Identification of lower-order inositol phosphates (IP5 and IP4) in soil extracts as determined by hypobromite oxidation and solution ${ }^{31} \mathrm{P}$ NMR spectroscopy

Jolanda E. Reusser ${ }^{1}$, René Verel 2, Daniel Zindel ${ }^{2}$, Emmanuel Frossard ${ }^{1}$ and Timothy I. McLaren ${ }^{1}$
${ }^{1}$ Department of Environmental Systems Science, ETH Zurich, Lindau, 8325, Switzerland
${ }^{2}$ Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
Correspondence to: Jolanda E. Reusser (jolanda.reusser@usys.ethz.ch)

Abstract

Inositol phosphates (IP) are a major pool of identifiable organic phosphorus (P) in soil. However, insight on their distribution and cycling in soil remains limited, particularly of lower-order IP (IP_{5} and IP_{4}). This is because the quantification of lower-order IP typically requires a series of chemical extractions, including hypobromite oxidation to isolate IP, followed by chromatographic separation. Here, for the first time, we identify the chemical nature of organic P in four soil extracts following hypobromite oxidation using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy and transverse relaxation $\left(T_{2}\right)$ experiments. Soil samples analysed include A horizons from a Ferralsol (Colombia), a Cambisol and a Gleysol from Switzerland, and a Cambisol from Germany. Solution ${ }^{31} \mathrm{P}$ NMR spectra of the phosphomonoester region on soil extracts following hypobromite oxidation revealed an increase in the number of sharp signals (up to 70), and an on average 2-fold decrease in the concentration of the broad signal compared to the untreated soil extracts. We identified the presence of four stereoisomers of IP_{6}, four stereoisomers of IP_{5}, and scyllo- IP_{4}. We also identified for the first time two isomers of $m y o-\mathrm{IP}_{5}$ in soil extracts: myo-(1,2,4,5,6)-IP ${ }_{5}$ and myo-($1,3,4,5,6)-\mathrm{IP}_{5}$. Concentrations of total IP ranged from 1.4 to $159.3 \mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ across all soils, of which between 9% and 50% were comprised of lower-order IP. Furthermore, we found that the T_{2} times, which are considered to be inversely related to the tumbling of a molecule in solution and hence its molecular size, were significantly shorter for the underlying broad signal compared to the sharp signals (IP ${ }_{6}$) in soil extracts following hypobromite oxidation. In summary, we demonstrate the presence of a plethora of organic P compounds in soil extracts, largely attributed to IP of various order, and provide new insight on the chemical stability of complex forms of organic P associated with soil organic matter.

Inositol phosphates (IP) are found widely in nature and are important for cellular function in living organisms. They are found in eukaryotic cells where they operate in ion-regulation processes, as signalling or P storage compounds (Irvine and Schell, 2001). The basic structure of IP consists of a carbon ring (cyclohexanehexol) with one to six phosphorylated centers (IP_{1-6}) and up to nine stereoisomers (Angyal, 1963; Cosgrove and Irving, 1980). An important IP found in nature is myo- IP_{6}, which is used as a P storage compound in plant seeds. Another important species of IP is that of myo- $(1,3,4,5,6)-\mathrm{IP}_{5}$, which is present in most eukaryotic cells at concentrations ranging from 15 to $50 \mu \mathrm{M}$ (Riley et al., 2006). Species of IP_{1-3} are present in phospholipids such as phosphatidylinositol diphosphates and are an essential structural component of the cell membrane system (Strickland, 1973; Cosgrove and Irving, 1980).

Inositol phosphates have been reported to comprise more than 50% of total organic phosphorus ($\mathrm{P}_{\text {org }}$) in some soils (Cosgrove and Irving, 1980; McDowell and Stewart, 2006; Turner, 2007). Four stereoisomers of IP have been detected in soils, with the myo stereoisomer being the most abundant (56%), followed by scyllo (33%), neo and D-chiro (11 \%) (Cosgrove and Irving, 1980; Turner et al., 2012). The largest input of myo-IP ${ }_{6}$ to the soil occurs via the addition of plant seeds (Turner et al., 2002). However, the addition of myo- IP_{6} to soil can also occur via manure input because monogastric animals are mostly incapable of digesting myo- IP_{6} without the addition of phytases to their diets (Leytem et al., 2004; Leytem and Maguire, 2007; Turner et al., 2007b). An exception to this are pigs, which were found to at least partially digest phytate (Leytem et al., 2004), and transgenic pigs expressing salivary phytase (Golovan et al., 2001; Zhang et al., 2018). The accumulation of myo-IP ${ }_{6}$ in soil occurs due to the negative charge of the deprotonated phosphate groups, which can coordinate to the charged surfaces of Fe- and Al-(hydro)-oxides (Anderson et al., 1974; Ognalaga et al., 1994), clay minerals (Goring and Bartholomew, 1951) and soil organic matter (SOM) (McKercher and Anderson, 1989), or form insoluble precipitates with cations (Celi and Barberis, 2007). These processes lead to the stabilisation of IP in soil resulting in its accumulation and reduced bioavailability (Turner et al., 2002). In contrast, the sources and mechanisms controlling the flux of scyllo-, neoand D -chiro- IP_{6} in soil remain unknown but are thought to involve epimerization of the myo stereoisomer (L'Annunziata, 1975).

Chromatographic separation of alkaline soil extracts revealed the presence of four stereoisomers of IP_{6} and lowerorder IP_{1-5} (Halstead and Anderson, 1970; Anderson and Malcolm, 1974; Cosgrove and Irving, 1980; Irving and Cosgrove, 1982). Irving and Cosgrove (1981) used hypobromite oxidation prior to chromatography to isolate the IP fraction in alkaline soils. The basis of this approach is that IP are considered to be highly resistant to hypobromite oxidation, whereas other organic compounds (e.g. phospholipids and nucleic acids) will undergo oxidation (Dyer and Wrenshall, 1941; Turner and Richardson, 2004). The resistance of IP to hypobromite oxidation is thought to be due to the high charge density and steric hindrance, which is caused by the chair conformation of the molecule and the bound phosphate groups, with the P in its highest oxidation state. Hypobromite oxidation of inositol (without phosphate groups) mainly results in the formation of inososes, which have an intact carbon ring (Fatiadi, 1968). Fatiadi (1968) considered that the oxidation of bromine with inositol is stereospecific and comparable to catalytic or bacterial oxidants.
A limitation of chromatographic separation of alkaline extracts is that there is a mixture of unknown organic compounds that can co-elute with IP, and result in an overestimation of IP concentrations (Irving and Cosgrove, 1981). However, this can also occur for IP, and historically, studies often reported the combined concentration of IP_{6} and IP_{5} due to a lack of differentiation in their elution times (McKercher and Anderson, 1968b). More recently,

Almeida et al. (2018) investigated how cover crops might mobilize soil IP using hypobromite oxidation on $\mathrm{NaOH}-$ EDTA extracts followed by chromatographic separation. The authors found that pools of myo- IP_{6} and 'unidentified IP' accounted for 30% of the total extractable pool of P and hypothesised that the 'unidentified IP' pool consists solely of lower-order myo-IP. Pools of lower order IP ${ }_{1-5}$ comprise on average 17% of the total pool of IP in soil and account for an important pool of soil organic P in terrestrial ecosystems (Anderson and Malcolm, 1974; Cosgrove and Irving, 1980; Turner et al., 2002; Turner, 2007).
Since the 1980s, solution ${ }^{31} \mathrm{P}$ nuclear magnetic resonance spectroscopy (NMR) has been the most commonly used technique to characterise the chemical nature of organic P in soil extracts (Newman and Tate, 1980; Cade-Menun and Liu, 2014). An advantage of this technique is the simultaneous detection of all forms of organic P that come into solution, which is brought about by a single step extraction with alkali and a chelating agent (Cade-Menun and Preston, 1996). However, a limitation of the technique has been the loss of information on the diversity and amount of soil IP compared to that typically obtained prior to 1980 (Smith and Clark, 1951; Anderson, 1955; Cosgrove, 1963). To date, solution ${ }^{31} \mathrm{P}$ NMR spectroscopy on soil extracts has only reported concentrations of myo-, scyllo-, chiro- and neo- IP_{6}. The fact that lower-order IP were not reported in studies using NMR spectroscopy might be due to overlap of peaks in the phosphomonoester region, which makes peak assignment of specific compounds difficult (Doolette et al., 2009).

Turner et al. (2012) carried out hypobromite oxidation prior to solution ${ }^{31} \mathrm{P}$ NMR analysis of alkaline soil extracts to isolate the IP fraction. This had the advantage of reducing the number of NMR signal in the phosphomonoester region and consequently the overlap of peaks. The authors demonstrated the presence of neo- and chiro- IP_{6} in NMR spectra via spiking of hypobromite oxidised extracts. Interestingly, the authors also reported the presence of NMR signals in the phosphomonoester region that could not be assigned to IP_{6} and were resistant to hypobromite oxidation. They were not able to attribute the NMR signals to any specific P compounds, but hypothesised based on their resistance to hypobromite oxidation that they were due to lower-order IP.

The aim of this study was to identify and quantify IP in soil extracts following hypobromite oxidation using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy. In addition, the structural composition of phosphomonoesters in soil extracts following hypobromite oxidation was probed using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy and transverse relaxation experiments. We hypothesise that a large portion of sharp peaks in the phosphomonoester region of untreated soil extracts would be resistant to hypobromite oxidation, which would indicate the presence of a wide variety of IP. This would have major consequences to our understanding of P cycling in terrestrial (and aquatic) ecosystems, as much more organic P compounds and mechanisms would be involved than previously thought. Furthermore, a better understanding of these organic P compounds in soil would also help improve strategies to increase their biological utilisation, which may reduce the amount of fertiliser needed in agricultural systems and thus influence the transfer of P to aquatic/marine ecosystems.

2 Experimental section

2.1 Soil collection and preparation

Soil samples were collected from the upper horizon of the profile at four diverse sites. These include a Ferralsol from Colombia, a Vertisol from Australia, a Cambisol from Germany, and a Gleysol from Switzerland (FAO, 2014). The four soil samples were chosen from a larger collection based on their diverse concentration of $P_{\text {org }}$ and composition of the phosphomonoester region in NMR spectra (Reusser et al., 2020). Background information and
some chemical properties of the soils are reported in Table 1. Briefly, the Ferralsol was collected from an improved grassland in 1997 at the Carimagua Research Station's long-term Culticore field experiment in Columbia (Bühler et al., 2003). The Vertisol was collected from an arable field in 2018 located in southern Queensland. The site had been under native shrubland prior to 1992. The Cambisol was collected from a beech forest in 2014, and is part of the "SPP 1685 - Ecosystem Nutrition" project (Bünemann et al., 2016; Lang et al., 2017). The Gleysol was collected from the peaty top soil layer of a drained marshland in 2017, which has been under grassland for at least 20 years.

