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This manuscript reports carbon dioxide and methane fluxes for the period June 2012 to May 2014. Using 

a combination of a single eddy covariance tower, footprint modeling, and manual spatial cover 

classification using remotely sensed images, the authors distinguish, separately gap-fill, and quantify 

annual sums for, both actively mined and recently rewetted peat sections. The authors find that 

rewetting increases methane and decreases carbon dioxide emissions, but those effects manifest 

themselves much more strongly in the second year after rewetting, indicating lags. Overall the paper is 

clearly written but could be much shorter. The strongest aspects of the study are the comprehensive 

scholarship and the clarity of the methods. For example, there is a clear description of eddy covariance 

data processing for methane, which seems to have been considered with great care, and is an active area 

of research in the flux community (e.g., European RINGO initiative, perhaps should be linked more 

specifically). The exploration of gap-filling approaches is also a nice addition, though I think it takes up 

too much of the paper overall, given that is not the primary focus of the study (not even in the title). 

There are however some issues with the paper that I think need to be addressed which I outline below. 

 

Major Comments 

 

Soil conditions 

In year 2 the authors report a substantial amount of soil data being recorded, including temperature, 

redox, and water table height. These in turn are included via their variable selection procedure in the 

predictive models of methane flux. Unfortunately, these data are not presented to the reader at all. This 

is disappointing as the focus of the paper implied by the title is the difference in fluxes between the two 

cover types, and soil conditions are likely the mechanism underlying those differences by year 2. I would 

encourage the authors to explore visualizations of those soil data in the paper, perhaps by substituting it 

for some of the discussion of either the machine learning or the CO2 discussion. 

As mentioned by the referee, our modeling approach does include an identification procedure for likely 

flux drivers. We also present a short (section 3.1) and extended (Appendix B) discussion on how these 

drivers can explain flux variability in a mechanistic way. Most likely because our data set was measured 

over heterogeneous terrain, we did not find a comparably simple flux—driver relation (e. g. with soil 

temperature or water table) which explained the observed flux variability to a sufficient degree so it 

could be used to gap-fill our high-frequency data in order to calculate annual flux balances. Due to the 

complexity of the flux data set, we decided to use a more complex modeling approach. Nevertheless, we 

agree that it is necessary to depict the site conditions more clearly so a reader can more easily compare 

to conditions at similar sites and grasp our data set quicker and more comprehensively. We therefore 

implemented a new modeling approach representing methane flux as a function of soil temperature and 

water table and explored the results in a new figure and an additional paragraph in section 3.1. 



 

To further investigate the relation between CH4 flux and the identified likely drivers, we fitted an 

exponential model of water table and soil temperature (in 40 cm depth) to the CH4 fluxes from the 

rewetted section (see Figure XX1). With the exponential dependence of CH4 flux on soil temperature, a 

fair amount (R2 = 0.55) of the flux variability can be explained while the added water table term allows 

for the optimized temperature-FCH4 curve to take two distinct paths above and below an approximate 

water table threshold of 20 cm below the surface (see Figure XX1, panel A). Half-hourly flux variability is, 

however, substantial due to the heterogeneity of the site's surface and other confounding factors like for 

example the above-mentioned air pressure variations and is comparably better explained by our neural 

network models (see Figure XX1, panel B).  

 

Figure XX1 Panel A: Observed Half-hourly methane (CH4) fluxes from the rewetted section of Himmelmoor modeled as an 

exponential function of soil temperature in 40 cm depth and water table (FCH4(Tsoil/WT)). Monthly and daily 

flux and temperature averages are also given. Panel B: Comparison of a more complex artificial neural network 

(ANN) model with the exponential model from Panel A. Although methane flux variability can be explained by 

the exponential model to a reasonable degree, the level of complexity in flux—driver relations appears to be 

represented considerably better by the ANN. 

 

Flux Partitioning 

Why was the net ecosystem exchange flux partitioning done at the monthly timestep? Can this not be 

performed at half-hour timesteps in EddyPro? I assume this was done intentionally but the justification 

is not clear. 

No, flux partitioning is not a capability EddyPro provides. We applied our own model (Eq. 1, page 13), and 

used half-hourly fluxes to optimize the parameters of Eq. 1 (as stated in line 2, page 15). Due to the 

surface heterogeneity of our site, the independent parameters we chose differ from those used in other 

common approaches (e.g.  Reichstein et al., 2005). We included half-hourly footprint characteristics and 

radiation but not temperature as drivers of net ecosystem exchange (NEE). Therefore, total ecosystem 

respiration (TER) in our model is a parameter. To depict the seasonal course of the parameter time series, 

we optimized one set of parameters for each month of the two-year data set (Fig. 4, page 15). The 

resolution of the ecosystem respiration time series is therefore limited to monthly steps. In an effort to 

yield NEE models, which are less likely to be overfitted, we reduced the number of model inputs and 

parameters and chose monthly, rather than for example daily, flux ensembles for optimization. We were 

not able to achieve a higher temporal resolution of TER confidently. We could, however, have calculated 

gross primary production (GPP) for half-hourly intervals using thirty minute radiation measurements 



and the two parameters Pmax and α (panels C and D in Fig. 4, page 15). Due to the focus of this paper 

(annual NEE balances and gap-filling), we decided to omit this step at this point. Instead, we compared 

the determined photosynthesis parameters, which directly relate to plant characteristics, to literature 

values of plants that also occur at our site in order to examine the credibility of our land use-specific gap-

filling models (as stated on page 15, line 1).  

 

Synthesis Literature summaries in the introduction and the discussion need to avoid listing. I am 

referring to the carbon dioxide flux sections, whereas the methane section is better synthesized (I 

especially like the comparison to IPCC values). The comparisons made in the results to other studies 

might be better tabulated. If they are noted in the main text, they should be synthesized better.  

We agree, literature synthesis was a bit wordy in the running text. We created three new tables. One for  

the introduction that summarizes methane gap-filling methods and two in the results section (3.2) 

where we compare our CO2 model parameters to literature values. We propose to move the tables to the 

appendix. 

 

We replaced page 3, line 34 to page 4, line 12 with: 

…the relations between environmental drivers and CH4 flux often appear to be more complex than for 

CO2. An overview of methods applied in EC literature is given in Table A 1. Basic gap-filling methods 

include for example interpolation between measured values or the use of an average to replace all gaps. 

Simple linear models have also proven to be applicable in certain settings. A common approach is to fit 

Arrhenius-type non-linear functions to the flux as a function of various environmental drivers. However, 

as stated by Brown et al. (2014), there is evidence that these functional relationships do not necessarily 

behave monotonically. Artificial neural networks (ANNs) form a category of non-parametric models that 

have frequently been used to fill gaps in EC CO2 flux time series. Mostly, multilayer perceptrons (MLP) 

were chosen (Papale and Valentini, 2003; Moffat et al., 2007; Moffat, 2012; Järvi et al., 2012; Pypker et al., 

2013; Menzer et al., 2015). Most recent literature on CH4 flux gap-filling assess MLP models to be the most 

robust. MLPs are recommended within the processing for the pan-European Integrated Carbon 

Observation System (ICOS) by Nemitz et al. (2018) and for the new methane component of FLUXNET and 

the Global Carbon Project’s efforts better constrain the global methane budget respectively (Knox et al., 

2019). 

 



 

I replaced page 15, line 1  to page 17, line 9 with: 

As a fourth method to evaluate the applicability of our land use-specific flux decomposition, we fitted a 

combined respiration-photosynthesis model (see Eq. 1) to monthly ensembles of the half-hourly CO2 SCTS 

in order to check if the resultant parameters are reasonable in relation to each other and to literature 

data. In general, the vegetation period, with its productivity maximum between June and July and its 

cessation between mid-October and November is well depicted in the seasonal course of the model 

parameters throughout both years. The parameter courses relating to the vegetated strips of the drained 

and rewetted areas (Figure 4, panels B – D) develop fairly similar. Distinctions between the drained and 

rewetted areas are more pronounced with respect to CO2 release from bare peat surfaces (Figure 4, panel 

A). Ditch-blocking of a rewetted sector close to the EC tower (which therefore made up a large part of the 

EC footprint) was only performed one year before our measurements started. In summer of 2012 this 

area therefore was not yet permanently flooded leading to TERbare fluxes exceeding those from the active 

mining site. From winter 2012/2013 on, inundation of the rewetted bare peat area progressively 

increased, resulting in lower TERbare fluxes from the rewetted compared to the drained section. Our 

TERbare fluxes are in concordance with findings from two studies that were also conducted on the active 

peat extraction area in Himmelmoor with manual chambers; TER data reported from similar peat 

extraction sites also agree with our results (see Table 3). As model includes the relative contributions of 

the vegetated strips to the EC footprint we compare the extracted model parameter time series (see 

Figure 4, panels B – D) with estimates of these plant species-specific values from other studies 

investigating similar plants and plant communities as found in the vegetated strips in Himmelmoor. 

Reported averages and ranges agree well with our findings (see Table 4). Additionally, we could 

distinguish between CO2 release from decomposing bare peat (TERbare, see Figure 4, panel A and Table 3) 

and from the vegetated strips (TERveg, see Figure 4, panel B and Table 4) where respiratory CO2 release 

also includes autotrophic respiration of plants. In our data set, TER is between twofold and fourfold 

larger in areas with than without vegetation. TERveg from the rewetted area is mostly larger than from 

the drained area. Progressive inundation led to a hydrological connection of SCveg and the flooded bare 

peat areas. An increased input of dead plant material as a result of higher water tables might have 

promoted heterotrophic respiration. Hampered plant productivity due to flooding is also expressed in 

lower peak values of Pmax at the vegetated strips of the rewetted site. 

 

 



 
 

 

Machine Learning In Appendices A and B, the authors outline the machine learning approach used 

(artificial neural networks). Can the authors justify why they used a single data split as opposed to a k-

fold cross validation approach, which tends to give a more stable performance evaluation? Using the 

alternative year as a “test” set for generalizability is interesting. Can the authors also comment on 

whether gaps were artificially created during validation. or whether the data splits were performed 

randomly on all observations? 

I assume the referee refers to the division of target data (fluxes) into training and validation sets in the 

course of network optimization. To my understanding, we actually did use a simple 2-fold cross 

validation by dividing the data set into two groups. Due to the large number of fluxes (especially in case 

of methane) that we discarded during quality filtering, a division into more groups would have resulted 

in a lower number of fluxes per group, impairing network training. As we used ensemble averages of 

1000 networks and therefore performed network optimization 1000 times, we also (randomly) divided 

the target data differently each time and in my opinion sufficiently counteracted effects of overfitting by 

this proceeding.  

 

 

 



Style 

I personally enjoyed the descriptive style of the writing, but it is unfortunately much too verbose for a 

modern readership. I would encourage the authors to mercilessly edit to reduce text. They might be 

surprised how much shorter the paper is if written in a more declarative style. 

Thank you for the feedback. I agree and cut down on verbosity by replacing large parts of running text 

with tables as suggested in previous comments from Referee #1. 

 

An example: 

“We used a factor of 34 to convert FCH4 into CO2e release. This value is given in the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change (IPPC AR5, Myhre et al., 2013), refers to a 100-

year time horizon and includes climate–carbon feedbacks” 

…could be shortened to: 

“We used a CH4 global warming potential of 34 kg CO2-eq (IPCC AR5, Myhre et al., 2013), which assumes 

a 100-year time horizon and includes climate-carbon feedbacks.” 

Although I understand the referee’s general notion, I do not think this is a good example. The edited 

sentence is shorter mostly because the abbreviation “IPCC AR5” is not explained. In my opinion, also 

commonly used and widely known abbreviations should be explained when they first occur for 

consistency.    

 

Or: 

“Nevertheless, on an annual basis the periods when the sink character of SCrew prevails do not 

compensate for CO2 release during periods of reduced plant activity.” 

 

“Nevertheless, annually integrated ecosystem respiration outweighs photosynthesis in SCrew.” 

I agree, sentence replaced. 

 

 

Minor Comments 

Page 2  

Line 9: Perhaps “land-use or climate change” rather than “men” 

Changed 

Line 14: “of carbon dioxide” 

Changed 

Line 20: “inheres the potentials” is ambiguous phrasing 

“Inheres” replaced with “has”. 

Line 29: perhaps “oxidized” rather than “decomposed” 

“decomposed” replaced with “converted to CO2”. 

Page 3 

Line 3: perhaps “strongly” rather than “gravely” 

Changed 

Lines 4-20: This is a nice minireview, but could be stronger if structured more systematically, or if the 

points could be linked more, to sound less like a list. 

No change made. The questions are: What is known from literature about the development of methane 

emissions after peatland rewetting? What is to be expected for a largely vegetation-free site like 

Himmelmoor? To me the structure is systematic and the points are linked. I am not sure what to change. 

Page 7 Line 14: “brown” 

Changed 

Lines 20-: Can you briefly justify the variable positions of these sensors? How representative 

is the water-level sensor of the general footprint? 

I extended the description of sensor positions: 



“A second HMP45 was installed together with a NR01 4-component net radiometer (Hukseflux, Netherlands) 70 m southwest of 

the EC tower on a tripod at 2~m height. The radiation sensors were not mounted on the EC tower because the 

field of view of the downward-facing sensors would have covered the peat dam and therefore not be 

representative for a dominant surface type at the site. These additional HMP45 and NR01 data were logged on a CR-

3000 (Campbell Scientific, UK). Another logger of this type was used at the weather station which was taken over from a 

previous project and for data consistency was left at a position approximately 500~m north of the EC 

tower. 

The water level within the footprint is highly variable as the surface consists of drained and rewetted 

sections. Our single sensor is representative for the rewetted bare peat strip to the southwest of the EC 

tower making up a large part of the EC footprint when wind comes from southwesterly directions. 

 

Figure 1: Can you please add some more points for the other sensor installations. 

I updated the map with locations of all measurement systems

 
Page 8  

Figure 2: This figure can be more useful to visualize how each true calendar year deviates from the long-

term average if it just showed the full timeseries in one series (June 2012-May 2014). The problem 

currently is that it is difficult to visually integrate the deviations from the mean. 

Ok. Figure restyled. 



 

 

Line 8: Is WPL strictly a correction? 

It is true that there is a discussion about this topic as compensation for air density fluctuations can also 

be seen as part of the eddy covariance method itself and not as a post-processing step and therefore 

does not qualify as a correction. On the other hand, the term WPL-correction is still widely used in the 

community, likely for historical reasons. I did not change this terminology. 

 

Page 18 Table: Acres are not SI units. Please report in m2, hectares (ha), or km2 

“a-1” stands for “per annum/year”. We do report area in m2. No change made. 

 

Line 33: I think the values in parentheses should be reversed given the order of the sentence. 

True, thank you for the hint, order was reversed.  
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General comments 
This manuscript tested the use of single EC tower to estimate CO2 and CH4 fluxes from different land 

surface area (drained and rewetted) in a mined bog in Northwest Germany by partitioning the sources of 

signals using footprint statistics. It is an interesting paper from both technical perspective and 

management perspective. 

 

The manuscript in general is well-written. The authors paid special attention to the footprint analysis, 

which is very good as here we bend the rules for applying eddy covariance technique. And the gap-filling 

procedure, the model input selection and the comparison of model performance are clearly explained, 

although it even seems a bit too technical considering the main topic is the comparison of EC CO2 and 

CH4 fluxes from different surface types of a restored bog. But it is a matter of style. 

We see the Referee’s point; the model description is a bit lengthy. It would be a possibility to move 

Appendix A to a supplementary document as it contains only a detailed description of the methods. If I 

understand Copernicus’ rules correctly, all other appendices cannot to moved to the Supplements as 

they contain results and interpretations. We want to ask the editor for his opinion on moving Appendix 

A to the supplements. We would argue against removing the algorithm description section entirely as 

for reproducibility and transparency the methods should be documented somewhere. 

 

One thing not much mentioned in the paper is the information about the processes and controls which I 

generally have interest in. How did the environmental variables affect the fluxes under different water 

regime? how important was temperature control, water table and photosynthesis at different time 

scales in these ecosystems? 

The focus of the paper is the impact of land use change on the annual balances of methane and carbon 

dioxide fluxes. Presumably due to the heterogeneous surface of the site, we did not find simple flux—

driver relations. We addressed this complexity by using models that allow for the characterization of 

discontinuous and non-linear responses of spatially integrated fluxes (as measured with  

the EC system) to environmental drivers and source area variations. We, however, realize that it is 

necessary to depict the site conditions more clearly so a reader can more easily compare to conditions at 

similar sites and grasp our data set quicker and more comprehensively. We therefore implemented a 

new modeling approach representing methane flux as a function of soil temperature and water table 

and explored the results in a new figure and an additional paragraph in section 3.1. 

To further investigate the relation between CH4 flux and the identified likely drivers, we fitted an 

exponential model of water table and soil temperature (in 40 cm depth) to the CH4 fluxes from the 

rewetted section (see Figure XX1). With the exponential dependence of CH4 flux on soil temperature, a 



fair amount (R2 = 0.55) of the flux variability can be explained while the added water table term allows 

for the optimized temperature-FCH4 curve to take two distinct paths above and below an approximate 

water table threshold of 20 cm below the surface (see Figure XX1, panel A). Half-hourly flux variability is, 

however, substantial due to the heterogeneity of the site's surface and other confounding factors like for 

example the above-mentioned air pressure variations and is comparably better explained by our neural 

network models (see Figure XX1, panel B).  

 

Figure XX1 Panel A: Half-hourly methane (CH4) flux from the rewetted section of Himmelmoor as an 

exponential function of soil temperature in 40 cm depth and water table (FCH4(Tsoil/WT)). Monthly 

and daily flux and temperature averages are also given. Panel B: Comparison of a more complex 

artificial neural network (ANN) model with the exponential model from Panel A. Although methane 

flux variability can be explained by the exponential model to a reasonable degree, the level of 

complexity in flux—driver relations appears to be represented considerably better by the ANN. 

I do like the comparison of TER between bare peat and vegetated strips as shown in fig.4. And I would 

also like to see similar comparison for CH4. Vegetated strips are in close proximity of EC tower from both 

rewetted and drained section. By merely looking at the frequency of wind directions, the most frequent 

wind direction are apparently from the vegetation stripes. “The vegetated strips in Himmelmoor cover 

around 10% of the surface and appear to be especially strong sources of CH4...”, as stated in the paper, it 

further proved the importance of vegetation on CH4 flux. Thus it would be more interesting and useful to 

quantify the CH4 flux from vegetation and bare peat separately, rather than solely reporting the annual 

balance of the mixture.  

