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Abstract. Arctic sea ice is retreating, thinning and its rate of decline has steepened in the last decades. While
phytoplankton blooms are known to seasonally propagate along the ice edge as it recedes from spring to summer, the
substitution of thick multi-year ice (MY1) with thinner, ponded first-year ice (FYI) represents an unequal exchange
when considering the roles sea ice plays in the ecology and climate of the Arctic. Consequences of this shifting sea
ice on the phenology of phytoplankton and the associated cycling of the climate-relevant gas dimethylsulfide (DMS)
and its precursor dimethylsulfoniopropionate (DMSP) remain ill constrained. In July-August 2014, two contrasting
ice edges in the Canadian High Arctic were explored: a FYI-dominated ice edge in Barrow Strait and a MY-
dominated ice edge in Nares Strait. Our results reveal two distinct planktonic systems and associated DMS dynamics
in connection to these diverging ice types. The surface waters exiting the ponded FYI in Barrow Strait were
characterized by moderate chlorophyll a (Chl a, < 2.1 pg L) as well as high DMSP (115 nmol L.) and DMS (12 nmol
L.) suggesting that a bloom had already started to develop under the markedly melt pond-covered (ca. 40%) FYI.
Heightened DMS concentrations at the FY1 edge were strongly related with ice-associated seeding of DMS in surface
waters and haline-driven stratification linked to ice melt (Spearman’s rank correlation between DMS and salinity,
r.=-0.91, p<0.001, n=20). However, surface waters exiting the MYI edge at the head of Nares Strait were
characterized by low concentrations of Chl a (< 0.5 pg L+), DMSP (< 16 nmol L) and DMS (< 0.4 nmol L.), despite
the nutrient-replete conditions characterizing the surface waters. The increase in autotrophic biomass and methylated
sulfur compounds took place several km (ca. 100 km) away from the MY ice edge suggesting the requisite for ice-
free, light-sufficient conditions for a phytoplankton bloom to fully develop and for sulfur compound dynamics to
follow and expand. In light of the ongoing and projected climate-driven changes to Arctic sea ice, results from this
study suggest that the early onset of autotrophic blooms under thinner, melt pond-covered ice may have vast

implications for the timing and magnitude of DMS pulses in the Arctic.
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1 Introduction

The rapid warming of the Arctic represents one of the most conspicuous impacts of global change driven by human
activities (IPCC 2013). This warming has already translated into widespread and profound maodifications in
hydrological and ecological systems including, but not limited to, those related to sea ice dynamics. Reductions in
snow cover, in the minimum sea ice cover in summer and in the occurrence of multi-year (MY1) ice are afoot and
hastening (Rothrock et al. 1999; Serreze et al. 2007; Stroeve et al. 2007; 2008; Comiso et al. 2008; Serreze and Stroeve
2015; Bockhorst et al. 2016; AMAP 2017). If warming continues unmitigated, a summer ice-free Arctic Ocean is
predicted to occur during the second half of this century (Wang and Overland 2012). In polar regions, primary
production is driven by light and nutrient availability (Loeng et al. 2005; Arrigo 2014) which are heavily influenced
by the presence of sea ice. Seasonally, the first autotrophic organisms to benefit from the vernal increase in light in
the Arctic are ice algae that develop mainly in the bottom ca. 2-5 cm of the ice (Gradinger 2009; Galindo et al. 2014;
van Leeuwe et al. 2018). During this period, light intensities under thick ice are commonly too low to allow
phytoplankton growth, however blooms may develop in ice-free waters in long narrow bands (20-100 km) trailing
along the ice edge (Sakshaug and Skjoldal 1989). These ice-edge blooms could account for up to 50% of the annual
primary production in the Arctic Ocean (Perrette et al. 2011) and represent the greatest supply of energy to the marine
Acrctic ecosystem (Wassmann et al. 2008). Later in the growing season, phytoplankton blooms can also develop under
the ice as light penetration through the ice pack is heightened due to snow melting, ice thinning, and the development
of melt ponds (Fortier et al. 2002; Mundy et al. 2007; Arrigo et al. 2012; Galindo et al. 2014). The gradual loss of
perennial sea ice, induced by climate change, is thus expected to influence the phenology of ice-edge blooms and the
associated biogeochemical cycling of elements such as carbon, nitrogen, and sulfur. Based on data from an under-ice
bloom from the Chukchi Sea (Arrigo et al. 2012), a modelling study by Palmer et al. (2014) shows that a 10% melt
pond cover at the surface of the ice pack could provide sufficient light to sustain the growth of shade-adapted algae
under the ice. While conditions required for under-ice blooms were likely scarcer no more than 20-years ago, another
modelling study found that nearly 30% of the ice-covered Arctic Ocean may now support the formation of under-ice
blooms during the month of July (Horvat et al. 2017).

Ice-covered seas not only shape marine food webs but they also influence ocean-atmosphere exchanges of energy,
particles and gases, including the climate-cooling compound dimethylsulfide (DMS) (Levasseur 2013; Gabric et al.
2018). In the remote marine atmosphere, ocean-originating DMS represents the greatest gaseous precursor of sulfur
containing aerosols (Bates et al. 1992; Andreae and Crutzen 1997). Sulfate aerosols may play an important role in the
Earth’s radiative budget as they scatter incoming shortwave radiation and influence cloud formation and precipitation
by operating as cloud condensation nuclei (CCN) (Andreae 1990; Curran and Jones 2000; Liss and Lovelock 2007).
The potential importance of oceanic DMS emissions in driving climate-cooling is greatest in regions characterized by
low burdens of airborne particulates such as in the Arctic during summer (Chang et al. 2011; Browse et al. 2012;
Carslaw et al. 2013; Leaitch et al. 2013).

DMS rises in great part from the degradation of the algal compound dimethylsulfoniopropionate (DMSP). The
biosynthesis of DMSP is not restricted to eukaryotic organisms, however, and has also been found in marine

bacterioplankton who can both produce it and break it down (Curson et al. 2017). DMSP holds several roles in
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unicellular algae including osmoregulation, cryoprotection, scavenging of free radicals, and overflow of carbon and
sulfur (Stefels et al. 2007). The production of DMSP by unicellular algae is highly species-specific with
Bacillariophyceae and Dinophyceae/Prymnesiophyceae being lesser and greater producers, respectively (Keller et al.
1989). The DMSP-to-DMS conversion involves the entire microbial food web and part of the DMS is produced
directly by phytoplankton while another part is produced indirectly via the release of DMSP in the aqueous
environment and its subsequent degradation by bacterioplankton (Kiene et al. 2000; Sim¢ 2001; Stefels et al. 2007).
The relative importance of these processes is unclear, however abiotic stressors involving sudden modifications in
light intensity, salinity, and temperature may all contribute to the enhanced direct and indirect production of DMS by
plankton communities (Sunda et al. 2002; Toole and Siegel 2004).

In the Arctic, peaks in atmospheric methane sulfonic acid (MSA, a DMS proxy) have frequently been measured in
spring and in mid-summer (Sharma et al. 2012). The spring peaks have been attributed to phytoplankton blooms at
low latitudes while the mid-summer peaks have been related to more localized high latitude ice edge blooms (Sharma
etal. 2012; Becagli et al. 2016; 2019). This interpretation is consistent with the elevated DMS concentrations generally
measured at or close to ice edges in association with developing phytoplankton blooms in the North Atlantic and
European sectors of the Arctic (Matrai and Vernet 1997; Gali and Sim6 2010; Park et al. 2018). The high DMS
concentrations measured at ice edges have been associated with a combination of factors including: 1) an increase in
phytoplankton biomass and hence DMSP concentrations; 2) the selective growth of strong DMSP and DMS producers
such as the prymnesiophyceae Phaeocystis; 3) a physiological stimulation of DMS production due to the increase in
irradiance; and 4) an increase in bacterial activity (Gali and Simé 2010). In the eastern Canadian High Arctic, only a
fragmented picture of summer oceanic DMS distributions was available until recently and none of the snapshots
captured the presumably most biologically productive time of July-August: average of 1.1 nmol DMS L. in the North
Water and Nares Strait in June (Bouillon et al. 2002); average of 1.3 nmol DMS L. in northern Baffin Bay/Lancaster
Sound in September (Motard-Cété et al. 2012); range of 0.05 to 0.8 nmol DMS L. in the Canadian High Arctic in
October/November (Luce et al. 2011). In spite of the recurring mid-summer atmospheric MSA peak measured at Alert,
evidence of high oceanic DMS concentrations associated with summer phytoplankton blooms remained scarce for this
part of the Arctic until very recently (Mungall et al. 2016; Collins et al. 2017; Jarnikova et al. 2018; Abbatt et al.
2019).

The rapid shifting of the Arctic icescape bears consequences for Arctic primary production and associated DMS
dynamics that are still poorly understood. While observations from the field are sparse (Wassmann et al. 2011) and
challenging due the remoteness and harshness of the environment as well as the dynamic nature of ice and its margins
(Sakshaug and Skjoldal 1989), it is critical that impacts of ongoing physical changes on the dynamics of bloom-
forming microorganisms and their production of DMS be better constrained. The main objective of this study was to
assess and compare mid-summer (July-August) phytoplankton and DMS dynamics at two contrasting ice edges in
regions of the eastern Canadian Arctic: the Barrow Strait first-year ice (FY1) dominated ice edge and the Nares Strait
multi-year ice (MYI) dominated ice edge. The opportunity was also taken to investigate the ice-free waters of

Lancaster Sound and North Water (northern Baffin Bay) contiguous to the Barrow Strait and Nares Strait ice edge
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regions, respectively. Our results reveal two distinct planktonic systems and ensuing DMS dynamics related to the

presence of dissimilar icescapes.