Soil samples were passed through a 5 mm sieve and dried at $60^{\circ} \mathrm{C}$ for 5 days, except for the Ferralsol (sieved <2 mm) and the Vertisol (ground $<2 \mathrm{~mm}$), which were received dried. Total concentrations of C and N in soils were obtained using combustion of 50 mg ground soil (to powder) weighed into tin foil capsules (vario PYRO cube®, Elementar Analysesysteme GmbH). Soil pH was measured in $\mathrm{H}_{2} \mathrm{O}$ with a soil to solution ratio of 1:2.5 (w/w) using a glass electrode
[Suggested location Table 1]

2.2 Soil phosphorus analyses

Total concentrations of soil P were carried out by X-ray fluorescence spectroscopy (SPECTRO XEPOS ED-XRF, AMETEK®) using 4.0 g of ground to powder soil sample mixed with 0.9 g of wax (CEREOX Licowax, FLUXANA®). The XRF instrument was calibrated using commercially available reference soils. Concentrations of organic P for NMR analysis were carried out using the NaOH-EDTA extraction technique of Cade-Menun et al. (2002) at a soil to solution ratio of 1:10, i.e. extracting 4 g of soil with 40 mL of extractant.

2.3 Hypobromite oxidation

Hypobromite oxidation of $\mathrm{NaOH}-E D T A$ soil filtrates was carried out based on a modified version of the method described in Suzumura and Kamatani (1993) and Turner et al. (2012). The hypobromite oxidation procedure is similar to that reported in Turner (2020). Briefly, 10 mL of the $\mathrm{NaOH}-E D T A$ filtrate (section 2.2) was placed in a three necked round bottom flask equipped with a septum, a condenser, a magnetic stir bar and thermometer (through a claisen adapter with N_{2} adapter). After the addition of 1 mL 10 M aqueous NaOH and vigorous stirring, an aliquot of $0.6 \mathrm{~mL} \mathrm{Br}_{2}$ (which was cooled prior to use) was added, resulting in an exothermic reaction where some of the soil extracts nearly boiled. The optimal volume of Br_{2} for oxidation was assessed in a previous pilot study using $0.2,0.4,0.6$ and $0.8 \mathrm{~mL} \mathrm{Br}_{2}$ volumes, and then observing differences in their NMR spectral features (Figure SI9). The reaction was heated to $100^{\circ} \mathrm{C}$ within 10 min and kept at reflux for an additional 5 min . After cooling to room temperature, the solution was acidified with 2 mL of 6 M aqueous HCl solution in order to obtain a $\mathrm{pH}<3$, which was confirmed with a pH test strip. The acidified solution was reheated to $100^{\circ} \mathrm{C}$ for 5 min under a stream of nitrogen to vaporise any excess bromine. The pH of the solution was gradually increased to 8.5 using 10 M aqueous NaOH solution. After dilution with 10 mL of $\mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL} 50 \%(\mathrm{w} / \mathrm{w})$ ethanol and $10 \mathrm{~mL} 10 \%(\mathrm{w} / \mathrm{w})$ barium acetate solution was added to the solution in order to precipitate any IP (Turner et al., 2012). The solution was then heated and boiled for 10 min and allowed to cool down overnight. The solution was subsequently transferred to a 50 mL centrifuge tube and a 10 mL aliquot of $50 \%(\mathrm{w} / \mathrm{w})$ ethanol was added, manually shaken, and centrifuged at 1500 g for 15 min . The supernatant was removed and a 15 mL aliquot of $50 \%(\mathrm{w} / \mathrm{w})$ ethanol was added to the precipitate, shaken, and then centrifuged again as before. The supernatant was removed and the process repeated once more to further purify the pool of IP. Afterwards, the precipitate was transferred with 20
mL of $\mathrm{H}_{2} \mathrm{O}$ into a 100 mL beaker that contained a 20 mL volume (equating to a mass of 15 g) of Amberlite ${ }^{\circledR}$ IR120 cation exchange resin beads in the H^{+}form (Sigma-Aldrich, product no. 06428). The suspension was stirred for 15 min and then passed through a Whatman no. 42 filter paper. A 9 mL aliquot of the filtrate was frozen at $-80^{\circ} \mathrm{C}$ and then lyophilised prior to NMR analysis. This resulted in $18-26 \mathrm{mg}$ of lyophilised material across all soils. Concentrations of total P in solutions were obtained using inductively coupled plasma-optical emission spectrometry (ICP-OES). Concentrations of molybdate reactive P (MRP) were obtained using the malachite green method of Ohno and Zibilske (1991). The difference in concentrations of total P and MRP in solution is molybdate unreactive P (MUP), which is predominantly organic P for these samples. To assess the of effect hypobromite oxidation on the stability of an IP_{6}, duplicate samples of the Cambisol and the Gleysol were spiked with 0.1 mL of a 11 mM myo- IP_{6} standard. The recovery of the added $m y o-\mathrm{IP}_{6}$ following hypobromite oxidation was calculated using Eq. (1):
Spike recovery $(\%)=\frac{C_{\text {spiked }}\left(\frac{m g}{L}\right)-C_{\text {unspiked }}\left(\frac{m g}{L}\right)}{C_{\text {standard added }}\left(\frac{m g}{L}\right)}$,
where $\mathrm{C}_{\text {spiked }}$ and $\mathrm{C}_{\text {unspiked }}$ are the concentrations of myo- IP_{6} in NaOH -EDTA extracts following hypobromite oxidation of the spiked and unspiked samples, respectively. $\mathrm{C}_{\text {standard added }}$ is the concentration of the added myo- IP_{6} within the standard. As ${ }^{31} \mathrm{P}$ NMR spectroscopy of the standard revealed impurities, the concentration of myo-IP 6 in the standard was calculated based on the ${ }^{31} \mathrm{P}$ NMR spectrum.

2.4 Sample preparation for solution ${ }^{31} \mathbf{P}$ NMR spectroscopy

The lyophilised material of the untreated soil extracts was prepared for solution ${ }^{31} \mathrm{P}$ NMR spectroscopy based on a modification of the methods of Vincent et al. (2013) and Spain et al. (2018). Briefly, 120 mg of lyophilised material was taken and dissolved in $600 \mu \mathrm{~L}$ of $0.25 \mathrm{M} \mathrm{NaOH}-0.05 \mathrm{M} \mathrm{Na}_{2}$ EDTA solution (ratio of 1:5). However, for the Cambisol sample, this ratio resulted in a NMR spectrum that exhibited significant line broadening. Therefore, this was repeated on a duplicate sample but at a smaller lyophilised material to solution ratio (ratio of 1:7.5), as suggested in Cade-Menun and Liu (2014), which resolved the issue of poor spectral quality. The suspension was stored overnight to allow for complete hydrolysis of phospholipids and RNA (Doolette et al., 2009; Vestergren et al., 2012), which was then centrifuged at 10621 g for 15 min . A $500 \mu \mathrm{~L}$ aliquot of the supernatant was taken, which was subsequently spiked with a $25 \mu \mathrm{~L}$ aliquot of a 0.03 M methylenediphosphonic acid standard made in $\mathrm{D}_{2} \mathrm{O}$ (Sigma-Aldrich, product no. M9508) and a $25 \mu \mathrm{~L}$ aliquot of sodium deuteroxide at $40 \%(\mathrm{w} / \mathrm{w})$ in $\mathrm{D}_{2} \mathrm{O}$ (Sigma-Aldrich, product no. 372072). The solution was then mixed and transferred to a 5 mm diameter NMR tube.

A similar procedure was used for the soil extracts that had undergone hypobromite oxidation, except the total mass of lyophilised material ($18-26 \mathrm{mg}$) was dissolved with $600 \mu \mathrm{~L}$ of a $0.25 \mathrm{M} \mathrm{NaOH}-0.05 \mathrm{M} \mathrm{Na}$ EDTA solution. However, for the Cambisol sample, the NMR spectrum exhibited considerable line-broadening, and an additional $400 \mu \mathrm{~L}$ aliquot of $\mathrm{NaOH}-E D T A$ solution was added to the NMR tube, mixed, and then returned to the NMR spectrometer. This resolved the issue of poor spectral quality.

2.5 Solution ${ }^{31} \mathbf{P}$ NMR spectroscopy

Solution ${ }^{31} \mathrm{P}$ NMR analyses were carried out on all untreated and hypobromite oxidised soil extracts at the NMR facility of the Laboratory of Inorganic Chemistry (Hönggerberg, ETH Zürich). All spectra were obtained with a Bruker AVANCE III MD 500 MHz NMR spectrometer equipped with a cryogenic probe (CryoProbe ${ }^{\text {TM }}$ Prodigy)
(Bruker Corporation; Billerica, MA). The ${ }^{31} \mathrm{P}$ frequency for this NMR spectrometer was 202.5 MHz and gated broadband proton decoupling with a 90° pulse of $12 \mu \mathrm{~s}$ was applied. Spectral resolution under these conditions for ${ }^{31} \mathrm{P}$ was $<1 \mathrm{~Hz}$. Longitudinal relaxation $\left(\mathrm{T}_{1}\right)$ times were determined for each sample with an inversion recovery experiment (Vold et al., 1968). This resulted in recycle delays ranging from 8.7 to 30.0 sec for the untreated extracts and 7.8 to 38.0 sec for the hypobromite oxidised soil extracts. The number of scans for the untreated extracts was set to 1024 or 4096, depending on the signal to noise ratio of the obtained spectrum. All hypobromite oxidised spectra were acquired with 3700 to 4096 scans.