Agreed, separate methane flux models for the bare and vegetated areas would be desirable. With the 

limited amount of available data after quality filtering, we were, however, not able to confidently 

decompose the measured fluxes of the mixtures into time series only referring to the vegetated strips 

like it was possible in case of carbon dioxide fluxes. For methane, “only” a decomposition into the 

rewetted and drained section (addressing the main topic of the study, the impact of land use change on 

GHG balances) was possible for us to accomplish. 

We, however, agree that a depiction of the impact of the contribution of the vegetated strips to the EC 

footprint on methane fluxes should still be added to our manuscript and therefore added new figures. 

The impact of footprint variability on half-hourly EC flux variability is included in a new Figure XX1 and 

more specifically addressed in a new Figure XX2. In the latter figure, comparisons of fluxes when the 



vegetation contribution to the EC footprint was below and above 20 % respectively are shown as 

boxplots. Systematic distinctions between those two groups (and also the low number of available 

measurements) are illustrated. Please note the added paragraph shown in response to the referee’s 

comment to Page 20, Line 20 which also refers to the new Figure XX2. 

 
Figure XX2 Dependence of methane fluxes on wind direction and eddy covariance (EC) source area composition, 

in particular the contribution of the vegetated strips, in summer (A) and winter (B). Data of both 

investigated years are shown. The  EC tower was placed on a railroad dam dividing the area into an 

actively (East) and formerly (West) mined section, which had been rewetted prior to measurements. 

In general, methane emissions from the rewetted section were higher than from the drained section 

and fluxes when the EC footprint was composed of more than 20 % vegetated areas was 

significantly (Two-sample Kolmogorow-Smirnow test, p < 0.01) higher than from vegetation-free 

areas, both in summer (C) and winter (D). 

In addition, the section about the vegetation is currently very simple. It would be nice if the authors can 

provide more information on the vegetation as the EC tower is located just near by. For example , there 

are tree species like Betula pubescens. How tall are they? Can there be flow distortion since the EC mast 

is not very high (2m)? 

Actually, the EC sensors were mounted at 6 meters height (see page 7, line 20).  Tree height in the 

vegetated strips was up to 2 m. We took differences in roughness length in different wind sectors into 

account within our footprint model by statistically determining individual roughness length estimates 

for 2° wind direction bins. We believe that we addressed variations in roughness length sufficiently 

thorough.  We added a sentence after page 9, line 18 for clarity. 

Variations in vegetation height and thereby roughness length in different wind sectors were addressed 

by statistically determining roughness length estimates separately for 2° wind sectors prior to evaluating 

the footprint model (see Holl2019b for details). 

We amended the vegetation description on page 7, line 17 with:  

B. pubescens and Salix spp. reached heights of up to 2 m and a combined estimated surface cover within 

the vegetated strips of up to 10 %. 

 



“In summer of 2012 this area therefore was not yet permanently flooded ...From winter 2012/2013 on, 

inundation of the rewetted bare peat area progressively increased,...” It would be nice to show the time 

series of water table level during the study period. How was the dynamics and intensity of the 

inundation with time?  

Unfortunately, water table data are not available for the whole study period, only for the second year 

(starting in June 2013). We added a new Figure XX1 to illustrate the annual course of water table depth in 

conjunction with soil temperature and methane fluxes.  

I also wonder if the vegetated area was changing during the study period due to the progressive 

inundation. It was shown by a previous study that the fractal dimension of the vegetation area has the 

most importance in explaining the variation of fluxes in a restored wetland (Matthes et al., 2014). 

Vegetation cover was well established in the vegetated strips (former deep ditches, refilled with peat in 

the late 1960s) and not the direct result of rewetting. The rewetted former mining areas were largely 

vegetation-free during our investigation. The contrast between vegetated and unvegetated areas as well 

as the fraction of vegetated areas in the landscape stayed virtually constant.    

The authors have done a nice job reporting the annual greenhouse gas balances and comparing them to 

other studies. But we should also be careful here, about the reasons behind those numbers. As I can see 

from the paper, vegetation and progressive inundation have substantial contribution to the results. 

Imagine if the EC tower is moved somewhere else with higher (or lower) fraction of vegetation in its 

footprint, or if the measurements are conducted one year before (or later), are we expecting to get 

similar results from the drained and rewetted sections? Some sensitivity tests would help to show the 

reliability of results. 

Yes, as our data were acquired during a major transition of the site from active peat mining to 

restoration and I would expect gas flux characteristics to further change in the future. Although, inter-

annual variability and systematic shifts in processes cannot be separated precisely with our two-year 

data set, it also can be seen as a document of shifting conditions and ecosystem response mechanisms. 

We are confident that the position of the measurement equipment was chosen adequately in order to 

describe the gas flux dynamics of the site as a whole. The fraction of the vegetated strips within the EC 

footprint resembles the actual proportion of this surface class within the investigation area. So, yes, 

moving the tower would potentially change the results. We think our data set is suitable for the purpose 

of characterizing landscape-scale integrated gas fluxes from the surface class mixture prevalent in 

Himmelmoor. We added a new Figure XX3 as evidence for this notion.  

 
Figure XX3 Frequency distribution of relative half-hourly contributions of vegetated strips to EC footprint area in 

both investigated years (Year 1: 01 June 2012 to 31 May 2013; Year 2: 01 June 2013 to 31 May 2014 ). For 

comparison, the vegetated strips’ areal fraction within the investigation area is shown, documenting 

that the measurement system was set up at an adequate position in the landscape in order to 

represent its spatial proportion of surface classes. 



In the end, I do like to see a bit of advices concerning the management of the peat-extraction fields. For 

examples, is it advisable to rewet the field in terms of climate impact? What are the pros and cons of 

having large patches of vegetation during rewetting? Should we aim to regulate the water level during 

the rewetting? 

We added a section discussing the rewetting measures which have been taken at Himmelmoor. 

 

3.4 Implications of rewetting measures for the re-establishment of a mire ecosystem in Himmelmoor 

 

In general, the initialization of peat accumulation by Sphagnum mosses is inevitable (Joosten, 1992; 

Pfadenhauer and Klötzli,1996; Gaudig, 2002) for the purpose of re-establishing a degraded peatland’s 

natural ecosystem functions. Two (somewhat untypical) features of Himmelmoor need to be considered 

when evaluating the success of the implemented rewetting measures in terms of mire re-establishment 

and climate change mitigation: (1) The fact that large vegetation-free areas have been inundated 

shallowly and (2) that fen-type plants have established at the only vegetated areas which had been 

taken out of use in the late 1960s. We found peak CH4 emissions from the vascular plant-dominated 

areas (see Figure 10) and also attribute this fact causally to the presence of fen-type vegetation. Vascular 

plants provide an effective transport pathway through their gas-conducting tissue as well as root 

exudates which form an easily decomposable substrate for soil microbes (Kerdchoechuen, 2005; Neue et 

al., 1996; Bhullar et al., 2014). Because a water table above the surface instead of close to but below the 

surface has been established at the bare peat areas, the creation of floating vegetation mats is the only 

possibility for Sphagnum colonization (Pfadenhauer and Klötzli, 1996). Nevertheless, fast growing 

vascular plants can support peat moss growth by diminishing wave movement and offering adherence 

area (Sliva, 1997). Besides the need for a preferably calm water surface, another limiting factor for 

floating mat growth is the water CO2 concentration (Gaudig, 2002; Paffen and Roelofs, 1991; Smolders et 

al., 2001; Lamers, 2001; Lütt, 1992) which can be enhanced by vascular plants by providing oxygen to the 

rhizosphere fostering soil respiration. It thus seems conceivable that the Sphagnum spp. growth-

favoring effects could outweigh the negative ramifications for bog development and climate change 

mitigation potential that the current plant cover implies. In sections of Himmelmoor with a non-

industrial land use history, overgrowth of the grass tussocks, formerly dominating the area, by the bog-

type Sphagnum species S. magellanicum and S. papillosum is in progress today (personal observation, 

2016). The now prevailing plant species on the extraction site could therefore constitute an intermediate 

state that can potentially be overcome. The active dispersal of Sphagnum mosses as a management 

strategy would foster mire re-establishment and possibly lead to drastically diminished CH4 release as 

e.g. the study from Järveoja et al. (2016) from an Estonian site where peat mosses dominate after 

rewetting suggests. 

 

 

Specific comments 

 
Abstract 

Page 1, Line 18: The numbers in CO2 fluxes from rewetted and drained section are wrong. Rewetted 

section should have lower CO2 emission as stated in the manuscript.  

True, numbers were switched around, order was reversed. 

 

Page 1, Line 20: It is not useful to compare the difference in CH4 to the difference in CO2 in an absolute 

term. Surely CO2 is larger in the magnitude. 

We suspect a misunderstanding. In this sentence not absolute CH4 and CO2 fluxes are compared but 

absolute differences in CH4 fluxes from both land use types.  

 

Introduction 

Page 2, Line 27-29: Please provide references. 

Still refers to Couwenberg et al. 2010 (see page 2, line24).  



Page 3, Line 1: What do you mean by “higher plants”? 

We mean “vascular plants” and agree that “higher plants” is ambiguous and therefore replaced this 

expression. 

 

Material and methods 

Page 5, Line 19: So the drained section had also some area rewetted during the study period? Please 

specify what you meant here. 

Ditch blocking was performed on small sections of the drained area after a final harvest in this year 

(June/July) and therefore after the investigation period of this study. We added a sentence clarifying this 

fact.  

Peat harvesting on the eastern half continued until June 2018, rewetting of smaller sections in this area 

began, however, already in 2014 (after the investigation period of this study).   

Page 7, Line 15: Salix spp.. 

Extra dot removed 

Page 11, Line 1: Maybe replace “and” with “or” 

No occurrence of “and” in the mentioned line, no change made. 

Page 11,Line 13:“...70 % at all flux gaps that resulted from data division”. What does that mean? 

At times when “tower view” fluxes were mostly associated to for example the drained section, the 

surface class specific time series of the rewetted section have a gap (data division). To later on gap-fill 

the flux time series, a contribution of the rewetted section of 70 % was prescribed for these gaps.  

Page 11, Line 15-17: Why not using median? Maybe a probability density function plot would justify your 

method for gapfilling CCveg. 

We chose the value of the most frequent class because it is closer to the actual fraction of vegetated 

areas within the investigation area. The new Figure XX3 illustrates this fact.  

 

Results and discussion 

Page 14, Line 12-20: Was the ANN model prediction compared with the testing subsets as it should be? As 

written in Appendix A, “70 % training and 30 % validation data”, it seems there is no testing subset of 

data. 

Yes, that is true. We did not use a testing subset during optimization of the individual networks (1000 

per ensemble). Due to rigorous quality filtering and data division (into rewetted and drained), data 

availability, especially in case of CH4 fluxes, was limited and we decided to increase the number of 

training samples to improve training quality at the expense of reserving data points for testing in each 

individual run. We, however, conducted a similar type of validation (see Figure D3) by driving models 

that were optimized using Year 1 measurement data as targets with Year 2 environmental data and 

comparing the results to measured Year 2 gas fluxes. The allocation of testing data is commonly is 

implemented in ANN optimization in order to generate a data set to later on estimate model quality on 

data independent from optimization. We believe that we achieved a test of similar meaningfulness by 

exploiting the fact that we had two independent years of data to work with and could at the same time 

improve model optimization by increasing the sizes of the training and validation data sets. 

 

Page 20, Line 20: There are many more recent studies on that topic. e.g. “Impact of water table level on 

annual carbon and greenhouse gas balances of a restored peat extraction area”, Jarveoja et al., 2016, 

Biogeosciences. 

We extended Section 3.3 with a discussion about the recommended publication and others.  

…, which is supplied to these areas from the underlying aquifier. Figure XX2 illustrates the dependence of 

FCH4 on the relative contribution of the vegetated strips to the EC footprint. Mean summer fluxes were 

significantly (Two-sample Kolmogorov-Smirnov test, p < 0.01) higher from the vegetated (67 nmol m-2 s-1) 

than from the bare (29 nmol m-2 s-1) areas. These results are in line with estimates from Vybornova (2017) 

who determined a mean annual FCH4 of 50 nmol m-2 s-1 for the same vegetated strips in Himmelmoor 

with manual chambers. Vybornova et al. (2019) report mean annual FCH4 from the bare peat areas of 10 



nmol m-2 s-1. Further evidence for the decisive role the type of vegetation which is established after 

rewetting has on the magnitude of CH4 release is provided by Järveoja et al. (2016). The authors report 

annual CH4 budgets of 0.25 and 0.16 g m-2 a-1 at subsections of their site with relatively high and low 

water table respectively. The site Järveoja et al. (2016) investigated is the former peat extraction area 

Tässi in central Estonia (58° N). In contrast to Himmelmoor, restoration measures at this site included the 

active establishment (dispersal) of peat mosses on a substantial layer (2.5 m) of remnant Sphagnum spp. 

peat. By the time measurements commenced two years after first restoration efforts were made, Tässi 

was already dominated by Sphagnum spp. mosses. With a lack of aerenchymatic plants and systematic 

efforts to re-establish bog vegetation, annual CH4 release at Tässi is up to 100 times smaller than at 

Himmelmoor. 

 

Conclusions 

Page 21, Line 16-17: “The release of CH4 increases after rewetting and within the present two year data 

set also over time.” This sentence does not read very well. 

We agree, section reformulated, see comment below. 

 

Page 21, Line 17-18: This statement does not correspond to the current results. CO2 decreased from 887 to 

567 g m-2 yr-1 while CO2e of CH4 increased from 453 to 621 g m-2yr-1 in the rewetted section from year 1 

to year 2. Otherwise, comparing the rewetted to the drained section, CO2 dropped from 974 to 567 g m-2 

yr-1 and CO2e of CH4 increased from 412 to 621 g m-2 yr-1 in year 2. Either way it showed the reduction of 

CO2 emission was more prominent than the increase of CH4 emission during rewetting. 

We agree, the sentence is not written very clearly; “on short timescales” is ambiguous. Section replaced 

with:  

CO2 emissions decreased progressively after rewetting with a reduction of 101 g m-2a-1 in Year 1 and of 407 

g m-2a-1 in Year 2. The release of CH4-CO2e increased after rewetting and was constant in both 

investigated years (209 g m-2a-1). The climate impact of elevated CH4 emissions after rewetting therefore 

dominated over the effect of decreasing CO2 release in Year 1, whereas CO2 emission reduction was 

nearly twice as high as the CH4-CO2e increase in Year 2. 

 

 

 

Technical comments 
1) Maybe some of the figures D1-4 can be moved to the main text as they validated the modelling and 

the flux decomposition method. 

We propose to move figures D3 and D4 to the results section as they show the most independent and 

therefore meaningful test of model quality. 

 

2) The results on the cumulative fluxes were repeatedly presented in multiple units (g m-2a-1 in Table 2, 

mol m-2, CO2-C g m-2 and CH4-C g m-2 in Figure 5). Maybe Table 2 and figure 5 can be combined instead. 

The purpose of reporting different units was to facilitate quick comparability to other studies. We agree 

that spreading the information across Table 2 and Figure 5 is not ideal. We therefore added carbon fluxes 

to Table 2. Figure 5 was left because there is a reference to the shape of the cumulative curve in the text 

(Page 18, Line 29). 
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Abstract. With respect to their role in the global carbon cycle, natural peatlands are characterized by their ability to sequester

atmospheric carbon. This trait is strongly connected to the water regime of these ecosystems. Large parts of the soil profile

in natural peatlands are water-saturated, leading to anoxic conditions and to a diminished decomposition of plant litter. In

functioning peatlands, the rate of carbon fixation by plant photosynthesis is larger than the decomposition rate of dead organic

material. Over time, the amount of carbon that remains in the soil and is not converted back to carbon dioxide grows. Land use5

of peatlands often goes along with water level manipulations and thereby with alterations of carbon flux dynamics. In this study,

carbon dioxide (CO2) and methane (CH4) flux measurements from a bog site in NW Germany that has been heavily degraded

by peat mining are presented. Two contrasting types of management have been implemented at the site: (1) drainage during

ongoing peat-harvesting on one half of the central bog area and (2) rewetting on the other half that had been taken out of use

shortly before measurements commenced. The presented two-year data set was collected with an eddy covariance (EC) system10

set up on a central railroad dam that divides the two halves of the (former) peat harvesting area. We used footprint analysis

to split the obtained CO2 and CH4 flux time series into data characterizing the gas exchange dynamics of both contrasting

land use types individually. The time series gaps resulting from data division were filled using the response of artificial neural

networks (ANNs) to environmental variables, footprint variability and fuzzy transformations of seasonal and diurnal cyclicity.

We used the gap-filled gas flux time series from two consecutive years to evaluate the impact of rewetting on the annual vertical15

carbon balances of the cutover bog. Rewetting had a considerable effect on the annual carbon fluxes and led to increased CH4

and decreased CO2 release.

The larger relative difference between cumulative CO2 fluxes from the rewetted (22
::
13 ± 7

:
6
:

mol m-2 a-1) and drained

(13
::
22 ± 6 mol

:
7
::::
mol m-2 a-1) section occurred in the second observed year when rewetting apparently reduced CO2 emissions

by 40 %. The absolute difference in annual CH4 flux sums was more similar between both years while the relative difference20

of CH4 release between the rewetted (0.83 ± 0.15 mol m-2 a-1) and drained (0.45 ± 0.11 mol m-2 a-1) section was larger in the

first observed year indicating a maximum increase of annual CH4 release of 84 % caused by rewetting; at this particular site

during the study period.

Copyright statement. Authors 2019

1



1 Introduction

Peatlands are wetland ecosystems that accumulate peat under water-saturated soil conditions. Peat formation is the result of an

imbalance between production and decomposition of organic matter. For a peatland to qualify as a mire, the accumulation of

peat has to be ongoing. The term peatland is defined broader and refers to soils that include an at least 30 cm thick peat horizon

– with or without ongoing peat accumulation. Concerning long-term carbon sequestration, no other terrestrial ecosystems are5

as efficient as mires. Although peatlands cover only 3 % (400 million ha) of the Earth’s land surface, they store 550 Gt carbon

(Yu et al., 2010), which equals the amount of carbon (C) stored in the entire terrestrial biomass and represents twice as much

C as sequestered in the Earth’s forests respectively. Peatlands are characterized by complex interactions between vegetation,

hydrology and peat and are therefore vulnerable to alterations of these factors by men
::::
land

:::
use

:
or climate change. Traditional

land use practices in peatlands are commonly paralleled by interference with the ecosystems’ water regimes. Hydrological10

manipulations can fundamentally modify the carbon flux dynamics of peatlands, regardless if they are undertaken to prepare

the area for commercial use (drainage) or to restore a "natural" state of the ecosystem (rewetting). Anthropogenic use of

peatlands usually involves their drainage. The stored carbon can then be oxidized, and a C sink is often turned into a C source.