2 Methods

2.1 Ice conditions and sampling strategy

The sampling took place between July 17 and August 6, 2014 onboard the Canadian Coast Guard Ship (CCGS)
Amundsen as part of the joint ArcticNet/NETCARE (Network on Climate and Aerosols: Addressing Key
Uncertainties in Remote Canadian Environments) campaign. Thirty-three stations were sampled; most of them were
located on four strategic and historical ArcticNet transects: Barrow Strait, Lancaster Sound, Nares Strait and North
Water (Table 1, Fig. 1). The other stations were situated in Dease Strait, Victoria Strait, M’Clintock Channel and
Franklin Strait in the CAA and Baffin Bay. The Barrow Strait (BS) transect was sampled opportunistically and aimed
to capture seawater flowing eastward as it exited the ponded ice pack in Barrow Strait. The Lancaster Sound (LS)
transect captured the water masses coming in and out of the sound. The Nares Strait (NS) transect aimed at capturing
the progression of biochemical processes as the water flowed southward away from the northern ice arch. The North
Water (NOW) transect captured the exchanges between the northern part of Baffin Bay and Nares Strait.

The two Straits (Barrow and Nares) were characterized by distinct and well-defined ice edges at the time of sampling
(Fig. 2). In Barrow Strait, the ice edge was located at the western end of Lancaster Sound, perpendicular to the channel,
between Devon Island and Somerset Island (Fig. 2a). The ice pack was mostly composed of ca. 1 m thick FY| covered
by melt ponds at approximately 40% of total surface (Fig. 3 picture of melt ponds). Soon after our arrival in the study
area, a large lead developed south of Griffith Island (south of Cornwallis Island), pushing the detached part of the ice
pack slightly eastward (Fig. 2). The BS transect was conducted along the ice edge in this lead. In Barrow Strait, the
net surface circulation is predominantly eastward at 10-15 c¢m s. in mid-summer on the south shore with a mild
westward current of ca. 5 cm s. on the north shore (Lemon and Fissel 1982; Prinsenberg and Bennett 1987; Pettipas
etal. 2008, Michel et al. 2015). This region stands as an important waterway for the transport of fresher Pacific waters,
originally from the inflow through Bering Strait, towards the North Atlantic (Jones et al. 2003). The water sampled
across this transect was thus mostly exiting the ice pack which extended several km westwards.

In July 2014, an ice arch formed in the Kennedy Channel of Nares Strait leaving Kane Basin, and the North Water
region to the south largely ice-free. The comparison of the position of the ice arch in July 2014 with a decade of
remotely sensed data (1997-2007), shows that it formed that year approximately 130 km north of a median historical
position (near 79.N) in southern Kane Basin (Kwok et al. 2010), in line with recent trends (2006-2010) of more
northern ice bridge formation in the area (Ryan and Miinchow 2017). By the time of the sampling (3-6 August), it had
retreated to the head of Kennedy Channel (Fig. 2A), leaving a 350 km stretch of open water north of Smith Sound
(Burgers et al. 2017). As expected for this part of the Arctic Ocean, the ice pack north of the ice arch was composed
of MY (Fig. 2C). Presence of MY (5+ years) north of Nares Strait, near Robeson Channel, was confirmed by the
Ease-Grid Sea Ice Age, Version 3 data set (Tschudi et al. 2016), which compiles weekly estimates of sea ice age in
the Arctic between 1978 and 2017. Data from 2014, week 31 (28 July—3 August) and week 32 (4-10 August) were
consulted for the purpose of this study. Beyond the MY and to the south, a band of thick (>1.2 m) FYI, without any
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melt ponds, was also present (Canadian Ice Service (CIS) analysis, Fig. 2B). Because Nares Strait represents a major
outflow path for water exiting the Arctic Ocean (Jones et al. 2003; Minchow et al. 2007; McGeehan and Maslowski
2012), the water sampled along the NS transect was exiting the northern MY edge as it flowed southbound towards
Baffin Bay.

2.2 Physical, chemical and biological measurements

Water samples were collected at 5 to 9 depths from the surface down to a maximum of 100 m depth with 12-L Niskin-
type bottles mounted on a General Oceanics 24-bottle rosette. The rosette sampler was equipped with a Sea-Bird
911plus Conductivity Temperature Depth (CTD) probe and a sensor for the measurement of fluorescence (Seapoint).
The in vivo fluorescence data were calibrated against extracted chlorophyll a (Chl a) concentration. Data processing
was performed through the “Sea-Bird SBE Data Processing program”, and quality control (based on UNESCO
algorithms) was performed using a Matlab toolbox developed at the Maurice Lamontagne Institute (Fisheries and Ocean
Canada) (Guillot 2007, unpub.). Water for nutrient analysis was filtered using a luer-lock syringe combined with an
Acrodisc filter (0.7 pum) into 15-mL acid-washed polyethylene tubes. Samples were immediately analyzed for nitrate
(NO:s), nitrite (NO.), phosphate (PO..) and silicic acid (Si(OH).) using a Bran and Luebbe Autoanalyser 111 after the
colorimetric method adapted from Hansen and Koroleff (1999) (detection limit for NO.: 0.03 pumol L., NO.: 0.02
pmol L, PO.: 0.05 pmol L.).

Water for Chl a concentration analysis was collected in 1-L brown polyethylene bottles (Nalgene) and then passed onto
a 25-mm filter (Whatman GF/F). Phytoplankton pigments on the filter were extracted in 90% acetone and stored at 4.C
in the dark during a period of 18-24 hours. Fluorescence of extracted pigments was then measured using a Turner
Designs fluorometer 10-AU after the acidification method described by Parsons et al. (1984). Chl a concentrations were
calculated from the equation published in Holm-Hansen and collaborators (1965).

Samples for phytoplankton taxonomy were collected at the surface and at the subsurface chlorophyll maximum (SCM)
and preserved in an acidic Lugol’s solution (final concentration of 0.4% v:v; Parsons et al. 1984). Identification and
enumeration of cells > 2 um were conducted with a Zeiss Axiovert 10 inverted microscope following the Uterméhl and
Lund method (Lund et al. 1958; Parsons et al. 1984). A minimum of 400 cells was enumerated to be statistically
significant.

Samples of DMS were collected in 23-ml serum vials and allowed to gently overflow, avoiding any bubbling, before
capping. Concentrations of DMS were determined onboard within 2 hours of collection using purging, cryotrapping,
and sulfur-specific gas chromatography (GC, Varian 3800) as described by Lizotte et al. (2012) and further
modifications described here. Briefly, 15 to 20-ml subsamples of DMS were gently filtered through a GF/F syringe
filter and immediately injected into a sparging vessel. The DMS was stripped from the liquid samples using a constant
flow of Ultra High Purity (UHP) helium (He) prepared using a permeation tube (certified calibration by Kin-Tek
Laboratories Inc.) maintained at 40.C and volatile DMS was trapped in a Teflon loop held in liquid N.. Gaseous
samples were then analyzed using a Varian 3800 gas chromatograph (GC), equipped with a Pulsed Flame Photometric
Detector (PFPD) and a capillary column (DB-5ms, 60 m x 320 um x 1 um). The samples were calibrated against

microliter injections of DMS diluted with UHP He (certified calibration by Kin-Tek Laboratories Inc.) maintained at
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40.C. Duplicate tubes for total DMSP (DMSP.) samples were filled with 3.5 mL of unfiltered water. For conservation
purposes, 50 pL of 50% sulfuric acid (H.SO.) was added in each 3.5 mL liquid sample of DMSP.. All tubes were
stored at 4.C in the dark until analysis in laboratory. DMSP concentrations were quantified over the course of two
periods using two analytical systems. A first series of DMSP. samples (stations 323, 322, 325, 301, 304, 305, 305A,
305B, 305C, 305D, and 305E) was analyzed in the laboratories of Laval University using a purge and trap system
coupled to a Varian 3800 GC PFPD as described above. DMSP. samples were hydrolyzed with a 5N NaOH solution
in order to convert DMSP into DMS which was purged from the samples via an Ultra High Purity (UHP) helium
stream, cryo-trapped and analyzed via gas chromatography (Lizotte et al. 2012). For these DMSP samples, the GC
was calibrated with milliliter injections of a 100 nmol L. solution of hydrolyzed DMSP (Research Plus Inc.).

The analytical detection limit on the Varian GC system was 0.1 nmol L. for all sulfur compounds and the analytical
precision (CV) for triplicate measurements of DMS and DMSP was better than 10%. After shortcomings with the
aforementioned GC system, a second series of DMSP. samples (stations 300, 324, 346, 115, 111, 108, 105, 101, KEN1,
KEN3, KANE1, KANES, 314, 312, 310, 335, 210, 204, 200, and 120) were determined using an automated purge and
trap system (Atomx XYZ, Teledyne Tekmar Inc.) coupled with a GC-MS (Gas chromatograph - Mass Spectrometer,
model GC Intuvo 9000-MS 5977B, Agilent Inc.). Before analysis on the GC-MS, DMS derived from NaOH-
hydrolyzed DMSP. samples was purged from the seawater in the Atomx sparge vessel for 11 minutes with UHP He
at a flow rate of 40 mL min.. Purged DMS was trapped on a u-shaped trap for volatile organic compounds (Teledyne
Tekmar Stamp 9 Trap). A high-voltage current was then used to heat the trap to 250.C, desorbing DMS and sending
it to the elution column of the GC at a flow rate of 300 mL min.. Once separated by the GC capillary column (DB-
5ms, 30 m x 250 um x 0.25 pum), volatile compounds were ionized and directed to the mass selective quadrupole of
the MS. The detector was adjusted to count target ions at 62 m/z. Resulting peak areas were retrieved using the
MassHunter workstation software. DMSP concentrations were calculated against 6-7 point calibration curves obtained
by processing standard DMSP solutions of known concentration, between 1 and 100 nmol L., in the same fashion as
DMSP samples. Potential degradation of DMSP. samples through time was corrected by calculating the loss in
standard solutions of DMSP (100 nmol L.) kept in the same preservation conditions as the samples (4.C in the dark).
Our analysis shows an average loss of 9% in the DMSP. samples between times of sampling and analysis.