2.6 Processing of NMR spectra

All NMR spectra were processed with Fourier transformation, phase correction, and baseline adjustment within the TopSpin ${ }^{\circledR}$ software environment (Version 3.5 pl 7 , Bruker Corporation; Billerica, MA). Line broadening was set to 0.6 Hz . Quantification of NMR signals involved obtaining the integrals of the following regions: 1) up to four phosphonates ($\delta 19.8$ to 16.4 ppm); 2) the added $\operatorname{MDP}(\delta 17.0$ to 15.8 ppm) including its two carbon satellite peaks; 3) the combined orthophosphate and phosphomonoester region ($\delta 6.0$ to 3.0 ppm); 4) up to four phosphodiesters ($\delta 2.5$ to -3.0 ppm), and 5) pyrophosphate ($\delta-4.8$ to -5.4 ppm). Due to overlapping peaks in the orthophosphate and phosphomonoester region, spectral deconvolution fitting (SDF) was applied as described in Reusser et al. (2020). In brief, the SDF procedure involved the fitting of an underlying broad signal, based on the approach of Bünemann et al. (2008) and McLaren et al. (2019). We carried out the SDF with a non-linear optimisation algorithm in MATLAB® R2017a (The MathWorks, Inc.) and fitted visually identifiable peaks by constraining their line-widths at half height as well as the lower and upper boundary of the peak positions along with an underlying broad signal in the phosphomonoester region. The sharp signals of high intensity (e.g. orthophosphate) and the broad peak were fitted using Lorentzian lineshapes, whereas sharp signals of low intensity were fitted using Gaussian lineshapes. The NMR observability of total P ($\mathrm{P}_{\text {tot }}$) in NaOH -EDTA extracts was calculated using Eq. (2) (Dougherty et al., 2005; Doolette et al., 2011b):

NMR observability (\%) $=\frac{P_{\text {tot }} N M R}{P_{\text {tot }} I C P-O E S} * 100 \%$,
where $\mathrm{P}_{\text {tot }}$ NMR refers to the total P content in $\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ detected in the soil extracts using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy and $P_{\text {tot }}$ ICP-OES refers to the total P concentration in $\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ measured in the soil extracts prior to freeze-drying using ICP-OES.

2.7 Spiking experiments

To identify the presence of IP in hypobromite oxidised extracts, samples were spiked with a range of standards and then analysed again using NMR spectroscopy. This involved the addition of 5 to $20 \mu \mathrm{~L}$ aliquots of an IP standard solution directly into the NMR tube, which was then sealed with parafilm, manually shaken, and then allowed to settle prior to NMR analysis. Each sample extract was consecutively spiked with no more than four IP standards. The NMR spectra of soil extracts after spiking were overlaid with the NMR spectra of unspiked soil extracts to identify the presence of IP across all soil samples. This comparison of NMR spectra was possible due to negligible changes in the chemical shifts of peaks among soil samples. The IP standards used in this study are listed in Table 2.
[Suggested location Table 2]

2.8 Transverse relaxation (\mathbf{T}_{2}) experiments

Due to the presence of sharp and broad signals in the phosphomonoester region of NMR spectra on hypobromite oxidised soil extracts, transverse relaxation $\left(\mathrm{T}_{2}\right)$ experiments were carried out to probe their structural composition. The transverse relaxation (originally spin-spin relaxation) describes the loss of magnetisation in the $x-y$ plane. This loss occurs due to magnetic field differences in the sample, arising either by instrumentally caused magnetic field inhomogeneities or by local magnetic fields in the sample caused by intramolecular and intermolecular interactions (Claridge, 2016). Generally, small, rapidly tumbling molecules exhibit longer T_{2} relaxation times compared to large, slowly tumbling molecules (McLaren et al., 2019).
Briefly, solution ${ }^{31}$ P NMR spectroscopy with a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence (Meiboom and Gill, 1958) was carried out on all hypobromite oxidised soil extracts, as described in McLaren et al. (2019). This involved a constant spin-echo delay (τ) of 5 ms , which was repeated for a total of eight iterations (spin-echo periods of $5,50,100,150,200,250,300$, and 400 ms). A total of 4096 scans and a recycle delay of 4.75 sec was used for all iterations. Transverse relaxation times for the aforementioned integral ranges were calculated using Eq. (3) within the TopSpin® software environment. Due to overlapping peaks in the orthophosphate and phosphomonoester region, spectral deconvolution was carried out to partition the NMR signal, as described in McLaren et al. (2019). The T_{2} times of the partitioned NMR signals were calculated using Eq. (3) within RStudio© (version 1.1.442):
$M(t)=M_{0} * e^{\left(-t * T_{2}^{-1}\right)}$,
where M refers to the net magnetisation derived from the average angular momentum in the $\mathrm{x}-\mathrm{y}$ plane, τ refers to the spin-echo delay in milliseconds (ms), and T_{2} refers to the transverse relaxation time (ms).

2.9 Statistical analyses and graphics

Statistical analyses were carried out using Microsoft ${ }^{\circledR}$ Excel 2016 and MATLAB R2017a (CThe MathWorks, Inc.). Graphics were created with Microsoft® Excel 2016 and MATLAB R2017a (©The MathWorks, Inc.). Solution (1D) ${ }^{31} \mathrm{P}$ NMR spectra were normalised to the peak intensity of MDP ($\delta 16.46 \mathrm{ppm}$). Spectra from the T_{2} experiments were normalised to the peak intensity of scyllo-IP ${ }_{6}$ ($\delta 3.22 \mathrm{ppm}$).
A one-way ANOVA was carried out in MATLAB R2017a (©The MathWorks, Inc.) with a subsequent multi comparison of mean values using the Tukey's honestly significant difference procedure based on the studentised range distribution (Hochberg and Tamhane, 1987; Milliken and Johnson, 2009).

3 Results

3.1 Phosphorus concentrations in soil extracts

 3). Concentrations of total P as estimated by the $\mathrm{NaOH}-E D T A$ extraction technique ranged from 160 to $1850 \mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$, which comprised 28 to 51% of the total soil P as determined by XRF. Pools of organic P comprised 28 to 72% of the total P in $\mathrm{NaOH}-E D T A$ untreated soil extracts.
Concentrations of total P in $\mathrm{NaOH}-E D T A$ soil extracts following hypobromite oxidation ranged from 77 to 578 mg $\mathrm{P} / \mathrm{kg}_{\text {soil }}$ (Table 3), which accounted for 31 to 48% (on average 38%) of the total P originally present in the extracts. Similarly, pools of organic P in $\mathrm{NaOH}-E D T A$ extracts following hypobromite oxidation were lower, comprising 22 to 48% (on average 36%) of that originally present in untreated NaOH -EDTA extracts across all soils.
[Suggested location Table 3]

3.2 Solution ${ }^{31} \mathrm{P}$ NMR spectra of hypobromite oxidised soil extracts

The most prominent signal in the NMR spectra of untreated NaOH -EDTA soil extracts was that of orthophosphate at $\delta 5.25(\pm 0.25) \mathrm{ppm}$, followed by the phosphomonoester region ranging from $\delta 6.0$ to 3.0 ppm (Fig. 1). There were also some minor signals due to pyrophosphate $\delta-5.06(\pm 0.19) \mathrm{ppm}$ (all soils), phosphodiesters ranging from $\delta 2.5$ to -2.4 ppm (not detected in the Vertisol), and phosphonates (not including the added MDP) at $\delta 19.8,19.2$ and 18.3 ppm (not detected in the Gleysol). However, these compounds comprised less than 8% of the total NMR signal.
Following hypobromite oxidation of $\mathrm{NaOH}-E D T A$ extracts, the most prominent NMR signals were found in the orthophosphate (65% of total NMR signal) and phosphomonoester (35% of total NMR signal) region across all soils (Fig. 1). Phosphodiesters and pyrophosphates were removed following hypobromite oxidation in the Ferralsol, the Vertisol and the Cambisol (DE). However, some signal remained in the Gleysol at low concentrations (0.4% of the total NMR signal). Phosphonates were removed following hypobromite oxidation in the Ferralsol and the Vertisol, but a total of five sharp peaks in the phosphonate region were detected ($\delta 19.59,18.58,17.27$ and 9.25 ppm) in the Cambisol. These peaks comprised 0.6% of the total NMR signal.

The phosphomonoester region of NMR spectra on untreated NaOH-EDTA extracts exhibited two main features: 1) the presence of a broad signal centered at around $\delta 4.1(\pm 0.1) \mathrm{ppm}$ with an average line-width at half height of 256.12 Hz ; and 2) the presence of between 19 and 34 sharp signals. This was similarly the case on hypobromite oxidised extracts, except there was a decrease in the intensity of the broad signal and a change in the distribution and intensity of sharp signals. For the Cambisol and Gleysol, the number of sharp signals in the phosphomonoester region approximately doubled (to 40 and 70 sharp signals, respectively) following hypobromite oxidation. In contrast, less than half of the sharp signals remained in the Ferralsol following hypobromite oxidation (i.e. 14 of the 30 peaks originally present in the untreated extract), whereas one peak was removed following hypobromite oxidation in the Vertisol. There was little change (0.23 ppm) in the chemical shifts of peaks between the untreated and hypobromite oxidised extracts.

Figure 1. Solution ${ }^{31} P$ nuclear magnetic resonance (NMR) spectra (500 MHz) of the orthophosphate and phosphomonoester region on untreated (UT) and hypobromite oxidised (HO) $0.25 \mathrm{M} \mathrm{NaOH}+0.05 \mathrm{M}$ EDTA soil extracts (Ferralsol, Vertisol, Cambisol and Gleysol). Signal intensities were normalised to the MDP peak intensity. The vertical axes were increased for improved visibility of spectral features, as indicated by a factor. The orthophosphate peak is marked with an asterisk. The symbol ' x ' marks the four individual peaks of myo-IP6 and ' + ' the peak of scyllo-IP ${ }_{6}$.
[Suggested location Table 4]

3.3 Identification and quantification of inositol phosphates $\left(\mathrm{IP}_{6}, \mathrm{IP}_{5}\right.$ and $\left.\mathrm{IP}_{4}\right)$ in soil extracts