It is estimated that at least 3 billion tons (Parish et al., 2008)
::
of carbon dioxide (CO2) are emitted by degraded peatlands per year

globally. This is equivalent to 10 % of the global annual emissions by the combustion of fossil fuels. The rewetting of formerly15

drained peatlands commonly reduces CO2 emissions drastically and makes the re-establishment of a CO2 sink possible on the

long run (Couwenberg, 2009; Wilson et al., 2009; Alm et al., 2007; Vanselow-Algan et al., 2015; Beyer and Höper, 2015;

Wilson et al., 2016b; Tuittila et al., 1999). Under water-saturated conditions, however, the anaerobic decomposition of organic

matter and thereby the production of the greenhouse gas (GHG) methane (CH4) increases. Land use change of peatlands thus

inheres
:::
has the potentials to accelerate global warming as well as to mitigate climate change.20

For a peatland to act as a CO2 sink, the water level may fluctuate around the surface only to a minor degree. If it is too

low, more plant litter is decomposed aerobically than is being produced. If it is too high, plant production often is inhibited, so

that e.g. lakes commonly are carbon sources. At water tables near the surface, CO2 emissions are low (respectively negative

when C is sequestered); with lowering water tables emisions rise. Couwenberg et al. (2010) found a linear correlation between

CO2 flux (FCO2) and water table depth in a meta-analysis of flux data from temperate European peatlands. For sites with mean25

annual water levels above 40 cm below the surface, CO2 emissions decrease with rising water tables. CH4 emissions are also

linked to the water table. At levels deeper than 20 cm below the surface, CH4 emissions are negligible and increase with a

rising water table. In case of inundation, diffusive CH4 release is hampered due to the large difference in gas diffusivity of

water and air. Moreover, CH4 can be decomposed
::::::::
converted

::
to

:::::
CO2 on its comparably slow way through the water column

if enough dissolved oxygen is present. Two alternative mechanisms for the transport of pedogenic CH4 to the atmosphere are30

known. CH4 release via bubbles can account for a significant portion of the overall CH4 emissions (Glaser, 2004; Strack et al.,

2005; Goodrich et al., 2011). This process is referred to as ebullition and describes the sudden release of gas bubbles that

accumulate in the soil pore space until their buoyancy is high enough for them to ascend to the surface. The importance of

diffusion and ebullition declines with the presence of vascular plants. The soil and water volume can be bypassed employing

2



plant-mediated transport through the aerenchymae of vascular plants (Whalen, 2005; Bubier, 1995). Moreover, higher
:::::::
vascular

plants also provide labile dissolved organic carbon to the rhizosphere. These easily decomposable carbon compounds can act as

a substrate for methanogenic microorganisms. CH4 flux (FCH4) dynamics are therefore gravely
:::::::
strongly impacted by vegetation

cover and type.

Wilson et al. (2009) investigated the development of CH4 emissions and modeled the course of CH4 emissions for different5

land use types following peat extraction. The authors conclude, that by long-term inundation of peatlands formerly used for

peat harvesting, the creation of a landscape scale methane hotspot is very possible. Nevertheless, the balance of avoided CO2

emissions by restoration and newly created CH4 emissions results in a net-reduction of the global warming potential (GWP)

at the site Wilson et al. (2009) described. When anaerobic conditions prevail after inundation, CH4 production is mainly

controlled by the availability of fresh organic matter (Couwenberg, 2009; Lai, 2009; Saarnio et al., 2009) as well as soil and10

water temperature (Schrier-Uijl et al., 2010). Hahn-Schöfl et al. (2010) performed a chamber measurement campaign and

incubation experiments on a rewetted former grassland fen in the Peene river valley in NE-Germany. The authors describe

the formation of an organic sediment from the rotting former vegetation cover. The CH4 production potential linked to the

anaerobic decomposition of such a substrate is very high. Tiemeyer et al. (2016) investigated GHG release from 48 grassland

sites on drained fens and bogs in Germany. They report high CH4 emissions from relatively nutrient-poor and acidic sites.15

Incubation experiments from Hahn-Schöfl et al. (2010) show that bare peat is comparatively inactive. This finding is confirmed

by Wilson et al. (2016b) for drained as well as rewetted bare peat surfaces in temperate peatlands. In case of a vegetation-free

restored peatland site, the risk of CH4 production depends on which plants are established or colonize the site respectively.

Thereby, it is critical how easily decomposable the delivered organic matter is and if plant-mediated methane transport via

their aerenchyma (Whalen, 2005) occurs. Furthermore, CH4 production is negatively correlated with the availability of other20

electron acceptors like iron or sulfate.

CH4 is an important GHG and a crucial part of the carbon balance of many (especially wetland) ecosystems. While the

earliest landscape scale CH4 flux measurements date back to the 1990s (Verma et al., 1992; Zahniser et al., 1995; Suyker et al.,

1996), considerable advances in laser absorption spectroscopy (LAS) within the last ten years have led to a wide application of

fast LAS-based sensors as part of eddy covariance (EC) setups. Intercomparisons of the available sensors are given by Tuzson25

et al. (2010), Detto et al. (2011), Peltola et al. (2013) and Peltola et al. (2014). Due to its low power consumption and thereby

its feasibility for remote sites with limited off-grid energy supply, the Licor LI-7700 open-path sensor (McDermitt et al., 2011)

has frequently been used in ecosystem CH4 flux studies. Because the measurement cell of such a devices is exposed to the

atmosphere, it does not require a pump (reducing the sensor’s power requirements) but is also subject to adverse conditions

like dust or rain, which can deteriorate the acquired data by contaminating the highly reflective mirrors the sensor relies on.30

The development of fast sensors provided the possibility to measure long-term landscape scale CH4 fluxes with the EC

technique at high temporal resolution. Ecosystem carbon balances can since be reported more comprehensively. However, to

be able to calculate for example annual sums, gaps in the flux time series have to be filled first. Compared to modeling CO2

fluxes, gap-filling of CH4 fluxes is more challenging because the relations between environmental drivers and CH4 flux often

appear to be more complex than for CO2.
::
An

::::::::
overview

::
of

:::::::
methods

:::::::
applied

::
in

:::
EC

::::::::
literature

:
is
:::::
given

::
in

:::::::::::
supplements

::::
table

:::
S1.

:
35
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Basic gap-filling methods include for example interpolation between measured values (Hanis et al., 2013; Dengel et al., 2011)

or the use of an average to replace all gaps(Hatala et al., 2012; Mikhaylov et al., 2015). Simple linear models have also proven

to be applicable in certain settings(Alberto et al., 2014; Hanis et al., 2013). A common approach is to fit Arrhenius-type non-

linear functions to the flux as a function of various environmental drivers, what has been done for half hourly data (Kroon et al., 2010; Forbrich et al., 2011; Hommeltenberg et al., 2014; Goodrich et al., 2015)

as well as for downsampled time series (Suyker et al., 1996; Friborg and Christensen, 2000; Rinne et al., 2007; Long et al., 2010; Wille et al., 2008; Jackowicz-Korczyński et al., 2010; Parmentier et al., 2011; Brown et al., 2014; Shoemaker et al., 2015; Mikhaylov et al., 2015)5

. However, as stated by Brown et al. (2014), there is evidence that these functional relationships do not necessarily behave

monotonically.

Artificial neural networks (ANNs) form a category of non-parametric models that have frequently been used to fill gaps in

EC CO2 flux time series. Mostly, multilayer perceptrons (MLP) were chosen (Papale and Valentini, 2003; Moffat et al., 2007;

Moffat, 2012; Järvi et al., 2012; Pypker et al., 2013; Menzer et al., 2015)while other authors utilized radial basis function (RBF)10

networks (Schmidt et al., 2008; Kordowski and Kuttler, 2010; Menzer et al., 2015). For
:
.
::::
Most

::::::
recent

:::::::
literature

:::
on CH4 fluxes,

MLP models are described by Dengel et al. (2013), Deshmukh et al. (2014), Knox et al. (2015) and Goodrich et al. (2015) as

well as a special kind of RBF network, a generalized regression neural network (GRNN) , by Zhu et al. (2013)
:::
flux

:::::::::
gap-filling

:::::
assess

:::::
MLP

::::::
models

::
to
:::

be
:::
the

:::::
most

::::::
robust.

:::::
MLPs

::::
are

::::::::::::
recommended

:::::
within

::::
the

:::::::::
processing

:::
for

:::
the

::::::::::::
pan-European

:::::::::
Integrated

::::::
Carbon

::::::::::
Observation

::::::
System

:::::::
(ICOS)

::
by

:::::::::::::::::
Nemitz et al. (2018)

:::
and

:::
for

:::
the

:::
new

::::::::
methane

:::::::::
component

::
of

::::::::::
FLUXNET

:::
and

:::
the

::::::
Global15

::::::
Carbon

:::::::
Project’s

::::::
efforts

::
to

:::::
better

::::::::
constrain

:::
the

:::::
global

::::::::
methane

::::::
budget

::::::::::
respectively

:::::::::::::::
(Knox et al., 2019).

In this study, we compare simple linear and more complex neural network modeling approaches to gap-fill half-hourly EC

CH4 and CO2 fluxes based on their explanatory power, their number of parameters and their generalization capability. We also

give a structured approach to the choice of architectural properties for ANNs. Additionally, we present a new quality filter for

CH4 concentrations measured with LI-7700 (Licor, USA) open-path sensors. By evaluating half-hourly footprint statistics, our20

data sets from a temperate degraded bog were divided by land use type and gap-filled in order to calculate the annual sums of

vertical C exchange between surfaces under contrasting management (drainage and rewetting) and the atmosphere.

Based on two years of CO2 and CH4 fluxes, our overriding research questions are: (1) Is gas flux modeling of contrasting

surface types within an EC gas flux time series measured over heterogeneous terrain feasible, and (2) what is the climate

impact of peatland land use change from drainage to rewetting in the early phase after ditch-blocking following peat mining in25

a temperate bog?

2 Material and methods

2.1 Site description

2.1.1 Geography and land use history

Himmelmoor is a temperate bog that has been degraded heavily by peat mining. The site is located in NW Germany, around30

25 km north-east of Hamburg and 3 km west of Quickborn in Schleswig-Holstein (53° 44’23.3" N, 9°50’55.8" E). The long-

term (2000 to 2014) average annual precipitation is 888 mm, measured at a weather station (WMO Station ID: 10146) located
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2 km from the peatland center. The mean annual air temperature (2000 – 2014) at this station operated by Deutscher Wetter-

dienst (DWD) is 9.1 °C. Along with the adjacent grassland-fen of the Bilsbek lowland and the beech-dominated forest stand

Kummerfelder Gehege, Himmelmoor forms a nature reserve according to the EU FFH (Flora Fauna Habitat Directive). Federal

law of Schleswig-Holstein protects Himmelmoor as a core area of the local biotope network (Zeltner, 2003). By federal legis-

lation enacted in 1973, human intervention in peatland ecosystems is prohibited in the state of Schleswig-Holstein. In case of5

Himmelmoor, however, unlimited lease agreements from 1920 and 1932 (Kreis Pinneberg, 2004) were in effect. An environ-

ment protection law from 1993 dictated the expiration of such agreements until 2003. The mining company and the legislators

reached a settlement obligating the company to carry out restoration measures while continuing with peat extraction until 2020.

Manual peat extraction, undertaken by the local population over centuries to gain fuel, was limited to the bog’s outer margin.

Since the mid-19th century, peat-cutting underwent mechanisation and was thereby intensified. Extraction was scaled up in the10

1870s, when transport logistics were greatly improved by the construction of a railway track between Quickborn and Altona

(today a district of Hamburg). Mining was limitied to peripheral areas until industrial peat extraction began in the 132 ha large

(Grube, 2010) central bog area at the beginning of the 20st century (Czerwonka and Czerwonka, 1985). Until 1968, the aim of

this operation was the production of peat usable as fuel. Between 1950 and 1968, suitable material was mined from positions

deep in the peat profile. These deep ditches were refilled annually with dug-out peat and still exist in this refilled state today.15

Locally, these strips are called Pütten. Today, fen-type vegetation is covering these strips, which are between 600 m and 700 m

long in ENE-WSW direction and 20 m to 50 m wide in NNW-SSE direction. In the late 1960s, the mining company began to

target a different, surface-near type of peat to yield a substrate for horticulture. The extraction site is divided into two halves by

a NNW-SSE running railroad dam. Areas on the western half have been stepwise taken out of operation by the local peat plant

operator since 2008. The eastern part was still being harvested during the measurement period (1 June 2012 to 31 May 2014),20

whereas most of the western section was already rewetted, apart from a 90 m wide strip in the northwest (see Figure 1). These

areas of opposing water regimes and land use will be referred to as surface class drained (SCdra) and surface class rewetted

(SCrew) respectively throughout this text. Peat harvesting on the eastern half continued until June 2018, rewetting of smaller

sections in this area began, however, already in 2014.
::::
2014

:::::
(after

:::
the

::::::::::
investigation

::::::
period

::
of

::::
this

::::::
study). Peat extraction is now

ceased. Ditches were blocked, and new peat dams were built to rewet the extraction site, leaving large, shallowly inundated25

areas underlain by bare peat.

2.1.2 Peat formation and stratigraphy

The bog developed in a river valley, which was preformed as a glacial meltwater valley during the Weichselian glaciation in the

depressed fringe of a salt dome. Peatland formation from a standing water body began 10.020 ± 100 years BP (Pfeiffer, 1997).

Following the deposition of organic lake sediments, a Phragmites-Carex fen and a subsequent birch forest formed. Around30

8000 years BP, a rising groundwater level led to the extinction of the forest vegetation, to the spread of Sphagnum spp. peat

mosses and eventually to the development of a bog. Organic-rich silt constitutes the peatland’s foundation but is not evenly

distributed across the whole area. In the northern part, this layer is at its thickest (up to 2 m). There, the base of the peatland

is at its deepest (around 7 m a.s.l.). The formation of the peatland most likely began at this location (Grube et al., 2010). Bog-
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Figure 1. Distribution of surface classes rewetted, drained and vegetated in Himmelmoor during the measurement period between 1 June

2012 and 31 May 2014. The map section shows the central extraction area with the EC tower located on the central railroad dam. Grid

spacing is 200 m, coordinates refer to UTM zone 32U. The polar histogram in the top left corner displays two years of half-hourly wind

direction measurements at the EC tower location binned in 2◦ classes.

type peat consisting mostly of Sphagnum remnants is (in its original stratigraphic position) today only present in the northern

marginal area, locally called Knust, with a thickness of 3.8 m (Grube et al., 2010). Bog peat was completely removed from the

central extraction area where fen-type peat is present area-wide with a maximum thickness of 2.2 m. Pfeiffer (1997) divides

these peat deposits in 30 – 45 cm Eriophorum-Betula peat over 45 – 85 cm birch forest peat over Phragmites-Carex peat.

Soil properties were altered severely by peat decomposition and subsidence during decades of drainage and peat extraction.5

Drainage led to compaction and settlement of the peat profile of about 40 % of its original depth. The peatland’s ability to

self-regulate the water table for optimal peat forming and carbon sequestering conditions is thereby lost. The performed ditch-

blocking leads to a strongly oscillating water table over the course of the year in the early years of rewetting (< 5 years, own

observations made between 2011 and 2018). Himmelmoor drains into the two local creeks Bilsbek and Pinnau. The peatland

mainly receives water from precipitation. Additional minerotrophic water inflow takes place through the Pütten, which are10

distributed regularly across the central bog area. These ditches reach below the peat base and penetrate the mineral ground.

They were later refilled with peat but still provide a connection to the aquifer beneath, from which minerotrophic groundwater

is supplied.
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2.1.3 Vegetation

The central, former extraction area is largely vegetation-free. Sphagnum spp. peat mosses occur in ditches and along the

shores of some rewetted, inundated polders of the former mining area. Betula pubescens, Molinia caerulea, Eriophorum

angustifolium, E. vaginatum, Erica tetralix and brwon
:::::
brown mosses (Odontoschisma spp., Cephalozia spp.) occur in often

isolated patches on drier areas. Fen-type vegetation is common at the Pütten. Betula pubescens, Salix spp. . (presumably5

Salix aurita and Salix caprea), Eriophorum vaginatum, Betula pubescens, Molinia caerulea, Eriophorum angustifolium, Calla

palustris, Typha latifolia, Carex spp., Juncus effusus and Calamagrostis canescens occur there.
::
B.

:::::::::
pubescens

:::
and

:::::
Salix

::::
spp.

::::::
reached

::::::
heights

:::
of

::
up

::
to

::
2

::
m

:::
and

::
a

::::::::
combined

::::::::
estimated

::::::
surface

:::::
cover

::::::
within

:::
the

::::::::
vegetated

:::::
strips

::
of

::
up

::
to
:::
10

:::
%.

2.2 Instrumentation

Eddy covariance CH4 fluxes were measured using an open-path gas analyzer (LI-7700; Licor, USA) and a 3-D sonic anemome-10

ter (R3; Gill, UK) mounted on a tower at 6 m height. Water vapour and CO2 concentrations were determined with an enclosed-

path sensor (LI-7200; Licor, USA). Data were recorded on a LI-7550 (Licor, USA) logger at 20 Hz. Additionally, a HMP45

(Vaisala, Finland) temperature and relative humidity probe was mounted on the EC tower and logged with the same device.

A second HMP45 was installed together with a NR01 4-component net radiometer (Hukseflux, Netherlands) 70 m southwest

of the EC tower on a tripod at 2 m height.
:::
The

::::::::
radiation

::::::
sensors

:::::
were

:::
not

::::::::
mounted

::
on

:::
the

:::
EC

:::::
tower

:::::::
because

:::
the

::::
field

::
of

:::::
view15

::
of

:::
the

::::::::::::::
downward-facing

:::::::
sensors

:::::
would

:::::
have

::::::
covered

:::
the

::::
peat

::::
dam

::::
and

::::::::
therefore

:::
not

::
be

::::::::::::
representative

:::
for

:
a
::::::::
dominant

:::::::
surface

:::
type

::
at
:::
the

::::
site.

