogenic ignitions and suppression and effects of land-use on vegetation and fire. In line with previous

studies this highlights the need to improve our understanding and model representation of the relationship between human ac-

tivities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong15

response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and
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quantitative information of how fuel loads and flammability change due to this factor is missing. The response to lightning on

global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong interannual variation.

Climate is therefore likely more important than the other factors for short term variations and extremes in burned area. This

study provides a basis to understand the uncertainties in global fire modelling and the necessary improvements in process

understanding and observational constraints to reduce uncertainties in modelling burned area trends.5

Copyright statement. TEXT

1 Introduction

Wildfires are an important driver of vegetation distribution, and regulate ecosystem functioning, biodiversity and carbon stor-

age over large parts of the world (Bond et al., 2005; Hantson et al., 2016a). Fire has strong impacts on climate through changing

land surface properties, atmospheric chemistry and hence radiative forcing, as well as biogeochemical cycling (Bowman et al.,10

2009; Randerson et al., 2012; Ward et al., 2012; Yue et al., 2016; Li and Lawrence, 2017; Li et al., 2017; Lasslop et al., 2019).

Estimates of the net effect of fire on the Earth system vary. Analyses based on observations of the pre-industrial period suggest

that the contribution of fire to the overall climate–carbon-cycle feedback is substantial with 5.6 ± 3.2 ppm K-1 CO2 (Harrison

et al., 2018) while the strength of the global land climate–carbon-cycle feedback estimated from Earth system simulations

(Arora et al., 2013) is 17.5 ppm K-1 (Harrison et al., 2018). However, comparing potential fire-induced losses from terrestrial15

carbon pools and stocks of solid pyrogenic carbon in soils and ocean, fire may also be a net sink of carbon and Earth system

simulations show a negative effect of fire on radiative forcing (Lasslop et al., 2019). In addition to these consequences for

the Earth System, wildfires directly impact society and economy (Gauthier et al., 2015) and human health can be seriously

impaired (Johnston et al., 2012; Finlay et al., 2012).

Given the various impacts of fire on natural and human systems and the large uncertainties, it is important to improve the20

understanding on what controls the occurrence of wildfires and to know how fire regimes might change in the future.

Based on current process understanding the following drivers influenced burned area over the last decades to centuries:

Increasing atmospheric CO2 concentration leads to increases in net primary production (Hickler et al., 2008) and decreased

stomatal conductance reduces the plant transpiration and enhances water conservation in plants (Morison, 1985). It can lead to

an increase in the abundance of woody plants (’woody thickening’; Wigley et al., 2010; Bond and Midgley, 2012; Buitenwerf25

et al., 2012) because C3 plants are generally more competitive than C4 plants under higher atmospheric CO2 concentration

(e.g. Ehleringer and Björkman, 1977; Ehleringer et al., 1997; Wand et al., 2001; Sage and Kubien, 2007). The impact of these

various changes on burned area is complex. Increased productivity can lead to increased fuel availability, which can lead to

increased burned area in water- and fuel-limited regions (Kelley and Harrison, 2014). On the other hand, decreased stomatal

conductance and lower transpiration can lead to enhanced water conservation in plants. This increases the moisture content of30

soil as well as vegetation moisture content and consequently live and dead fuel moisture contents, which decreases flamma-
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bility and in consequence reduces burned area. Woody thickening can lead to a reduction in burned area through changing the

nature of fuel loads (Kelley and Harrison, 2014).

There is still controversy about whether humans increase or decrease fire overall: Although there is broad agreement that hu-

mans suppress fires in regions with high population density, observational studies are less clear about what happens in areas

of low population density and show both increases or decreases due to human activities (see for instance Marlon et al., 2008;5

Bowman et al., 2011; Marlon et al., 2013; Vannière et al., 2016; Andela et al., 2017; Balch et al., 2017). Studies of the co-

variation between population density and number of fires have shown that increasing population density leads to an increase

in the number of ignitions or in the number of individual fires until peaking at intermediate population densities and drop

subsequently (Syphard et al., 2009; Archibald et al., 2010). Burned area can be expressed as the number of fires multiplied

by their fire size. The increase in burned area due to changes in ignitions is expected to differ between regions with varying10

population density as the largest fires occur in unpopulated areas (Hantson et al., 2015a). Global analyses find that the net

effect of population density is a decrease in burned area (Bistinas et al., 2014; Knorr et al., 2014), with high uncertainties for

low population density if the method allows for non-monotonic relationships (Knorr et al., 2014). Regional analyses tend to

confirm this, but positive relationships between burned area and population density have been shown, for instance, for the least

disturbed areas in the USA (Parisien et al., 2016).15

Fire was used to manage croplands in pre-industrial times (e.g. Dumond, 1961; Otto and Anderson, 1982; Johnston, 2003)

and is still common practice mainly in non-industrialized areas (i.e. Sub-Saharan Africa, parts of South East Asia, Indonesia

and Latin America; e.g. Conklin, 1961; Rasul and Thapa, 2003). However fires in agricultural areas are common all over the

world (Korontzi et al., 2006). Global analyses indicate a decrease of burned area (Bistinas et al., 2014; Andela and van der

Werf, 2014) and fire size (Hantson et al., 2015b) with increases in cropland fraction. Fires on pasturelands have been estimated20

to contribute over 40% of the global burned area (Rabin et al., 2015). Analyses of global datasets find an increase of burned

area with increases in grazing land cover (Bistinas et al., 2014) but reduced burned area on intensely grazed areas (Andela

et al., 2017). Despite these analyses, the severe data gaps limit our level of understanding on how humans use fire in land

management (Erb et al., 2017).

Lightning is the main source of natural ignitions (Scott et al., 2014). It is connected to convective activity and is therefore25

expected to change with global warming (Krause et al., 2014). Most of the burned area in boreal regions results from a few

large fires (Stocks et al., 2002); these large fires are frequently ignited by lightning (Peterson et al., 2010). Veraverbeke et al.

(2017) have shown that lightning ignitions drive the interannual variability as well as the long-term trends of ignitions in boreal

regions.

Climate influences burned area through weather conditions and through its influence on vegetation (Bistinas et al., 2014; Forkel30

et al., 2017). Weather conditions (precedent precipitation, temperature and wind speed) influence fuel drying, wind speed ad-

ditionally affects the rate of fire spread (Harrison et al., 2010; Scott et al., 2014). Vegetation type and fuel load are driven by

climate and both strongly influence fire occurrence (Chuvieco et al., 2008; Pettinari and Chuvieco, 2016). Fires are limited

under dry conditions due to low vegetation productivity and therefore insufficient fuel, and under wet conditions because the

fuel is too wet to burn. The highest burned areas are therefore found in areas with intermediate moisture conditions (Krawchuk35
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and Moritz, 2011). There is no obvious disagreement in literature about how specific climatic factors influence fire. However,

the relative importance of each factor, e.g. weather vs. vegetation, is still uncertain and varies spatially (Forkel et al., 2017).

Fire models are sensitive to the meteorological forcing, different forcing datasets already lead to large differences in simulated

burned area (Rabin et al., 2017a; Lasslop et al., 2014). The importance of factors also varies between small and large scales.

Wind speed is an obvious driver of fire spread on the local scale, but it is difficult to extract this influence on the spatial resolu-5

tion of global models (Lasslop et al., 2015).

Fire-enabled vegetation models simulate fire regimes in response to the combination of individual forcings, including at-

mospheric CO2 concentration, population density, land-use change, lightning and climate. Individual fire-enabled vegetation

models have been shown to simulate observed global patterns of burned area and fire emissions reasonably well (Kloster et al.,

2010; Prentice et al., 2011; Li et al., 2012; Lasslop et al., 2014; Yue et al., 2014), but there are large differences between models10

in terms of regional patterns, fire seasonality and interannual variability, historical trends (Kelley et al., 2013; Andela et al.,

2017) and responses to individual factors (Kloster et al., 2010; Knorr et al., 2014, 2016; Lasslop and Kloster, 2017, 2015).