MODIS images, as well as ice charts produced by CIS, were used to visually assess the presence of ice edges. CIS ice
charts, based on Radarsat 2 and NOAA-18 images, show ice properties including stage of development, concentration
and form of the ice (Environment Canada 2005). Color schemes of the CIS ice chart were modified using Adobe
Illustrator CS6. A FY1 edge appears in Lancaster Sound as a curved line between Devon Island and Somerset Island
on July 22 (Fig. 2A). The presence of MY appears at the northern extremity of Nares Strait, i.e., at the entrance of
Robeson Channel between Ellesmere Island and Greenland, on August 1 (Fig. 2C). The MY | ice was contiguous to a
band of thick (> 1.2 m) FYI descending into Nares Strait (Fig. 2B).

The surface mixed layer depth (Z.) was estimated as the depth at which the gradient in density () between two
successive depths was greater than 0.03 kg m. following the threshold gradient method of Thomson and Fine (2003)
with adaptations from Tremblay et al. (2009). Oceanic vertical cross sections and contour plots were drawn using

weighted averaging gridding and linear mapping using Ocean Data View 5.1.5 macx software (Schlitzer, 2018) and
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schematic models of FYI and MY dynamics were constructed in Adobe Illustrator CS6. Statistical analysis was
conducted using SYSTAT 13.2 software, as well as JASP 0.9.2.0 computer software, an open-source project supported
by the University of Amsterdam (JASP Team 2018). Variables were tested for normality using the Shapiro-Wilk test
with a 0.05 significance level, and Spearman’s rank correlations (r;) were used to assess the strength of association

between variables.

3 Results

3.1 Overview of the sea surface physicochemical and biological characteristics

The main physical and chemical characteristics of the sea surface water at the sampling stations are presented in Table
1 for stations located in the 4 regions of interest. Surface temperature varied between -1.5 and 5.7.C, with the lowest
and highest values measured under the ice in Barrow Strait and in the open waters of Lancaster Sound, respectively.
Salinities ranged from 29.5 to 32.8, with the lowest and highest values measured in Barrow Strait and in northern
Baffin Bay (North Water), respectively. Nitrate concentrations were generally lower than 0.5 pumol L. in the studied
area, except at three ice edge stations located in Barrow Strait (> 2 umol L.) and one station close to the ice arch in
Nares Strait (1.4 pmol L.). Silicic acid exhibited the same general spatial distribution with concentrations lower than
1.5 umol L. at most stations and greater than 3 umol L. in the ice-covered Barrow Strait and close to the ice arch in
Nares Strait. Phosphate concentrations varied between 0.2 and 0.9 pumol L., again with maximum values found in ice-
covered Barrow Strait. Chlorophyll a concentrations in surface waters varied between 0.2 and 2.3 pg L. (Table 2),
indicating that the summer bloom was in an advanced stage at most stations, except in the ice-covered Barrow Strait
and close to the ice arch in Nares Strait. Surface DMSP. concentrations spanned an order magnitude from 13.5 to
114.7 nmol L., while DMS concentrations varied between 0.37 and 19.5 nmol L., with the highest values measured
in the ice-covered Barrow Strait and near the Greenland shelf in northern Baffin Bay (Table 2). At a broad scale, and
considering only sea surface data from all regions under investigation in this study, Spearman’s rank correlation tests
(n = 33) reveal no significant relationships between DMS and abiotic or biotic variables presented in tables 2 and 3.
Beyond sea surface data, water column vertical profiles were also plotted as cross sections in order to identify key
features associated with ice dynamics and bloom development in certain regions of the CAA and Baffin Bay.

Information is presented below and grouped as a function of targeted transects.

3.2 Barrow Strait (BS) transect

Variables measured across the BS transect are presented in Figure 4. Seawater temperatures ranged from -1.6 to -
1.2.C, with the lowest values found at intermediate depths (ca. 40-60 m). Surface water temperatures were below -
1.4°C at all stations. Salinity varied between 30.4 and 33.0 across the transect, with the lowest and highest surface
values measured at the north and south extremities of the transect, respectively. Nitrate concentrations ranged from
0.6 to 11.0 pmol L., with lowest and highest values measured close to the surface and at depth, respectively. The
nitracline was located at ca. 30 m. Close to the surface, nitrate concentrations were low at the south end of the transect
(0.6 umol L. at station 305B) and increased northward to reach 2.1 umol L.at station 305E. Silicic acid concentrations

showed a similar pattern, with a positive south-north gradient ranging from 3.5 to 10.5 umol L.in the upper 30 m and
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high values at depth (up to 29.2 umol L.). Chl a concentrations varied between 0.2 and 2.1 ug L. with highest values
measured in the upper 30 m of the water column and toward the northern tip of the transect. Phytoplankton
identification and enumeration were conducted at one station on the BS transect (stations 305E) and at two stations
located in the vicinity under the ponded ice cover (see stations 304 and 305 in Fig. 1 and Table 2). The phytoplankton
assemblages at these three stations were similar, dominated by the pennate diatoms Fossula arctica and Pseudo-
nitzschia spp. (delicatissima group), the two taxa being responsible for 29 to 71% of the total phytoplankton abundance
(Table 2). Another abundant pennate species at these stations was Fragilariopsis oceanica.

Concentrations of DMSP. were highest in the top 20-30 m of the water column across the FY1 edge, from stations
305B to 305E, with the highest value of DMSP: (115 nmol L. at 2 m depth) observed at the northern extremity of the
transect. DMS concentrations were maximal in the upper 30 m of the water column across the BS transect. DMS
concentrations in surface waters varied from 7.2 to 12.2 nmol L. with highest concentrations measured at both

extremities of the transect.

3.3 Lancaster Sound (LS) transect

Variables measured across the LS transect are presented in Figure 5. Surface temperatures were at least 3 times warmer
than those measured across the BS transect, with values ranging between 3.0 and 4.1.C. Surface salinities varied
between 30.7 and 32.4, with the highest values measured at stations 323 and 322 towards the north shore.
Concentrations of nitrate and silicic acid exhibited no particular cross-channel pattern in the surface mixed layer, with
values below 0.5 and 2 umol L. in the upper 20 m of the water column, respectively. Maximum Chl a concentrations
were in the same range as in the BS transect (between 1.5 and 2.5 pug L.) but exhibited a different vertical distribution.
Across the BS transect, Chl a concentrations were generally highest in the surface mixed layer (SML) while they
formed a SCM at ca. 30-40 m at the stations located across the LS transect suggesting a more advanced bloom stage
in the LS area. The two transects also showed distinct phytoplankton assemblages (Table 2). Station 325 located close
to the south shore of the LS transect was characterized by a phytoplankton assemblage dominated by the centric
diatoms Chaetoceros spp. (5-10 um), Chaetoceros gelidus, Chaetoceros spp. (10-20 um) and Chaetoceros spp. (2-
5 um). At stations located in the middle (323) and near the north shore (322), assemblages were dominated by
unidentified flagellates, Prasinophyceae and Dinophyceae. In contrast with assemblages found at the BS transect,
pennate diatoms represented at most 7% of the phytoplankton counts in Lancaster Sound.

Concentrations of DMSP. varied between 17 and 96 nmol L. in the top 40 m, with a pronounced subsurface peak at
ca. 20 m at the southern end of the transect corresponding to the SCM. DMS concentrations were as high across the
LS transect (values above 10 nmol L. measured at stations 322, 300, and 325) than those measured across the BS
transect. However, while the high DMS values were restricted to the first 25 m in the BS transect, concentrations
exceeding 2.5 nmol L. were measured down to ca. 70 m in the LS transect. Across the LS transect, DMS
concentrations were elevated (> 4 nmol L.) in the nutrient-impoverished low Chl a SML as well as in the SCM. Three
distinctive peaks were observed at stations 322 (10 nmol L. at 40 m), 322 (12 nmol L. at 20 m), and 325 (11 nmol L.
1at 10 m).
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3.4 Nares Strait (NS) transect

Variables measured across the NS transect are presented in Figure 6. Sea surface temperatures started at ca. -1.3.C at
the ice edge and increased more or less regularly southward to reach 2,C at the last station (KANES) of the transect.
In contrast, sea surface salinities were relatively constant at 30.5 along the transect. Nitrate and silicic acid
concentrations in surface waters near the ice arch were ca. 1.5 umol L. and 6 pmol L., respectively. In the upper 20 m
of the water column, concentrations of nitrate and silicic acid decreased with distance from the ice arch as a first algal
bloom developed (see below), reaching 0.4 pumol L.and 1.9 pmol L., respectively, at the southernmost station
(KANED). The silicic acid drawdown along the transect was indicative of a strong diatom dominance (see Table 2).
Chl a concentrations exiting the MY pack were ca. 0.3 pug L. in the top 20 m of the water column and increased
southward, reaching a first surface peak of 2 ug L. at KEN3 which then continued in subsurface waters. A SCM of
2.8 ug L. was already present at ca. 24 m depth at KEN3, while Chl a concentrations reached 10 pug L. at ca. 20 m
depth at KANES. The abundance of phytoplankton was low in surface waters near the MY edge and unidentified
flagellates and Prymnesiophyceae (Table 2) dominated the community. The bloom which developed further south of
the ice arch was dominated by the centric diatoms Chaetoceros spp. (5-20 um) and Chaetoceros gelidus, a composition
similar to the blooming assemblage described in the LS transect.