Detailed views of the phosphomonoester regions of spiked samples are shown in Fig. SI1 to SI5 of the Supporting Information. The number of identified sharp peaks in the phosphomonoester region ranged from 7 (Vertisol) to 33 (Gleysol). myo- and scyllo- IP_{6} were identified in the hypobromite oxidised extracts of all soils (Table 5). On average, 72% of myo- IP_{6} and 56% of scyllo- IP_{6} present in the untreated extracts remained in the hypobromite oxidised extracts (Table SI1 in the Supporting Information). neo- IP_{6} was identified in the the 2-equatorial/4-axial and 4-equatorial/2-axial conformations, and chiro- IP_{6} in the 2-equatorial/4-axial confirmation, of the oxidised extracts in the Cambisol and Gleysol, but were absent in the Ferralsol and the Vertisol (Fig. SI4 and SI5 in the Supporting Information).
The myo, scyllo, chiro and neo stereoisomers of IP_{5} were identified in various hypobromite oxidised extracts (Table 5). Two isomers of myo- IP_{5} were identified in some extracts, which included myo-(1,2,4,5,6)- IP_{5} and myo-(1,3,4,5,6)-IP ${ }_{5}$. In addition, scyllo- IP_{4} was detected in all soils except that of the Vertisol. There was insufficient evidence for the presence of $m y o-\mathrm{IP}_{4}$ in these soil samples, as only one of the two peaks of this compound was present in the NMR spectra of untreated extracts. This could possibly be due to the partial dephosphorylation of $m y o-\mathrm{IP}_{4}$ during the hypobromite oxidation procedure. The reason of the reduced resistance of lower order IP to hypobromite oxidation compared to IP_{5+6} might be due to their reduced steric hindrance and charge density, as less phosphate groups are bound to the inositol ring.
Concentrations of total IP ranged from 1.4 to $159.3 \mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ across all soils, which comprised between 1% (Vertisol) and 18% (Gleysol) of the organic P in untreated NaOH-EDTA extracts (Table 3). Pools of IP_{6} were the most abundant form of IP, which ranged from 0.9 to $144.8 \mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ across all soils (Table 5). The proportion of IP_{6} stereoisomers across all soils were in the order of myo ($61 \%, \mathrm{SD}=12$), scyllo ($29 \%, \mathrm{SD}=3$), chiro ($6 \%, \mathrm{SD}=8$) and neo ($4 \%, \mathrm{SD}=5$). Similarly, the myo and scyllo stereoisomer were also the most predominant forms of IP_{5}, but comprised between 83% (Cambisol) and 100% (Ferralsol and Vertisol) of total IP ${ }_{5}$ (Table 5). Trace amounts of scyllo- IP_{4} were also detected in three of the four soils. The ratio of total IP_{6} to IP_{5} differed across all soils (Fig. 2).
[Suggested location Table 5]

Figure 2. The proportion of total identifiable pools of inositol hexakisphosphates (IP6), -pentakisphosphates (IP5) or tetrakisphosphates (IP_{4}) to that of the total pool of identifiable IP, as determined by solution ${ }^{31} P$ NMR spectroscopy on four soil extracts (Ferralsol, Vertisol, Cambisol and Gleysol) following hypobromite oxidation. Values located above the IP $\mathbf{I V}_{6}$ bar are the ratio of total identifiable $I P_{6}$ to that of I_{5} in each soil sample.

If sharp peaks arising from IP were identified in the NMR spectra on hypobromite oxidised extracts, a comparison was made with that of their corresponding untreated extracts. The sharp peaks of all stereoisomers of IP_{6} were present in the untreated extracts. The five peaks of myo-(1,2,4,5,6)-IP ${ }_{5}$ and the three peaks of scyllo- IP_{5} were also identified. However, it was not possible to clearly identify other IP_{5} compounds in untreated extracts due to overlapping signals. In the Gleysol, all three peaks of scyllo-IP ${ }_{5}$ were detected, but only two of the possible five peaks could be clearly assigned to myo-(1,2,4,5,6)-IP ${ }_{5}$. In the Ferralsol, both peaks of scyllo- IP_{4} were present in the untreated extract, but only two of the three possible peaks could be assigned to scyllo-IP 5 . In the Vertisol, no IP_{5} was identified. Concentrations of IP in untreated extracts assessed by spectral deconvolution fitting were generally double than that measured in hypobromite oxidised extracts. Recoveries of added myo- IP_{6} in the Gleysol and Cambisol following hypobromite oxidation were 47% and 20%, respectively.

3.4 Spin-echo analysis of selected P compounds

Due to the presence of sharp and broad signals in hypobromite oxidised soil extracts, the structural composition of phosphomonoesters was probed. A comparison of the NMR spectra at the lowest $\left(1^{*} \tau\right)$ and highest $\left(80^{*} \tau\right)$ pulse delays revealed a fast decaying broad signal for all hypobromite oxidised soil extracts, which was particularly evident in the Gleysol (Fig. 3). Calculated T_{2} times of all IP_{6} stereoisomers were longer than that of the broad signal (Table 6). The T_{2} times of scyllo- IP_{6} (on average $175.8 \mathrm{~ms}, \mathrm{SD}=49.7$) were generally the longest of all stereoisomers of IP_{6}. The T_{2} time of the orthophosphate peak was the shortest, which was on average 11.5 ms ($\mathrm{SD}=4.9$).

The average ($\mathrm{n}=4$) T_{2} times of the broad peak was significantly different than that of scyllo- and myo- $\mathrm{IP}_{6}(\mathrm{p}<$ $0.05)$. Significant differences in the T_{2}-times of neo- and D-chiro-IP ${ }_{6}$ were not tested, as these compounds were not detected in the Ferralsol and the Vertisol.

Figure 3. Solution ${ }^{31} P$ NMR spectra of hypobromite oxidised soil extracts acquired with a CPMG pulse sequence with $1^{*} \tau$ (black) and $80 * \tau$ (red) spin-echo delays. The orthophosphate $\left(^{*}\right)$, scyllo-IP ${ }_{6}(+)$ and myo-IP 6 peaks (\times) are marked accordingly. Spectra were normalised to the maximum scyllo-IP ${ }_{6}$ peak intensity in the $1 * \tau$ spectrum for each soil. The vertical axes were increased/decreased for better visualisation by an indicated factor.

4 Discussion

4.1 Pools of phosphorus in untreated and hypobromite oxidised soil extracts

On average, 44% of total P (as measured with XRF) was extracted by NaOH-EDTA, which is consistent with previous studies (Turner, 2008; Li et al., 2018; McLaren et al., 2019). The non-extractable pool of P is likely to comprise of inorganic P as part of insoluble mineral phases, but could also contain some organic P (McLaren et al., 2015a). Nevertheless, the NaOH-EDTA extraction technique is considered to be a measure of total organic P in soil, which can be subsequently characterised by solution ${ }^{31} \mathrm{P}$ NMR spectroscopy (Cade-Menun and Preston, 1996).

Hypobromite oxidation resulted in a decrease in the concentration of inorganic and organic P in $\mathrm{NaOH}-E D T A$ extracts across all soils. The decrease of organic P is consistent with previous studies (Turner and Richardson, 2004; Turner et al., 2012; Almeida et al., 2018). However, Almeida et al. (2018) reported an overall increase in the concentration of inorganic P following hypobromite oxidation, which the authors proposed to be caused by the
degradation of organic P forms not resistant to hypobromite oxidation. A decrease in the concentration of organic P in $\mathrm{NaOH}-E D T A$ extracts following hypobromite oxidation was expected based on the oxidation of organic molecules containing P. The products of hypobromite oxidation are most probably carbon dioxide, simple organic acids from the oxidative cleavage of the phosphoesters and orthophosphate (Irving and Cosgrove, 1981; Sharma, 2013).

Overall, hypobromite oxidation of $\mathrm{NaOH}-E D T A$ soil extracts resulted in a considerable increase in the number of sharp peaks and a decrease in the broad underlying peak in the phosphomonoester region compared to that of untreated soil extracts. This was particularly the case for the Cambisol and the Gleysol, which had high concentrations of extractable organic P. Since the broad peak is thought to be closely associated with the SOM (Dougherty et al., 2007; Bünemann et al., 2008; McLaren et al., 2015b), its decrease in soil extracts following hypobromite oxidation is consistent with that observed for other organic compounds (Turner et al., 2012). Our results indicate that the majority of sharp peaks present in the phosphomonoester region of untreated soil extracts are stable to hypobromite oxidation, and are therefore likely to be IP.

Across all soils, 5 to 15 peaks in the phosphomonoester region were removed following hypobromite oxidation compared to those in untreated extracts, which are likely due to the oxidation of: α-and β-glycerophosphate (Doolette et al., 2009; McLaren et al., 2015b), RNA mononucleotides (8 peaks) (Vincent et al., 2013), glucose 6phosphate, phosphocholine, glucose 1-phosphate, or phosphorylethanolamine (Cade-Menun, 2015).

4.2 Phosphorus assignments of sharp peaks in hypobromite oxidised extracts

The detection of myo-, scyllo-, chiro, and neo- IP_{6} in untreated and hypobromite oxidised soil extracts is consistent with previous studies using chromatography (Irving and Cosgrove, 1982; Almeida et al., 2018) and NMR (Turner and Richardson, 2004; Doolette et al., 2011a; Vincent et al., 2013; Jarosch et al., 2015; McLaren et al., 2015b). Turner et al. (2012) suggested that hypobromite oxidised extracts only contained neo- IP_{6} in the 4 -equatorial/2axial conformation due to the absence of signals from the 2 -equatorial/4-axial conformation. In the current study, both conformations could be identified in two of the four soil extracts, which is likely due to improved spectral resolution and sensitivity. The relative abundances of the four identified stereoisomers of IP_{6} in soil extracts were similar to previous studies (Irving and Cosgrove, 1982; Turner et al., 2012).