:
These data were logged on a CR-3000 (Campbell Scientific, UK). Another logger of this type was used at the

weather station
:::::
which

:::
was

:::::
taken

::::
over

::::
from

::
a

:::::::
previous

::::::
project

:::
and

:::
left

::
at
::
a
:::::::
position approximately 500 m northeast

:::::
north of the

EC tower
::
for

::::
data

::::::::::
consistency. The sensors there included a third HMP45 and a tipping bucket rain gauge (R.M. Young, USA).

Per depth, redox potentials were determined with three parallel fibreglass probes with platinum sensor tips and recorded on a20

Hypnos II logger (MVH Consult, Netherlands). The redox probes were installed in a vegetated strip approximately 100 meters

west of the EC tower. Water level was measured and logged with a hydrostatic pressure transducer (Mini-Diver; Schlumberger

Water Services, USA) around 150 m west-southwest of the EC tower. Rain and long-term temperature data as presented in

Figure 2 was taken from a nearby station operated by DWD (WMO-Station ID 10146), which is located east-southeast from

the EC tower at approximately 2 km distance. Two years of turbulent flux data were available for analysis from Himmelmoor.25

The EC setup did not change during that time. The first year from 1 June 2012 to 31 May 2013 is from hereon called Year 1,

the second year from 1 June 2013 to 31 May 2014 is called Year 2.

2.3 Flux calculation and qualitiy filtering

Turbulent fluxes were computed by applying the EC approach (as for example described in more detail by Aubinet et al.,

2012) using the software EddyPro 5.2.1 (Licor, USA). Raw data processing included (1) an angle of attack correction, i.30

e. compensation for flow distortion induced by the anemometer frame (Nakai et al., 2006), (2) coordinate rotation to align

the anemometer x-axis to the current mean streamlines (Kaimal and Finnigan, 1994, double rotation), (3) linear detrending
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Figure 2. Climate diagram of the two investigated years from 1 June 2012 to 31 May 2013
::::
(Year

::
1)
:
and form 1 June 2013 to 31 May 2014

::::
(Year

::
2) as measured in Himmelmoor and a 14 year average of a nearby DWD station (WMO-Station ID 10146).

(Gash and Culf, 1996), (4) time lags compensation, (5) spectral corrections (see below for details) and (6) WPL-correction

to compensate for air density fluctuations due to thermal expansion and water dilution (Burba et al., 2012). High frequency

loss due to path averaging, signal attenuation and finite time response of the instruments was accounted for following Fratini

et al. (2012). Low frequency loss due to finite averaging time and linear raw data detrending was corrected for according to

Moncrieff et al. (2004). More details on the single flux calculation steps are given in Holl et al. (2019a).5

Thirty minute fluxes were screened for quality according to the following scheme. To check whether general assumptions

necessary for the application of the EC method were met, atmospheric stability and developed turbulence were analyzed as

described by Mauder and Foken (2004). By this step, fluxes were classified into three groups: MF0, MF1 and MF2, with MF0

denoting data of highest and MF2 of lowest quality. Due to potentially faulty WPL correction, CH4 and CO2 fluxes of half-

hours when sensible or latent heat flux were flagged with MF2 were discarded. Certain quality flags that were derived from10

raw data statistics as described by Vickers and Mahrt (1997) were evaluated. If skewness or kurtosis of vertical wind or sonic

temperature were assigned a hard flag (skewness outside [-2,2], kurtosis outside [1,8]) or if CH4 or CO2 concentration statistics

were rated with a soft flag (skewness outside [-1,1], kurtosis outside [2,5]), trace gas fluxes where discarded. Furthermore,

half-hourly fluxes were rejected if the respective 20 Hz concentration time series failed the amplitude resolution test (Vickers

and Mahrt, 1997).15

Additionally, diagnostic values from the LI-7700 and LI-7200 gas analyzers were used for quality screening. LI-7200 data

was omitted when the signal strength indication (AGC) lay above 63. Due to a change in the signal quality definition along

with a software upgrade, this rule was modified to discarding data below a value of 75 for data acquired when the sensor

was running on firmware version 6.6 and above. With respect to the LI-7700, the sensor’s relative signal strenth indication

(RSSI) and the heater diagnostics were evaluated. The bottom and top mirror of the gas analyzer’s measurement cell can be20
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Figure 3. Illustration of the empirically derived threshold for the new LI-7700 open path methane analyzer quality filter. This check evaluates

raw 20 Hz RSSI statistics to remove erroneous half-hourly methane fluxes. The filter is designed to capture concentration time series that

were deteriorated by switching events in a LI-7700 mirror heater. Black data points denote half-hour intervals, during which the heater of the

bottom mirror was switched off entirely. Colored points represents half hour intervals, during which switching events (maximum: 36000) in

the 20 Hz time series occured.

heated to counter condensation and frost on the mirrors. The LI-7700 instrument software allows for user-defined thresholds

that control the power-on of the heaters. For the bottom heater, a RSSI threshold RSSIth, below which the heater is turned on

can be adjusted. For the top heater, an ambient temperature offset threshold Ta, offset can be defined. This mirror is heated to

keep its temperature about Ta, offset above ambient temperature. In the present case, RSSIth was set to 20 and Ta, offset to 1 ◦C.

The number of samples within one half hour, for which a heater is switched on, is recorded. Accordingly, these diagnostics5

(bottom heater on: BH on; top heater on: TH on) take maximum values of 36000 if a heater is switched on for an entire half

hour. Heater diagnostics were investigated closely due to the observation that within an averaging interval, high variation in

RSSI was often accompanied by switching events in the 20 Hz heater time series, i.e. if BHon or TH on were neither 0 nor

36000. Moreover, methane concentrations had the tendency to covary with RSSI values if the latter showed large changes,

what renders calculated fluxes not trustworthy. In general, the top heater was switched on most of the time whereas switching10

events in the BH on time series were more common, which is why we mainly focused on the bottom heater diagnostics for the

analysis of this phenomenon. Figure 3 shows the relationship between half-hourly averaged RSSI values, the corresponding

relative standard deviation of 20 Hz RSSI (RSSIrelStd) values and BHon. From this graph, we empirically derived a RSSIrelStd

threshold of 10 % , above which the respective flux records were neglected. Additionally, methane fluxes were discarded if the

mean RSSI of the respective averaging interval was below 20.15

The next quality screening step addressed the filtering of fluxes related to undesired source areas. We first classified the

surface using georeferenced orthoimages of the area. As the surface types we aimed to discriminate were quite large and easily

distinguishable on the images, we could draw polygons around the different classes and get the coordinates of their corners.

This step was implemented through the Matlab 8.4 Mapping and Image Processing Toolboxes. We defined the surface classes

drained (SCdra), rewetted (SCrew) and vegetated (SCveg), the latter of which is contained in the other two surface types as20

formerly deep, now refilled and vegetated ditches (Pütten). Calculating a 2-D footprint function after Kormann and Meixner

(2001) with 1 m2 resolution (see Holl et al., 2019b, for details on footprint model implementation) and summing up the contri-
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bution values of all pixels within each of the three surface types, yielded half-hourly class contribution fractions of the different

classes to the EC signal (CCrew; CCdra; CCveg).
::::::::
Variations

:::
in

:::::::::
vegetation

:::::
height

::::
and

::::::
thereby

:::::::::
roughness

::::::
length

::
in

::::::::
different

::::
wind

::::::
sectors

:::::
were

::::::::
addressed

:::
by

::::::::::
statistically

::::::::::
determining

:::::::::
roughness

::::::
length

::::::::
estimates

::::::::
separately

:::
for

::
2
:

◦
::::
wind

::::::
sectors

::::
prior

:::
to

::::::::
evaluating

:::
the

::::::::
footprint

:::::
model

::::::::::::::::::::::::::::
(see Holl et al., 2019b, for details)

:
. Gas fluxes of half hour intervals when the EC footprint was

composed of the railroad dam and areas outside the mining site by more than 70 % were discarded. Fluxes were then filtered5

for absolute limits. CH4 data outside [-100 1000] nmol m-2 s-1 and CO2 data outside [-10 10] µmol m-2 s-1 were neglected.

In case of the CH4 flux time series, outlier removal was addressed furthermore by assessing the frequency distribution of the

remaining MF0 data. Values smaller than the bin center of the 1st (BC1) or larger than the 99th percentile’s bin center (BC99)

were omitted. As a last step, CH4 fluxes with random uncertainties calculated with EddyPro after Finkelstein and Sims (2001)

larger than 400 nmol m-2 s-1 were filtered out.10

Overall, a large amount of data were removed throughout the course of quality filtering. Of the original 19665 FCH4 records

28 % of quality classes MF0 and MF1 were left after filtering. Most fluxes (35 %) were removed because they failed the

skewness/kurtosis test. In case of CO2 fluxes, 51 % MF0 and MF1 records of the original 31271 fluxes remained after filtering.

The largest amount of data (15 %) were removed because either H or LE of the same half hourly interval were flagged with

MF2.15

2.4 Flux modeling

We applied a two-step gap-filling process to CO2 and CH4 fluxes separately for each of the two available years. We first

filled gaps resulting from quality filtering of the measured EC gas fluxes, which represent approximations of the landscape-

scale fluxes integrated over the whole ecosystem and thus include areas of contrasting land use types (tower view time series,

TVTS). In order to quantify the impact of rewetting on the vertical annual C balances of the peat extraction areas in Himmel-20

moor, we used EC footprint variables to select fluxes when the EC source area was mainly composed of drained or rewetted

surfaces respectively. In particular, we created these surface class time series (SCTS) by selecting all flux values for the class

contributions CCdra and CCrew above a threshold of 70 %. As this data division necessarily resulted in further gaps in the

SCTS, we used new sets of models to fill those gaps. We used multilinear regressions (MLRs) and artificial neural networks

(ANNs), in particular multilayer perceptrons (MLPs), to model gas fluxes as a response to measured environmental and EC25

footprint variables as well as to generated fuzzy logic representations of diurnal and seasonal periodicity. Additionally, we

used a model input selection scheme in an effort to exclude redundant and irrelevant variables from the model input matrix.

A description of model input selection and model setup is given in Appendix A
::
the

:::::::::::
supplements

::
to

:::
this

::::::::::
manuscript. Details on

data set division by surface class contribution, gap-filling and flux decomposition using a mechanistic approach are given here.

Apart from the class contribution variables, the inputs presented to the selection scheme were the same for TVTS and SCTS30

modeling. To gap-fill a SCTS, the contributions of the respective opposite surface classes were omitted from the input space.

To model the time series representing the rewetted area for instance, CCdra and CCveg,dra (see Table A1) were removed from

the input matrix. Also, the surface class of interest was set to the threshold value of 70 % at all flux gaps that resulted from

data division. We used this threshold value instead of 100 % class contribution to avoid extrapolating outside the scope of the
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training data sets, as the EC footprint was virtually never composed of one surface class only. The measured contributions of the

vegetated strips were binned in ten classes and the bin-center of the most frequent class was used to fill gaps in the respective

CCveg time series. We used the selected variables as inputs for MLRs and MLP ensembles with 1000 networks each. To

optimize the model parameters, we used only observed data of quality class 0 as targets. Based on the better performance of

MLPs compared to MLRs (see section 3.2), we decided to use MLP models for TVTS as well as SCTS gap-filling. To express5

model uncertainty, we used the standard deviations of the 1000 single MLPs making up each model ensemble for each half

hour. We confirmed normal distribution of the 1000 model fluxes for each half hour by applying a Kolmogorov-Smirnov test

at all time steps. To calculate surface class specific annual sums, we included measurement data of quality class 1 back into the

SCTS. All quality class 1 values that corresponded to CCdra or CCrew ranging above 70 % were used to replace the modeled

SCTS data for the respective time steps. We filled remaining gaps in the gas flux time series, when no environmental data was10

available, with a mean diurnal variation (MDV) method (see Falge et al., 2001). If this algorithm encounters a gap, it searches

for available values of the same variable in adjacent days at the same hour of day and uses the mean of the found records to

fill the gap. At first, a window of ± 1 day around the gap is screened. If not at least one data point is found, the search range is

increased in steps of one day until the gap can be filled. We calculated two annual sums for all four SCTS (two gases and two

land use types) from the gap-filled time series. We calculated uncertainty estimates of the annual sums by taking the root of the15

sum of squared half-hourly uncertainties. For measurements we used the random uncertainty estimate following Finkelstein

and Sims (2001), for data modeled with an MLP ensemble the ensemble standard deviation and for data modeled with the

MDV method the standard deviation of averaging samples.

In case of the FCO2 SCTS, we used a deterministic modeling approach to further decompose the net flux into components

related to respiration and photosynthesis. As large parts of Himmelmoor are vegetation-free, we included the class contribution20

of the vegetated strips (Pütten, SCveg) to the EC footprint to scale the model terms relating to the respective surface classes (as

e.g. in Rößger et al., 2019; Forbrich et al., 2011) in the following way:

NEE(CCveg,PAR) = (1−CCveg)×TERbare +CCveg ×TERveg −CCveg ×
Pmax ×α×PAR

Pmax +α×PAR
(1)

where CCveg is the class contribution of the vegetated strips, PAR is photosynthetically active radiation (µmol m-2 s-1), TERveg

and TERbare are ecosystem respirations (µmol m-2 s-1) of the vegetated strips and the areas covered by bare peat respectively,25

Pmax is the maximum photosynthetic rate (µmol m-2 s-1), and α is the initial quantum yield. Prior to fitting, CCveg and CCbare

were rescaled to sum up to 1 so that

1−CCveg = CCbare. (2)

The last term of Eq. 1 consists of a rectangular hyperbolic Michaelis-Menten type function to simulate plant photosynthesis

(Thornley, 1998; Zheng et al., 2012). This type of light saturation curve has proven to be feasible for modeling plant carbon30

dioxide fixation driven by radiation. In order for the model to express net CO2 flux, two ecosystem respiration terms were added

to the formula; the combined plant and soil respiration TERveg scaled by CCveg and the microbial respiration TERbare taking

place in the vegetation-free areas scaled with CCbare. This function was fitted to monthly ensembles of all CO2 SCTS, yielding
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Table 1. Model inputs used for methane and carbon dioxide flux gap-filling sorted by type. (x: available, -: not available)

Type Name Unit Quantity symbol available in...

Year 1 Year 2

B
io

m
et

Global radiation W m-2 Rg x x

Air temperature ◦C Tair x x

Outgoing longwave radiation W m-2 Lwout x x

Photosynthetically active radiation µmol m-2 s-1 PAR x x

Air pressure kPa pair x x

Rate of change in air pressure kPa/1800 s slopePair x x

Water vapour pressure deficit Pa VPD x x

Soil redox potential in 2 cm depth mV Redox2 - x

Soil redox potential in 5 cm depth mV Redox5 - x

Soil redox potential in 10 cm depth mV Redox10 - x

Soil redox potential in 20 cm depth mV Redox20 - x

Soil temperature in 2 cm depth ◦C TSoil2 - x

Soil temperature in 5 cm depth ◦C TSoil5 - x

Soil temperature in 10 cm depth ◦C TSoil10 - x

Soil temperature in 20 cm depth ◦C TSoil20 - x

Soil temperature in 40 cm depth ◦C TSoil40 - x

Water table below surface cm WT - x

Fu
zz

y

Morning n.a. fuzzymo x x

Afternoon n.a. fuzzyaf x x

Evening n.a. fuzzyev x x

Night n.a. fuzzyni x x

Summer n.a. fuzzysu x x

Winter n.a. fuzzywi x x

Fo
ot

pr
in

t Class contribution of rewetted area n.a. CCrew x x

Class contribution of drained area n.a. CCdra x x

Class contribution of vegetated n.a. CCveg, rew x x

area within rewetted part

Class contribution of vegetated n.a. CCveg, dra x x

area within drained part
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time series of the four model parameters for the drained and rewetted areas for two years. The included scaling of the model

terms with the surface class contributions facilitates comparability of the parameter time series among each other and with

literature values describing the light response of similar plant communities as found in the vegetated strips of Himmelmoor.

3 Results and discussion

3.1 Model input selection
::::
and

::::::::::
flux–driver

:::::::
relations5

Results
:::::::
Detailed

::::::
results of our model input selection scheme (see Appendix A) are given in Appendix B

:::
the

::::::::::
supplements

::
to
::::
this

:::::
article. A summarized description of its outcome follows here. Three categories of potential model inputs were presented to the

selection scheme: Thirty minute time series of meteorological and soil (Biomet) variables, fuzzy variables representing diurnal

and seasonal cycles (following Papale and Valentini, 2003) and footprint variables in the form of surface class contribution

estimates. Table A1 gives an overview of the available variables. Note that in Year 1 no soil properties were recorded.10

In case of
::::
CO2::::

flux
::::::::
modeling,

:::
all

::::
input

::::::::
matrices

::::::
contain

::::::::
measures

:::
for

:::
the

::::
main

::::::
driver

::
of

::::::::::::
photosynthesis

::::::
which

::
is

::::::::
radiation.

::::
PAR

:::
and

:::
Rg:::::

were
:::::::
selected

:::
for

::::
both

::::
land

:::
use

:::::
types

::
in

:::::
Year

:
1
::::
and

:::
the

::::::::::
time-lagged

::::::
version

:::
of

::::
PAR

:::
for

::::
both

::::
land

::::
use

:::::
types

::
in

::::
Year

::
2.

:::::
More

:::::::
emphasis

:::
on

:::
the

::::::
impact

::
of

::::
plant

:::::::
activity

::
on

::::
CO2::::::

fluxes
::
is

:::
put

::
by

:::
the

::::::::
inclusion

::
of

:::
the

:::::::
footprint

:::::::::::
contribution

::
of

:::
the

::::::::
vegetated

::::
strips

:::
for

::::
both

:::::
years

:::
and

::::
land

:::
use

::::::
types.

:
A
::::::::
response

::
of

::::
CO2::::::

release
::
to

:::::::::
respiration

::
is

::::::::
indicated

::
by

:::
the

::::::::
selection

::
of

::::
peat

:::::::::::
temperatures,

:::::
redox

::::::::
potentials

:::
and

:::::
water

:::::
table

:::::
height

::
in

::::
Year

::
2
:::
and

:::::
Lwout::

in
:::::
Year

::
1.

:::
Tair :::

was
:::::::
selected

:::
for

:::
all

::::
land

:::
use

::::
types

::::
and15

::::
years

::::
and

:::::::
includes

::::
both

:::::::
seasonal

:::
and

::::::
diurnal

:::::::::
frequency

::::::
content

::::
like

:::
the

:::::
slowly

::::
and

:::
fast

::::::::
changing

:::::
fuzzy

:::::::
variables

::::::
which

::::::
belong

::
to

::
all

::::
final

:::::
input

:::::
spaces

:::
as

::::
well.