At the northernmost station near the ice arch (KEN1), DMSP. concentrations were relatively low throughout the water
column (< 16 nmol L.), with highest values near the surface. The near surface maximum increased to 27 nmol L. at
station KEN3 while a distinct subsurface maximum of DMSP. was present at ca. 20m depth in the three southernmost
stations of the transect (KANE1 to KANES5). A high value of 59 nmol L. was reached at KANES5 (20 m depth). Near
surface DMS concentrations were below 0.4 nmol L. at the station closest to the ice arch (KEN1) and were highest in
association with the developing bloom, reaching 10 nmol L. at KANES5. The maximum concentrations of DMS were

mostly restricted to the upper 20 m of the water column, within or above the SCM when present.

3.5 North Water (NOW) transect

Variables measured across the NOW transect are presented in Figure 7. Sea surface temperatures were 1.0.C in the
western part of the transect, between 3.5 and 4.0°C in the central part, and decreased to 2.3.C at the easternmost
station (115). Sea surface salinity varied between 31.3 and 32.8 with highest values measured on the eastern edge of
the transect, nearest to Greenland. Nitrate concentrations in surface water were below 0.04 umol L. across the whole
transect, indicating post-bloom conditions similar to those found in the LS transect. Surface silicic acid
concentrations varied between 0.3 and 6.5 umol L. with the lowest and highest values recorded at stations 111 and
101, respectively. Chl a concentrations showed a subsurface peak at all stations with maximum values found at ca.
18 m depth at station 115 (4.7 pg L), and at ca. 30 m depth at station 105 (4.3 pug L.). As observed further south at
the mouth of Lancaster Sound, the phytoplankton assemblage was dominated by the centric diatom Chaetoceros
gelidus and two unidentified Chaetoceros species at 3 stations of the transect (111, 108 and 101). Stations 115 and
105 were, for their part, numerically dominated by flagellates. Station 115 was also characterized by the presence of
the prymnesiophyte Phaeocystis pouchetii (palmelloid stage) with an abundance reaching 503,700 cells L.,

representing 9% of total cell counts at this station. Pennate diatoms were present across the transect, with
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concentrations increasing from west (16,425 cells L. at station 101) to east (877,820 and 737,300 cells L. at stations
111 and 115, respectively).

Concentrations of DMSP. were highest in the first 20-30 m of the water column, ranging from 34 to 88 nmol L. at the
near surface, with a distinct positive gradient from west to east. A subsurface peak was observed in the three most
eastern stations (108, 111, and 115) with the highest concentrations of DMSP. (112 nmol L., station 115) measured at
12 m depth. DMS concentrations in the near surface waters were relatively high and stable at 4.1-5.3 nmol L. between

stations 101 and 111 and reached 19.5 nmol L. at station 115, the highest value measured during this campaign.

4 Discussion

During the joint ArcticNet/NETCARE cruise, summertime DMS distributions were studied in two regions of the High
Canadian Arctic characterized by distinct ice edges: a first one featuring mainly ponded FYI, and a second one
composed mainly of MY . Both Barrow and Nares straits, as well as the contiguous regions of Lancaster Sound and
North Water (northern Baffin Bay), embody significant oceanic gateways for Pacific-originating waters towards the
North Atlantic (Jones et al. 2003). The results from the four transects conducted in these regions reveal distinctive
features in DMS dynamics. The highlights of this study are discussed in the context of a predicted warmer Arctic, loss
of perennial sea ice, and increase in the prevalence of seasonal FY I (Nghiem et al. 2007; Kwok and Rothrock 2009;
Overland and Wang 2013; AMAP 2017).

4.1 Broad regional sea surface distributions of DMS

Over the entire study area, the distribution of sea surface concentrations of DMS (Fig. 8) ranged from 0.2 to 19.5
nmol L., with a median of 4.4 nmol L. and interquartile range of 2.5 nmol L. (25+) and 8.2 nmol L. (75.) (Table 3,
n = 33). These values are similar to the measurements (range from 0.04 to 17.6 nmol L. and a median of 2.47 nmol L.
1) conducted by Jarnikova et al. (2018) at the same time of year (July-August) and in the same broad biogeographic
sectors of the CAA and Baffin Bay. Altogether, these results show that previous measurements conducted in Baffin
Bay and CAA earlier (April to June) or later (September-October) in the potentially productive season may not have
been representative of summer conditions (see studies referenced in Table 3). These findings also bring further support
to the hypothesis that local DMS sources explain the mid-summer peaks of atmospheric MSA, a DMS proxy, in the
High Arctic (Sharma et al. 2012; Becagli et al. 2019). Not surprisingly, considering our limited sea surface dataset
(n = 33) and the overall complexity of the DMS cycle, no significant relationships were found between broad regional
sea surface concentrations of DMS and biotic or abiotic variables. Global empirical relationships between DMS and
other biogeochemical and physical variables are often inconsistent and difficult to establish (Kettle et al. 1999). The
Arctic, in particular, displays important patchiness in drivers of DMS dynamics (Gali and Sim6 2010; Galindo et al.
2014; Jarnikova et al. 2018), associated in great part with the presence of ice and its role in seeding under-ice algal
blooms. The melt of sea ice and snow covers also influence surface water stratification and the ensuing shifts in
salinity, temperature and solar radiation doses experienced by potential DMS-producing communities. The inherent
heterogeneity that characterizes spatial distributions of DMS in the Arctic as well as the presence of sea ice as a

potentially critical driving force of these patterns warrants further investigations into underlying mechanisms.
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4.2 The FYI edge in Barrow Strait and the adjacent Lancaster Sound

The seasonal sea ice zone (S1Z) in the Arctic is modulated by large interannual variability (Parkinson and Comiso
2013; Simmonds 2015; Comiso et al. 2017; Serreze and Meier 2019). Correspondingly, the position of the ice edge in
the Barrow Strait/Lancaster Sound area during spring may vary yearly from the mouth of the sound on the east (80,W)
to Lowther Island in Barrow Strait on the west (97.W) as revealed by the analysis of CIS ice charts by Peterson et al.
(2008). On July 17, 2014, the ice edge was located approximately mid-way of this historical spatial range near the
longitude of Prince Leopold Island (90.W, see Fig. 2A). Satellite imagery reveals that this distinct ice edge was already
present a month prior to the arrival of the icebreaker CCGS Amundsen in the area and that the eastern part of Lancaster
Sound (east of 90.W) was already mostly ice-free by June 16, 2014 (data from CIS not shown). The ice cover in
Barrow Strait, west of the ice edge, was composed mostly of FYI ca. 1 m thick covered with melt ponds at ca. 40%
of its surface. On July 20, part of the ice diverged towards the east creating a small lead in the FYI near the northern
tip of Somerset Island (Fig. 2A). The opportunity was taken to sample the western border of the lead, very close to
the newly formed ice edge in order to capture the outflow of under-ice waters. The predominantly eastward transport
of water in the southern portion of the Strait is estimated at 14 + 4 cm s.. annually and is strongest in late summer at
27 + 8 cm s, (Hamilton et al. 2013), suggesting that the residence time of seawater in the lead was short lived.
Biogeochemical characteristics of the surface waters sampled on July 22-23 along the BS transect, particularly its
southern area, thus likely reflect conditions prevailing in the ice-covered western portion of the Strait.

Vertical profiles from the BS transect (Fig. 4) in proximity to the newly formed ice edge indicate that an under-ice
phytoplankton bloom had developed in the ice-covered Barrow Strait area and was captured during our sampling as
it exited the ice. This under-ice bloom coincided with relatively low salinities (ca. 31.5) and temperatures (ca. -1.5.C)
within the surface waters. These results suggest that the bloom was linked to the development of a fresher water lens
below the ice, likely resulting from the melting of snow and ice covers. Events that were also likely associated with
an increase in light transmission through the ice, as observed by Galindo et al. (2014) for the 2010 and 2011 under-
ice blooms in Allen Bay and Resolute Passage. The relatively high nitrate concentrations measured in the upper 20 m
(ca. 2.5 pmol L.) suggest that the bloom was still in its development phase. The maximum phytoplankton biomass
measured in the lead and under the ice in adjacent stations (ca. 2 pug Chl a L.) was lower than the maximum value of
ca. 10 pg L.reported by Galindo et al. (2014) during under-ice blooms at the end of June 2011. The 5 times higher
biomass measured during Galindo’s study suggest that turbulent mixing could bring additional nutrients to the under-
ice bloom closer to shore. In stations of the BS transect however, a strong halocline had persisted at ca. 20 m,
restricting the vertical input of nutrients to the upper part of the water column. Our results also indicate that the
upwelling conditions which led to the formation of a massive under-ice bloom in Chukchi Sea (Arrigo et al. 2012;
Cooper et al. 2016; Selz et al. 2018) were not present across the BS transect during our study. The dominance of the
phytoplankton assemblage by pennate diatoms in the Barrow Strait region (BS transect station 305E as well as stations
304 and 305, see Fig. 1) suggests that the release of ice-associated algae (sympagic) likely contributed to the seeding
of the under-ice bloom, as observed during similar under-ice blooms in the Barrow Strait region (Fortier et al. 2002;

Galindo et al. 2014). These results agree with studies emphasizing the importance of ice algal communities as a
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seeding source during spring over oceanic regions when algal abundance in the water column is low (e.g., Arctic
Ocean north of Svalbard by Kauko et al. (2018); Frobisher Bay in Davis Strait by Hsiao (1992)). The presence of
species endemic to Arctic sea ice such as Nitzschia frigida, Fragilariopsis cylindrus and Fragilariopsis oceanica
(Poulin et al. 2011) in the surface waters of the Barrow Strait region brings further support to the ice origin of this
under-ice bloom.