The fire model intercomparison project (FireMIP, Hantson et al., 2016a; Rabin et al., 2017a) provides a systematic framework

to consistently analyse and understand the causes of these differences and to relate them to differences in the treatment of

key drivers of fire in individual models. The FireMIP project provides simulations for a systematic comparison of fire-model15

behaviour based on outputs of a large range of models with identical forcing inputs. In addition to a reference historical simu-

lation, sensitivity simulations were conducted for individual forcings, specifically atmospheric CO2 concentration, population

density, land-use change, lightning and climate. A recent evaluation of the FireMIP models indicates that the relationship with

climatic parameters is captured well by models, the response to human factors is captured by some models and the response to

vegetation productivity or the allocation of carbon to fuels needs refinement for most models (Forkel et al., 2019a). Compar-20

isons of the FireMIP historical simulations found differences in transient model behaviour in the 20th century (Andela et al.,

2017; van Marle et al., 2017). The causes of the differences and the reasons why different models show different responses are

not yet understood.

In this multi-model study we use the historical simulation to show the overall modelled response of burned area to changes

in environmental and human factors. We then compare the sensitivity experiments of the five most commonly used driving25

factors to document how simulated burned area responds to the individual forcing factors and relate inter-model differences of

the burned area response to differences in model assumptions or parametrisation. We finally suggest implications of our results

for model development and application.

2 Methods

The baseline FireMIP experiment (SF1) is a transient simulation from 1700–2013, in which atmospheric CO2 concentration,30

population density, land-use, lightning, and climate change through time according to prescribed datasets. The baseline and

sensitivity simulations start from the end of a spin-up simulation with equilibrated carbon pools (see Rabin et al. (2017a)

for details of the experimental protocol). The five sensitivity experiments (SF2) are designed to isolate differences in model
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behaviour associated with individual forcing factors. The model inputs and setup are the same as in SF1, but one of the

forcings is kept constant at the value used in the spin-up throughout the experiment (see tab. 1). Thus, for example, in SF2_CO2,

population density, land-use, lightning and climate inputs change each year, but atmospheric CO2 concentration is held constant

at 277.33 ppm for the whole of the simulation. The resulting difference in burned area between the simulations is then a

combination of the changes in the forcing and the sensitivity of the model to that forcing factor. Not all models performed5

every sensitivity experiment due to limitations in model structure (see tab. 2). Detailed model descriptions can be found in the

corresponding literature listed in table A1. Two of the models (CLASS–CTEM and CLM) started the simulations later than

the others (1861 and 1850, respectively) and due to limitations in data availability the reference year of the forcings used in

the spin-up varies (see tab. 1). We account for these differences in starting years between models and of the forcing factors

by limiting our analysis to the period where all factors are different from the ones used in the spin-up (after 1921). These10

differences still influence the absolute differences, we therefore quantify the strength of the impact through the slope of a

regression line and do not interpret the offset.

Table 1. Overview over the sensitivity experiments conducted by FireMIP-models (Rabin et al., 2017a). Rptd indicates the forcing was

repeated over the given years. SF2_CO2 stands for fixed atmospheric CO2 concentration, SF2_FPO for fixed population density, SF2_FLA

for fixed land-use, SF2_FLI for fixed lightning, and SF2_CLI for fixed climate.

Driving factor Sensitivity Experiments

SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CO2 277.33 ppm transient transient transient transient

Population density (PD) transient
Fixed

Year 1
transient transient transient

Land-use change (LUC) transient transient
Fixed

Year 1
transient transient

Lightning transient transient transient
Rptd:

1901–1920
transient

Climate transient transient transient transient
Rptd:

1901–1920
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Table 2. Sensitivity experiments conducted by FireMIP models.

Model Sensitivity Experiments

SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM x x x x x

CLM x x x x x

INFERNO x x x

JSBACH–SPITFIRE x x x x x

LPJ–GUESS–SIMFIRE–BLAZE x x x x

LPJ–GUESS–SPITFIRE x x x x

ORCHIDEE–SPITFIRE x x x x x

2.1 Data processing and analysis of simulation results

Our analyses of the SF1 and SF2 simulations focus on the simulation of burned area but are complemented by effects on

vegetation carbon pools for the SF2_CO2 simulation. We focus on the time series of global burned area over the historical

simulation and the spatial patterns of differences in burned area between 1921 and 2013, as in this period all forcings are

transient and different from the values used in the spin-up. Annual global values are an area weighted average using the grid5

cell area. We quantify the response of the models to each driving factor using the absolute difference in burned area between

the baseline and the respective sensitivity experiment (SF1-SF2_i, with i in CO2, FPO, FLA, FLI, CLI). Positive differences

mean that the transient change of the factor lead to an increase in burned area. We use the climate data operators (CDO version

2018: Climate Data Operators. Available at: http://www.mpimet.mpg.de/cdo) to process and remap the simulated outputs. We

test the difference time series for trends over the period from 1921 to 2013 using the Mann-Kendall test, implemented in the R10

package Kendall (McLeod, 2011). We quantify the global trend as the slope of a linear regression and summarize the spatial

distribution of trends by quantifying the area with significant positive trends and the area with significant negative trends.

Due to a postprocessing error, INFERNO lacks two years in SF2_CO2 (2001 and 2002).

2.2 Model-data comparison

To evaluate the simulations of burned area, we compare the simulated burned area with remote sensing data products. Global15

burned area observations from satellites still suffer from substantial uncertainty, as reflected by the considerable differences

in spatial and temporal patterns between different data products (Humber et al., 2018; Hantson et al., 2016a; Chuvieco et al.,

2018; van der Werf et al., 2017). Using multiple satellite products in model benchmarking is one approach to take into account

these observational uncertainties (Rabin et al., 2017a). In this study, we use three satellite products: GFED4 (Giglio et al.,

2013), GFED4s (van der Werf et al., 2017) and FireCCI50 (Chuvieco et al., 2018). GFED4 is a gridded version of the MODIS20

Collection 5.1 MCD64 burned area product. It is known that this product strongly underestimates small fires, including crop-

land fires (e.g. Hall et al., 2016). In GFED4s, burned area due to small fires is estimated based on MODIS active fire (AF)
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detections and added to GFED4 burned area. However, this methodology may introduce significant errors related to erroneous

AF detections (Zhang et al., 2018). As a complementary product, FireCCI50 was developed using MODIS spectral bands

with higher spatial resolution than MCD64. A higher resolution enhances the ability to detect smaller fires; however, this im-

provement is partially offset by suboptimal spectral properties of the bands. Both GFED4s and FireCCI50 have larger burned

area than GFED4. Since all three products are based on MODIS data, the inter-product differences probably underestimate5

uncertainties associated with these products. A recent mapping of burned area for Africa using higher resolution Sentinel-2

observations indicates that all three products substantially underestimate burned area (Roteta et al., 2019). For the model eval-

uation we use temporally averaged burned area fraction for the years 2001–2013, the interval common to all three satellite

products and the model simulations. We resample the model outputs to the lowest model resolution (CLASS-CTEM: 2.8125 x

2.8125◦) with first order conservative remapping. We quantify the agreement between models and observations by providing10

the global burned area and the Pearson correlation coefficient for the between grid cell variation (see tab. 3). We choose the

Pearson correlation as it quantifies the covariation of the spatial patterns, and is less sensitive to the highly uncertain absolute

burned area values. Burned area has a strongly skewed distribution, with few high values and many small values close to, or

equal to, zero. These few high values have a much higher contribution to the overall correlation (see figure A9 in Appendix)

and therefore the metric is strongly determined by the performance of the model in areas with high burning. Square root or15

logarithmic transformation leads to more normally distributed values, that reduce this bias (see figure A9 in Appendix). As the

logarithm transformation excludes grid cells with zero burned area, we adopt the square root transformation.

In spite of major advances in mapping burned area based on satellite data, these data products include major uncertainties.