Several studies have shown overlap of peaks relating to RNA mononucleotides and that of α-and β glycerophosphate, which are the alkaline hydrolysis products of RNA and phospholipids, respectively. However, in the current study, several sharp peaks were present in hypobromite oxidised extracts which are in the chemical shift range of RNA mononucleotides and α-and β-glycerophosphate. Whilst a peak at $\delta 4.36 \mathrm{ppm}$ would be assigned to α-glycerophosphate based on spiking experiments in the untreated extracts of the Cambisol and the Gleysol, hypobromite oxidation revealed the presence of the 2 -equatorial/4-axial $\mathrm{C} 2,5$ peak of neo-IP ${ }_{6}$ at δ 4.37 ppm , and also an unidentified peak at $\delta 4.36 \mathrm{ppm}$ in the Cambisol. Therefore, the assignment and concentration of α-glycerophosphate may be unreliable in some soils of previous studies.
For the first time, we identified lower-order IP $\left(\mathrm{IP}_{5}\right.$ and $\left.\mathrm{IP}_{4}\right)$ in soil extracts using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy. Smith and Clark (1951) were the first to suggest the presence of IP_{5} in soil extracts using anion-exchange chromatography, which was later confirmed (Anderson, 1955; Cosgrove, 1963; McKercher and Anderson, 1968b). Halstead and Anderson (1970) reported the presence of all four stereoisomers (myo, scyllo, neo and chiro) in the lower ester fractions $\left(\mathrm{IP}_{2}-\mathrm{IP}_{4}\right)$ as well as the higher ester fractions $\left(\mathrm{IP}_{5}, \mathrm{IP}_{6}\right)$ isolated from soil, with the myo stereoisomer being the main form in all fractions. In the current study, all four stereoisomers of IP_{5} could be
detected in the hypobromite oxidised soil extracts, of which the myo and scyllo stereoisomers were the most abundant. The relative abundances of IP_{5} stereoisomers are consistent with the findings of Irving and Cosgrove (1982) using gas-liquid chromatography on the combined $\mathrm{IP}_{6}+\mathrm{IP}_{5}$ fraction. The detection of all four stereoisomers of IP_{5} in NMR spectra provides direct spectroscopic evidence for their existence in soil extracts.
In addition to the four stereoisomers of IP_{5}, we were able to identify the presence of two isomers of myo- IP_{5} in the Cambisol and Gleysol, i.e. myo- $(1,2,4,5,6)-\mathrm{IP}_{5}$ and myo- $(1,3,4,5,6)-\mathrm{IP}_{5}$. These two isomers have not yet been detected in soil extracts. A distinction of different myo- IP_{5} isomers was not reported in earlier studies using chromatographic separation. In non-soil extracts, myo- $(1,2,4,5,6)-\mathrm{IP}_{5}$ was detected by Doolette and Smernik (2016) in grapevine canes, and myo-(1,3,4,5,6)- IP_{5} as the thermal decomposition product of a phytate standard (Doolette and Smernik, 2018). It is possible that an abiotic transformation of myo- IP_{6} to myo-(1,3,4,5,6)- IP_{5} occurs, which could then be adsorbed by soil constituents. Stephens and Irvine (1990) reported myo-(1,3,4,5,6)-IP ${ }_{5}$ as an intermediate in the synthesis of IP_{6} from myo-IP in the cellular slime mould Dictyostelium. Therefore, myo($1,3,4,5,6$)- IP_{5} could have been biologically added to the soil. Furthermore, myo-(1,3,4,5,6)- IP_{5} was present in different animal feeds and manures (Sun and Jaisi, 2018). Sun et al. (2017) reported myo-(1,3,4,5,6)-IP ${ }_{5}$ and myo($1,2,4,5,6$) $-\mathrm{IP}_{5}$ as intermediates in the minor, resp. major pathways of Aspergillus niger phytase and acid phosphatase (potato) phytate degradation. The presence of myo-(1,2,3,4,6)- IP_{5} could not be confirmed as NMR analyses on the compound itself exhibited a broad NMR signal (Fig. SI7 in the Supporting Information). This is because in solutions with a pH of 9.5 or above, the 1 -axial/5-equatorial and 5 -axial/1-equatorial forms of myo-(1,2,3,4,6)- IP_{5} are in a dynamic equilibrium, which can cause broadening (Volkmann et al., 2002). According to Turner and Richardson (2004) and Chung et al. (1999), the two identified scyllo- IP_{4} peaks (signal pattern 2:2) can be attributed to the scyllo- $(1,2,3,4)-\mathrm{IP}_{4}$ isomer. However, the two peaks of scyllo- IP_{4} overlapped in the Cambisol and Gleysol with the peak at the furthest upfield chemical shift of myo-(1,2,4,5,6)-IP ${ }_{5}$ at $\delta 3.25 \mathrm{ppm}$, and with the peak at the furthest downfield chemical shift of myo-(1,3,4,5,6)- IP_{5} at $\delta 4.12 \mathrm{ppm}$. Turner and Richardson (2004) reported NMR-signals for two other scyllo-IP 4 isomers, which could not be tested for in this study due to the lack of available standards.
Whilst on average 48% of the sharp peaks in the phosphomonoester region of soil extracts following hypobromite oxidation could be attributed to $\mathrm{IP}_{6}, \mathrm{IP}_{5}$ and scyllo- IP_{4}, the identity of many sharp peaks remain unknown. An unidentified peak at $\delta 4.33 \mathrm{ppm}$ is present in all soil samples except in the Ferralsol, with concentrations of up to $10 \mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$ (Cambisol). Other unidentified peaks at $\delta 3.49,3.86,4.20$ and 3.91 ppm were detected in all soils,
 prominent (at $\delta 3.08,3.05 \mathrm{ppm}$) following hypobromite oxidation, which was particularly the case in the Vertisol soil. The diversity of organic P species in the Vertisol soil appears to be much greater than previously reported (McLaren et al., 2014). We hypothesise that many of these unidentified peaks arise from other isomers of myoand scyllo- IP_{5}, based on the higher abundance of their IP_{6} counterparts.

The ratio of IP_{6} to lower-order IP varied across soils, which ranged in decreasing order: Gleysol \gg Cambisol $>$ Vertisol > Ferralsol. McKercher and Anderson (1968a) found a higher ratio of IP_{6} to IP_{5} in some Scottish soils (ratio 1.8 to 4.6) compared to some Canadian soils (0.9 to 2.4). The authors attributed this difference to the greater stabilization of IP_{6} relative to lower esters in the Scottish soils, possible due to climatic reasons or effects of different soil properties. In a subsequent study, McKercher and Anderson (1968b) observed increased IP contents with increasing total organic P content. Studies of organic P speciation along chronosequences found that myo- IP_{6} concentrations declined in older soils (McDowell et al., 2007; Turner et al., 2007a; Turner et al., 2014). Similarly,

Baker (1976) found that the $\mathrm{IP}_{6}+\mathrm{IP}_{5}$ concentrations in the Franz Josef chronosequence increased until 1000 years, followed by a rapid decline. In our soil samples, the highest IP_{6} to IP_{5} ratio was found in the soil with the highest SOM content, suggesting a possible stabilization of IP $_{6}$ due to association with SOM (Borie et al., 1989; Makarov et al., 1997). In contrast, the Ferralsol sample containing high amounts of Fe and A1 showed the smallest IP_{6} to IP_{5} ratio, even though IP_{6} is known to strongly adsorb to sesquioxides (Anderson and Arlidge, 1962; Anderson et al., 1974). However, the production, input and mineralisation rates of IP_{6} and IP_{5} are not known for our soil samples. Further research is needed to understand the mechanisms controlling the flux of lower-order IP in soil.
In the Ferralsol and the Cambisol, there was an overall decrease in the concentration of IP_{6} and IP_{5} following hypobromite oxidation compared to the untreated extracts. Since the main cause of resistance of IP to hypobromite oxidation is that of steric hindrance, which generally decreases with decreasing phosphorylation state and conformation of the phosphate groups (axial vs. equatorial), we assume that low recoveries of added myo- IP_{6} is due to losses of precipitated $\mathrm{P}_{\text {org }}$ compounds during the precipitation and dissolution steps. This is supported by the decrease in the concentration of orthophosphate following hypobromite oxidation compared to untreated extracts. Therefore, quantities of IP as reported in the current study should be considered as conservative.

4.3 Structural composition of phosphomonoesters in hypobromite oxidised soil extracts

The NMR spectra on hypobromite oxidised soil extracts revealed the presence of sharp and broad signals in the phosphomonoester region. Transverse relaxation experiments revealed a rapid decay of the broad signal compared to the sharp peaks of IP_{6}, which support the hypothesis that the compounds causing the broad signal arise from P compounds other than IP. These findings are consistent with that of McLaren et al. (2019), who probed the structural composition of phosphomonoesters in untreated soil extracts. Overall, measured T_{2} times in the current study on hypobromite oxidised extracts were markedly longer compared to that on untreated extracts reported in McLaren et al. (2019). This could be due to removal of other organic compounds by hypobromite oxidation in the matrix and therefore a decrease in the viscosity of the sample. This would result in an overall faster tumbling of the molecules and hence an increased T_{2} relaxation time. As reported by McLaren et al. (2019), calculations of the broad signal's linewidth based on the T_{2} times were considerably lower compared to that of the standard deconvolution fitting (SDF). When applying the same calculations to our samples, the linewidth of the broad signal at half height is on average 5.2 Hz based on the T_{2} times. In contrast, the linewidths acquired from the SDF average to 256.1 Hz . McLaren et al. (2019) suggested that the broad signal is itself comprised of more than one compound. Our results are consistent with this view and therefore it is likely that the main cause of the broad signal is a diversity of P molecules of differing chemical environments within this region, rather than the slow tumbling of just one macromolecule. Nebbioso and Piccolo (2011) reported that high molecular weight material of organic matter in soil is an association of smaller organic molecules. We suggest that these associations would still cause a broad signal in the phosphomonoester region of soil extracts and could be a reason that some organic molecules containing P are protected from hypobromite oxidation.

Since a portion of the broad signal is resistant to hypobromite oxidation, this suggests the organic P is complex and in the form of polymeric structures. The chemical resistance of the broad signal to hypobromite oxidation may also indicate a high stability in soil (Jarosch et al., 2015). Annaheim et al. (2015) found that concentrations of the broad signal remained unchanged between three different organic fertiliser strategies after 62 years of cropping. In contrast, the organic P compounds annually added with the fertilisers were completely transformed or lost in
the slightly acidic topsoil of the field trial. The large proportion of the broad signal in the total organic P pool demonstrates its importance in the soil P cycle.

Unexpectedly, the transverse relaxation times of orthophosphate were shorter than that of the broad signal. This was similarly the case in an untreated $\mathrm{NaOH}-E D T A$ extract of a forest soil with the same origin as the Cambisol as reported in McLaren et al. (2019). The authors hypothesised that this might be due to the sample matrix (i.e. high concentration of metals and organic matter). Whilst these factors are likely to affect T_{2} times, they do not appear to be the main cause as the hypobromite oxidised extracts in the current study contained low concentrations of organic matter and metals as a consequence of the isolation procedure. The fast decay of orthophosphate was found across all four soil extracts with a diverse array of organic P concentrations and compositions of organic P in the phosphomonoester region. Therefore, another possible explanation could be a matrix effect or an association with large organic P compounds causing the broad signal (McLaren et al., 2019). It is known that dynamic intramolecular processes as ring inversion and intermolecular processes such as binding of small-molecule ligands to macromolecules can cause a broadening or a doubling of resonances (Claridge, 2016). When the smaller molecule is bound to the larger molecule, it experiences slower tumbling in the solution and hence a shorter T_{2} time. It is possible that a chemical exchange of the orthophosphate with a compound in the matrix or an organic P molecule could result in the short T_{2} time of the orthophosphate peak. We carried out a T_{2} experiment on a pure solution of monopotassium phosphate (described in the Supporting Information), in which the matrix effects should be considerably reduced compared to the soil extracts. We found that the T_{2} time of orthophosphate (203 ms) in the pure solution was considerably longer than that reported in soil extracts following hypobromite oxidation.