The taxonomic composition of the drifting under-ice bloom at station 305E was also dominated by pennate diatoms,
but with lower total cell abundance (0.48 - 10s cells L. at 305E) as compared to the two other Barrow Strait stations
(>2.00 - 10s cells L. at 304 and 305, data not shown), as well as slightly different species. The phytoplankton
assemblage at 305E was similar to the one previously described by Galindo et al. (2014) for the under-ice bloom
developing at a shallow station (50 m) in Allen Bay in 2011, located ca. 15 km west of 305E. In both studies, the
under-ice bloom was dominated by pennate diatoms, with Fossula arctica and Fragilariopsis oceanica contributing
8.2 % and 7.8 %, respectively, to the total protist abundance at station 305E.

In the ice-free area of Lancaster Sound, the lower Chl a (0.2 to 1.2 pg L.) and nutrient concentrations measured in the
13-16 m depth SML as well as the presence of an SCM (Fig. 5) suggest that the bloom had reached a more advanced
stage of development with part of the phytoplankton cells produced at the surface accumulating near the nitracline.
Nitrate and silicic acid concentrations in the SML were limiting with values below 0.6 umol L. and 0.9 umol L.,
respectively, indicating that most of the nutrients, initially present in the surface, had already been consumed by the
primary producers. The exhaustion of nitrate in surface waters, the deepening of the nitracline and the development
of a SCM are typical features of summer conditions in several regions of the Arctic as demonstrated by a host of
comprehensive investigations (Tremblay et al. 2008; Mundy et al. 2009; Martin et al. 2010; Ardyna et al. 2013; Brown
et al. 2015; Steiner et al. 2015).

The striking difference between the phytoplankton assemblages in Lancaster Sound, dominated by centric diatoms,
and Barrow Strait, dominated by pennate diatoms, suggests that the bloom in Lancaster Sound likely developed under
ice-free conditions with no significant seeding from ice algae. This could indicate that part of the FY1 pack broke and
was flushed out of the eastern portion of the sound before ice and snow conditions, as well as the potential presence
of melt ponds, would have allowed the formation of an under-ice bloom. This interpretation is supported by MODIS
images revealing that much of Lancaster Sound was ice-free a month prior to the ship’s arrival (June 16, CIS data not
shown). These results agree with findings from Hsiao (1992) showing a dominance of pennate diatoms in the ice algae
and phytoplankton communities during spring in Frobisher Bay (Davis Strait), and a dominance of centric diatoms in
open waters in summer post ice melt.

The Barrow Strait/Lancaster Sound FY1 area was characterized by different vertical DMSP distributions in the two
regions of the biogeographic sector under study, likely related to the distinctive phases of bloom development
discussed above. In the newly formed lead of Barrow Strait, accumulation of DMSP. was highest in the surface waters
with a peak of 115 nmol L. at the northern edge of the lead (station 305E, depth of 2 m). This high value is in the
same range as the under-ice water column concentrations of particulate DMSP (DMSP, of 99 and 185 nmol L.)
observed by Galindo et al. (2014) in nearby Allen Bay. Despite seemingly varying vertical distribution patterns of in

vivo fluorescence and DMSP. (see Fig. 4), the broad fluctuations of these two biologically mediated variables displayed
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significant correlation (r. = 0.80, p < 0.001, n = 20) suggesting that the bulk of DMSP. was intimately linked to algal
biomass. In contrast, across much of the LS transect, particularly towards its southern portion, concentrations of
DMSP. were highest near the nitracline, deeper in the water column (peak of 96 nmol L. at 20 m, station 325). The
role played by environmental drivers, such as nutrients, in the accumulation of DMSP-rich organisms at this depth
was substantiated by the significant correlation found between water column distributions of NOs. and DMSP. (r. = -
0.59, p < 0.001, n = 36). However, contrary to patterns observed in the BS transect, concentrations of DMSP. bore no
significantly association with in vivo fluorescence of chlorophyll in this part of the study area, suggesting that the bulk
of algal biomass was not necessarily responsible for the variability in DMSP. concentrations in these waters
characterized by mixed algal populations. The above results are not unexpected seeing as the nature of DMSP
synthesis itself is highly species-specific (Keller et al. 1989) and subject to physiological up- or down-regulation and
excretion linked to environmental stressors (see review by Stefels et al. 2007). Assuming that almost all DMSP. was
particulate (see Kiene and Slezak 2006), the DMSP.:Chl a ratio can serve as an indicator for intracellular DMSP
concentration. Averaged over the first 20 m of the water column, DMSP.:Chl a ratios were 60 nmol pug- at the four
Barrow Strait stations and almost 3 times as high at the five Lancaster Sound stations (170 nmol pg-). This distinctive
pattern could have resulted from differences in community composition or in physiological status of the algal
communities, as well as their bloom development phase. The numerical dominance of flagellates at certain stations of
the LS transect (stations 322 and 323) and their presence in relatively high proportion at station 325 (second highest
at 14%) suggest that the bloom was further along in its development than in the BS transect. This difference may help
explain the large differences in Chl a normalized DMSP: between the two regions. However, in light of the scarcity in
available information, the exact role played by community composition and cell physiology in shaping DMSP.:Chl a
ratios remains an open question.

Notwithstanding the lower DMSP.:Chl a ratios in the BS transect, DMS levels were high in surface waters, ranging
from 7.2 to 12 nmol L.and revealed two hot spots at either end of the sampled transect (Fig. 4). One in association
with a peak in DMSP. (115 nmol L., 305E) and a second in conjunction with relatively low DMSP. (ca. 25 nmol L.,
305B) and Chl a (0.83 g L.) at station 305B. Statistical analysis suggests that, in the waters exiting the FYI pack in
Barrow Strait, variability in DMS concentrations was significantly associated with that of it’s precursor DMSP:. (r. =
0.76, p < 0.001, n = 20) but was most strongly associated with fluctuations in salinity. The highly significant negative
correlation (Fig. 9) found between DMS and salinity (r. = -0.91, p < 0.001, n = 20) in the upper ca. 80 m of the water
column in this region suggests a strong physical control of DMS distributions associated with ice and snow melting
processes. The generally sunny forecast in the days prior to the sampling excludes heavy rain as a significant
contributor to this signal. During the thawing season, the increase in ice permeability and basal melting may trigger
important releases of DMS in the waters just below the ice cover (Trevena and Jones 2006; Kiene et al. 2007; Tison
et al. 2010; Carnat et al. 2014). The formation of an upper fresher water “lens” associated with the FYT melt may also
have led to a certain accumulation of DMS following its release from the sea ice. Furthermore, it cannot be totally
excluded that the stratification of the upper water column ensuing from the melting ice could have entailed higher and
longer exposures of phytoplankton communities to solar radiation with enhanced DMS production as a coping

mechanism against light-induced stress via an antioxidant cascade (Sunda et al. 2002; Toole and Siegel 2004; Vallina
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and Sim6 2007; Gali and Simé 2010). Indirectly, DMS production could also have been stimulated through the
possible increased availability of dissolved DMSP (DMSP.) in the environment and its bacterially-mediated enzymatic
conversion into DMS (Kiene et al. 2000). Laboratory salinity downshock experiments with batch cultures of diatoms
and dinoflagellates have shown an increase in the excretion of cellular DMSP (Van Bergeijk et al. 2003) and an
increase in the production of DMS (Stefels et al. 1996; Niki et al. 2007). A DMSP-related osmo-acclimation response
to shifts in salinity (Stefels 2000) could be particularly beneficial for algae developing in highly fluctuating
environments, such as in the Arctic during the thaw season, a phenomenon which could ultimately strengthen DMS
production. The strength of the association between DMS and salinity in the waters however suggests that physical
drivers exercised the greatest control over the distribution of DMS near the FY1 ice edge.

Sea surface concentrations of DMS in the open waters of the Lancaster Sound transect ranged from 3 to 7 nmol L.
with no clear cross-channel pattern (Fig. 5). In this region, DMS concentrations peaked deeper in the water column
(max of 12 nmol L., station 300, 20 m depth) partly in association with the presence of DMSP-producing
phytoplankton, as suggested by the significant positive correlation found between water column concentrations of
DMS and DMSP. (r. = 0.45, p < 0.001, n = 36). However, fluctuations in DMS throughout the water column were,
once again, better correlated with those in salinity (r. = -0.72, p < 0.001, n = 36) suggesting the continued importance
of environmental drivers, such as salinity, in shaping DMS distributions in the later stages of bloom development in

this part of the CAA during our study.

4.3 The MY edge in Nares Strait and the adjacent North Water

Sea ice covers Nares Strait for most of the year (Mlnchow 2016). While the ice is typically landfast from December
to June as a result of the formation of ice arches (ice bridges) at the northern entrance (around 83.N) and the southern
exit (around 78:N), the ice is mobile from July to November (Kwok et al. 2010; Moore and McNeil 2018). As one of
the major oceanic gateways of Arctic waters into the North Atlantic, the average depth-dependent flow through the
Strait is always to the south (Miinchow et al. 2007; McGeehan and Maslowski 2012) and drifting ice velocities through
the channel are strongly correlated with local winds (Miinchow 2016). The NS transect sampled during this study thus
captured the flow of water exiting the northern ice pack towards Baffin Bay. In August 2014, the ice north of the head
of Nares Strait, near Robeson Channel, was composed of MY (Fig. 2C), a typical feature of this area (Kwok et al.
2005; Comiso 2012; Michel et al. 2015). A band of thick (> 1.2 m) FY| shaped a gradient between the northern MY/
and southern open waters. While some FY| remained in the Strait, particularly southeast of the ice arch (along the
Greenland coast), its concentration decreased from 7-8/10 to less than 3-4/10 and eventually to open waters west of
Kane Basin.