GFED4 and FireCCI50 provide uncertainty estimates for the burned area. Applying Gaussian error propagation, which assumes

that errors are independent and normally distributed, yields uncertainty estimates of 0.01% (GFED4) and 0.2% (FireCCI50) of20

the global burned area, which is certainly an underestimation. The assumptions of normal distribution and independence are

likely violated. The spread between global burned area data sets is probably a more realistic estimate. Since all the products

rely on the MODIS sensor, this approach will not capture the full uncertainty. Nevertheless, to investigate the effect of data

quality in the observations on the model-data comparison we use the burned area product uncertainty estimates (aggregated to

model resolution assuming independence) to group the observations into points with low, medium and high uncertainty (low:25

within the 0–33rd percentile, medium: within the 33rd–66th percentile, and high: within the 66th–99th percentile of the relative

uncertainty estimates = uncertainty / burned area). We then compute the correlations for data points with low, medium and high

uncertainty separately.

3 Results and discussion

3.1 Simulated historical burned area30

The models show magnitudes of annual global burned area between 354–531 Mha/yr for present day. This is comparable to the

estimates obtained from the satellite products, which range from 345–480 Mha/yr (see fig. 1, tab. 3). The correlation coefficients

between all of the simulations and the satellite observations are reasonable, with values ranging from 0.51 (CLASS–CTEM,
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GFED4s) to 0.8 (ORCHIDEE–SPITFIRE, GFED4; see tab. 3). In general, the correlations with GFED4 are highest and with

GFED4s lowest for almost all models - which may reflect the fact that most models do not explicitly simulate agricultural

fires or may indicate inaccuracies in the mapping of agricultural fires in the GFED4s data set. The correlation coefficients

strongly decrease with increasing observational relative uncertainty (see tab. A2). This shows that part of the mismatch in the

spatial patterns between simulations and observations is a consequence of uncertainties in the satellite products themselves.5

The FireMIP models simulate the broad scale patterns in burned area reasonably well (see fig. A1), with maxima in the major

fire-affected regions of the Sahel, southern Africa, northern Australia and the western USA. All of the models tend to overes-

timate the burned area in South America and also in the temperate regions of the USA. For a more detailed evaluation of the

burned area see Forkel et al. (2019a).
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Figure 1. Annual global burned area (BA) in Mha yr−1 for all FireMIP-models for 1921–2013 for the baseline experiment SF1. The shaded

area indicates the range of annual global burned area values for the observations.
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Table 3. Global burned area averaged over 2001–2013 in Mha yr-1 and the Pearson correlation coefficients between the baseline experiment

SF1 for all FireMIP-models and the respective observation data. We use a square root transformation on both model and observations. All

correlation coefficients are significant (p-value < 0.05).

Model
Burned Area

(Mha yr-1)
R(GFED4, model) R(GFED4s, model) R(FireCCI50, model)

CLASS–CTEM 531 0.58 0.51 0.56

CLM 451 0.73 0.68 0.74

INFERNO 354 0.70 0.64 0.69

JSBACH–SPITFIRE 455 0.66 0.57 0.62

LPJ–GUESS–SIMFIRE–BLAZE 482 0.67 0.60 0.62

LPJ–GUESS–SPITFIRE 404 0.55 0.56 0.59

ORCHIDEE–SPITFIRE 474 0.80 0.72 0.79

GFED4 345

GFED4s 480

FireCCI50 389

The simulated trend in burned area in the historical simulation differs between the models (see fig. 1). All models have a

significant trend over the time series from 1921–2013 (see tab. 4). Models that have a relatively high total burned area initially

(LPJ–GUESS-SIMFIRE–BLAZE, CLASS–CTEM) show a decline in burned area over the 20th century. Most models that

have a low burned area (INFERNO, ORCHIDEE–SPITFIRE, LPJ-GUESS-SPITFIRE) show an increasing trend. JSBACH–

SPITFIRE and CLM have intermediate levels in burned area and show a weak decreasing trend over the 20th century.5

Satellite records show a decline in global burned area since 1996 (Andela et al., 2017). However, as Forkel et al. (2019b) have

shown, the significance of the observed global decline is strongly affected by the length of the sampled interval because of the

high interannual variability in burned area and trends between products show only a low correlation (Forkel et al., 2019b).

No observations document the longer term trends in burned area. Charcoal records (Marlon et al., 2008, 2016) and carbon

monoxide data from ice-core records (Wang et al., 2010) are a proxy for biomass burning and show a global decrease in10

biomass burning over most of the 20th century. However, the charcoal records show an increase in burning since 2000 CE,

but this discrepancy might reflect regional undersampling (for instance in Africa) or taphonomic issues of the charcoal record.

A recent fire emission dataset (van Marle et al., 2017) merges information from satellites, charcoal records, airport visibility

records and if no other information was available uses simulation results of the FireMIP models. This dataset is not included

to evaluate the models here as it is partly based on the simulations of the FireMIP models and as it provides only estimates for15

emissions not burned area.

The understanding of the drivers on simulated trends that we give below provides insights on what causes the simulated trends

and which assumptions control the trend. These insights will help to understand which observational constraints and process

understanding is required to improve global fire models.
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Table 4. Trends (slope and standard error of a linear regression, [Mha yr−1]) in annual global burned area for the years 1921-2013 for the

baseline experiment SF1 and absolute difference time series of annual burned area. The trends for the forcing data sets are based on the

the relative difference between the transient forcing and year 1920 value for SF2_CO2, SF2_FPO and SF2_FLA and the relative difference

between the transient and the recycled forcing for SF2_FLI and SF2_FCL for the years 1921-2013 [%] (see tab. 1). Bold values indicate

significance based on a Mann-Kendall test (p-value < 0.05). Experiments that are not available for specific models are indicated with n.a..

Model Sensitivity Experiments

SF1 SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

CLASS–CTEM -2.238 -0.059 -0.754 -0.922 0.000 0.072

± 0.116 ± 0.008 ± 0.052 ± 0.049 ± 0.001 ± 0.134

CLM -0.277 0.065 -1.05 -0.065 -0.048 0.046

± 0.083 ± 0.018 ± 0.044 ± 0.027 ± 0.023 ± 0.05

INFERNO 0.256 0.118 -0.571 0.303 n.a. n.a.

± 0.063 ± 0.007 ± 0.031 ± 0.01

JSBACH–SPITFIRE -0.304 0.574 -0.182 -0.873 -0.074 0.097

± 0.077 ± 0.020 ± 0.038 ± 0.051 ±0.014 ± 0.099

LPJ–GUESS–SIMFIRE–BLAZE -2.161 -0.145 -0.847 -1.485 n.a. 0.249

± 0.138 ± 0.016 ± 0.047 ± 0.067 ± 0.144

LPJ–GUESS–SPITFIRE 2.351 0.986 1.345 1.845 0.015 n.a.

± 0.087 ± 0.032 ± 0.050 ± 0.044 ± 0.006

ORCHIDEE–SPITFIRE 1.383 0.035 0.520 0.859 0.334 0.033

± 0.113 ± 0.026 ± 0.022 ± 0.036 ± 0.072 ± 0.120

CO2 Population density Land cover Lightning Temperature

Forcing

0.946

± 0.033

13.868

± 1.363

0.903

± 0.033

0.219

± 0.037

0.086

± 0.009

Wind speed

0.012

± 0.006

3.2 Response of simulated burned area to individual drivers

The response of burned area to the individual factors is determined by the changes in the driving factors and the sensitivity of

the model to these changes. The population density forcing dataset has the strongest trend in the relative differences between

the transient forcing and the year 1920 value followed by the land-use and land cover change dataset. The trend in atmospheric

CO2 concentration is higher than the trend in the lightning dataset, which is more than twice as strong as in the air temperature.5
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Wind speed shows the lowest trend of all investigated driving factors (see tab. 4). Population density (SF2_FPO) and land-use

change (SF2_FLA) cause the largest divergence between models in trends of burned area (slope between -1.05 and 1.345 Mha

year−1 and between -1.485 and 1.845 Mha year−1, respectively). All models have a statistically significant trend in burned area

for SF2_FPO as well as for SF2_FLA, except for CLM for SF2_FLA (see tab. 4, fig. 2 b and c). For SF2_CO2 all models have

a significant trend, however, the magnitude of the trend is much smaller compared to the trend due to anthropogenic factors.5

LPJ–GUESS–SPITFIRE and JSBACH–SPITFIRE have strong trends (> 0.5 Mha year−1), for all other models the slope is

close to zero (< 0.15 Mha year−1; see tab. 4, fig. 2 a). The differences between models are increasing over the 20th century for

these first three experiments. The response to changes in lightning and climate generally shows much smaller trends but high

inter-annual variability: none of the models has a significant trend for climate. Three models show significant (but inconsistent

0.014, 0.334 and -0.074 Mha year−1) trends for lightning (see tab. 4). The interannual variability is stronger for climate. The10

mean standard deviation of the absolute differences averaged over all models is 30 Mha for climate and 7 Mha for lightning

(only 3 Mha if the model with the strongest response is excluded; see fig. 2 d and e).
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Figure 2. Absolute difference in annual global burned area (∆BA) in Mha across 1921 to 2013 between the baseline experiment SF1 and

and the sensitivity experiments SF2_CO2 (a), SF2_FPO (b), SF2_FLA (c), SF2_FLI (d) and (e) SF2_CLI, where the specific forcing factors

were set to the values used during the spin-up simulation (see tab. 1).