5 Conclusion

Inositol phosphates are an important pool of organic P in soil, but information on the mechanisms controlling their flux in soil remain limited due in part to an inability to detect them using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy. For the first time, we identified six different lower-order IP in the solution ${ }^{31} \mathrm{P}$ NMR spectra on soil extracts. Solution ${ }^{31} \mathrm{P}$ NMR spectra on hypobromite oxidised extracts revealed the presence of up to 70 sharp peaks, which about 50% could be identified. Our results indicate that the majority of the sharp peaks in solution ${ }^{31} \mathrm{P}$ NMR soil spectra were resistant to hypobromite oxidation, and therefore suggest the presence of diverse IP. Our study highlights the great diversity and abundance of IP in soils and therefore their importance in terrestrial P cycles. Further research on the mechanisms and processes involved in the cycling of this wide variety of IP in soil will have implications on our understanding of organic P turnover as well as plant availability, and possibly help improve fertiliser strategies in agricultural systems.
Furthermore, we provide new insight on the large pool of phosphomonoesters represented by the broad signal, of which a considerably portion was resistant to hypobromite oxidation. Further research is needed to understand the chemical composition of the broad signal, and the mechanisms controlling its flux in terrestrial ecosystems.

Data availability

All data presented in this study and the Supplement is also available by request from the corresponding author.

Author contribution

The experimental design was planned by JR, TM, DZ, RV and EF. The experiments were carried out by JR under supervision of TM, DZ and RV. RV provided the MATLAB code for the standard deconvolution fitting of the NMR spectra. The data was processed, analysed and interpreted by JR with support from TM, DZ and RV. JR prepared the manuscript with contributions from all co-authors.

Conflicts of interest

The authors declare that they have no conflict of interest.

Acknowledgements

The authors are grateful to Dr Laurie Paule Schönholzer, Dr Federica Tamburini, Mr Björn Studer, Ms Monika Macsai, and Dr Charles Brearley for technical support. Furthermore, the authors thank Dr Astrid Oberson, Dr David Lester, Dr Chiara Pistocchi and Dr Gregor Meyer for providing soil samples. This study would not have been possible without the IP standards originating from the late Dr Dennis Cosgrove collection and Dr Max Tate collection, which we highly appreciate. We gratefully acknowledge funding from the Swiss National Science Foundation [grant number 200021_169256].

Financial support

This project was funded by the Swiss National Science Foundation, Grant 200021_169256.

References

Almeida, D. S., Menezes-Blackburn, D., Turner, B. L., Wearing, C., Haygarth, P. M., and Rosolem, C. A.: Urochloa ruziziensis cover crop increases the cycling of soil inositol phosphates, Biology and Fertility of Soils, 54, 935-947, 10.1007/s00374-018-1316-3, 2018.
Anderson, G.: Paper chromatography of inositol phosphates, Nature, 175, 863-864, 10.1038/175863b0, 1955.

Anderson, G., and Arlidge, E. Z.: The adsorption of inositol phosphates and glycerophosphate by soil clays, clay minerals, and hydrated sesquioxides in acid media., Journal of Soil Science, 13, 216-224, 10.1111/j.1365-2389.1962.tb00699.x, 1962.

Anderson, G., and Malcolm, R. E.: The nature of alkali-soluble soil organic phosphates., Journal of Soil Science, 25, 282-297, 10.1111/j.1365-2389.1974.tb01124.x, 1974.
Anderson, G., Williams, E. G., and Moir, J. O.: A comparison of the sorption of inorganic orthophosphate and inositol hexaphosphate by six acid soils, Journal of Soil Science, 25, 51-62, 10.1111/j.1365-2389.1974.tb01102.x, 1974.

Angyal, S. J.: Chapter VIII - Cyclitols, in: Comprehensive Biochemistry, edited by: Florkin, M., and Stotz, E. H., Elsevier, 297-303, 1963.

Annaheim, K. E., Doolette, A. L., Smernik, R. J., Mayer, J., Oberson, A., Frossard, E., and Bünemann, E. K.: Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by ${ }^{31} \mathrm{p}$ NMR spectroscopy and enzyme additions, Geoderma, 257-258, 67-77, https://doi.org/10.1016/i.geoderma.2015.01.014, 2015.
Baker, R. T.: Changes in the chemical nature of soil organic phosphate during pedogenesis., Journal of Soil Science, 27, 504-512, 10.1111/j.1365-2389.1976.tb02020.x, 1976.
Borie, F., Zunino, H., and Martínez, L.: Macromolecule - P associations and inositol phosphates in some chilean volcanic soils of temperate regions, Communications in Soil Science and Plant Analysis, 20, 1881-1894, 10.1080/00103628909368190, 1989.
Bühler, S., Oberson, A., Sinaj, S., Friesen, D. K., and Frossard, E.: Isotope methods for assessing plant available phosphorus in acid tropical soils, European Journal of Soil Science, 54, 605-616, 10.1046/j.1365-2389.2003.00542.x, 2003.

Bünemann, E. K., Smernik, R. J., Marschner, P., and McNeill, A. M.: Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils, Soil Biology and Biochemistry, 40, 932946, https://doi.org/10.1016/i.soilbio.2007.11.012, 2008.
Bünemann, E. K., Augstburger, S., and Frossard, E.: Dominance of either physicochemical or biological phosphorus cycling processes in temperate forest soils of contrasting phosphate availability, Soil Biology and Biochemistry, 101, 85-95, https://doi.org/10.1016/j.soilbio.2016.07.005, 2016.
Cade-Menun, B., and Liu, C. W.: Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters, Soil Science Society of America Journal, 78, 19-37, 10.2136/sssaj2013.05.0187dgs, 2014.
Cade-Menun, B. J., and Preston, C. M.: A comparison of soil extraction procedures for ${ }^{31} \mathrm{P}$ NMR spectroscopy, Soil Science, 161, 1996.
Cade-Menun, B. J., Liu, C. W., Nunlist, R., and McColl, J. G.: Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy, Journal of Environmental Quality, 31, 457-465, 10.2134/jeq2002.4570, 2002.

Cade-Menun, B. J.: Improved peak identification in ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of environmental samples with a standardized method and peak library, Geoderma, 257-258, 102-114, https://doi.org/10.1016/i.geoderma.2014.12.016, 2015.
Celi, L., and Barberis, E.: Abiotic reactions of inositol phosphates in soil, in: Inositol phosphates: linking agriculture and the environment, edited by: Turner, B. L., Richardson, A. E., and Mullaney, E. J., CABI, Wallingford, 207-220, 2007.
Chung, S.-K., Kwon, Y.-U., Chang, Y.-T., Sohn, K.-H., Shin, J.-H., Park, K.-H., Hong, B.-J., and Chung, I.-H.: Synthesis of all possible regioisomers of scyllo-Inositol phosphate, Bioorganic \& Medicinal Chemistry, 7, 2577-2589, https://doi.org/10.1016/S0968-0896(99)00183-2, 1999.

Claridge, T. D. W.: Chapter 2 - Introducing High-Resolution NMR, in: High-Resolution NMR techniques in organic chemistry, 3 ed., edited by: Claridge, T. D. W., Elsevier, Boston, 11-59, 2016.
Cosgrove, D.: The chemical nature of soil organic phosphorus. I. Inositol phosphates, Soil Research, 1, 203-214, https://doi.org/10.1071/SR9630203, 1963.
Cosgrove, D. J., and Irving, G. C. J.: Inositol phosphates : their chemistry, biochemistry and physiology, Studies in organic chemistr, Amsterdam : Elsevier, 1980.
Doolette, A. L., Smernik, R. J., and Dougherty, W. J.: Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds, Soil Science Society of America Journal, 73, 919-927, 10.2136/sssaj2008.0192, 2009.
Doolette, A. L., Smernik, R. J., and Dougherty, W. J.: A quantitative assessment of phosphorus forms in some Australian soils, Soil Research, 49, 152-165, https://doi.org/10.1071/SR10092, 2011a.
Doolette, A. L., Smernik, R. J., and Dougherty, W. J.: Overestimation of the importance of phytate in $\mathrm{NaOH}-E D T A$ soil extracts as assessed by 31P NMR analyses, Organic Geochemistry, 42, 955-964, https://doi.org/10.1016/j.orggeochem.2011.04.004, 2011b.
Doolette, A. L., and Smernik, R. J.: Phosphorus speciation of dormant grapevine (Vitis vinifera L.) canes in the Barossa Valley, South Australia, Australian Journal of Grape and Wine Research, 22, 462-468, 10.1111/ajgw.12234, 2016.

Doolette, A. L., and Smernik, R. J.: Facile decomposition of phytate in the solid-state: kinetics and decomposition pathways, Phosphorus, Sulfur, and Silicon and the Related Elements, 193, 192-199, 10.1080/10426507.2017.1416614, 2018.

Dougherty, W. J., Smernik, R. J., and Chittleborough, D. J.: Application of spin counting to the solidstate ${ }^{31} \mathrm{P}$ NMR analysis of pasture soils with varying phosphorus content, Soil Science Society of America Journal, 69, 2058-2070, 10.2136/sssaj2005.0017, 2005.
Dougherty, W. J., Smernik, R. J., Bünemann, E. K., and Chittleborough, D. J.: On the use of hydrofluoric acid pretreatment of soils for phosphorus-31 nuclear magnetic resonance analyses, Soil Science Society of America Journal, 71, 1111-1118, 10.2136/sssaj2006.0300, 2007.
Dyer, W. J., and Wrenshall, C. L.: Organic phosphorus in soils: III. The decomposition of some organic phosphorus compounds in soil cultures, Soil Sci., 51, 323, 1941.
FAO, and Group, I. W.: World reference base for soil resources 2014, World soil resources reports, Food and Agriculture Organization of the United Nations FAO, Rome, 2014.
Fatiadi, A. J.: Bromine oxidation of inositols for preparation of inosose phenylhydrazones and phenylosazones, Carbohydrate Research, 8, 135-147, https://doi.org/10.1016/S0008-6215(00)801494, 1968.
Goring, C. A. I., and Bartholomew, W. V.: Microbial products and soil organic matter: III. Adsorption of carbohydrate phosphates by clays, Soil Science Society of America Journal, 15, 189-194, 10.2136/sssaj1951.036159950015000C0043x, 1951.

Halstead, R. L., and Anderson, G.: Chromatographic fractionation of organic phosphates from alkali, acid, and aqueous acetylacetone extracts of soils, Canadian Journal of Soil Science, 50, 111-119, 10.4141/cjss70-018, 1970.

Hochberg, Y., and Tamhane, A. C.: Multiple comparison procedures, Wiley series in probability and mathematical statistics. Applied probability and statistics, Wiley New York, 1987.
Irvine, R. F., and Schell, M. J.: Back in the water: the return of the inositol phosphates, Nature Reviews Molecular Cell Biology, 2, 327, 10.1038/35073015, 2001.
Irving, G. C. J., and Cosgrove, D. J.: The use of hypobromite oxidation to evaluate two current methods for the estimation of inositol polyphosphates in alkaline extracts of soils, Communications in Soil Science and Plant Analysis, 12, 495-509, 10.1080/00103628109367169, 1981.
Irving, G. C. J., and Cosgrove, D. J.: The use of gas - liquid chromatography to determine the proportions of inositol isomers present as pentakis - and hexakisphosphates in alkaline extracts of soils, Communications in Soil Science and Plant Analysis, 13, 957-967, 10.1080/00103628209367324, 1982.