Water column patterns of salinity along the NS transect were relatively uniform between stations with fresher waters
reaching deeper into the water column at the most northern stations (Fig. 6). This pattern is consistent with the presence
of Pacific-originating waters of lower salinity and density that enter the central Arctic Basin through Bering Strait and
that partly flow south through Nares Strait as a sub-surface current (Jones et al. 2003). It may also reflect the
southbound flow through Nares Strait of first-year or multiyear ice floes (Miinchow 2016), or icebergs originating

from the glaciers of Greenland or Ellesmere Island (Burgers et al. 2017) that can partially melt in transit and thus
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freshen the ocean surface waters the impact of which lessens to the south as the ice melts away. Vertical patterns of
temperature along the NS transect showed well mixed waters down to 58 m in the station nearest to the ice edge
(KENZ1) and a progressive warming of the upper layers of the water column with decreasing latitude (Fig. 6). The rise
in sea surface temperatures in the lower latitude stations of the NS transect reflects the typical seasonality of heat
exchange (summer heat uptake) between the open waters and the atmosphere (Maykut and McPhee 1995).
Reservoirs of nutrients throughout the water column at station KEN1, with 1.4 and 6 pmol L. of nitrate and silicic
acid, respectively, were at the lower end of expected pre-bloom values for Pacific-derived water of the same salinity
in the higher Arctic (Tremblay et al. 2002). As the sampling stations progressed to the south, a drawdown of both
those nutrients, associated with the development of phytoplankton biomass, was evident at the surface of the vertical
profiles (Fig. 6). At station KANE3, nutrients exhibited a swell-like pattern, associated with an increase of nutrients
throughout the water column. The presence of a sill (Bourke et al. 1989) with a shallower bottom (depth of 230 m at
79.54°N) just north of KANE3 and the potential localized upwelling of nutrients could help explain this pattern.
Concentrations of Chl a in the waters exiting the MY pack were low (< 0.5 pug L. at KEN1) throughout the water
column while they rose with decreasing latitude in the rest of the NS transect. Chl a concentrations reached a first
surface peak of 2 pg L. at KEN3 which then continued in subsurface waters. A SCM of 3 ug L. was already present
at KEN3 at ca. 24 m depth and reached 8 pg L at ca. 35 m depth at KANEL. As this first bloom petered out, the
upward supply of nitrate over a sill (230 m depth) located at latitude 79.54°N (Bourke et al. 1989) likely triggered
another bloom in Kane Basin, with concentrations reaching 10 pg L. at ca. 35 m depth at KANES. Along this transect,
variations in the phytoplankton biomass proxy, Chl a in vivo fluorescence, were strongly associated with the
availability of nitrate throughout the water column (r.=-0.92, p < 0.001, n = 44) reinforcing the role played by
nutrients in shaping the vertical distribution of primary producers as well as their control over nutrient drawdown.

In surface waters near the MY| edge, the phytoplankton community (dominated by unidentified flagellates and
Prymnesiophyceae, KEN1, Table 2), showed a moderate abundance (1.3 - 10s cells L., data not shown), suggesting
that the initiation of a phytoplankton bloom had not yet occurred in waters underneath the northern ice pack. The
presence of sufficient amounts of nutrients in the surface waters near the ice edge points towards light availability as
the primary limiting factor for the proliferation of primary producers under the ice. In seasonally ice-covered seas, the
growth of shade-adapted algal cells may begin once a critical incident irradiance threshold is reached at the ice-water
interface (Horner and Schrader 1982; Gosselin et al. 1986). These results are in sharp contrast to the patterns observed
in the waters exiting the ponded FY1 in Barrow Strait where a bloom had already begun to develop underneath the
ice. The drawdown of silicic acid in the following NS transect stations concurred with the development and dominance
of diatoms (see Table 2), notably centrics such as Chaetoceros spp. (5-20 pm) and Chaetoceros gelidus, an assemblage
similar to those previously described in the LS transect (as well as in the NOW transect later discussed). Species of
the genus Chaetoceros were thus widespread throughout the study area, as previously reported in the Canadian High
Arctic (Booth et al. 2002; Ardyna et al. 2011; Poulin et al. 2011).

In proximity to the northern ice edge in Nares Strait (KEN1), concentrations of DMSP. and DMS were rather modest
throughout the water column (< 16 nmol L. and < 0.4 nmol L., respectively). These results reinforce the notion that

autotrophic and heterotrophic processes associated with the production of DMSP and DMS in the waters under the
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thick non-ponded MY may have only truly taken off upon reaching ice-free, light-sufficient conditions found farther
south. This is again in cutting contrast with DMSP and DMS patterns observed at the Barrow Strait ponded ice edge.
Surface peaks of 27 nmol DMSP L. and 2.6 nmol DMS L. were measured in the following station (KEN3) adding
support to the requisite of suitable doses of solar radiation to ensure the development of microalgae in ice-covered
waters of the Arctic (Horner and Schrader 1982; Gosselin et al. 1986) and the ensuing production of S compounds. In
the three southernmost stations of the Nares Strait transect, a subsurface maximum of DMSP. was present at ca. 20 m
depth with a high value of 59 nmol L. reached at KANES likely in association with an increase in autotrophic biomass
fueled by nutrients near the sill, hitherto discussed. Maximal concentrations of DMS were, for the most part, confined
to the upper 20 m of the water column within or above the SCM, with a high value of 10 nmol L. reached at KANES5.
Along this transect, variations in the vertical distribution of DMS were significantly correlated with its precursor
DMSP,, however the strongest association was found between variations in DMS and seawater temperature (r- = 0.81,
p < 0.001, n = 44) likely reflecting seasonal warming of the ice-free surface waters and ensuing development of DMS-
producing organisms. The significant positive correlation found between concentrations of DMS and in vivo
fluorescence of chlorophyll (r. = 0.64, p < 0.001, n = 44) throughout the water column in Nares Strait reinforces this
suggestion (Fig. 9).

Ratios of DMSP::Chl a (ranging from 10 to 23 nmol pg.) averaged over the first 20 m of the water column of the NS
transect were low compared to those found in the Lancaster Sound transect (max of 170 nmol pg-). Taking into
account that our DMSP.:Chl a ratios include both particulate and dissolved pools, and considering that dissolved
DMSP typically contributes a small fraction of DMSP: (although highly variable; Kiene et al. 2000; Kiene and Slezak
2006), these values are nonetheless similar to previously reported DMSP,:Chl a ratios with a maximum of 39 nmol pg-
1(Luce et al. 2011) and a maximum of 17 nmol pg. (Matrai and Vernet 1997), at diatom-dominated stations of the
Canadian High Arctic and of the Barents Sea, respectively.

Along the ice-free west-east transect in the North Water (NOW), patterns of temperature and salinity (Fig. 7) revealed
the interactions between the southward advection of fresh and cold Arctic waters along Ellesmere Island and saltier
and warmer Atlantic waters flowing northward along western Greenland via the West Greenland Current (WGC)
(Curry et al. 2011; Miinchow et al. 2015). Surface water concentrations of nitrate were below 0.04 pmol L. across the
entire transect, exposing more mature blooming stage conditions similar to those found in the LS transect. As such,
maximal accumulation of biomass occurred below the surface in most stations along the NOW transect in association
with the nitracline (Spearman’s rank correlation between in vivo fluorescence and NO:s, r. = -0.86, p < 0.001, n = 42).
The phytoplankton assemblage along the NOW transect was similar to the ones observed further south at the mouth
of Lancaster Sound and further north along Nares Strait. In the surface waters of stations 101, 108 and 111, the
phytoplankton assemblage was dominated by the centric diatom Chaetoceros gelidus and two unidentified
Chaetoceros, while flagellates numerically dominated the community at stations 105 and 115. The later station,
located near the West Greenland Coast, was also characterized by the presence of palmelloid colonial cells of
Phaeocystis pouchetii, reaching 9% of total cell count (0.5 - 10s cells L-1). Although the success and geographical
range of Phaeocystis in the Northern Hemisphere are still poorly understood (Lovejoy et al. 2002; Schoemann et al.

2005; Tremblay et al. 2012), particularly in the Canadian Arctic, the co-dominance of species of Phaeocystis has been
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shown to occur in the waters of the West Greenland Current (Fragoso et al. 2017) and Labrador fjords (Simo-Matchim
etal. 2017).

Phaeocystis is widespread across the globe, including in high boreal and arctic waters (Verity et al. 2007) and its
blooming has been linked to vast amounts of DMSP in the marine environment (van Duyl et al. 1998; Stefels et al.
2007; Asher et al. 2017). In this study, the presence of a DMSP hotspot (up to 113 nmol L. at ca. 12 m depth) in the
upper waters of the easternmost station 115 of the NOW transect may be partially explained by the occurrence of
Phaeocystis pouchetii as well as the numerical dominance of unidentified flagellates, including potentially DMSP-
rich species (Keller 1989). In the rest of the NOW transect, maximal concentrations of DMSP. in the first 30 m of the
water column were lower, especially in the westernmost station 101 (max of 35 nmol L.). This pattern likely reflects
the signature of colder, fresher waters flowing south from Nares Strait along the western side of Baffin Bay with
inferior concentrations of autotrophic biomass and DMSP.. Ratios of DMSP.:Chl a, averaged over the first 20 m of the
water column at each station of the NOW transect, were very wide ranging with values fluctuating between 20 and
153 nmol pg-. The extent of these values is similar to the range of DMSP.:Chl a ratios (52-182 nmol ug-) found in
the same sectors of the Arctic by Jarnikova and collaborators (2018).