The spatial patterns of trends in burned area are mostly heterogeneous (see supplement figures A3–A7). The global trend can

be dominated by changes in limited areas of the world, while the lack of a global trend can reflect opposing trends in different15
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regions. A detailed regional analysis is beyond the scope of this study, but we provide an alternative global view by quantifying

the area affected by positive or negative trends (see fig. 3). This comparison shows that for most models larger areas show

significant positive trends for the reference simulation (5 models), increasing atmospheric CO2 concentration (5 models) and

varying climate (5 models and 1 equal areas). There is no clear signal of either positive or negative trends across the models for

the other simulations. For climate and lightning smaller areas have significant trends (see fig. 3). For ORCHIDEE–SPITFIRE5

and LPJ–GUESS–SPITFIRE all factors but climate cause a significant positive trend globally (see tab. 4) and larger areas have

positive trends for all factors, except lightning for LPJ–GUESS–SPITFIRE (see fig. 3). On the other end of the model range

LPJ–GUESS–SIMFIRE–BLAZE only shows a positive global trend for climate and atmospheric CO2 concentration induced

positive trends in larger areas than negative trends (see fig. 3).

SF1 SF2_CO2 SF2_FPO SF2_FLA SF2_FLI SF2_CLI

0 25 50 75 10
0 0 25 50 75 10

0 0 25 50 75 10
0 0 25 50 75 10
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JSBACH−SPITFIRE

LPJ−GUESS−SIMFIRE−BLAZE
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ORCHIDEE−SPITFIRE

area [km2]

trend
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Figure 3. Area with a significant positive trend (red bar) or with a significant (Mann-Kendall test p<0.05) negative change (blue bar) in

burned area fraction averaged over 1921–2013 for the baseline experiment SF1 and for the absolute differences in burned area fraction

between the sensitivity experiments SF2 and SF1 (see tab. 1). Compare fig. A2 - A7.

In the following paragraphs we detail the inter-model differences and their causes for each sensitivity experiment.10

3.2.1 Response of simulated burned area to atmospheric CO2 concentration

The overall changes in burned area in individual simulations as a result of atmospheric CO2 concentration changes are a

complex response to multiple changes in vegetation: changes in land cover, fuel load, fuel characteristics and fuel moisture.

Burned area can either increase due to higher availability of fuel loads or decrease due to changes in flammability caused by

different fuel properties. The FireMIP-models react to increasing atmospheric CO2 concentration in different ways: some mod-15

els (JSBACH–SPITFIRE and LPJ–GUESS–SPITFIRE) show a strong increase in burned area, some (CLM and INFERNO)

show a moderate increase, CLASS–CTEM shows a slight decrease, and LPJ–GUESS–SIMFIRE–BLAZE and ORCHIDEE–
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SPITFIRE show a non-monotonic response (see fig. 2, a)). For all models, the trends over the 20th century are significant (see

tab. 4).

We use changes in vegetation carbon to understand changes in fuel load and composition because information on the amount

of fuel used within the fire models was not available for individual plant functional types (PFTs). All models show an increase

in total vegetation biomass (’total’, solid lines; see fig. 4), as expected because of higher productivity (Farquhar et al., 1980;5

Hickler et al., 2008) and increased water use efficiency (De Kauwe et al., 2013). The response of specific types of vegetation

carbon to increasing atmospheric CO2 concentration varies between the vegetation models. The biomass of C3 vegetation

(trees and C3 grasses) increases in all of the models. The biomass of C4 grasses increases in CLASS–CTEM, INFERNO, and

JSBACH–SPITFIRE, but does not change in ORCHIDEE–SPITFIRE. Since ORCHIDEE–SPITFIRE was run with fixed vege-

tation distribution, changes in the extent of different PFTs can be ruled out as a cause of changes in vegetation carbon. There is a10

decrease in burned area in regions with abundant C4 grasses (Sahel and North Australia) in this model, suggesting that changes

in fuel type (increased C3 tree biomass) results in changes in flammability in these regions. The carbon stored in C4 grasses is

reduced in response to increasing atmospheric CO2 concentration in CLM and LPJ–GUESS–SIMFIRE–BLAZE and is fairly

constant in LPJ–GUESS–SPITFIRE. This can be a result of a decrease in C4 grass cover in LPJ–GUESS–SIMFIRE–BLAZE

and LPJ–GUESS–SPITFIRE. However, since CLM was run with prescribed vegetation cover, the reduction in C4 carbon must15

reflect the fact that any increase in C4 grass biomass due to higher atmospheric CO2 concentration is offset by greater losses

through burning due to the increased total fuel load.
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Figure 4. Relative difference in global carbon stored in C4 grasses (dashed lines), in C3 trees (dotted lines), in C3 grasses (dash-dotted lines)

and in total global carbon stored in vegetation (solid lines) between the baseline experiment SF1 and the sensitivity experiment SF2_CO2

(see tab. 1; CV,CO2 ) for 1950–2013 in % (annual averages). C4 and C3 grasses as well as C3 trees only include natural PFTs (pastures and

croplands excluded). Note that the y-axis limits differ between the panels. Due to a postprocessing error, INFERNO lacks two years (2001

and 2002).

CLM and LPJ–GUESS–SIMFIRE–BLAZE include an interactive nitrogen cycle, CLASS–CTEM a non-interactive nitrogen

down-regulation. Effects of atmospheric CO2 concentration on vegetation biomass for these three models are therefore at the

lower end of the model ensemble. The strength of atmospheric CO2 concentration effects on productivity is still uncertain and

quantitative information about effects on fuel loads is not available. Comparisons with experimental data suggest that models

that do not include the nitrogen cycle overestimate the effect on productivity (Hickler et al., 2015). However, an analysis5

using an observation-based emergent constraint on the long-term sensitivity of land carbon storage shows that models from the

Coupled Climate Model Intercomparison Project (CMIP5) ensemble that included an interactive nitrogen cycle underestimate

the impact of atmospheric CO2 concentration on productivity (Wenzel et al., 2016).

Soil moisture is used by several models to compute fuel moisture (see fig. 5). Soil moisture can be influenced by different

atmospheric CO2 concentration as reductions in stomatal conductance can lead to increases in soil moisture, whereas increases10

in the leaf area index (LAI) caused by increased biomass of increased tree cover lead to higher transpiration and therefore lower

soil moisture. Soil moisture increases slightly in four models (INFERNO, CLASS–CTEM, CLM, JSBACH–SPITFIRE), and

decreases slightly in ORCHIDEE–SPITFIRE. Only LPJ–GUESS–SPITFIRE shows a strong decrease (5% in global average)

in soil moisture (see fig. 6).