Jarosch, K. A., Doolette, A. L., Smernik, R. J., Tamburini, F., Frossard, E., and Bünemann, E. K.: Characterisation of soil organic phosphorus in NaOH-EDTA extracts: a comparison of ${ }^{31} \mathrm{P}$ NMR
spectroscopy and enzyme addition assays, Soil Biology and Biochemistry, 91, 298-309, https://doi.org/10.1016/j.soilbio.2015.09.010, 2015.
L'Annunziata, M. F.: The origin and transformations of the soil inositol phosphate isomers, Soil Science Society of America Journal, 39, 377-379, 10.2136/sssaj1975.03615995003900020041x, 1975.
Lang, F., Krüger, J., Amelung, W., Willbold, S., Frossard, E., Bünemann, E. K., Bauhus, J., Nitschke, R., Kandeler, E., Marhan, S., Schulz, S., Bergkemper, F., Schloter, M., Luster, J., Guggisberg, F., Kaiser, K., Mikutta, R., Guggenberger, G., Polle, A., Pena, R., Prietzel, J., Rodionov, A., Talkner, U., Meesenburg, H., von Wilpert, K., Hölscher, A., Dietrich, H. P., and Chmara, I.: Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe, Biogeochemistry, 136, 5-29, 10.1007/s10533-017-0375-0, 2017.

Leytem, A. B., Turner, B. L., and Thacker, P. A.: Phosphorus composition of manure from swine fed lowphytate grains, Journal of Environmental Quality, 33, 2380-2383, 10.2134/jeq2004.2380, 2004.
Leytem, A. B., and Maguire, R. O.: Environmental implications of inositol phosphates in animal manures, in: Inositol phosphates: linking agriculture and the environment, edited by: Turner, B. L., Richardson, A. E., and Mullaney, E. J., CABI, Wallingford, 150-168, 2007.
Li, M., Cozzolino, V., Mazzei, P., Drosos, M., Monda, H., Hu, Z., and Piccolo, A.: Effects of microbial bioeffectors and P amendements on P forms in a maize cropped soil as evaluated by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy, Plant and Soil, 427, 87-104, 10.1007/s11104-017-3405-8, 2018.
Makarov, M. I., Malysheva, T. I., Haumaier, L., Alt, H. G., and Zech, W.: The forms of phosphorus in humic and fulvic acids of a toposequence of alpine soils in the northern Caucasus, Geoderma, 80, 6173, https://doi.org/10.1016/S0016-7061(97)00049-9, 1997.
McDowell, R. W., and Stewart, I.: The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and ${ }^{31} \mathrm{P}$ NMR, Geoderma, 130, 176-189, https://doi.org/10.1016/j.geoderma.2005.01.020, 2006.
McDowell, R. W., Cade-Menun, B., and Stewart, I.: Organic phosphorus speciation and pedogenesis: analysis by solution ${ }^{31} \mathrm{P}$ nuclear magnetic resonance spectroscopy, European Journal of Soil Science, 58, 1348-1357, 10.1111/j.1365-2389.2007.00933.x, 2007.
McKercher, R. B., and Anderson, G.: Characterization of the inositol penta- and hexaphosphate fractions of a number of Canadian and Scottish soils, Journal of Soil Science, 19, 302-310, 10.1111/j.1365-2389.1968.tb01542.x, 1968a.

McKercher, R. B., and Anderson, G.: Content of inositol penta- and hexaphosphates in some Canadian soils, Journal of Soil Science, 19, 47-55, 10.1111/j.1365-2389.1968.tb01519.x, 1968b.
McKercher, R. B., and Anderson, G.: Organic phosphate sorption by neutral and basic soils, Communications in Soil Science and Plant Analysis, 20, 723-732, 10.1080/00103628909368112, 1989. McLaren, T. I., Smernik, R. J., Guppy, C. N., Bell, M. J., and Tighe, M. K.: The organic P composition of vertisols as determined by ${ }^{31}$ P NMR spectroscopy, Soil Science Society of America Journal, 78, 18931902, 10.2136/sssaj2014.04.0139, 2014.
McLaren, T. I., Simpson, R. J., McLaughlin, M. J., Smernik, R. J., McBeath, T. M., Guppy, C. N., and Richardson, A. E.: An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture, Journal of Plant Nutrition and Soil Science, 178, 543-554, 10.1002/jpln.201400657, 2015a.

McLaren, T. I., Smernik, R. J., McLaughlin, M. J., McBeath, T. M., Kirby, J. K., Simpson, R. J., Guppy, C. N., Doolette, A. L., and Richardson, A. E.: Complex forms of soil organic phosphorus-A major component of soil phosphorus, Environmental Science \& Technology, 49, 13238-13245, 10.1021/acs.est.5b02948, 2015b.

McLaren, T. I., Verel, R., and Frossard, E.: The structural composition of soil phosphomonoesters as determined by solution ${ }^{31}$ P NMR spectroscopy and transverse relaxation (T_{2}) experiments, Geoderma, 345, 31-37, https://doi.org/10.1016/i.geoderma.2019.03.015, 2019.
Meiboom, S., and Gill, D.: Modified spin - echo method for measuring nuclear relaxation times, Review of Scientific Instruments, 29, 688-691, 10.1063/1.1716296, 1958.
Milliken, G. A., and Johnson, D. E.: Analysis of messy data. Volume 1: designed experiments, 2nd ed. ed., Boca Raton, Fla : CRC Press, 2009.

Newman, R. H., and Tate, K. R.: Soil phosphorus characterisation by ${ }^{31} \mathrm{P}$ nuclear magnetic resonance, Communications in Soil Science and Plant Analysis, 11, 835-842, 10.1080/00103628009367083, 1980. Ognalaga, M., Frossard, E., and Thomas, F.: Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite, Soil Science Society of America Journal, 58, 332-337, 10.2136/sssaj1994.03615995005800020011x, 1994.

Ohno, T., and Zibilske, L. M.: Determination of low concentrations of phosphorus in soil extracts using malachite green, Soil Science Society of America Journal, 55, 892-895, 10.2136/sssaj1991.03615995005500030046x, 1991.

Reusser, J. E., Verel, R., Frossard, E., and McLaren, T. I.: Quantitative measures of myo-IP6 in soil using solution ${ }^{31} \mathrm{P}$ NMR spectroscopy and spectral deconvolution fitting including a broad signal, Environmental Science: Processes \& Impacts, 10.1039/C9EM00485H, 2020.
Riley, A. M., Trusselle, M., Kuad, P., Borkovec, M., Cho, J., Choi, J. H., Qian, X., Shears, S. B., Spiess, B., and Potter, B. V. L.: scyllo - Inositol pentakisphosphate as an analogue of myo - inositol 1,3,4,5,6 pentakisphosphate: Chemical synthesis, physicochemistry and biological applications, ChemBioChem, 7, 1114-1122, 10.1002/cbic. $200600037,2006$.
Sharma, V. K.: Oxidation of amino acids, peptides, and proteins : kinetics and mechanism, Wiley series of reactive intermediates in chemistry and biology, Hoboken : Wiley, 2013.
Smith, D. H., and Clark, F. E.: Anion-exchange chromatography of inositol phosphates from soil, Soil Science, 72, 353-360, 1951.
Spain, A. V., Tibbett, M., Ridd, M., and McLaren, T. I.: Phosphorus dynamics in a tropical forest soil restored after strip mining, Plant and Soil, 427, 105-123, 10.1007/s11104-018-3668-8, 2018.
Stephens, L. R., and Irvine, R. F.: Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium, Nature, 346, 580-583, 10.1038/346580a0, 1990.
Strickland, K. P.: The chemistry of phospholipids, Second, completely revised and enlarged edition. ed., Form and Function of Phospholipids, edited by: Ansell, G. B., Hawthorne, J. N., and Dawson, R. M. C., Elsevier Scientific Publ. Company, 1973.
Sun, M., Alikhani, J., Massoudieh, A., Greiner, R., and Jaisi, D. P.: Phytate degradation by different phosphohydrolase enzymes: contrasting kinetics, decay rates, pathways, and isotope effects, Soil Science Society of America Journal, 81, 61-75, 10.2136/sssaj2016.07.0219, 2017.
Sun, M., and Jaisi, D. P.: Distribution of inositol phosphates in animal feed grains and excreta: distinctions among isomers and phosphate oxygen isotope compositions, Plant and Soil, 430, 291-305, 10.1007/s11104-018-3723-5, 2018.

Suzumura, M., and Kamatani, A.: Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay, Geochimica et Cosmochimica Acta, 57, 2197-2202, https://doi.org/10.1016/0016-7037(93)90561-A, 1993.
Turner, B. L., Papházy, M. J., Haygarth, P. M., and McKelvie, I. D.: Inositol phosphates in the environment, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 449, 2002.
Turner, B. L., and Richardson, A. E.: Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy, Soil Science Society of America Journal, 68, 802-808, 10.2136/sssaj2004.8020, 2004.
Turner, B. L.: Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers., in: Inositol phosphates: Linking agriculture and the environment., edited by: Turner, B. L., Richardson, A. E., and Mullaney, E. J., CAB International, Wallingford, Oxfordshire, UK, 186-206, 2007.
Turner, B. L., Condron, L. M., Richardson, S. J., Peltzer, D. A., and Allison, V. J.: Soil organic phosphorus transformations during pedogenesis, Ecosystems, 10, 1166-1181, 10.1007/s10021-007-9086-z, 2007a. Turner, B. L., Richardson, A. E., and Mullaney, E. J.: Inositol phosphates: linking agriculture and the environment, CABI, Wallingford, xi + 288 pp. pp., 2007b.
Turner, B. L.: Soil organic phosphorus in tropical forests: an assessment of the $\mathrm{NaOH}-E D T A$ extraction procedure for quantitative analysis by solution ${ }^{31} \mathrm{P}$ NMR spectroscopy, European Journal of Soil Science, 59, 453-466, 10.1111/j.1365-2389.2007.00994.x, 2008.

Turner, B. L., Cheesman, A. W., Godage, H. Y., Riley, A. M., and Potter, B. V.: Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution ${ }^{31}$ P NMR spectroscopy, Environ Sci Technol, 46, 4994-5002, 10.1021/es204446z, 2012.
Turner, B. L., Wells, A., and Condron, L. M.: Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest, Biogeochemistry, 121, 595-611, 10.1007/s10533-014-0025-8, 2014.