Sea surface concentrations of DMS along the NOW transect were relatively stable at 4.1-5.3 nmol L. between stations
101 and 111 and reached 19.5 nmol L. at station 115. The occurrence of a localized DMS hotspot in the surface waters
of the later station corresponded to a peak in DMSP. and the presence of Phaeocystis sp., a unicellular algal species
known to be able to enzymatically convert DMSP into DMS and acrylic acid (Stefels and Dijkhuizen 1996). The
potential direct production of DMS by Phaeocystis sp. may have contributed to the heightened concentrations of DMS
at this station. Variations in vertical profiles of DMS along the NOW transect were tightly coupled to those of DMSP:
(r.=0.85, p<0.001, n=42). Because of the inherent complexity in the cycling of methylated sulfur compounds,
involving biotic and abiotic factors of the environment, mismatches between DMS and algal biomass and DMSP are
not uncommon, especially in temperate and subtropical waters (Archer et al. 2009; Dacey et al. 1998; Sim6 and
Pedros-Alié 1999; Vila-Costa et al. 2008). However, in seasonally light-limited polar waters, DMS tends to peak
approximately simultaneously with phytoplankton biomass and with the concentration of its phytoplanktonic
precursor, DMSP (Gali and Simé 2015). Although the strength of the association weakens when considering the entire
study area (all stations within the 4 regional transects), vertical patterns of DMS and DMSP. remain significantly and
positively correlated (r. = 0.64, p < 0.001, n = 142) reinforcing the view that the dynamics of these two S compounds

are broadly in phase during summer in the Arctic as observed elsewhere (Gali and Sim6 2015).

5 Synthesis

5.1 Increase in FYI at the expense of MY: significance for DMS dynamics

Results gathered through the NETCARE campaign in the Canadian Arctic Archipelago and Baffin Bay in July-August
2014 show distinct ocean DMS dynamics in relationship to two contrasting ice edges in terms of their age,
developmental stage and the presence of melt ponds at their surface. Waters exiting the ponded FY1 in Barrow Strait
and sampled at the edge of a newly-formed lead in the region were characterized by a mixed phytoplankton community

with pennate diatoms dominating the assemblage. Although indicators of biomass were of moderate magnitude
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(Chla < 2.1 ug L.), concentrations of DMSP and DMS were high in the surface waters with maxima of 115 nmol L.
and 12 nmol L., respectively, suggesting that a bloom had already started to develop under the melt pond-covered ice
through the potential seeding of autotrophic organisms from the ice. The strong negative association found between
salinity and DMS points towards ice itself as an important vector for sea surface DMS, contributing to its seeding at
the ice-sea interface as observed elsewhere (Trevena and Jones 2006; Kiene et al. 2007; Tison et al. 2010). Haline-
driven stratification of waters under the ice cover likely promoted the physical accumulation of DMS. Alternately, the
surface stratification may have favored the biological production of DMS. The formation of a fresher water lens at the
surface of the water could have led to the entrapment of algal cells and to an increase in solar radiation exposure with
heightened DMS production as a defense strategy against light-associated oxidative stress (Sunda et al. 2002; Toole
and Siegel 2004; Vallina and Sim6 2007; Gali and Sim6 2010). The fresher water lens may also have indirectly
stimulated DMS production through the possible enhancement of DMSP. availability and its bacterial conversion into
DMS, following an osmotic-related excretion of cellular DMSP (Stefels 2000; Van Bergeijk et al. 2003; Niki et al.
2007). Although biological processes cannot be completely ruled out, the strength of the association between DMS
and salinity near the FY1 edge suggests that physical drivers most strongly shaped DMS dynamics in Barrow Strait.

In contrast to the FYI-dominated region described above, the waters exiting the MY I-dominated region of Nares Strait
did not exhibit the same potential under-ice development of autotrophic organisms. The phytoplankton community in
the surface waters of the station sampled nearest to the ice edge was dominated by flagellates and Chl a concentrations
were comparatively low (< 0.5 pg L.), as were the concentrations of DMSP.(< 16 nmol L.) and DMS (< 0.4 nmol L
1). The development of a phytoplankton bloom, and increase in both DMSP and DMS concentrations, occurred several
km (ca. 100 km, Station KEN3) away from the ice edge highlighting the requirement for sufficient light to initiate the
growth of primary producers. One of the distinguishing features between the two ice edges was the presence/absence
of melt ponds at their surfaces. This factor likely played a major role in driving the availability of light through the ice
as suggested by Nicolaus et al. (2012), leading to the earlier onset of a bloom (Fig. 10) and shaping the associated
DMS cycling under the ice in the Barrow Strait region where melt ponds covered ca. 40% of the total surface. Findings
from this study are of particular significance in light of the suggestion that regions of the CAA (Fortier et al. 2002;
Mundy et al. 2014), the Beaufort Sea (Mundy et al. 2014) and Baffin Bay (Oziel et al. 2019) may hold regular, yet
under-documented, under-ice phytoplankton blooms. The occurrence of these blooms may be linked to the fact that
the archipelago is characterized by narrow waterways where landfast ice tends to linger longer, allowing advanced
stages of ice melt to be reached prior to break up, and where shallow waters act to enhance the supply of nutrients into
surface waters fueling the potential growth of under-ice blooms (Michel et al. 2006). Autotrophic biomass
accumulations below the Chukchi Sea ice cover described by Arrigo et al. (2012) bring further support to the possible
widespread importance of these blooms in waters of the Arctic. Furthermore, FY| has become the prevailing type of
ice in the Arctic at the expense of swiftly declining MY (Comiso et al. 2008). As such, and because FY| tends to have
greater areal melt pond coverage than MY due to a smoother topography (Polashenski et al. 2012), climate-driven
changes in sea ice dynamics may lead to modifications in the timing and frequency of under-ice blooms, their role in
seeding ice-edge blooms in summer (Strass and N6thig 1996) and the associated production of DMS (Gali and Sim6

2010; Levasseur 2013). It is also worth noting that the highest sea surface DMS concentration measured during this
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expedition was associated with the presence of Phaeocystis (STN115, West Greenland current), a genus for which a
few modelling studies point towards a poleward expansion in its geographical extent (Cameron-Smith et al. 2011;
Menzo et al. 2018) associated with the increased intrusion of warm Atlantic water masses in the Arctic (Neukermans
et al. 2018). Altogether, these factors in conjunction with the projected increase in melt pond cover and their temporal
span (Agarwal et al. 2011; Stroeve et al. 2014; Holland and Landrum 2015; Liu et al. 2015) and the direct role melt
ponds may play in the production of DMS (Gourdal et al. 2018) suggests that there is a need to review the potential
production and cycling of DMS in ice-covered areas of the Arctic during summer. As thinner, younger and more
dynamic icescapes may prevail in the Arctic, earlier and more ubiquitous under ice blooms may lead to earlier pulses
of DMS through leads, cracks and edges of the ice with implications for climate forecasting.

Recent modelling studies predict an increase of DMS emissions in the Arctic, predominantly associated with sea ice
retreat, and inducing a negative climate feedback through the influence of atmospheric DMS on cloud formation and
radiative forcing (Kim et al. 2018; Mahmood et al. 2019). Most models however consider the ice-atmosphere interface
to be inert. Possible diffusion of DMS through porous ice during spring (Gourdal et al. 2019), as well as potential
DMS pulses venting to the atmosphere via melt ponds (Gourdal et al. 2018) and through cracks and leads in thinner
ice and at ice edges (Hayashida et al. 2017, this study) could lead to a strengthening of the DMS-related “polar-
cooling”’ predicted by models under future climate warming. According to a recent remote sensing study of pan-
Arctic summertime emissions of DMS, however, the future response of cloud radiative forcing (warming or cooling)
to increasing DMS emissions from ice-free waters remains uncertain (Gali et al. 2019). Modifications in anthropogenic
emissions of sulfur and transport to the Arctic, changes in shipping, industrialisation and oil-gas extraction in the
Arctic, as well as the potential for longwave cloud forcing (warming) to offset shortwave cloud forcing (cooling) may
all have impacts on the net radiation budget of the Arctic (Gali et al. 2019), highlighting the need to improve our

understanding of plankton-climate feedbacks in the current context of rapid ecosystem transformation.
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Figures

(GREENLAND

Figure 1: Locations of the sampling stations in the eastern Canadian Arctic during the joint ArcticNet/NETCARE campaign
1265 in July-August 2014. Stations included in the four transects in Barrow Strait, Lancaster Sound, northern Baffin Bay (North

Water) and Nares Strait, are represented by closed circles. Both closed and open circles are included in global observations

of surface concentrations of DMS found in Figure 8. Major oceanic surface currents (in grey) are shown on the top panel.
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Figure 2: Ice charts adapted from the Canadian Ice Services (CIS) of Environment Canada showing the presence of ice
edges in (a) Lancaster Sound with 9-10/10 ice concentrations (> 15 cm) extending from Devon Island into the Prince
Regent Inlet between Somerset and Baffin islands (July 22, 2014); and in (b) Nares Strait with 9-10/10 ice concentrations
near Petermann Glacier (August 1, 2014); panel (c) shows the presence of MY (2 to 5+ years) at the entrance of Robeson
Channel as well as a band of FY1 (1) (Ease-Grid Sea Ice Age, Version 3 data set, Tschudi et al. (2016)). See the Canadian
Ice Services Archives website for more details about sea ice characteristics. Note that Nares Strait includes Smith Sound,
Kane Basin, Kennedy Channel, Hall Basin and Robeson Channel.
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Figure 3: Picture of ponded FYI at the western end of Lancaster Sound on July 20, 2014. Also see Gourdal et al. (2018) for
1285 more pictures of melt pond cover in the same region and same period.
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Figure 4. Barrow Strait (BS) cross section of the
vertical distributions of temperature, salinity, nitrate,
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Figure 5. Lancaster Sound (LS) cross section of the
vertical distributions of temperature, salinity, nitrate,
silicic acid, in vivo fluorescence, DMSPtand DMS.
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Figure 10. Conspicuous alterations in the Arctic Ocean are underway and include reductions in snow cover, sea ice extent
and thickness, and increase in melt pond areal coverage, the occurrence of which is linked to profound modifications in
light availability in surface waters below the ice and at its margin. The conceptual diagram depicts two types of ice edges
(top panel MY and lower panel FYI) and their potential role in modulating light penetration under the ice pack and the
development of phytoplankton blooms and associated DMS dynamics. In this very simplified diagram, reduced light
penetration (dotted arrow) and greater light reflection (arrows pointing upwards) occurs in the presence of MY (top
panel) whereas increased light penetration occurs through thinner and ponded FY (lower panel) allowing phytoplankton
to develop under the ice and potentially produce DMS.
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Tables

Table 1: Physicochemical characteristics of the surface waters sampled during the ArcticNet/NETCARE campaign during
July-August 2014 grouped within different regions of the Arctic. The surface mixed layer depth is noted at MLD, nitrate
(NO:.), silicic acid (Si(OH).) and phosphate (PO.). Ice-covered stations are marked with an asterix*. Stations in bold are

included in the vertical cross section transect figures (Figs. 4 to 7). Values that were not available are noted as ‘n.a.’