Models which include fuel load and moisture effects through threshold functions (see fig. 5, CLASS–CTEM, INFERNO,15

CLM) tend to show muted responses. Decreases in burned area appear to be largely caused by increases in soil moisture or

tree cover. Increases associated with increasing fuel load are limited to regions with low biomass. The balance between these
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effects differs between the models. CLASS-CTEM shows a small decrease in burned area globally, and the spatial pattern

is dominated by areas with negative trends in burned area, but there are positive trends in dry regions (see fig. A3). The

small global increase of burned area in INFERNO is likely related to increased fuel loads, negative trends in burned area

only occur in the tropical regions (see fig. A3). INFERNO uses a constant burned area per PFT that is set to 0.6, 1.4 and 1.2

km2 for trees, grass and shrubs, respectively. CLM shows increased global burned area, but increases are located in dry areas5

while the boreal regions show decreases. JSBACH–SPITFIRE and LPJ-GUESS–SPITFIRE respond to elevated atmospheric

CO2 concentration with a strong increase in burned area, likely driven by increases in fuel load. LPJ–GUESS–SPITFIRE

additionally shows a strong decrease in soil moisture, which might explain why this model shows the strongest increase in

burned area. ORCHIDEE–SPITFIRE shows lower burned area in response to elevated atmospheric CO2 concentration but the

decreases are mainly localized in the regions with very high burned area (Sahel and Northern Australia; see fig. A3) and are10

likely driven by the increase in C3 woody biomass (see fig. 4) as SPITFIRE is very sensitive to the type of fuel (Lasslop et al.,

2014). LPJ–GUESS–SIMFIRE–BLAZE shows an initial increase and a decrease in burned area at the end of the simulation.

The spatial pattern is mixed, the decrease in C4 grass biomass indicates that woody thickening, either due to changes in land

cover fraction or fuel composition is the reason for this reduction in burned area. An increase in woody plants with higher

atmospheric CO2 concentration is expected (Wigley et al., 2010; Buitenwerf et al., 2012; Bond and Midgley, 2012). Their15

coarser and less flammable fuel can lead to reduced burned area. A recent study using an optimized empirical model indicates

that increases in biomass led to decreases in burned area in regions with high fuel loads, likely due to increases in coarser fuels

and increases in burned area in fuel limited regions (Forkel et al., 2019b).

Figure 5. Impact of fuel load on the probability of fire (Pb) for CLASS-CTEM, on the fuel load index (fL,PFT ) for INFERNO and on fuel

availability (fb) for CLM (top panels). Impact of soil moisture content and soil wetness on fire for CLASS-CTEM, CLM, and INFERNO

(bottom panels). In order to facilitate comparability, the soil moisture function for CLM is scaled to the value range [0,1].
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Figure 6. Annual average of the relative difference in volumetric soil moisture (CLM) and total soil moisture content (remaining models)

between the baseline experiment SF1 and and the sensitivity experiment SF2_CO2 (see tab. 1; ∆θCO2 ) for 1950–2013 in %. Due to a

postprocessing error, INFERNO lacks two years (2001 and 2002).

3.2.2 Response of simulated burned area to population density

The population density forcing used for FireMIP increases in every region of the globe over time as well as in annual global

values (Goldewijk et al., 2010). This increasing population density is associated with a monotonic increase of global burned

area for LPJ–GUESS–SPITFIRE, and a monotonic decrease for LPJ–GUESS–SIMFIRE–BLAZE and CLM. The remaining

models show a peak in the impact of population density on burned area around 1950 and a subsequent decline (see fig. 2, b).5

Models however largely agree on a decreasing trend due to population density since 1921 (see tab. 4) and the ones that show a

positive trend did not reproduce the relationship between population density and burned area in a multivariate model evaluation

(Forkel et al., 2019a). Changes in population density therefore very likely contributed to a decrease in global burned area since

1921.

All the models, except LPJ–GUESS-SIMFIRE–BLAZE, include the number of anthropogenic ignitions (IA) or the prob-10

ability of fire due to anthropogenic ignitions (Pi,h in CLASS–CTEM) in the calculation of burned area. Most of the models

represent the number of anthropogenic ignitions with an increase up to a certain threshold number and then a decline, implic-

itly assuming that for high population densities humans suppress fires (SPITFIRE–models, INFERNO and CLM; see fig. 7).

CLASS–CTEM, JSBACH–SPITFIRE and CLM include explicit terms to account for the effects of suppression not only on

ignitions but also on fire size, or duration, or both (see fig. 8). The combination of the ignition and suppression term in CLASS–15

CTEM leads to a maximum impact of humans on burned area at intermediate population density. The combination of igni-

tion and suppression mechanisms dependant on population thresholds explains why most of the models have non-monotonic

changes in burned area as population increases during the 20th century. LPJ–GUESS–SPITFIRE is the only model that shows

a monotonic increase in burned area in response to increasing population density; other models that include the SPITFIRE fire

module (JSBACH, ORCHIDEE) show the non-monotonic trajectory that results from the shift from the dominance of ignitions20
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to that of suppression on burned area. ORCHIDEE–SPITFIRE has a much lower contribution from anthropogenic ignitions

than LPJ–GUESS–SPITFIRE and therefore different spatial patterns of burned area (see fig. A1); JSBACH–SPITFIRE has an

additional suppression term based on fire size data (Hantson et al., 2015a). The inclusion of additional suppression mechanisms

may also explain the behavior of CLM, which shows a monotonic decrease in burned area over the 20th century.

LPJ–GUESS–SIMFIRE–BLAZE does not include anthropogenic ignitions explicitly but rather treats the net effect of5

changes in population density, which was optimized using burned-area satellite data (Knorr et al., 2014). This optimized

net effect is a monotonic decrease of burned area with increases in population density. This explains why this model shows a

monotonic decrease overall (see fig. A4).

Figure 7. Variation in probability of fire due to human ignitions (Pi,h), anthropogenic ignitions (No IA) or number of fires (No IF ) for

changes in population density. Since all models use different units, the values are scaled to the value range [0,1].

Figure 8. Suppression effects of population density on fire duration (SPD,tfire ) for CLASS-CTEM and JSBACH SPITFIRE and suppression

effects on fire size (SPD,ba) for CLASS-CTEM and CLM. All models are scaled to the value range [0,1].

The models all agree that at high population density fire is suppressed. This leads to similarities in the spatial patterns of the

effect of population changes (see fig. A4) but they differ in their assumptions for low population density, the threshold where10

humans start to suppress fire and whether explicit suppression is included. The net or emerging effect of humans on burned

area in models, however, also depends on the presence of lightning ignitions. The presence of lightning ignitions reduces the

limiting effect of a lack of human ignitions on burned area. For the CLASS-CTEM model as soon as lightning ignitions are

present, the net effect of humans is to suppress fires, even though the underlying relationship assumes an increase in ignitions

with population density (Arora and Melton, 2018, supplement). This may explain why global models assuming an increase of15

ignitions with increases in population density are able to capture the burned area variation along population density gradients

(Lasslop and Kloster, 2017; Arora and Melton, 2018) and why global statistical analyses find a net human suppression also for

low population density (Bistinas et al., 2014).
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3.2.3 Response of simulated burned area to land-use change

The land-use change imposed in SF2_FLA is characterized by a strong decrease in forested areas, and an increase in pas-

tures and croplands (Hurtt et al., 2011). The FireMIP-models do not show a uniform response of burned area to land-use

change. LPJ–GUESS–SPITFIRE shows the strongest reaction with a monotonic increase in burned area with land-use change.

INFERNO and ORCHIDEE–SPITFIRE also show an increasing trend, but of lower magnitude. CLASS–CTEM, JSBACH–5

SPITFIRE and LPJ–GUESS–SIMFIRE–BLAZE show a decreased burned area due to increased land-use. CLM also shows a

decrease in burned area but this change is not significant (see fig. 2, c)).

The FireMIP-models handle land-cover dynamics, the expansion of agricultural areas and fire in agricultural areas differently.

Some of the models (CLASS–CTEM, CLM, JSBACH–SPITFIRE, ORCHIDEE–SPITFIRE) prescribe the vegetation distribu-

tion, so that the land cover fraction for all PFTs does not change through time in SF2_FLA while in the SF1 simulation the10

cover fractions of natural PFTs are reduced according to the expansion of agricultural areas. The other models simulate the

distribution of the natural vegetation dynamically, but prescribe the agricultural areas. All models decrease the tree cover to

represent the expansion of croplands over time. Land conversion due to the expansion of pasture is not represented in CLASS–

CTEM. Only CLM includes cropland fires, INFERNO treats croplands as natural grasslands and all the other models exclude

croplands from burning (see tab. 5). Therefore for all models except CLM and INFERNO, increases in cropland area lead to15

a reduction in burned area and the reasons for the divergence between the other models must be caused by the treatment of

pastures.