:

::
In

::::
case

::
of CH4 flux modeling, the selection scheme focused on the footprint contribution of the vegetated strips, VPD and

peat temperatures in both years and for both land use types. In Year 1, soil temperatures were indirectly addressed by the

inclusion of Lwout (being a measure of surface temperature) and fuzzysu which is correlated strongly to TSoil40 (Pearson’s20

correlation coefficient r = 0.9). Diurnal and seasonal cycles were weighted highly by the inclusion of higher frequency fuzzy

variables, VPD and Tair in both years. In Year 1, pair was included for the rewetted section, stressing the higher likelihood of

ebullition events taking place at these inundated areas, which could be facilitated by air pressure variations. The selection of

redox potential and water table height time series in Year 2 gives further confidence that our scheme is able to identify physically

meaningful driving variables as soil redox conditions are known to be a major limiting factor for methane production in soils.25

In case of CO2 flux modeling, all input matrices contain measures for the main driver of photosynthesis which is radiation.

PAR and Rg were selected for both land use types in Year 1 and the time-lagged version of PAR for both land use types in

Year 2. More emphasis on the impact of plant activity on CO2 fluxes is put by the inclusion of the footprint contribution of the

vegetated strips for both years and land use types. A response of CO2 release to respiration isindicated by the selection of peat

temperatures, redox potentials and water table height in Year 2 and Lwout in Year 1. Tair was selected for all land use types and30

years and includes both seasonal and diurnal frequency content like the slowly and fast changing fuzzy variables which belong

to all final input spaces as well
::
To

::::::
further

:::::::::
investigate

:::
the

:::::::
relation

:::::::
between

::::
CH4 :::

flux
::::
and

:::::
likely

::::::
drivers

::
as

::::::::
identified

::
by

:::
our

::::::
model

::::
input

::::::::
selection

:::::::
scheme,

:::
we

::::
fitted

:::
an

:::::::::
exponential

::::::
model

::
of

:::::
water

:::::
table

:::
and

:::
soil

::::::::::
temperature

:::
(in

:::
40

:::
cm

:::::
depth)

::
to
:::
the

::::
CH4::::::

fluxes
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Figure 4.
::::
Panel

::
A:

:::::::
Observed

:::::::::
half-hourly

::::::
methane

:::::
fluxes

:::::
(FCH4)

::::
from

::
the

:::::::
rewetted

:::::
section

::
of

::::::::::
Himmelmoor

:::::::
modeled

::
as

::
an

::::::::
exponential

:::::::
function

:::::::::::
FCH4(Tsoil,WT)

::
of

:::
soil

:::::::::
temperature

::
in

::
40

:::
cm

:::::
depth

::::
(Tsoil)::::

and
::::
water

::::
table

:::::
(WT).

:::::::
Monthly

:::
and

::::
daily

:::
flux

::::
and

:::::::::
temperature

:::::::
averages

::
are

::::
also

::::
given.

:::::
Panel

::
B:

:::::::::
Comparison

::
of

::
a

::::
more

::::::
complex

:::::::
artificial

:::::
neural

::::::
network

::::::
(ANN)

:::::
model

:::
with

:::
the

:::::::::
exponential

:::::
model

::::
from

::::
Panel

::
A.

::::::::
Although

::::::
methane

:::
flux

::::::::
variability

:::
can

::
be

::::::::
explained

::
by

:::
the

:::::::::
exponential

:::::
model

::
to

:
a
::::::::
reasonable

::::::
degree,

::
the

::::
level

::
of

:::::::::
complexity

::
in

:::::::::
flux—driver

:::::::
relations

:::::
appears

::
to
::
be

:::::::::
represented

::::::::::
considerably

::::
better

:::
by

::
the

:::::
ANN.

::::
from

:::
the

:::::::
rewetted

:::::::
section

:::
(see

::::::
Figure

:::
4).

:::::
With

:::
the

::::::::::
exponential

::::::::::
dependence

::
of

::::
FCH4:::

on
:::
soil

:::::::::::
temperature,

::
a

:::
fair

:::::::
amount

:::
(R2

::
=

::::
0.55)

::
of

:::
the

::::
flux

::::::::
variability

::::
can

::
be

::::::::
explained

:::::
while

:::
the

:::::
added

:::::
water

::::
table

:::::
term

:::::
allows

:::
for

:::
the

::::::::
optimized

:::::::::::::::
temperature-FCH4 :::::

curve

::
to

:::
take

::::
two

::::::
distinct

:::::
paths

:::::
above

:::
and

::::::
below

::
an

::::::::::
approximate

:::::
water

::::
table

::::::::
threshold

::
of
:::
20

:::
cm

:::::
below

:::
the

::::::
surface

::::
(see

::::::
Figure

:
4
:::::
panel

:::
A).

::::::::::
Half-hourly

:::
flux

:::::::::
variability

:::
is,

::::::::
however,

:::::::::
substantial

:::
due

:::
to

:::
the

:::::::::::
heterogeneity

::
of

::::
the

::::
site’s

:::::::
surface

:::
and

:::::
other

:::::::::::
confounding

:::::
factors

::::
like

:::
the

::::::::::::::
above-mentioned

:::
air

:::::::
pressure

::::::::
variations

::::
and

:
is
::::::::::
comparably

:::::
better

:::::::::
explained

::
by

:::
our

::::::
neural

:::::::
network

::::::
models

::::
(see5

:::::
Figure

::
4

:::::
panel

::
B).

3.2 Model performance

In order to (I) evaluate the general feasibility of our flux decomposition and modeling method and to (II) compare the perfor-

mance of MLP and MLR models, we used four approaches. We first compared statistics of MLP and MLR surface class-specific

flux models with observed data, which we separated beforehand using an EC footprint model into fluxes relating to either one10

of the two main surface classes SCdra and SCrew. Results are shown in Figures B1 and B2 in the appendix. In all eight cases

(two years, two gases, two surface classes), MLPs outperform MLR models with respect to coefficients of determination (R2),

Akaike information criterion (AIC) values and root mean squared errors (RMSEs). While MLRs often perform well, there is a

tendency for them to overestimate highest and underestimate lowest fluxes in case of CH4 flux modeling leading to S-shaped
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point clouds around the 1:1 line in the scatter plots given in Figure B1. In case of CO2 models, this tendency of MLRs ap-

pears to be less pronounced, whereas there is one case (Year 1, SCdra; see Figure B1) where the MLR model explains only

32 % of the measurement data’s variability and is therefore evaluated as inept for gap-filling of at least this data set. As a

way to evaluate the generalization capability of both model types independently from data used for model optimization, we

secondly drove the models which were optimized using Year 1 observations with Year 2 environmental data and compared5

the results to Year 2 measurements (see Figure B3). Results highlight the applicability of both model types for gas flux time

series extrapolation while MLPs again perform superior compared to MLRs in all cases. As expressed in the lower AIC values

throughout, the higher model complexity of the MLPs appears to be justified, and the better goodness of fit measures do not

seem to be the result of a too tight approximation of the training data. We attribute this result partly to our efforts to reduce

the number of hidden layer nodes and the number of independent input variables (i.e. dimensionality reduction of the model10

input matrices). As a third way to compare model performance as well as to evaluate our method of decomposing gas flux time

series obtained with a single EC tower over heterogeneous terrain into surface class-specific time series, we recombined these

SCTS by scaling them with their respective contribution to the EC footprint. We calculated the sum of both scaled half-hourly

SCTS and compared them to the TVTS measured over heterogeneous terrain at the EC tower. These fluxes include values with

mixed surface class contributions also below the threshold of 70 %, which was used to extract target data for SCTS model15

optimization. Results are shown in Figure B4 in the appendix and again illustrate the better performance of MLPs compared to

MLRs. More importantly, the outcome of this circular rescaling experiment demonstrates that after multiple model layers the

original measurement data relating to a heterogeneous surface could still be recovered to a reasonable degree.

Figure 5.
:::::::::
Comparative

::::::::
validation

::
of

::::::
surface

:::::::::::
class-specific

::::::::
multilinear

::::::::
regression

::::
and

::::::
artificial

::::::
neural

::::::
network

:::
(in

::::::::
particular

::::::::
multilayer

::::::::
perceptron)

::::::
carbon

::::::
dioxide

:::::
(CO2)

:::
and

::::::
methane

:::::
(CH4)

::::
flux

::::::
models.

:::
For

:::
this

::::::::
depiction,

:::
we

::::
drove

::::::
models

:::
that

::::
were

::::::::
optimized

::::
using

::::
Year

::
1

::::::::::
measurement

:::
data

::
as

:::::
targets

::::
with

:::
Year

::
2

::::::::::
environmental

::::
data

:::
and

:::::::
compared

:::
the

:::::
results

::
to

:::::::
measured

::::
Year

:
2
:::
gas

:::::
fluxes.

::::
This

:::
type

::
of

:::::::::
comparison

:::::
enables

:::
an

::::::::
evaluation

::
of

:::
the

:::::::
developed

::::::
models

::::
with

:::::::
observed

::::
data

:::::
which

:
is
:::::::::

completely
:::::::::
independent

::::
from

:::::
model

:::::::::::
optimization.

::::::::
Therefore,

::::
good

::::::::
agreement

:::::
cannot

::
be

:::::::
attributed

::
to

::::::
models

:::::
which

::
are

:::::
overfit

::
to

:::
the

:::::::
provided

::::
target

::::
data.

:::
The

:::::
results

::
of
:::
this

::::::::::
investigation

:::::::::
substantiate

:::
the

:::::
notion

:::
that

::::::::
multilayer

::::::::
perceptrons

::::::
provide

::::
more

::::::
reliable

:::::::
estimates

::
of
:::
gas

:::::
fluxes

::
as

:::
they

:::
are

::::::
superior

::
to

::::::::
multilinear

::::::
models

::::
with

:::::
respect

::
to

:::
the

::::::::
coefficient

::
of

::::::::::
determination

::::
(R2),

:::
the

:::::
Akaike

:::::::::
information

:::::::
criterion

:::::
(AIC)

:::
and

::
the

::::
root

::::
mean

::::::
squared

::::
error

:::::::
(RMSE)

:
in
:::
all

::::
cases.
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Figure 6.
::::::::::
Comparative

:::::::
validation

::
of

::::::::
multilinear

::::::::
regression

:::
and

:::::::
artificial

:::::
neural

::::::
network

:::
(in

:::::::
particular

::::::::
multilayer

:::::::::
perceptron)

:::::
carbon

::::::
dioxide

::::
(CO2)

::::
and

:::::::
methane

:::::
(CH4)

::::
flux

::::::
models.

:::
For

::::
this

:::::::
analysis,

::::
both

::::::
surface

::::::::::
class-specific

::::
flux

::::::
models

::::
were

::::::::
combined

:::::
using

:::
the

:::::::
footprint

:::::::::
contribution

::
of

:::
the

:::::::
respective

::::::
classes

::::::
yielding

:::
an

::::::
estimate

::
of

:::
the

:::::::::::::::
landscape-integrated

:::::
signal

:::::::
recorded

::
at

:::
the

::::
eddy

::::::::
covariance

:::::
tower.

:::::
These

:::::
derived

:::::
’tower

:::::
view’

:::
gas

:::
flux

::::
time

::::
series

:::
are

:::::::
compared

::
to

:::
the

::::::
actually

:::::::
observed

:::
data

::
at

:::
the

:::
eddy

:::::::::
covariance

::::
tower.

::
In
:::
all

::::
cases,

:::
the

::::::::
multilayer

::::::::
perceptron

::::::
models’

::::::::::
performances

::::::
surpass

::
the

::::::::
attainment

::
of

::::::::
multilinear

::::::::
regression

::::::
models

:::
with

::::::
respect

:
to
:::
the

::::::::
coefficient

::
of

::::::::::
determination

::::
(R2)

:::
and

::
the

::::
root

::::
mean

::::::
squared

::::
error

::::::::
(RMSE).

:::::
Results

::::
also

:::::::
highlight

:::
the

::::::
general

:::::::
feasibility

::
of
:::

our
::::::::

approach
:
to
:::::::::

decompose
::
an

::::
eddy

:::::::::
covariance

:::
(EC)

::::
time

:::::
series

:::::::
recorded

::::
over

:::::::::::
heterogeneous

:::::
terrain

:::
into

::::::::::
contributions

::
of

::::::::
differently

:::::::::
functioning

::::::::
landscape

::::
units

:::::
within

:::
the

:::
EC

:::::::
footprint

:::
area.

As a fourth method to evaluate the applicability of our land use-specific flux decomposition, we fitted a combined respiration-

photosynthesis model (see Eq. 1) to monthly ensembles of the half-hourly CO2 SCTS in order to check if the resultant param-

eters are reasonable in relation to each other and to literature data. In general, the vegetation period, with its productivity

maximum between June and July and its cessation between mid-October and November is well depicted in the seasonal course

of the model parameters throughout both years. The parameter courses relating to the vegetated strips of the drained and5

rewetted areas (Figure 7, panels B – D) develop fairly similar. Distinctions between the drained and rewetted areas are more

pronounced with respect to CO2 release from bare peat surfaces (Figure 7, panel A). Ditch-blocking of a rewetted sector close

to the EC tower (which therefore made up a large part of the EC footprint) was only performed one year before our mea-

surements started. In summer of 2012 this area therefore was not yet permanently flooded leading to TERbare fluxes exceeding

those from the active mining site. From winter 2012/2013 on, inundation of the rewetted bare peat area progressively increased,10

resulting in lower TERbare fluxes from the rewetted compared to the drained section.

Our TERbare fluxes are in concordance with findings from two studies that were also conducted on the active peat extraction

area in Himmelmoor with manual chambers. Vanselow-Algan et al. (2015) report mean annual CO2 emissions from the active

mining site of 0.53 ± 0.05 mol m-2 s-1 with summertime maxima between around 2 and 4 mol m-2 s-1. Vybornova et al. (2019)

determined similar mean mid-day fluxes using opaque chambers. For the drained bare peat areas of the extraction site, the15

latter authors report average fluxes between 0 and 1 mol m-2 s-1 throughout the year and a maximum of 3 mol m-2 s-1 at a

single replicate plot in late August. Vybornova et al. (2019) furthermore measured CO2 release from a rewetted and shallowly

inundated bare peat area with opaque floating chambers. The reported mid-day fluxes are generally lower (between 0 and
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Figure 7. Time series of monthly carbon dioxide flux model parameters (ses Eq. 1). Total ecosystem respiration (TER) series are given for

the bare (A) and vegetated (B) sections of Himmelmoor. Photosynthesis parameters maximum photosynthesis Pmax (C) and initial quantum

yield α (D) were only determined for areas with vegetation. All parameter time series are given for the rewetted and drained sections of

Himmelmoor.

0.5 mol m-2 s-1, summer maximum 1.4 mol m-2 s-1) than from the drained extraction site confirming our results. The values of

the two mentioned manual chamber flux studies from Himmelmoor are well within range of the seasonal course of TER bare as

it displays for the bare peat areas of SCdra (1.1 ± 0.5 mol m-2 s-1) and SCrew (0.8 ± 0.7 mol m-2 s-1) alike (see Figure 7, panel A).

TER
:
;
::::
TER

:
data reported from similar peat extraction sites also agree with our results . Waddington et al. (2002) determined

TER fluxes from a bog in Qu´ebec (48 N), Canada, which had been cutover two and three years before dark chamber gas flux5

measurements. May to August TER averages ranged from 0.8 mol m-2 s-1 in a relatively wet to 3 mol m-2 s-1 in a comparably

dry observed year. Shurpali et al. (2008) measured TER at an active peat mining site in eastern Finland (62 N) and determined

vegetation period maximum fluxes of 1.3 mol m-2 s-1 at the end of August and minima in mid-November of 0.2 mol m-2 s-1
:::
(see

::::
Table

::::
C2).
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Our combined respiration photosynthesis model (see Eq. 1)
::
As

:::
our

:::::
model

:
includes the relative contributions of the vegetated

strips to the EC footprint. Using this method enabled us to compare
:
,
:::
we

::::::::
compared

:
the extracted model parameter time

series (see Figure 7, panels B to D) , which can be directly related to plant characteristics,
:
–
:::
D)

:
with estimates of these

plant species-specific values which have been determined in other studies for
::::
from

:::::
other

::::::
studies

:::::::::::
investigating

:
similar plants

and plant communities as found in the vegetated strips in Himmelmoor.
:::::::
Reported

::::::::
averages

:::
and

::::::
ranges

:::::
agree

::::
well

::::
with

::::
our5

::::::
findings

::::
(see

:::::
Table

::::
C1).

:
Additionally, we could distinguish between CO2 release from decomposing bare peat (TERbare:, :::

see

:::::
Figure

::
7,

:::::
panel

::
A

:::
and

:::::
Table

:::
C2) and from the vegetated strips (TERveg:,:::

see
::::::
Figure

::
7,

:::::
panel

:
B
::::
and

:::::
Table

:::
C1) where respiratory

CO2 release also includes autotrophic respiration of plants. In our data set, TER is between twofold and fourfold larger in

areas with (Figure 7, panel B) than without (Figure 7, panel A)
::::
than

::::::
without

:
vegetation. TERveg from the rewetted area is

mostly larger than from the drained area. Progressive inundation led to a hydrological connection of SCveg and the flooded10

bare peat areas. An increased input of dead plant material as a result of higher water tables might have promoted heterotrophic

respiration. Hampered plant productivity due to flooding is also expressed in lower peak values of Pmax at the vegetated strips

of the rewetted site.