Turner, B. L.: Isolation of inositol hexakisphosphate from soils by alkaline extraction and hypobromite oxidation, in: Inositol Phosphates: Methods and Protocols, edited by: Miller, G. J., Springer US, New York, NY, 39-46, 2020.
Vestergren, J., Vincent, A. G., Jansson, M., Persson, P., Ilstedt, U., Gröbner, G., Giesler, R., and Schleucher, J.: High-resolution characterization of organic phosphorus in soil extracts using $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ NMR correlation spectroscopy, Environmental Science \& Technology, 46, 3950-3956, 10.1021/es204016h, 2012.

Vincent, A. G., Vestergren, J., Gröbner, G., Persson, P., Schleucher, J., and Giesler, R.: Soil organic phosphorus transformations in a boreal forest chronosequence, Plant and Soil, 367, 149-162, 10.1007/s11104-013-1731-z, 2013.

Vold, R. L., Waugh, J. S., Klein, M. P., and Phelps, D. E.: Measurement of spin relaxation in complex systems, The Journal of Chemical Physics, 48, 3831-3832, 10.1063/1.1669699, 1968.
Volkmann, C. J., Chateauneuf, G. M., Pradhan, J., Bauman, A. T., Brown, R. E., and Murthy, P. P. N.: Conformational flexibility of inositol phosphates: influence of structural characteristics, Tetrahedron Letters, 43, 4853-4856, https://doi.org/10.1016/S0040-4039(02)00875-4, 2002.

Soil type	-	Ferralsol	Vertisol	Cambisol	Gleysol
Country	-	Colombia	Australia	Germany	Switzerland
Coordinates sampling site	-	$4^{\circ} 30^{\prime} \mathrm{N} / 71^{\circ} 19^{\prime} \mathrm{W}$	$27^{\circ} 52^{\prime} \mathrm{S} / 151^{\circ} 37^{\prime} \mathrm{E}$	$50^{\circ} 21^{\prime} \mathrm{N} / 9^{\circ} 55^{\prime} \mathrm{E}$	$47^{\circ} 05^{\prime} \mathrm{N} / 8^{\circ} 06^{\prime} \mathrm{E}$
Elevation	m ASL	150	402	800	612
Sampling depth	cm	0-20	0-15	0-7	0-10
Year of sampling	year	1997	2017	2014	2017
Land use	-	Pasture	Arable field	Forest	Pasture
$\mathrm{C}_{\text {tot }}$	$\mathrm{g} \mathrm{C/} / \mathrm{kg}_{\text {soil }}$	26.7	23.9	90.3	148.3
$\mathrm{N}_{\text {tot }}$	$\mathrm{g} \mathrm{N} / \mathrm{kg}_{\text {soil }}$	1.7	1.9	6.6	10.9
pH in $\mathrm{H}_{2} \mathrm{O}$	-	3.6	6.1	3.6	5.0

Table 1. General characteristics of soil samples used in this study.

Table 2. Standard solutions used for the spiking experiment of the hypobromite oxidised soil extracts. All standards were dissolved in 0.25 M NaOH and $0.05 \mathrm{M} \mathrm{Na}_{2}$ EDTA.

Standard	Product number	Company/origin	Concentration of standard in $\mathbf{N a O H}-E D T A(m g / m L)$
myo-IP ${ }_{6}$	P5681	Merck (Sigma-Aldrich)	8.10
L-chiro- IP_{6}	Collection of Dr Max Tate		2.39
D-chiro- IP_{6}	CAY-9002341	Cayman Chemical	2.00
neo-IP ${ }_{6}$	Collection of Dr Dennis Cosgrove,	made up in 15 mM HCl	4.62
D-myo-(1,2,4,5,6)-IP5	CAY-10008452-1	Cayman Chemical	2.00
myo-(1,2,3,4,6)-IP ${ }_{5}$	93987	Merck (Sigma-Aldrich)	2.00
D-myo-(1,3,4,5,6)-IP ${ }_{5}$	CAY-10009851-1	Cayman Chemical	2.00
D-myo-(1,2,3,5,6)-IP ${ }^{\text {a }}$	CAY-10008453-1	Cayman Chemical	2.00
scyllo-IP5	Collection of Dr Dennis Cosgrove		2.64
L-chiro- IP_{5}	Collection of Dr Dennis Cosgrove		2.24
neo- IP_{5}	Collection of Dr Dennis Cosgrove		2.45
myo-IP4	Collection of Dr Dennis Cosgrove		2.76
scyllo-IP4	Collection of Dr Dennis Cosgrove		2.41
neo-IP4	Collection of Dr Dennis Cosgrove		2.33

Table 3. Concentrations of total P as measured by XRF and $0.25 \mathrm{M} \mathrm{NaOH}+0.05 \mathrm{M}$ EDTA extractable P before and after hypobromite oxidation of soil extracts. Concentrations of total P in NaOH-EDTA extracts were determined by ICP-OES, whereas that of molybdate reactive P (MRP) was determined by the malachite green method of Ohno and Zibilske (1991). Concentrations of molybdate unreactive P (MUP) were calculated as the difference between total P and MRP.

Measure		Ferralsol	Vertisol	Cambisol	Gleysol
XRF	$\mathrm{P}_{\text {tot }}\left(\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}\right.$)	320	1726	3841	2913
$\mathrm{NaOH}-E D T A$ extractable (untreated)	$\mathrm{P}_{\text {tot }}\left(\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}\right)$	160	484	1850	1490
	MRP ($\mathrm{mg} \mathrm{P/kg}$ soil ${ }^{\text {(}}$	67	351	525	610
	MUP ($\mathrm{Porg}^{\text {) }}$ ($\mathrm{mg} \mathrm{P/kg}$ soil ${ }^{\text {) }}$	93	133	1326	880
$\mathrm{NaOH}-E D T A$ extractable (hypobromite oxidised)	$\mathrm{P}_{\text {tot }}\left(\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}\right.$)	77	158	580	578
	MRP ($\mathrm{mg} \mathrm{P/kg}$ soil ${ }^{\text {(}}$	32	111	283	231
	MUP ($\mathrm{Porg}^{\text {) }}$ ($\mathrm{mg} \mathrm{P/kg}$ soil ${ }^{\text {) }}$	45	47	297	348

Table 4. Concentrations ($\mathrm{mg} \mathrm{P} / \mathrm{kg}_{\text {soil }}$) of P compounds in solution ${ }^{31} \mathrm{P}$ NMR spectra of $0.25 \mathrm{M} \mathrm{NaOH}+0.05 \mathrm{M}$ EDTA soil extracts (Ferralsol, Vertisol, Cambisol and Gleysol) before and after hypobromite oxidation (HO). Quantification was based on spectral integration and deconvolution fitting. The proportion of \mathbf{P} detected in hypobromite oxidised extracts compared to that in untreated extracts is provided in brackets.

Phosphorus class		Ferralsol	Vertisol	Cambisol	Gleysol
Phosphonates	before HO	1.0	2.6	14.5	-
	after HO	-	-	3.0 (21)	0.2
Orthophosphate	before HO	54.8	221.4	434.3	368.3
	after HO	32.0 (58)	116.6 (53)	329.3 (76)	243.4 (66)
Phosphomonoester	before HO	36.3	39.1	501.1	399.2
	after HO	12.7 (35)	24.2 (62)	210.3 (42)	292.1 (73)
Broad peak in	before HO	21.6	30.9	305.8	216.7
phosphomonoester region	after HO	8.3 (39)	19.3 (63)	99.2 (32)	108.4 (50)
Phosphodiester	before HO	5.1	-	28.2	26.9
	after HO	-	-	-	2.0 (8)
Pyrophosphate	before HO	1.9	1.8	12.9	23.9
	after HO	-	-	-	-

Phosphorus compound	Chemical shift $\delta \mathrm{ppm}$	Concentrations (mg P/kg soil)			
		Ferralsol	Vertisol	Cambisol	Gleysol
myo-IP6	4.97, 4.06, 3.70, 3.57	1.1	0.6	26.3	85.0
scyllo-IP6	3.20	0.4	0.3	15.6	41.1
neo-IP6 4 4-eq/2-ax	5.86, 3.75	-	-	1.4	8.8
neo-IP6 6 2-eq/4-ax	4.36, 4.11	-	-	4.0	1.3
D-chiro-IP6 ${ }_{6}$-eq/4-ax	5.66, 4.25, 3.83	-	-	9.4	8.6
myo-(1,2,4,5,6)-IP ${ }_{5}$	4.42, 3.97, 3.72, 3.36, 3.25	-	-	7.0	4.1
myo-(1,3,4,5,6)-IP5	4.12, 3.60, 3.23	-	-	2.8	1.3
scyllo-IP ${ }_{5}$	3.81, 3.31, 3.05	0.7	0.5	10.8	6.1
neo-IP ${ }_{5}$	4.64, 4.27, 4.01, 3.87, 3.13	-	-	3.3	2.1
chiro- IP_{5}	4.61, 3.39	-	-	0.9	-
scyllo-(1,2,3,4)-IP4	4.12, 3.25	0.8	-	4.3	1.0
Total IP		3.0	1.4	85.9	159.3

Table 5. Concentrations of identified inositol phosphates (IP) in hypobromite oxidised $0.25 \mathrm{M} \mathrm{NaOH}+0.05 \mathrm{M}$ EDTA soil extracts (Ferralsol, Vertisol, Cambisol and Gleysol). Concentrations were calculated from solution ${ }^{31}$ P NMR spectra using spectral deconvolution fitting including an underlying broad signal. When no concentration is given, the IP compound was not detected in the respective soil extract. Chemical shift positions are based on the NMR spectrum of the Cambisol extract (Fig. SI8 in the Supporting Information). Peak positions varied up to $\mathbf{+ 0 . 0 1 8} \mathbf{~ p p m}$ (Gleysol). Conformation equatorial (eq) and axial (ax) according to Turner et al. (2012).

Table 6. Transversal relaxation times (T_{2}) of various P species in the orthophosphate and phosphomonoester regions as determined by solution ${ }^{31} \mathbf{P}$ nuclear magnetic resonance (NMR) spectroscopy and a Carr-Purcell- Meiboom-Gill (CPMG) pulse sequence on hypobromite oxidised soil extracts.

Phosphorus compound	$\mathrm{T}_{\mathbf{2}}$ [ms]			
	Ferralsol	Vertisol	Cambisol	Gleysol
myo-IP $_{6}$	163	140	139	121
scyllo-IP $_{6}$	250	155	154	144
neo-IP6	-	-	203	102
D-chiro-IP6 $^{\text {D }}$	-	-	108	132
orthophosphate	14	9	17	6
broad peak	44	69	89	62