Table 5. Treatment of agricultural fires (Rabin et al., 2017b). ’None’ indicates the vegetation type does not burn or that deforestation fires

are not represented in the model. The models treating pasture fire the same as grassland do not treat pasture as a specific PFT. The indication

’no pasture’ means that there is no land cover change due to pastures.

Model Cropland fire Pasture fire Deforestation fire

CLASS-CTEM None no pasture None

CLM Yes Same as grassland Yes

INFERNO Same as grasslands Same as grassland None

JSBACH-SPITFIRE None Higher fuel bulk density than grasslands None

LPJ-GUESS-SIMFIRE-BLAZE None Harvest of biomass None

LPJ-GUESS-SPITFIRE None Same as grassland None

ORCHIDEE-SPITFIRE None Same as grassland None

In LPJ–GUESS–SIMFIRE–BLAZE pastures are harvested; this reduction in biomass leads to a decrease in burned area in

addition to the decrease caused by exclusion of fire in croplands. In JSBACH–SPITFIRE, the expansion of pastures occurs

preferentially at the expense of natural grassland and does not affect tree cover until all the natural grassland has been replaced20

(Reick et al., 2013). This assumption decreases the effect of land cover conversion on tree cover. Additionally, in JSBACH–

SPITFIRE the fuel bulk density of pastures is higher than that of natural grass by a factor of two, which decreases fire spread
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and thus burned area (Rabin et al., 2017b). This difference reduces burned area in pastures compared to natural grassland. In

CLASS–CTEM, which also shows a decline, pastures are not included, the only land conversion is due to the expansion of

croplands.

LPJ–GUESS–SPITFIRE and ORCHIDEE–SPITFIRE react with an increase in burned area to the expansion of land-use

since they treat pastures as natural grasslands. The SPITFIRE fire module is very sensitive to the vegetation type with very5

high burned area for natural grasslands due to higher flammability compared to woody PFTs (Lasslop et al., 2014, 2016). Fuel

bulk density is an important parameter but additionally grass fuels dry out faster leading to an increase in flammability and

therefore burned area if forested areas are converted to grasslands. LPJ–GUESS–SPITFIRE computes the vegetation cover

dynamically, so that an increase in burned area reduces the cover fraction of woody types, which might explain the stronger

response compared to ORCHIDEE–SPITFIRE. In CLM, pastures are represented by increased grass cover. The biomass scaling10

function does not distinguish fuel types (see fig. 5), therefore the lower fuel amount of grasslands could lead to a decrease in

fire probability, while the maximum fire spread rate depends on the vegetation type and is higher for grasslands (Rabin et al.,

2017b). The inclusion of cropland and deforestation fires dampen the effect of land-cover change on global burned area. In

INFERNO, agricultural regions are not defined explicitly. Instead, woody PFT types are excluded on agricultural area (Clark

et al., 2011). INFERNO includes an average burned area for each PFT in the calculation of the burned area per PFT which15

leads directly to increasing grass cover resulting in higher burned area (Mangeon et al., 2016; Rabin et al., 2017b).

Land-use was already identified as a main reason for inter-model spread in the CMIP5 ensemble (Kloster and Lasslop, 2017).

We show that this largely reflects the way pastures are treated, as most models used here (except CLM and INFERNO) simply

exclude croplands from burning.

3.2.4 Response of simulated burned area to lightning20

Most of the models show a low response of burned area to lightning (see fig. 2), although lightning rates increase by 20%

over the simulation period – an increase that is much larger than the 3.3% change between pre-industrial times and the present

estimated from a recent modelling study (Krause et al., 2014). ORCHIDEE–SPITFIRE shows an increase in burned area

between 1940–1960 and towards the end of the simulation. In comparison to the other SPITFIRE-models the differences seem

to be related to two points. Firstly, ORCHIDEE–SPITFIRE uses a 12 times higher factor to convert lightning strikes to actual25

ignitions and anthropogenic ignitions that are 100 times lower than for the other models (see Rabin et al., 2017b). Secondly,

although a partitioning factor (SGFED) varies regionally, the per capita ignition frequency is constant; in JSBACH–SPITFIRE

and LPJ–GUESS–SPITFIRE, the per capita ignition frequency varies regionally. This results in strong differences in the spatial

patterns of burned area (see fig. A1). In consequence, the strength of regions contributing to the global burned area varies

between the models; ORCHIDEE–SPITFIRE shows much more burning in the tropical and far less burning in the temperate30

region. Whether a lightning turns into a fire depends on the local conditions at the time of the lightning strike. Differences in

the spatial distribution and timing of fires can therefore lead to different responses between models even if lightning is used

in the same way within the model. Our results show that even a substantial increase (20%) in lightning has little influence on
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simulated global burned area. This is consistent with (Krause et al., 2014) who found that the pre-industrial to present increase

in lightning, although this increase is much smaller, had little impact on burned area.

3.2.5 Response of simulated burned area to climate

Simulated burned area in FireMIP responds to changes in climate with strong interannual variability but only weak trends in

burned area (see fig. 2, e). Only three models show a statistically significant trend in the global burned area according to a5

Mann-Kendall test (CLM, LPJ–GUESS–SIMFIRE–BLAZE,ORCHIDEE–SPITFIRE; see tab. 4). However, in all models the

area showing an increased burned area in response to climate is higher than the area with decreased burned area (see fig. 3).

Agreement in spatial patterns of trends between the models is however low (see fig. A7).

The influence of climate on burned area is complex; it influences burned area through the meteorological conditions and through

effects on vegetation conditions that influence fuel load and fuel characteristics (Scott et al., 2014). We therefore correlated10

for each grid cell changes in physical parameters (precipitation, temperature, wind speed and soil moisture) and vegetation

parameters (litter, vegetation carbon and grass biomass) with changes in burned area. We find that the correlation between the

individual parameters and burned area is low (see fig. A8). The absolute rank correlations are lower at the monthly scale than at

the annual scale. However, at the monthly scale the number of grid cells showing significant correlations with physical param-

eters is higher than the number showing significant correlations with vegetation parameters, indicating that changes in physical15

parameters have more influence at shorter time scales than changes in vegetation parameters. This difference disappears with

the aggregation to annual time scale. On the annual time scale, however, the mean absolute rank correlation is slightly higher

for the vegetation parameters. Soil moisture which is also influenced by vegetation has a slightly higher correlation compared

to precipitation, temperature and wind speed too. This indicates that vegetation parameters are more influential on the longer

annual time step and physical parameters on the monthly time step. The relationship between precipitation or soil moisture and20

burned area is expected to be negative, while the impact of temperature is expected to be positive. This is clearly reflected in the

percentage of positively significant correlations at the annual scale, but is less clear at the monthly time step. This might reflect

that the seasonality of temperature, precipitation and vegetation parameters is often synchronized and therefore the effects of

the parameters cannot be separated. The low correlation between individual parameters and burned area reflects the complex

interactions between the climatic drivers, vegetation conditions and fire weather.25

The impact of climate on the interannual variability, however, is strongly expressed in the simulated burned area. This is

consistent with the finding that recent precipitation changes influence interannual variability in fire but have little impact on

recent longer-term trends (Andela et al., 2017). To fully understand the impact of the changes in climate, a number of simu-

lations would be necessary, where only individual climate parameters change while the others are kept constant. In addition,

simulations where combinations of variables change, might give further insights on the synergies between the variables. An30

alternative approach, given the complex interactions between climate and vegetation parameters, might be to disentangle the

model signals using multivariate analysis (see e.g. Forkel et al., 2019a; Lasslop et al., 2018).
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3.3 Implications for model development and applications

Global vegetation models are an important tool for examining the impacts of climate change and are used in policy-relevant

contexts (IPCC, 2014; Schellnhuber et al., 2014; IPBES, 2016). Given the various influences of fire on the ecosystems (Bond

et al., 2005), the carbon cycle and climate (Lasslop et al., 2019), improvements of global fire models are particularly important.