Below, we compare our TERveg time series, with literature data from similar plant communities. Using data from chamber

measurements, Vanselow-Algan et al. (2015) partitioned NEE from different vegetation communities at the outer edge of15

Himmelmoor. These areas were restored three decades ago after being degraded by small-scale manual peat-cutting. Although

the plants dominating the vegetated strips of the mining site were not examined by Vanselow-Algan et al. (2015), some of

the species investigated by the authors also frequently occur in SCveg being the subject of the present study. The ’purple

moor grass’ microform in Vanselow-Algan et al. (2015) for example is dominated by Molinia caerulea; Betula pubescens and

Eriophorum angustifolium also occur. In summer, TER fluxes form this site were estimated to range above 10 mol m-2 s-120

being in the same range like our summer TER peaks from the vegetated strips. Beyer and Höper (2015) report results from

a former north German peat extraction site that was rewetted 30 years prior to their chamber measurement campaign. TER

estimates from these authors are available for a site dominated by Molinia caerulea (up to 7 mol m-2 s-1 in August) and by

Eriophorum angustifolium (up to 5 mol m-2 s-1 in late July). A substantial portion of the SCveg is covered by Betula pubescens,

Salix spp., Eriophorum vaginatum, Eriophorum angustifolium, Typha latifolia, Molinia caerulea, Carex spp., Juncus effusus25

and Calamagrostis canescens. Further combined plant and soil respiration measurements of the species found in SCveg are

not present in literature. Nevertheless, properties of plants from the same genera are known. Most reported fluxes, however,

describe autotrophic respiration as they were determined on leaf scale and therefore refer to leaf area. Since shrubs and trees

can have a leaf area index larger than 1, fluxes refreed to ground surface area could be higher. Measurements of Betula spp.

dark respiration are given by Patankar et al. (2013) and Gu et al. (2008) (between 1 and 5 mol m-2 s-1). Patankar et al. (2013)30

also assessed autotrophic respiration of Salix pulchra (up to 2 mol m-2 s-1), Eriophorum vaginatum (up to 3 mol m-2 s-1), and

Carex bigelowi (up to 1 mol m-2 s-1). Other Carex species are in the same range as shown by Körner (1982) (Carex curvula

1 mol m-2 s-1) and Murchie and Horton (1997) (Carex flacca 1.5 mol m-2 s-1). Salix summer dark respiration has as well been

investigated by Kaipiainen (2009) with Salix dasyclados (between 0.8 and 1.2 mol m-2 s-1).
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Regarding the photosynthesis parameters Pmax and α in the second model term of Eq. 1, more literature values are available

for comparison . Chamber gas exchange studies of a single birch (Betula pubescens) in Himmelmoor during three summer

months in 2014 by Lienau (2014) resulted in Pmax values between 32 and 41 mol m-2 s-1. More Pmax estimates from the same

tree species have been reported by Nygren and Kellomäki (1983) (4 to 17 mol m-2 s-1) and Hoogesteger and Karlsson (1992)

. In the latter study, PAR was limited to 800 mol m-2 s-1, Pmax was assessed to be 8 mol m-2 s-1. Other evaluations of Betula5

spp. maximum photosynthesis range between 10 and 15 mol m-2 s-1 (Patankar et al., 2013; Gu et al., 2008). With Pmax values

commonly around 25 but also above 30 mol m-2 s-1 (Chen et al., 2010), Typha latifolia is photosynthically more active which is

also the case for Salix spp. ranging between 16 and 29 mol m-2 s-1 (Ögren, 1993). Lab-experiments from Vernay et al. (2016)

provide Pmax estimates of Molinia caerulea (7 to 15 mol m-2 s-1). For Juncus effusus only net photosynthesis values of 6 to

11 mol m-2 s-1 (Mann and Wetzel, 1999) have been reported so far. From the North German site investigated by Beyer and Höper (2015)10

, comparably high Pmax estimates are reported for Molinia caerulea that commonly range between 15 and 30 mol m-2 s-1 but also

reach values up to 60 mol m-2 s-1 in June. The Pmax parameters given by these authors for Eriopohorum angustifolium are also

rather large (up to 70, often around 20 mol m-2 s-1). Inititial quantum yield estimates of plants also common in in the vegetated

strips in Himmelmoor range between 0.02 and 0.08 (Vernay et al., 2016; Nygren and Kellomäki, 1983; Murchie and Horton, 1997; Kaipiainen, 2009; Chen et al., 2010)

.15

In comparison to small-scale measurements from the same and similar sites, we could confirm the credibility of our mech-

anistic modeling approach for which we used relative class contributions of contrasting surface types to scale single model

terms. Moreover, the previously performed division of the TVTS into SCTS apparently yields reasonable flux estimates that

can be interpreted in a mechanistic way, increasing our confidence in the applied flux decomposition method.

3.3 Annual greenhouse gas balances20

We used the eight (two gases, two land use types, two years) surface-class specific flux time series, which we gap-filled with

MLP ensembles, to calculate annual CO2 and CH4 balances for the rewetted and drained sections of Himmelmoor.

The results are expressed as molar and mass fluxes (Figure 8) and as release of CO2 equivalents (CO2e, see Table 2). We used

a factor of 34 to convert FCH4 into CO2e release. This value is given in the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change (IPPC AR5, Myhre et al., 2013), refers to a 100-year time horizon and includes climate–carbon25

feedbacks. The impact of rewetting on the development of vertical carbon release is documented with the shown results.

Overall, both the rewetted and the mined sections of Himmelmoor were considerable sources of GHGs in both years. Annual

FCO2 from the restored site undercuts the cumulative CO2 emissions from the drained part of Himmelmoor in both years while

this difference increases with time. Annual CH4 release from the wetter surfaces exceeds the cumulative FCH4 from the drained

mining site in both years while both fluxes rise from Year 1 to Year 2.30

In Year 1, FCO2 from the rewetted area was already cumulatively lower than from the mining site (20 ± 7 vs. 22 ± 6 mol m-2 a-1)

while the margins of uncertainty largely overlap. In Year 2, the annual CO2 balance from the rewetted site dropped by 35 %

increasing the difference to the cumulative mining site flux, which did not change from Year 1 to Year 2, to over 40 % (13 ± 6

vs. 22 ± 7 mol m-2 a-1). Margins of uncertainty still overlap in Year 2 but less widely. At the end and the beginning of Year 2
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Table 2. Annual sums of half-hourly carbon dioxide (CO2) and methane (CH4) fluxes from the drained and rewetted sections of the peat

extraction site in Himmelmoor. CH4 fluxes are expressed as CO2 equivalents (CO2e) using a global warming potential of 34 referring to a

100-year time horizon following Myhre et al. (2013). Year 1: 01 June 2012 to 31 May 2013; Year 2: 01 June 2013 to 31 May 2014

Cumulative flux, g m-2 a-1

Surface class drained Surface class rewetted

CO2
Year 1 988 ± 247 887 ± 296

Year 2 974 ± 292 567 ± 263

CH4
Year 1 7.2 ± 1.8 13.3 ± 1.9

Year 2 12.1 ± 1.4 18.3 ± 1.5

CH4-CO2e
Year 1 244 ± 61 453 ± 63

Year 2 412 ± 46 621 ± 51

total CO2e
Year 1 1232 ± 308 1340 ± 359

Year 2 1386 ± 338 1188 ± 314

CO2-C ::::
Year

:
1

:::
269

::
±

::
67

:::
242

::
±

::
81

::::
Year

:
2

:::
266

::
±

::
80

:::
155

::
±

::
72

CH4-C ::::
Year

:
1

::
5.4

::
±
:::
1.4

:::
10.0

::
±
:::
1.4

::::
Year

:
2

::
9.1

::
±
:::
1.1

:::
13.7

::
±
:::
1.1

(i.e. in summer), the cumulative FCO2 curve from SCrew ceases to slope upwards. By reaching these vertexes, the points in

time when the rewetted area briefly turns from a CO2 source into a sink are indicated. Nevertheless, on an annual basis the

periods when the sink character of
:::::::
annually

::::::::
integrated

:::::::::
ecosystem

:::::::::
respiration

:::::::::
outweighs

::::::::::::
photosynthesis

::
in SCrewprevails do not

compensate for CO2 release during periods of reduced plant activity.

CH4 fluxes from both surface classes rise from Year 1 to Year 2 while the absolute differences between both land use types5

stays rather constant. The cumulative CH4 flux from SCrew is nearly 90 % higher than from SCdra in Year 1 (0.45 ± 0.11 vs.

0.83 ± 0.12 mol m-2) and 50 % higher in Year 2 (0.76 ± 0.08 vs. 1.14 ± 0.09 mol m-2). Compared to the molar FCO2 sums

of both surface classes, cumulative molar CH4 release is a factor of around 30 smaller in Year 1 and about 20 times smaller in

Year 2. The development of both molar GHG emissions over time documents the rising importance of CH4 emissions in the

course of rewetting. Transforming the molar cumulative sums into sums of CO2e allows for comparability between the two10

GHG fluxes with respect to their climate impact. Overall, the rewetted section of Himmelmoor is a larger CO2e source in the

first observed Year, while the drained section emits more CO2e in Year 2. CO2e fluxes at the drained site increase from Year 1

to Year 2, whereas they decline from Year 1 to Year 2 at the rewetted site. The sum of cumulative FCO2 and FCH4 released

from SCdra are dominated by FCO2 in both years. For SCrew, CH4-CO2e emission sums are much smaller than the release of

CO2 in Year 1, whereas CH4-CO2e fluxes dominate the GWP balance in the second observed year. Although the cumulative15

CH4-CO2e fluxes also increases from Year 1 to Year 2, they mainly dominate the SCrew GWP sum due to a large drop in FCO2

from Year 1 to Year 2.
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The annual CO2 emissions from the drained parts of 988 ± 247 g m-2 a-1 and 974 ± 292 g m-2 a-1 are higher but in the same

range as previously inferred from chamber data acquired at the mining site in Himmelmoor by Vanselow-Algan et al. (2015)

(730 ± 67 g m-2 a-1) and Vybornova et al. (2019) (740 ± 270 g m-2 a-1). Moreover, our results are in line with the emission

factors given in the Wetlands Supplement to the 2006 IPCC Guidlines for National Greenhouse Gas Inventories (Hiraishi et al.,

2014) for which Wilson et al. (2016a) published an update. Both publications give an average CO2 release of 1027 g m-2 a-15

for boreal and temperate peatlands drained for peat extraction. While boreal extraction sites generally appear to emit less

CO2 as reported in a meta-study by Maljanen et al. (2010) (697 ± 263 g m-2 a-1), Drösler et al. (2008) who analyzed 11

drained peat extraction sites in Europe also report CO2 release of up to 1300 g m-2a-1. Interesting to note is that in the National

Inventory Report Germany submitted under the United Nations Framework Convention on Climate Change in April of 2019,

CO2 release from drained peat extraction areas are accounted for with a comparably small factor of 587 g m-2 a-1. Taking10

into account, the amount of carbon removed from Himmelmoor by peat extraction (11000 ± 1000 g m-2 a-1), CO2 emissions

account for less than one tenth of the total carbon loss per year. This value from Vanselow-Algan et al. (2015) is, however,

expressed as CO2 and assumes the instant decomposition of the material after removal. Restored cutover bogs commonly are

CO2 sinks when active peat extraction has been ceased for several decades (Tuittila et al., 1999; Wilson et al., 2016b; Beyer

and Höper, 2015). However, shortly after ditch-blocking, the rewetted section of Himmelmoor still was a considerable CO215

source (887 ± 296 g m-2 a-1 and 567 ± 263 g m-2 a-1). During regular visits to the area between 2011 and 2019, we observed

that the amplitude of seasonal water table oscillations in a rewetted, formerly mined strip (polder) would decrease with the

time passed after ditch-blocking. We assume that anoxic conditions did not prevail throughout the year in all polders as already

discussed above with respect to TERbare fluxes from these sites. Additionally, ditch-blocking in Himmelmoor went along with

the construction of dams encompassing the newly rewetted polders. Vybornova et al. (2019) showed that shortly after raising20

these dams they can be large sources of CO2 with fluxes up to four times larger than from bare peat areas which are drained

for ongoing mining.

The CH4 flux sums of 13.3 ± 1.8 g m-2 a-1 and 18.3 ± 1.5 g m-2 a-1 from the rewetted sections of Himmelmoor are confirmed

by findings from Beyer and Höper (2015) who report CH4 balances between 16.2 ± 2.2 g m-2 a-1 and 24.2 ± 5.0 g m-2 a-1 from

inundated cutover bogs in northern Germany. Wilson et al. (2016b) report annual CH4 emission sums of 12.0 ± 2.6 g m-2 a-125

from an Irish Atlantic blanket bog that had been rewetted 14 years prior to the investigation. Results from a boreal peat

extraction site, 20 years after mining had been ceased, are given by Tuittila et al. (2000). Although only the growing season

has been covered by these authors, the cumulative seasonal FCH4 of 1.27 g m-2 a-1 suggests that CH4 release from boreal

peatlands is much lower compared to temperate sites. This circumstance has also been noted by Tiemeyer et al. (2016), who

furthermore conclude that IPCC estimates for CH4 release from rewetted bogs, as they are primarily based on data from boreal30

peatlands, are not representative for temperate regions. In the above mentioned meta-study of Wilson et al. (2016a), temperate

and boreal rewetted peat extraction sites are reported with average emissions of 12.3 g m-2 a-1. Annual CH4 release from the

drained sections of Himmelmoor (7.2 ± 1.8 g m-2 a-1 and 12.1 ± 1.3 g m-2 a-1) are lower than from the rewetted parts but high

compared to IPCC emission factors. Wilson et al. (2016a) give an average release of 3.3 g m-2 a-1 for drained peat mining sites

including a 5 % surface cover of ditches to which the authors assign high CH4 fluxes, as given in Hiraishi et al. (2014) with 1035
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Figure 8. Cumulative carbon dioxide (CO2) and methane CH4 fluxes from the drained and rewetted sections of the peat extraction sites in

Himmelmoor for both investigated years. Shaded areas represent model uncertainty estimates derived from the standard deviation of artificial

neural net ensembles as well as measurement uncertainty estimates. Values are depicted as molar and carbon (C) fluxes.

Figure 9.
:::::::
Frequency

:::::::::
distribution

::
of
::::::

relative
:::::::::

half-hourly
::::::::::
contributions

::
of
::::::::

vegetated
::::
strips

:::
to

::
EC

:::::::
footprint

::::
area

::
in

::::
both

:::::::::
investigated

:::::
years

::::
(Year

::
1:

::
01

::::
June

::::
2012

::
to

::
31

::::
May

:::::
2013;

:::
Year

::
2:
:::
01

:::
June

:::::
2013

:
to
:::

31
::::
May

::::
2014

:
).
:::
For

:::::::::
comparison,

:::
the

::::::::
vegetated

:::::
strips’

::::
areal

::::::
fraction

:::::
within

::
the

::::::::::
investigation

:::
area

::
is
::::::
shown,

::::::::::
documenting

:::
that

:::
the

::::::::::
measurement

::::::
system

:::
was

::
set

:::
up

::
at

::
an

:::::::
adequate

::::::
position

::
in

:::
the

:::::::
landscape

::
in
:::::

order
::
to

:::::::
represent

::
its

:::::
spatial

::::::::
proportion

::
of

::::::
surface

:::::
classes.

to 98 g m-2 a-1. The vegetated strips in Himmelmoor cover around 10 % of the surface and appear to be
:::
(see

::::::
Figure

::
9)

::::
and

:::
are

especially strong sources of CH4 what we attribute to the high density of vascular, aerenchymatic plants in combination with a

supply of nutrient-rich, minerogenic water, which is supplied to these areas from the underlying aquifier.
:::::
Figure

::
10

:::::::::
illustrates

::
the

:::::::::::
dependence

::
of

:::::
FCH4 ::

on
:::
the

:::::::
relative

::::::::::
contribution

:::
of

:::
the

::::::::
vegetated

:::::
strips

:::
to

:::
the

:::
EC

::::::::
footprint.

::::::
Mean

:::::::
summer

:::::
fluxes

:::::
were

::::::::::
significantly

:::::::::::
(Two-sample

::::::::::::::::::
Kolmogorov-Smirnov

::::
test,

:
p
::
<

::::
0.01)

::::::
higher

::::
from

:::
the

::::::::
vegetated

::::
(67

::::
nmol

:::
m-2

::::
s-1)

::::
than

::::
from

:::
the

::::
bare5

:::
(29

::::
nmol

::::
m-2

:::
s-1)

:::::
areas.

:::::
These

::::::
results

:::
are

::
in

::::
line

::::
with

::::::::
estimates

::::
from

::::::::::::::::
Vybornova (2017)

::::
who

:::::::::
determined

::
a

::::
mean

::::::
annual

:::::
FCH4

::
of

::
50

:::::
nmol

:::
m-2

:::
s-1

:::
for

:::
the

::::
same

::::::::
vegetated

:::::
strips

::
in
::::::::::::
Himmelmoor

::::
with

::::::
manual

:::::::::
chambers.

::::::::::::::::::::
Vybornova et al. (2019)

:::::
report

:::::
mean
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Figure 10.
:::::::::
Dependence

::
of

::::::
methane

:::::
fluxes

::
on

::::
wind

:::::::
direction

:::
and

::::
eddy

::::::::
covariance

::::
(EC)

:::::
source

:::
area

::::::::::
composition,

::
in

:::::::
particular

:::
the

:::::::::
contribution

:
of
:::

the
::::::::
vegetated

:::::
strips,

::
in

::::::
summer

:::
(A)

:::
and

:::::
winter

::::
(B).

::::
Data

::
of

:::
both

::::::::::
investigated

::::
years

:::
are

:::::
shown.

::::
The

:::
EC

::::
tower

::::
was

:::::
placed

::
on

::
a

::::::
railroad

:::
dam

::::::
dividing

:::
the

::::
area

:::
into

::
an

::::::
actively

:::::
(East)

:::
and

::::::
formerly

::::::
(West)

::::
mined

::::::
section,

:::::
which

:::
had

::::
been

:::::::
rewetted

::::
prior

:
to
::::::::::::
measurements.

::
In

::::::
general,

::::::
methane

::::::::
emissions

::::
from

::
the

:::::::
rewetted

::::::
section

::::
were

:::::
higher

:::
than

::::
from

:::
the

::::::
drained

:::::
section

:::
and

:::::
fluxes

::::
when

:::
the

:::
EC

:::::::
footprint

:::
was

::::::::
composed

::
of

::::
more

:::
than

:::
20

:
%
::::::::

vegetated
::::
areas

:::
was

::::::::::
significantly

:::::::::
(Two-sample

:::::::::::::::::
Kolmogorov-Smirnov

:::
test,

::
p

:
<
::::
0.01)

:::::
higher

::::
than

::::
from

:::::::::::
vegetation-free

:::::
areas,

:::
both

::
in

::::::
summer

:::
(C)

:::
and

:::::
winter

::::
(D).

:::::
annual

:::::
FCH4 ::::

from
:::
the

::::
bare

::::
peat

:::::
areas

::
of

:::
10

:::::
nmol

:::
m-2

:::
s-1.