Region Station Latitude Longitude Date Sad:z:rg MLD Temp Salinity NO; Si(OH). Pof
(yyyy-mm-dd)  (m) (m) (|0 (PSU) (umolL?) (umolL?) (umolL?)

Barrow Strait 305a 74°12'59.4" N 94°12'54" W 2014-07-22 2.0 na. -0.70 3041 0.13 3.45 0.69
305b 74°13'44.04"N 95°54'28.08"W  2014-07-23 1.6 na. -1.41 30.50 0.64 5.96 0.77

305c 74°21'34.56"N 95°48'36.36"W 2014-07-23 1.9 na. -1.51 31.18 2.18 9.53 0.87

305d 74°27'22.68"N 95°42'10.08"W  2014-07-23 1.5 na. -1.50 31.46 2.08 10.57 0.85

305e 74°35'19.32"N 95°3'42.84"W  2014-07-23 1.6 na. -1.37 31.04 2.10 10.47 0.86

305* 74°19'6.24" N 94°54'23.04"W  2014-07-22 1.8 15 -0.99 30.60 0.14 4.29 0.81

304* 74°14'45.996"N 91°31'4.008"W  2014-07-20 1.8 23 -1.39  29.52 0.01 3.75 0.71

346* 74°8'57.984" N 91°31'55.992"W 2014-07-20 2.0 na. -1.52 30.60 0.02 4.53 0.73

Lancaster Sound 322 74°29'53.016"N  80°31'30"W 2014-07-18 5.3 13 3.31 3196 0.11 0.76 0.35
300 74°18'42.084"N 80°29'53.016"W 2014-07-18 53 n.a. 3.87 31.88 0.12 0.78 0.44

323 74°9'21.996" N 80°28'26.004"W 2014-07-17 4.5 16 5.68 32.35 0.13 1.31 0.27

324 73°59'6" N 80° 28'26.976" W 2014-07-18 2.6 na. 4.83 3251 0.13 0.86 0.23

325 73°49'0.984" N 80°29'52.98"W 2014-07-19 2.4 14 299 30.46 0.58 0.08 0.48

301 74°6'8.352" N 83°22'36.372"W 2014-07-19 2.2 15 2.84 31.16 0.02 0.79 0.46

North Water 101 76°22'59.988" N 77°24'0" W 2014-08-01 2.5 6,0 244  30.39 0.15 0.85 0.31
105 76°19'3"N 75°45'32.004" W 2014-08-01 2.1 44 4.19 3251 0.03 1.33 0.30

108 76°16'13.008"N  74°35'60"W 2014-07-31 2.1 11 3.69 32.52 0.04 0.96 0.27

111 76°18'24.012"N  73°12'54"W 2014-07-31 2.0 33 3.56 32.39 0.26 0.25 0.25

115 76°19'54.984" N 71°11'57.012"W 2014-07-30 1.9 25 240 32.78 0.36 1.50 0.25

Nares Strait KEN1 81°21'36.252" N 63°57'21.672"W 2014-08-03 21 58 -1.33  30.73 1.4 6.02 0.53
KEN3 80°47'43.728"N 67°18'4.032"W 2014-08-04 1.7 18 -0.66 30.21 0.22 3.34 0.38

KANE1 79°59'35.016" N 69°46'38.172"W 2014-08-04 1.8 10 -0.26  29.97 0.20 0.66 0.34

KANE3 79°20'46.032" N 71°51'28.152"W 2014-08-05 1.7 17 1.87 30.46 0.17 0.99 0.28

KANE5 79°0'5.508" N 73°12'16.452"W 2014-08-06 1.7 13 1.49 30.29 0.26 0.96 0.31
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Table 2: Biogeochemical characteristics (including concentrations of DMSPt and DMS) of the surface waters sampled
during the ArcticNet/NETCARE campaign during July-August 2014 grouped within different regions of the Arctic.
Chlorophyll a is noted as Chl a and values in italic between parentheses represent in vivo fluorescence. Percentage of
dominant phytoplankton taxa is shown for stations where it was available. Ice-covered stations are marked with an asterix*.
Stations in bold are included in the vertical cross section transect figures (Figs. 4 to 7). Values that were not available are
noted as ‘n.a.’

Sampling

Region Station Latitude Longitude Date depth Chla DMSP, DMS  Dominant phytoplankton taxa
(yyyy-mm-dd)  (m) (gl (nmolL™?) (nmolL*) (% of total cells)
Barrow Strait 305a 74°12'59.4"N 94°12' 54" W 2014-07-22 2,0 1.14 (0.99) 44.9 7.2
305b 74°13'44.04"N 95°54'28.08"W  2014-07-23 1.6 0.19 (0.19) 25.2 12.2
305¢  74°21'34,56"N 95°48'36.36"W  2014-07-23 1.9 083 (0.72) 42.8 9.4
305d 74°27'22.68"N 95°42'10.08"W  2014-07-23 1.5 1.05 (1.06) 56.1 7.6
305e 74735'19.32"N  95°3'42.84"W 2014-07-23 1.6 0.83 (0.39) 114.7 10.9 Pennate diatoms (29%)
305%  74°19'6.24"N  94°54'23.04"W  2014-07-22 1.8 090 (0.62) 45.6 7.6 Pennate diatoms (65%)
304% 74°14'45.996"N 91°31'4.008"W  2014-07-20 1.8 229 (0.27) 716 8.7 Pennate diatoms (69%)
346 74°8'57.984"N 91°31'55.992"W 2014-07-20 20 na. (0.94) 63.5 5.8
Lancaster Sound 322 74°29'53.016"N  80°31'30" W 2014-07-18 5.3 0.23 (0.26) 54.6 4.6 Flagellates (24%)
300 74°18'42.084"N 80°29'53.016"W 2014-07-18 5.3 na. (0.14) 29.8 6.3
323 74°9'21.996" N 80° 28'26.004"W 2014-07-17 4.5 0.14 (0.10) 59.6 5.3 Flagellates (37%)
324 73°59'6" N 80°28'26.976"W 2014-07-18 26 na. (0.19) 50.4 2.5
325 73°49'0.984" N 807 29'52.98"W  2014-07-19 24 0.64 (0.59) 70.6 7.2 Centric diatoms (37%)
301 74°6'8.352"N 83" 22'36.372"W 2014-07-19 2.2 1.16 (0.26) 53.1 8.2 Centric diatoms (41%)
North Water 101  76° 22'59.988" N 77°24'0" W 2014-08-01 2.5 1.21 (0.40) 34.5 4.1 Centric diatoms (41%)
105 76°19'3" N 75°45'32.004"W 2014-08-01 21 029 (0.22) 705 4.2 Flagellates (31%)
108 76° 16' 13.008" N 74° 35" 60" W 2014-07-31 2.1 0.48 (0.14) 64.2 3.9 Centric diatoms (43%)
111  76°18'24.012"N  73°12'54"W 2014-07-31 2,0 0.30 (0.21) 54.8 5.3 Centric diatoms (33%)
115 76°19'54.984" N 71°11'57.012"W 2014-07-30 1.9 1.69 (1.14) 88.1 19.5 Flagellates (21%)
Nares Strait KEN1 81°21'36.252" N 63°57'21.672"W 2014-08-03 21 032 (0.38) 135 0.37 Flagellates (28%)
KEN3 B80°47'43.728"N 67°18'4.032"W  2014-08-04 1.7 1.90 (0.97) 26.8 233 Centric diatoms (65%)
KANE1 79°59'35.016" N 69°46'38.172"W 2014-08-04 1.8 157 (0.61) 22.4 3.61 Centric diatoms (73%)
KANE3 79°20'46.032" N 71°51'28.152"W 2014-08-05 1.7 0.76 (1.15) 16.0 8.12 Centric diatoms (67%)
KANE5 79°0'5.508"N 73%12'16.452"W 2014-08-06 1.7 0.84 (0.93) 23.8 0.78 Centric diatoms (72%)
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Table 3: Number of observations (Obs.), mean, median, minimum, maximum, standard deviation (SD) and interquartile
range (IQR, 25~and 75. percentiles) of surface DMS concentrations from the Canadian Arctic Archipelago (CAA) and
Baffin Bay biogeographic sectors from spring to autumn. DMS observations from this study include the transect stations
(BS, LS, NS, and NOW) as well as other stations in the CAA and Baffin Bay sampled during the ArcticNet/NETCARE
campaign (see Figure 8 for DMS spatial distribution map).

Biogeographic Date Obs. Mean Median Minimum Maximum SD 1aR
region 25th-75th
Month Year n (nmol LY
Baffin Bay April 1998 56 017 0.3 nd 072 015
May 1998 53 065 033 007 674 102
June 1998 55 108 070  0.04 459 111
Baffin Bay and CAA  Oct/Nov 2007 20 0.05 0.08
Baffin Bay and CAA September 2008 15 1.27 0.80 0.50 4.80 1.09
Baffin Bayand CAA UV/AUBYS 2015 165 320 247 004 1758 272 162-3.89
Baffin Bay and CAA JUV/AUBUS 5594 33 539 435 023 1953 387 239-791
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