The main concern for model applications is the large spread of the historical simulated burned area. It remains difficult to5

evaluate and optimize the transient burned area simulations as the period observed by satellites is still short and the trends are

not robust (Forkel et al., 2019b). Fire proxies (charcoal and ice-cores) give information on biomass burning over longer time

scales. They do not confirm the recent decrease in burned area detected by satellites, but also only contain very few datapoints

for that period (Marlon et al., 2016). For a valid comparison with the long term fire proxies, including estimates of deforestation

fires in the models will be crucial, as land-use change fire emissions likely have a strong contribution to the signal (Marlon10

et al., 2008). An improved understanding of uncertainties in observed trends of fire regimes is therefore necessary. Only robust

information should be included in models.

Our analysis shows which parts of the models are particularly important to simulate changes in burned area and need ad-

ditional observational constraints or improved process understanding. In line with previous research (Bistinas et al., 2014;

Hantson et al., 2016a, b; Andela et al., 2017), the large divergence in the response to human activities between the FireMIP15

models shows that the human impact on fires is still insufficiently understood and therefore not constrained in current models.

We identify land-use change as the major cause of inter-model spread. Only one model explicitly includes fires associated

with land-use and land cover change (cropland and deforestation fires), all the other models only include such effects through

changes in vegetation parameters and structure. The inclusion of cropland fires is certainly important to understand and project

changes in emissions, air pollution and the carbon cycle (Li et al., 2018; Arora and Melton, 2018). Cropland fires are, due to20

their small extent and low intensity, still a major uncertainty in our current understanding of global burned area (Randerson

et al., 2012). Biases in the spatial patterns of burned area and the relationship between cropland fraction and burned area can

therefore be expected. High resolution remote sensing may help to improve the detection (Hall et al., 2016). Moreover, under-

standing why and when humans burn croplands on a regional scale may help to find an adequate representation of cropland

fires within models and avoid overfitting to observational datasets. As croplands are simply excluded from burning in most25

models (except two), the spread of the other models is likely related to the treatment of pastures. Fires on pasturelands have

been estimated to contribute over 40% of the global burned area (Rabin et al., 2015). Pasture fires are not treated explicitly in

any of the models, although some models slightly modify the vegetation on pastures by harvesting or changing the fuel bulk

density (see tab. 5). Expansion of pastures is mostly implemented by simply increasing the area of grasslands. Information on

how fuel properties differ between pastures and natural grasslands could therefore help to improve model parametrisations.30

Prescribing fires on anthropogenic land covers can be a solution for certain applications of fire models (Rabin et al., 2018).

Grazing intensity was found to be related to decreases in burned area (Andela et al., 2017). Models so far represent the area

that is converted due to land cover change but not the intensity of land-use. This was partly due to the lack of global data

regarding land use intensity which is now becoming available and provides new opportunities for fire model development (e.g.
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the LUH2 dataset; Hurtt et al., 2017). In the sensitivity simulations shown here, even models that decrease burned area due to

land-use and land cover change do not show a further decrease over the last decade. This indicates that model input datasets,

explicit in time and space, for land-use intensity and grazing intensity are necessary for fire projections. The level of socioeco-

nomic development also modifies the relationship between humans and burned area (Andela et al., 2017; Forkel et al., 2017).

Regional analysis of remote sensing data could be highly useful, as a global relationship between burned area and individual5

human factors as assumed in many models and also statistical analysis is not likely. Assumptions on how different human

groups (hunter-gatherers, pastoralists, and farmers) use fire have been included in a paleofire model (Pfeiffer et al., 2013). The

development of such an approach for modern times would be highly valuable for fire models that aim to model the recent

decades and future. Deforestation fires are only included in one model (CLM). As deforestation fires are likely a strong source

of biomass burning over the longer time scales, accounting for deforestation fires will be crucial for a model comparison with10

the charcoal record.

We also find inter-model agreement for certain aspects. For instance, burned area is suppressed at high population densities,

which leads to a similar spatial response to population density (see fig. A4). Moreover, most models show a reduction of the

global burned area due to changes in population density. The response functions of burned area to population density of the

two models that increase burned area is less in line with response functions derived from global datasets (Forkel et al., 2019a).15

As a strong human suppressive effect is well supported by satellite observations (Andela et al., 2017; Hantson et al., 2015b), a

reparametrisation of these responses would be reasonable.

We show that, although all models show an overall increase in biomass as a consequence of increasing atmospheric CO2 con-

centration, models disagree about whether this results in an increase or decrease in burned area. The disagreement reflects the

complex ways in which changes in atmospheric CO2 concentration influence vegetation properties, which results in different20

responses in different ecosystems. For LPJ-GUESS-SPITFIRE and JSBACH-SPITFIRE the CO2 fertilization effect consid-

erably contributed to an increase in burned area. Such an effect is so far only supported for fuel limited areas (Forkel et al.,

2019b). The assumption that the influence of higher fuel load on burned area levels off for high fuel loads as used in other

models could help to reduce this increase in burned area in regions with higher fuel load.

Climate and lightning have a much lower effect on the trends than the other factors. While this study focuses on the trends,25

research on the short term variability and extreme events will be highly useful to investigate fire risks. The influence of climate

and lightning on fire are therefore important research topics even if we find a comparably low influence on the long term

trends. Moreover the trends in climate parameters may increase for the future and therefore the influence on burned area might

increase.

In contrast to many model simulations that use a lightning climatology based on satellite observations, the FireMIP exper-30

iments were driven by a transient dataset of lightning activity created by scaling a mean monthly climatology of lightning

activity using convective available potential energy (CAPE) anomalies of a global numerical weather prediction model. Since

climate changes can be expected to cause changes in lightning, it will be important to develop transient lightning datasets for

climate change studies on fire. Using present day lightning patterns, for example, will certainly lead to an overestimation of

lightning strikes in regions with drier climate projected in the future. But not only spatial patterns of lightning are important,35
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the co-variation with climate as well as the temporal resolution of the input dataset determine the influence on burned area

(Felsberg et al., 2018). Although we do not detect large signals in global burned area due to changes in lightning, lightning

is known to be an important cause of ignitions regionally and is potentially involved in more complex interactions between

fire, vegetation and climate, which can speed up the northward expansion of trees to the north in boreal regions (Veraverbeke

et al., 2017). Thus, although our results suggest that the influence of increasing lightning is negligible at a global scale, it is a5

potentially important factor for process-based models that aim to model interactions between fire, vegetation and climate.

Recent advances in remote sensing products have high potential to support model development. However, remotely sensed

burned area datasets alone are not a sufficient basis to evaluate fire models as many model structures can lead to reasonable

burned area patterns. The emergence of longer records of burned area and the increasing availability of information on other

aspects of the fire regime considerably improve opportunities to evaluate and improve our models. The FRY database (Laurent10

et al., 2018) and the global fire atlas (Andela et al., 2018), for example provide information on fire size, numbers of fire, rate

of spread, and the characteristics of fire patches. These datasets will be useful to, for instance, separate effects of ignition and

suppression. Rate of spread equations in global fire models are at present either very simple empirical representations tuned

to improve burned area or based on laboratory experiments (Hantson et al., 2016a). The mentioned datasets now offer the

opportunity to derive parameters for rate of spread equations at the spatial scales these models operate on. Fire size and rate15

of spread are important target variables besides burned area that can determine the impacts of fire. The effects on vegetation

(combustion of biomass and tree mortality; Williams et al., 1999; Wooster et al., 2005) and on the atmosphere (Veira et al.,

2016) are a function of fire intensity, which is also included in the FRY database (Laurent et al., 2018). A better evaluation of

such parameters can enhance the usability of fire model simulations.

The specific model application has a strong influence on judging the validity of a model. Our analyses of the controls on20

the variability of fire suggest that human activities drive the long term (decadal to centennial) trajectories, while considering

climate variability may be sufficient for short-term projections. Changes in the trends of the driving factors may change this

balance. For instance, stronger changes in climate into the future may increase the relative importance of climate for long term

fire projections in the future.