:::::::
Further

:::::::
evidence

:::
for

:::
the

:::::::
decisive

::::
role

:::
the

::::
type

::
of

:::::::::
vegetation

::::::
which

:
is
::::::::::

established
::::
after

::::::::
rewetting

::::
has

::
on

::::
the

:::::::::
magnitude

::
of

::::
CH4::::::

release
::

is
::::::::

provided
:::
by

:::::::::::::::::
Järveoja et al. (2016)

:
.
::::
The

::::::
authors

::::::
report

:::::
annual

::::
CH4:::::::

budgets
::
of

::::
0.25

::::
and

::::
0.16

:
g
:::
m-2

:::
a-1

::
at

::::::::::
subsections

::
of

::::
their

:::
site

::::
with

::::::::
relatively

::::
high

::::
and

:::
low

:::::
water

::::
table

:::::::::::
respectively.

:::
The

::::
site

::::::::::::::::::
Järveoja et al. (2016)

:::::::::
investigated

::
is

:::
the

::::::
former

::::
peat

:::::::::
extraction

::::
area

:::::
Tässi

::
in

::::::
central

:::::::
Estonia

:::
(58

:

◦
::
N).

:::
In

:::::::
contrast

::
to

:::::::::::
Himmelmoor,

:::::::::
restoration

:::::::::
measures

::
at

:::
this

::::
site

:::::::
included

:::
the

::::::
active

:::::::::::
establishment

:::::::::
(dispersal)

:::
of

::::
peat

::::::
mosses

:::
on

:
a
::::::::::

substantial5

::::
layer

::::
(2.5

:::
m)

::
of

:::::::
remnant

:::::::::
Sphagnum

::::
spp.

::::
peat.

:::
By

:::
the

::::
time

::::::::::::
measurements

:::::::::::
commenced

:::
two

:::::
years

::::
after

::::
first

:::::::::
restoration

::::::
efforts

::::
were

:::::
made,

:::::
Tässi

:::
was

:::::::
already

::::::::
dominated

:::
by

:::::::::
Sphagnum

:::
spp.

::::::
mosses.

:::::
With

:
a
::::
lack

::
of

::::::::::::
aerenchymatic

:::::
plants

:::
and

:::::::::
systematic

::::::
efforts

::
to

:::::::::
re-establish

::::
bog

:::::::::
vegetation,

::::::
annual

::::
CH4::::::

release
::
at

:::::
Tässi

::
is

::
up

::
to

::::
100

::::
times

:::::::
smaller

::::
than

::
at

:::::::::::
Himmelmoor.

:

3.4
::::::::::
Implications

::
of

:::::::::
rewetting

::::::::
measures

:::
for

::::
the

::::::::::::::
re-establishment

::
of

::
a
::::
mire

:::::::::
ecosystem

:::
in

::::::::::::
Himmelmoor

::
In

::::::
general,

:::
the

:::::::::::
initialization

::
of

::::
peat

:::::::::::
accumulation

::
by

:::::::::
Sphagnum

::::::
mosses

::
is

::::::::
inevitable

::::::::::::::::::::::::::::::::::::::::::::::::::
(Joosten, 1992; Pfadenhauer and Klötzli, 1996; Gaudig, 2002)10

::
for

:::
the

:::::::
purpose

:::
of

::::::::::::
re-establishing

::
a

::::::::
degraded

::::::::
peatland’s

:::::::
natural

:::::::::
ecosystem

::::::::
functions.

::::
Two

::::::::::
(somewhat

::::::::
untypical)

:::::::
features

:::
of

23



:::::::::::
Himmelmoor

::::
need

:::
to

::
be

::::::::::
considered

:::::
when

:::::::::
evaluating

:::
the

::::::
success

:::
of

:::
the

:::::::::::
implemented

::::::::
rewetting

:::::::::
measures

::
in

:::::
terms

::
of

:::::
mire

:::::::::::::
re-establishment

::::
and

::::::
climate

::::::
change

:::::::::
mitigation:

:::
(1)

:::
The

::::
fact

:::
that

:::::
large

::::::::::::
vegetation-free

:::::
areas

::::
have

::::
been

::::::::
inundated

::::::::
shallowly

::::
and

::
(2)

::::
that

:::::::
fen-type

:::::
plants

::::
have

::::::::::
established

:
at
:::
the

::::
only

::::::::
vegetated

:::::
areas

:::::
which

::::
had

::::
been

::::
taken

:::
out

:::
of

:::
use

::
in

:::
the

:::
late

::::::
1960s.

:::
We

:::::
found

::::
peak

::::
CH4 ::::::::

emissions
::::
from

:::
the

:::::::
vascular

::::::::::::::
plant-dominated

::::
areas

::::
(see

::::::
Figure

:::
10)

:::
and

::::
also

:::::::
attribute

:::
this

:::
fact

:::::::
causally

::
to
:::
the

::::::::
presence

::
of

:::::::
fen-type

:::::::::
vegetation.

:::::::
Vascular

:::::
plants

:::::::
provide

::
an

:::::::
effective

::::::::
transport

:::::::
pathway

:::::::
through

::::
their

::::::::::::
gas-conducting

:::::
tissue

::
as

::::
well

::
as

::::
root5

:::::::
exudates

:::::
which

:::::
form

::
an

:::::
easily

::::::::::::
decomposable

:::::::
substrate

:::
for

:::
soil

::::::::
microbes

::::::::::::::::::::::::::::::::::::::::::::::::::
(Kerdchoechuen, 2005; Neue et al., 1996; Bhullar et al., 2014)

:
.
:::::::
Because

:
a
:::::
water

:::::
table

:::::
above

:::
the

::::::
surface

::::::
instead

::
of

:::::
close

::
to

:::
but

::::::
below

:::
the

::::::
surface

:::
has

::::
been

::::::::::
established

::
at

:::
the

::::
bare

::::
peat

:::::
areas,

::
the

::::::::
creation

::
of

:::::::
floating

:::::::::
vegetation

:::::
mats

::
is

:::
the

::::
only

:::::::::
possibility

:::
for

::::::::::
Sphagnum

::::::::::
colonization

:::::::::::::::::::::::::::
(Pfadenhauer and Klötzli, 1996)

:
.
:::::::::::
Nevertheless,

::::
fast

:::::::
growing

::::::::
vascular

:::::
plants

::::
can

:::::::
support

::::
peat

:::::
moss

::::::
growth

:::
by

:::::::::::
diminishing

:::::
wave

:::::::::
movement

:::
and

::::::::
offering

::::::::
adherence

::::
area

:::::::::::
(Sliva, 1997)

:
.
:::::::
Besides

:::
the

::::
need

:::
for

::
a
:::::::::
preferably

::::
calm

:::::
water

:::::::
surface,

:::::::
another

:::::::
limiting

:::::
factor

:::
for

:::::::
floating

::::
mat10

::::::
growth

:
is
:::
the

:::::
water

::::
CO2:::::::::::

concentration
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gaudig, 2002; Paffen and Roelofs, 1991; Smolders et al., 2001; Lamers, 2001; Lütt, 1992)

:::::
which

:::
can

:::
be

::::::::
enhanced

:::
by

:::::::
vascular

::::::
plants

::
by

:::::::::
providing

:::::::
oxygen

::
to

:::
the

::::::::::
rhizosphere

::::::::
fostering

:::
soil

::::::::::
respiration.

::
It
::::
thus

::::::
seems

:::::::::
conceivable

::::
that

:::
the

:::::::::
Sphagnum

:::
spp.

:::::::::::::
growth-favoring

:::::
effects

:::::
could

::::::::
outweigh

:::
the

:::::::
negative

:::::::::::
ramifications

::
for

::::
bog

::::::::::
development

::::
and

::::::
climate

::::::
change

:::::::::
mitigation

:::::::
potential

::::
that

:::
the

::::::
current

::::
plant

:::::
cover

:::::::
implies.

::
In

:::::::
sections

::
of

::::::::::::
Himmelmoor

::::
with

:
a
::::::::::::
non-industrial

::::
land

:::
use

::::::
history,

:::::::::
overgrowth

:::
of

::
the

:::::
grass

::::::::
tussocks,

:::::::
formerly

:::::::::
dominating

:::
the

::::
area,

:::
by

:::
the

:::::::
bog-type

:::::::::
Sphagnum

::::::
species

::
S.

::::::::::::
magellanicum15

:::
and

::
S.

::::::::::
papillosum

::
is

::
in

:::::::
progress

:::::
today

::::::::
(personal

:::::::::::
observation,

::::::
2016).

:::
The

::::
now

:::::::::
prevailing

:::::
plant

::::::
species

:::
on

:::
the

::::::::
extraction

::::
site

::::
could

::::::::
therefore

::::::::
constitute

:::
an

::::::::::
intermediate

:::::
state

:::
that

:::
can

:::::::::
potentially

:::
be

:::::::::
overcome.

:::
The

::::::
active

:::::::
dispersal

::
of

:::::::::
Sphagnum

::::::
mosses

::
as

:
a
:::::::::::
management

::::::
strategy

::::::
would

:::::
foster

::::
mire

::::::::::::::
re-establishment

:::
and

:::::::
possibly

::::
lead

::
to

:::::::::
drastically

::::::::::
diminished

::::
CH4 ::::::

release
::
as

::
e.

::
g.

:::
the

::::
study

:::::
from

::::::::::::::::::
Järveoja et al. (2016)

:::
from

:::
an

:::::::
Estonian

::::
site

:::::
where

::::
peat

::::::
mosses

::::::::
dominate

::::
after

::::::::
rewetting

::::::::
suggests.

:

4 Conclusions20

As a methodological challenge, we addressed the feasibility of a single EC tower for the estimation of gas flux time series

from two surface classes within the EC footprint. Due to the specific setup with (1) the tower position on the border between

the surface classes and (2) an adequate measurement height of the EC system, we could attribute fluxes to individual surface

classes. This subdivision of EC time series was possible owing to the scale (hundreds of meters) on which surface patterning

exists in Himmelmoor. Additionally, the contrast in gas flux dynamics between the different surface classes allowed for a25

better discriminability between EC fluxes associated to the individual surface types. In situations where flux contrasts are

less pronounced and surface classes are more interlaced this method might not be applicable. To be able to estimate gas flux

time series of subsections within the EC footprint, rigorous filtering of the original time series is inevitable. Consequently, a

considerable amount of measurement data is omitted leading to a relatively high amount of time series gaps. To fill these gaps,

we tested multilinear models and artificial neural networks (ANNs) and found that ANNs consistently performed superior. We30

attribute this fact partly to our data-driven model input selection gravely reducing the number of model parameters. Secondly,

we programmatically reduced the number of ANN hidden layer neurons, and thereby furthermore lowered the number of

model parameters. Apart from the reduction of the model input space dimensionality, our input selection method also outlined
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physically sound explanatory frameworks for flux–driver connections. Although it cannot ultimately be appraised if the relevant

flux drivers have been captured by our routine, the selection results point to the method’s ability to discriminate between weaker

and stronger flux–driver relations, which do not necessarily have to be linear. We therefore conclude that when applying

empirical models to gap-fill trace gas flux time series, a method for the selection of input variables that takes into account

the sensitivity of gas fluxes to model input variability can improve model predictions considerably. When ANNs are used in5

particular, efforts should be made to set them up in the least convoluted way a sufficient approximation of the target data allows

for.

With the estimates of surface class-specific GHG fluxes from two consecutive years, we could address the impact rewetting

had on the GHG balance of the peat mining site. Six years after the first polders in Himmelmoor had been rewetted, the area

was still a clear GHG source. The two investigated land use types (drainage and rewetting) show distinct CO2 and CH4 flux10

features. CO2 emissions decrease
::::::::
decreased

:
progressively after rewetting .

:::
with

::
a

::::::::
reduction

::
of

:::
101

::
g
:::
m-2

:::
a-1

::
in

::::
Year

::
1
:::
and

:::
of

:::
407

::
g

:::
m-2

:::
a-1

::
in

:::::
Year

::
2. The release of CH4increases

:::::
-CO2e

:::::::::
increased after rewetting and within the present two year data

set also over time. On short timescales, the
:::
was

::::::::
constant

::
in

::::
both

::::::::::
investigated

:::::
years

:::::
(209

:
g
::::

m-2
::::
a-1).

::::
The climate impact of

elevated CH4 emissions appears to dominate
::::
after

::::::::
rewetting

:::::::
therefore

:::::::::
dominated

:
over the effect of decreasing CO2 release .

::
in

::::
Year

::
1,

:::::::
whereas

::::
CO2::::::::

emission
::::::::
reduction

:::
was

::::::
nearly

:::::
twice

::
as

::::
high

:::
as

:::
the

:::::::::
CH4-CO2e

:::::::
increase

::
in

::::
Year

::
2.
:

It is conceivable that15

Himmelmoor can be transformed into a carbon-accumulating peatland. However, this process will probably take decades to

centuries and will take place only when sustained management of the area is employed.
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Appendix A: Model setup and input selection scheme

This section describes the selection of model inputs (see Table A1) using our scoring table approach. Also, the method we used

to select properties for the multilayer perceptron (MLP) neural networks is outlined. The MLPs were set up with one hidden

layer, tan-sigmoid activation functions, a single output layer node with a linear transfer function and Levenberg-Marquardt

backpropagation as supervised learning method. See Papale and Valentini (2003), Dengel et al. (2013), Sarle (1994) for details5

on MLP architecture. The input data was divided randomly in 70 % training and 30 % validation data. Inputs were re-scaled

before training to range between -1 and 1. Training data were used to optimize the network weights and biases for low MSE.

Validation data served as inputs independent from training data to check the generalization capability of the model. The model

performance in relation to the validation data was used to avoid overfitting by terminating the learning process if for six

consecutive iterations the MSE of the validation data did not decrease (early stopping). Instead of using the response of a single10

MLP, we calculated the ensemble average of multiple networks starting with varying initial weights and different sets of training

and validation data each. This method is frequently described in neural network literature (Naftaly et al., 1997; Perrone and Cooper, 1993; Wolpert, 1992; Hashem, 1997; Haykin, 1999)

as one type of so called committee machines. To avoid unnecessarily complex network architecture and thereby a higher amount

of model parameters we inspected the model performance of committee machines with 100 MLPs each for different numbers

of hidden layer nodes (#HLN) between 1 and 20.15

We expected to find a #HLN optimum at the AIC minimum. However, for different gases and data sets, we encountered two

functional forms a relation like this would commonly assume. A parabola-like curve with a clear minimum and an asymptotic

function of the formAIC(#HLN) = #HLN−1 + a. We fitted parabolas to the according data sets and assumed the function

vertex as #HLN optimum. In the other cases, we fitted reciprocal functions and differentiated the results. We rounded the first

derivatives to the nearest multiple of 10 in case of CH4 and to 100 in case of CO2 flux modeling. We then defined the #HLN20

optimum to be at the position where the rounded derivative turns zero for the first time. We performed #HLN optimization in

each case before applying MLPs for input sensitivity analysis or gap-filling

We applied a selection procedure aiming for the identification of redundant as well as irrelevant model inputs. This scheme

evaluates the outcome of stepwise MLRs in combination with the analysis of the response of MLPs to differently manipulated

versions of the input space. We used methods addressing predictive and causal importance as defined by Sarle (1997). In short,25

predictive importance measures are those that check the change of model performance when an input is omitted, whereas causal

importance measures evaluate the change of a performance function when inputs are manipulated. The latter can be realized by

degrading the variability of an input for example by replacing it partly with its average (as in Schmidt et al., 2008; Hunter et al., 2000)

. Three categories of potential model inputs were presented to the selection scheme. Thirty minute time series of meteorological

and soil (Biomet) variables, fuzzy variables representing diurnal and seasonal cycles (following Papale and Valentini, 2003)30

and footprint variables in the form of surface class contribution estimates. Table A1 gives an overview of the available variables.

Note that in Year 1 no soil properties were recorded. We derived a second set of Biomet variables by estimating the time lag

between each Biomet variable and the gas flux time series and subsequently shifting each Biomet time series by the calculated
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time lag. We used the lag time within a one-day window for which the absolute cross-correlation between Biomet and gas flux

time series was maximized (Kettunen et al., 1996) to shift the respective Biomet time series.

Three data sets were used for sensitivity analysis: Only the original Biomet data, only the lagged data and both. All data

sets were extended by fuzzy and footprint data. We applied four methods to estimate the relevance of the individual inputs and

combined them via a scoring table. If an input was selected by one method, one point was assigned to it. Inputs with more5

points were regarded as more important.

As previously applied by Dengel et al. (2013) for EC flux gap-filling, we used the outcome of a stepwise multilinear regression

(MLR) with bidirectional elimination to identify important model inputs. Independent variables that remained in the final model

received one point in our scoring table. The calculations were made using the Matlab 8.4 Statistics and Machine Learning

Toolbox following Draper and Smith (1998). At each step the p-values of an F-statistic of models with or without each input10

were evaluated by comparing them with an enter condition penter = 0.05 and an exit condition premove = 0.1. If inputs currently

not in the model had p-values below penter, the one with the lowest value was included into the model until the next step

(forward selection). If inputs currently in the model had p-values above premove, the one with the highest value was removed

from the model (backward elimination). These steps were repeated until the model could not be improved further by a single

step. The initial model contained no inputs.15

Following Schmidt et al. (2008), we calculated two similar measures of causal importance from the output of MLP ensembles.

The variability of each input variable was manipulated by replacing 50 % and 100 % with its median, while all remaining

variables in the input matrix were left unchanged. A MLP ensemble was first trained with the original data and then simulated

with the artificial input matrix. The relation of the resultant mean squared errors (MSEs) was calculated and called relative error

(RE). This process was repeated 1000 times for all input variables to obtain diverse results for different data divisions. The20

resulting values for RE were binned into six classes with centers at 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3. If the latter was the bin with

the most counts, one point was assigned to this input variable in the scoring table, meaning that the manipulation of this input

vector resulted in a deterioration of the respective MSE of more than 25 % in most cases. This method yielded two measures

of causal importance for each input variable, RE50 and RE100, referring to the two percentages of data being manipulated.