4 Summary and conclusions25

This comprehensive analysis of the influences of climate, lightning, atmospheric CO2 concentration, population density and

land-use and land cover change provides improved understanding of the relation between simulated historical trends in burned

area and process representations in the models. It shows in detail which model responses of burned area to environmental

factors can be understood, how these are related to the model equations, and how these translate into trends of burned area for

the historical period.30

The analysis of the sensitivity experiments shows that: The increase in atmospheric CO2 concentration over the 20th century

leads to increased burned area in regions where fuel loads increase, but to decreased burned area in regions where tree density

or coarse fuels with lower flammability increase or elevations in soil moisture decrease flammability. Although models agree
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that the amount of available fuel increases, the type of fuel and vegetation composition are critical to understand the influence

of atmospheric CO2 concentration on simulated burned area.

Most models agree on a decrease in burned area due to increases in population density. Most models link the number of ig-

nitions to population in a way that ignitions increase initially at low population densities. In densely populated regions, all

models assume that the effect of anthropogenic ignitions is outweighed by fire suppression and the increased fragmentation of5

the landscape by anthropogenic land-use. It would be useful to develop an approach that represents local human-fire relation-

ships, but this will likely remain a long term challenge and requires the synthesis of knowledge from various research fields.

The simulated response of burned area to land-use and land cover change depends on how fires in cropland and pastureland are

treated in each model. Most models simply exclude croplands from the burnable area, therefore the treatment of pastures causes

the largest part of the model spread. Models that do not allow fire in croplands, and either harvest biomass in pastures or assume10

specific vegetation parameters, show a reduction in burned area. Models that treat pastures as natural grasslands and distinguish

different fuel types or strongly increase burned area for grasslands show an increase in burned area. Improved knowledge on

the effects of land-use intensity on burned area and the development of appropriate forcing datasets could strongly support

model development.

The models are comparatively insensitive to changes in lightning, likely because lightning ignitions are not a limiting factor15

in many regions with very high burning activity. Previous studies however show the importance of lightning and changes in

lightning for burned area in the boreal region. Therefore especially regional studies should pay attention to this factor.

None of the models shows a strong trend due to changing climate but all of them show a strong influence of climate on the

interannual variability. Climatic and ecosystem parameters are only able to explain a rather small part of this variation, with

stronger correlations for the ecosystem parameters on the longer annual time scale and stronger relationship with climatic20

parameters on the monthly time scale.

Different drivers of burned area affect different time scales: the anthropogenic factors influence long term variability, while

climate, and lightning affect short-term variability. Understanding the influence of climate and lightning is especially important

for interannual variability and extreme events. On the other hand understanding the impact of anthropogenic drivers are likely

more important for the longer term changes of fire as for instance needed in Earth system models. Changes in the trends of the25

forcing parameters might however affect the balance between them.

The uncertainties in global fire models need to be taken into account in model applications, for instance if model simulations

are to be used to support climate adaptation strategies. Model ensemble simulations can give indications of such uncertain-

ties. Therefore the results of this study provide a basis to interpret uncertainties in global fire modelling studies. The spatial

patterns of burned area and its drivers are already well explored and understood. We here provide a summary of which model30

assumptions need additional constraints to efficiently reduce the uncertainty in temporal trends.

Code availability. TEXT
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Appendix A

A1

Figure A1. Spatial distribution of annual burned area fraction (BAF) in % for the baseline experiment SF1 and observation data, averaged

over 2001-2013.
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Figure A2. Spatial distribution of regression slopes for the baseline experiment SF1 over 1921-2013.
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Figure A3. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment

SF2_CO2 (SF1–SF2_CO2; see tab. 1) over 1921-2013.
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Figure A4. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment

SF2_FPO (SF1–SF2_FPO; see tab. 1) over 1921-2013.
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Figure A5. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment

SF2_FLA (SF1–SF2_FLA; see tab. 1) over 1921-2013.
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Figure A6. Spatial distribution or regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment

SF2_FLI (SF1–SF2_FLI; see tab. 1) over 1921-2013.
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Figure A7. Spatial distribution of regression slopes for the difference between the baseline experiment SF1 and the sensitivity experiment

SF2_CLI (SF1–SF2_CLI; see tab. 1) over 1921-2013.
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Figure A8. Spearman rank-order correlation coefficient for each grid cell over 1921–2013 between the difference between the baseline

experiment SF1 and the sensitivity experiment SF2_CLI (see tab. 1) for annual burned area fraction and precipitation, temperature, wind

speed, carbon stored in litter, carbon stored in vegetation, carbon stored in grass and in soil moisture, respectively. The upper panel shows the

mean absolute rank correlation, i.e. the spatial average over the absolute and significant (p-value < 0.05) Spearman rank-order correlation

coefficients where the relative difference in burned area fraction is > 0.1. The second panel shows the proportion of grid cells with a

significant correlation. The lowest panels indicate the percentage of significant grid cells with a positive correlation.
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Figure A9. Scatter plots for the GFED4 and FireCCI50 dataset without transformation, square root transformation and log transformation

(a), the color indicates the influence of individual data points on the correlation (computed as the difference in the correlation with and

without that datapoint). Cumulative influence of data points in the dataset on the correlation (b). Without transformation a very small fraction

has a strong influence on the correlation, these are grid cells with high burned area fraction (as can be seen in a).

Table A1. Reference literature for FireMIP models.

Model Land/ Vegetation model Fire model

CLASS-CTEM
Arora and Boer (2005)

Melton and Arora (2016)

Arora and Boer (2005)

Melton and Arora (2016)

CLM Oleson et al. (2013) Li et al. (2012, 2013, 2014)

INFERNO J. Best et al. (2011), Clark et al. (2011) Mangeon et al. (2016)

JSBACH-SPITFIRE Reick et al. (2013)
Lasslop et al. (2014)

Hantson et al. (2015a)

LPJ-GUESS-SIMFIRE-BLAZE
Smith et al. (2001, 2014)

Lindeskog et al. (2013)
Knorr et al. (2016)

LPJ-GUESS-SPITFIRE

Smith et al. (2001)

Sitch et al. (2003)

Ahlström et al. (2012)

Lehsten et al. (2009, 2015)

ORCHIDEE-SPITFIRE Krinner et al. (2005) Yue et al. (2014, 2015)
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Table A2. Correlation coefficients between burned area simulated by the FireMIP-models within the baseline experiment SF1 and the

respective observation data. Due to the very skewed distribution of burned area, we use a square root transformation on both model and

observations. Numbers in brackets show the Pearson correlation coefficients for not-transformed data. Only GFED4 and FireCCI50 provide

uncertainty estimates, therefore GFED4s is not included. Correlation coefficients for 33% show the correlation between all grid points that

lie within the 0–33% percentile of the relative standard error; values for 66% lie within the 33–66% percentile of the relative standard error

and values for 99% lie within the 66–99% percentile. Bold numbers indicate correlation coefficients that are significant (p-value < 0.05).

Model
GFED4 FireCCI50

33% 66% 99% 33% 66% 99%

CLASS–CTEM 0.59 (0.41) -0.08 (-0.07) 0.04 (-0.03) 0.58 (0.38) -0.02 (-0.04) 0.06 (0.003)

CLM 0.78 (0.72) 0.13 (0.14) 0.09 (-0.03) 0.80 (0.73) 0.11 (0.10) 0.09 (-0.03)

INFERNO 0.76 (0.68) -0.18 (-0.13) 0.05 (-0.02) 0.77 (0.64) -0.01 (0.01) 0.05 (0.03)

JSBACH–SPITFIRE 0.69 (0.62) -0.08 (-0.11) 0.02 (-0.05) 0.68 (0.56) -0.01 (-0.04) 0.06 (0.01)

LPJ–GUESS–SIMFIRE–BLAZE 0.70 (0.55) -0.06 (-0.07) -0.05 (-0.10) 0.67 (0.48) 0.03 (0.04) -0.04 (-0.08)

LPJ–GUESS–SPITFIRE 0.56 (0.46) 0.42 (0.41) 0.31 (0.17) 0.61 (0.48) 0.40 (0.33) 0.47 (0.34)

ORCHIDEE–SPITFIRE 0.82 (0.74) 0.51 (0.35) 0.48 (0.36) 0.81 (0.74) 0.49 (0.31) 0.47 (0.30)

Author contributions. LT and GL designed the study and performed the analysis with input from SPH, AH and SH. CY, GL, JM, LF, MF,

SH provided simulations. LT, GL and SPH wrote the manuscript with contributions from all authors.
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