We furthermore analyzed the weights resulting from MLP optimization based on the algorithm of Garson (1991) as presented25

in Olden and Jackson (2002). This method interprets the weights of a neural network similar to the coefficients of a linear

model. Before calculating the relative importance (RI) of an input, the products of the weights that connect this input with

each hidden neuron and the output layer is determined and normalized by the sum of weight products feeding also into the

same hidden unit. These so called neuron contributions are summed up and normalized by the sum of all neuron contributions

resulting in the RIs of all inputs. We calculated the mean, median and maximum RIs of 1000 MLP runs for all input variables.30

We then compiled three lists in which we sorted the inputs in descending order with respect to the determined statistics. The

lengths of those lists were afterwards shortened to equal the number of variables that were included in the MLR model that

was derived before – only variables with the highest RI statistics stayed in the lists. All inputs that occurred at least in two of

three lists received one point in the scoring table, which was completed with this step. We then summed up the scores for all

input variables and calculated two score thresholds above which an input was to be selected. One threshold was derived for35
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the original and the lagged Biomet variables, one for fuzzy and footprint data. We proceeded like this owing to the structure of

the three input data sets. Each Biomet variable occurred in two of three data sets, each fuzzy and footprint variable was part

of all data sets, making it more likely for them to reach a high score. We calculated the mean score of the respective variable

category and used the next larger integer as a score threshold. The inputs that were selected via the scoring table were fed into

a final stepwise MLR removing further apparently irrelevant model inputs. In the last step of the input selection algorithm we5

checked if both a variable and its lagged derivative remained in the input matrix. If so, the scores of those two variables were

compared, and only the higher scoring variable stayed in the input matrix. In case there was no score difference, the lagged

derivative was removed from the input space, whose reduction was hereby finished.

Appendix B: Model input selection results

To gain first insight into the relations between input variables and landscape-scale gas fluxes (tower view time series, TVTS)10

as well as between the input variables among each other, scatter plots were inspected and Pearson’s correlation coefficient (r)

was determined for each pair. See Table A1 for definitions of the quantity symbols used hereafter. Three Biomet time series

correlate with r values of 0.4 or higher with CH4 flux in both years: Lwout, Tair and Rg. In Year 1, this list is extended by VPD

and PAR while the highest linear relation exists with CCrew (0.5) and CCveg, rew (0.6). In Year 2, additional connections with

r values of 0.4 or higher include soil temperatures TSoil20, TSoil2 and TSoil40. Footprint variables were not as closely related15

as in Year 1. Nevertheless, CCveg, rew yields again the highest correlation among the footprint variables. Compared to FCH4,

linear relations between model input variables and CO2 flux are more clear as the only strong connections exist with PAR and

Rg (both r = 0.5 in Year 1 and r = 0.6 in Year 2). Regarding linear dependencies between Biomet variables, Rg and PAR (r

> 0.9 both years), Tair and VPD (r = 0.7 in both years) as well as Tair and Lwout (r > 0.9 both years) were highly correlated.

In Year 2, soil temperatures were closely connected among each other (r > 0.9) and with Tair (r > 0.7). Water table depth20

was correlated negatively with all redox measurements at different positions in the soil profile, with the largest absolute r of

-0.7 for the relation with Redox20. WT was also correlated with TSoil20 (r = 0.3). The seasonality embedded in soil temperature

measurements was reflected by high correlation coefficients with the two low-frequency fuzzy variables fuzzy variable summer

(fuzzysu) and fuzzy variable winter (fuzzywi). The deeper in the soil profile the temperature measurements were taken, the less

amplitude response they show to diurnal variations and the less noisy the relation to the fuzzy data appears to be.25

Correlation analysis emphasizes the (not surprising) fact that collinearity does exist in the model input space. In order to

avoid overfitting and thereby to increase the predictive power of the applied models, we reduced the input matrices which drive

these models using our scoring table approach. Results of this input variables selection are detailed in tables B1 to B4 in the

appendix. As a measure to ascertain collinearity reduction, we calculated the condition numbers (Belsley et al., 2005) of the

input matrices at successive stages of the selection process as well as for the complete original and time-lagged input series30

(see figures C1 and C2). Within all 12 data sets, the condition numbers dropped throughout the selection process by at least

one order of magnitude denoting a consistent removal of collinear variables from the input space. In all cases, between 30 %

and 40 % of the variables presented to the selection scheme were included in the final model input matrices.
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In the following section, detailed results of our model input selection scheme are shown. The four tables cover two gases

and two years. Within each table, results for the two land use types (surface class drained, SCdra and surface class rewetted,

SCrew) are shown. See Table A1 for declarations of the used quantity symbols. Only variables reaching a score above the

respective score threshold (cf. Appendix A) are included. Variables which were selected in the last step of the scheme and used

for gas flux modeling are printed in bold face.5

Table B1. Result of the model input selection scheme for Year 1 CO2 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy and Footprint variables: SCdra (9), SCrew (10)

Surface class drained Surface class rewetted

Variable Score Variable Score

B
io

m
et

Lwout 8 Lwout 8

Tair 8 Tair 8

Rg 7 Rg 8

PAR 7 Lwout, lagged 8

Lwout, lagged 7 PAR 7

Rg, lagged 7 VPD, lagged 6

Tair, lagged 7 Tair, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 12 fuzzywi 12

fuzzywi 12 fuzzyaf 11

fuzzyaf 9 fuzzyni 11

fuzzyev 9 fuzzymo 10
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Table B2. Result of the model input selection scheme for Year 2 CO2 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy & Footprint variables: SCdra (9), SCrew (9)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

Tair 8 Tair 8

PAR, lagged 8 TSoil2 8

TSoil2 7 TSoil5 8

Redox5 7 TSoil10 8

Tair, lagged 7 PAR, lagged 8

TSoil20, lagged 7 TSoil40 7

Redox2, lagged 7 TSoil40, lagged 7

TSoil5 6 TSoil2, lagged 7

TSoil10 6 TSoil5, lagged 7

Redox10 6 TSoil10, lagged 7

Redox20 6 TSoil20, lagged 7

WT, lagged 6 TSoil20 6

TSoil2, lagged 6 Redox2 6

TSoil10, lagged 6 Redox10 6

Redox5, lagged 6 Tair, lagged 6

Redox10, lagged 6 Redox20, lagged 6

Redox20, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 fuzzysu 11

fuzzywi 9 fuzzywi 11

fuzzyaf 9 CCveg, rew 9

fuzzyev 9 fuzzyaf 9

fuzzyni 9 fuzzyev 9

fuzzysu 9 fuzzyni 9
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Table B3. Result of the model input selection scheme for Year 1 CH4 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (6).

Score threshold for Fuzzy & Footprint variables: SCdra (8), SCrew (8)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

VPD 8 VPD 8

Tair, lagged 8 Lwout, lagged 8

Lwout 7 Tair, lagged 8

Tair 7 Lwout 7

VPD, lagged 7 pair 7

Lwout, lagged 6 Tair 7

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 12 fuzzysu 12

fuzzyaf 10 fuzzyaf 11

fuzzymo 8 fuzzymo 8

fuzzywi 8
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Table B4. Result of the model input selection scheme for Year 2 CH4 fluxes. Score threshold for Biomet variables: SCdra (6), SCrew (7).

Score threshold for Fuzzy & Footprint variables: SCdra (8), SCrew (9)

Drained Rewetted

Variable Score Variable Score

B
io

m
et

VPD 8 VPD 8

TSoil40 8 WT 8

TSoil5 8 TSoil5 8

Redox10 8 TSoil20 8

TSoil40, lagged 8 Redox10 8

TSoil10, lagged 8 Redox20 8

Redox5, lagged 8 WT, lagged 8

Lwout 7 Redox2, lagged 8

TSoil2 7 TSoil40 7

TSoil10 7 TSoil2 7

Redox2 7 TSoil40,lagged 7

TSoil2, lagged 7 TSoil2,lagged 7

TSoil5, lagged 7 TSoil5, lagged 7

TSoil20, lagged 7 TSoil5,lagged 7

Redox2, lagged 7 Redox20, lagged 7

Redox10, lagged 7

Tair, lagged 6

TSoil20 6

Redox20 6

VPD, lagged 6

WT, lagged 6

Redox20, lagged 6

Fu
zz

y
&

Fo
ot

pr
in

t

CCveg, dra 12 CCveg, rew 12

fuzzysu 10 fuzzywi 12

fuzzymo 9 fuzzymo 9

fuzzyaf 8 fuzzysu 9
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Appendix C: Effect of dimension reduction of model input space on matrix condition

In this section, matrix condition numbers of the differently manipulated versions of input variable combinations that were fed

into the input selection scheme (first three groups from the left in the plots below) and condition numbers of matrices at the

two final stages of the selection scheme (last two groups from the left in the plots below) are given. Lower condition numbers

denote a smaller degree of linear dependencies within different variables in a matrix. See Appendix A for details on the input5

selection method. Three data sets were modeled for each gas flux time series per year: The originally measured EC fluxes

(tower view) representing landscape-scale integrated fluxes and the extracted time series, using EC footprint modeling, which

relate to areas under different land use (drainage and rewetting) are shown.

Figure C1. Matrix condition numbers of input combinations which were fed into the CH4 flux model input selection scheme (first three

groups from the left) and condition numbers of matrices at the two final stages of the selection scheme (last two groups from the left).

Figure C2. Matrix condition numbers of input combinations which were fed into the CO2 flux model input selection scheme (first three

groups from the left) and condition numbers of matrices at the two final stages of the selection scheme (last two groups from the left).
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Appendix A: Model input variables

Table A1.
::::
Model

:::::
inputs

::::
used

:::
for

::::::
methane

:::
and

::::::
carbon

:::::
dioxide

::::
flux

::::::::
gap-filling

::::
sorted

:::
by

::::
type.

::
(x:

:::::::
available,

::
-:
:::
not

:::::::
available)

::::
Type

::::
Name

:::
Unit

::::::::::::
Quantity symbol

::::::::::
available in...

:::::
Year 1

:::::
Year 2

:
:
:
:
:

B
io

m
et

:::::
Global

:::::::
radiation

::
W

:::
m-2

::
Rg :

x
:
x

:::
Air

:::::::::
temperature

::

◦C
:::
Tair :

x
:
x

:::::::
Outgoing

:::::::
longwave

:::::::
radiation

::
W

:::
m-2

::::
Lwout :

x
:
x

::::::::::::::
Photosynthetically

::::
active

:::::::
radiation

::::
µmol

:::
m-2

::
s-1

::::
PAR

:
x

:
x

:::
Air

::::::
pressure

:::
kPa

::
pair :

x
:
x

:::
Rate

::
of
::::::
change

::
in

::
air

:::::::
pressure

:::::::
kPa/1800

:
s

::::::
slopePair :

x
:
x

::::
Water

::::::
vapour

::::::
pressure

:::::
deficit

::
Pa

::::
VPD

:
x

:
x

:::
Soil

:::::
redox

::::::
potential

::
in
::
2

::
cm

:::::
depth

:::
mV

::::::
Redox2 :

-
:
x

:::
Soil

:::::
redox

::::::
potential

::
in
::
5

::
cm

:::::
depth

:::
mV

::::::
Redox5 :

-
:
x

:::
Soil

:::::
redox

::::::
potential

::
in
:::
10

::
cm

:::::
depth

:::
mV

::::::
Redox10 :

-
:
x

:::
Soil

:::::
redox

::::::
potential

::
in
:::
20

::
cm

:::::
depth

:::
mV

::::::
Redox20 :

-
:
x

:::
Soil

:::::::::
temperature

::
in

:
2
:::
cm

::::
depth

::

◦C
::::
TSoil2 :

-
:
x

:::
Soil

:::::::::
temperature

::
in

:
5
:::
cm

::::
depth

::

◦C
::::
TSoil5 :

-
:
x

:::
Soil

:::::::::
temperature

::
in

::
10

:::
cm

::::
depth

::

◦C
:::::
TSoil10 :

-
:
x

:::
Soil

:::::::::
temperature

::
in

::
20

:::
cm

::::
depth

::

◦C
:::::
TSoil20 :

-
:
x

:::
Soil

:::::::::
temperature

::
in

::
40

:::
cm

::::
depth

::

◦C
:::::
TSoil40 :

-
:
x

::::
Water

::::
table

:::::
below

::::::
surface

::
cm

:::
WT

:
-

:
x

:
:
:
:
:

Fu
zz

y

:::::::
Morning

:::
n.a.

::::::
fuzzymo :

x
:
x

::::::::
Afternoon

:::
n.a.

:::::
fuzzyaf :

x
:
x

::::::
Evening

:::
n.a.

:::::
fuzzyev :

x
:
x

::::
Night

:::
n.a.

:::::
fuzzyni :

x
:
x

::::::
Summer

:::
n.a.

:::::
fuzzysu :

x
:
x

:::::
Winter

:::
n.a.

:::::
fuzzywi :

x
:
x

:
:
:
:
:
:
:

Fo
ot

pr
in

t ::::
Class

:::::::::
contribution

::
of

:::::::
rewetted

:::
area

:::
n.a.

::::
CCrew :

x
:
x

::::
Class

:::::::::
contribution

::
of

::::::
drained

::::
area

:::
n.a.

::::
CCdra :

x
:
x

::::
Class

:::::::::
contribution

::
of

::::::::
vegetated

:::
n.a.

:::::::
CCveg, rew :

x
:
x

:::
area

:::::
within

:::::::
rewetted

:::
part

::::
Class

:::::::::
contribution

::
of

::::::::
vegetated

:::
n.a.

:::::::
CCveg, dra :

x
:
x

:::
area

:::::
within

::::::
drained

:::
part
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Appendix B:
:::::::::::
Comparative

:::::::::
validation

::
of

::::::::::
multilayer

:::::::::
perceptron

::::
and

::::::::::
multilinear

:::::::::
regression

:::::::
models

Figure B1.
:::::::::
Comparative

::::::::
validation

::
of

::::::
surface

::::::::::
class-specific

:::::::::
multilinear

::::::::
regression

:::
and

:::::::
artificial

:::::
neural

::::::
network

:::
(in

::::::::
particular

::::::::
multilayer

::::::::
perceptron)

:::::::
methane

::::
(CH4)

::::
flux

:::::
models

:::
for

:::
both

:::::::::
investigated

:::::
years.

::::::::
Multilayer

::::::::
perceptrons

::::::
appear

:
to
::
be

:::::::
superior

:::
with

::::::
respect

:
to
:::
the

::::::::
coefficient

:
of
:::::::::::

determination
::::
(R2),

:::
the

::::::
Akaike

:::::::::
information

::::::
criterion

:::::
(AIC)

:::
and

:::
the

:::
root

:::::
mean

::::::
squared

::::
error

::::::
(RMSE)

::
in
:::
all

::::
cases.

::::::::
Moreover,

:::::::::
multilinear

:::::::
regression

::::::
models

::::
tend

:
to
:::
be

:::::::
S-shaped

:::
and

:::::::
therefore

:::::::::
overestimate

::::
high

:::
and

:::
low

:::::::
measured

::::::
fluxes.

Figure B2.
:::::::::
Comparative

::::::::
validation

::
of

::::::
surface

::::::::::
class-specific

:::::::::
multilinear

::::::::
regression

:::
and

:::::::
artificial

:::::
neural

::::::
network

:::
(in

::::::::
particular

::::::::
multilayer

::::::::
perceptron)

::::::
carbon

::::::
dioxide

:::::
(CO2)

:::
flux

::::::
models

::
for

::::
both

:::::::::
investigated

:::::
years.

::::::::
Multilayer

:::::::::
perceptrons

:::::
appear

::
to

::
be

:::::::
superior

:::
with

::::::
respect

::
to

:::
the

::::::::
coefficient

::
of

::::::::::
determination

::::
(R2),

:::
the

:::::
Akaike

:::::::::
information

:::::::
criterion

:::::
(AIC)

:::
and

::
the

::::
root

::::
mean

::::::
squared

::::
error

:::::::
(RMSE)

:
in
:::
all

::::
cases.
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Figure B3. Comparative validation of surface class-specific multilinear regression and artificial neural network (in particular multilayer

perceptron) carbon dioxide (CO2) and methane (CH4) flux models. For this depiction, we drove models that were optimized using Year 1

measurement data as targets with Year 2 environmental data and compared the results to measured Year 2 gas fluxes. This type of comparison

enables an evaluation of the developed models with observed data which is completely independent from model optimization. Therefore,

good agreement cannot be attributed to models which are overfit to the provided target data. The results of this investigation substantiate the

notion that multilayer perceptrons provide more reliable estimates of gas fluxes as they are superior to multilinear models with respect to the

coefficient of determination (R2), the Akaike information criterion (AIC) and the root mean squared error (RMSE) in all cases.

Figure B4. Comparative validation of multilinear regression and artificial neural network (in particular multilayer perceptron) carbon

dioxide (CO2) and methane (CH4) flux models. For this analysis, both surface class-specific flux models were combined using the footprint

contribution of the respective classes yielding an estimate of the landscape-integrated signal recorded at the eddy covariance tower. These

derived ’tower view’ gas flux time series are compared to the actually observed data at the eddy covariance tower. In all cases, the multilayer

perceptron models’ performances surpass the attainment of multilinear regression models with respect to the coefficient of determination (R2)

and the root mean squared error (RMSE). Results also highlight the general feasibility of our approach to decompose an eddy covariance

(EC) time series recorded over heterogeneous terrain into contributions of differently functioning landscape units within the EC footprint

area.
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Appendix C:
::::::::::
Comparison

:::
of

::::
NEE

::::::
model

::::::::::
parameters

:::::
with

::::::::
literature

::::::
values

Table C1.
::::
Total

::::::::
ecosystem

::::::::
respiration

:::::::
(TERveg,

:::::
µmol

:::
m-2

:::
s-1),

::::::::
maximum

::::::::::::
photosynthesis

:::::
(Pmax,

::::
µmol

:::
m-2

:::
s-1)

::::
and

::::
initial

:::::::
quantum

:::::
yield

::
(α,

::::::::::::
dimensionless)

::::
from

::
the

::::::::
vegetated

::::
strips

::
of

:::
this

:::::
study

:::::::
compared

::
to
:::::::
literature

:::::
values

::::
from

::::::
similar

::::
plant

::::::
species.

:::
As

:::
the

:::::::
literature

:::::
record

:
of
::::::::

combined
::::
plant

::::
and

:::
soil

::::::::
respiration

:::::::::::
measurements

::
of

:::
the

::::::
species

:::
that

:::::
occur

::
at

:::
the

:::
site

::
of

:::
this

:::::
study

:
is
:::::::

limited,
::::::::
autotrophic

:::::::::
respiration

::::::::
respiration

:::
(Ra,::::

µmol
:::
m-2

:::
s-1)

:::::::
estimates

::
of

:::::
plants

::::
from

::
the

::::
same

::::::
genera

::
are

::::
also

::::
given.

::::
Note

::::
that

::
Ra :::::

values
::::
were

::::::::
determined

:::
on

:::
leaf

::::
scale

:::
and

::::::
therefore

::::
refer

::
to
::::
leaf

:::
area.

:::::
Since

:::::
shrubs

:::
and

::::
trees

:::
can

::::
have

:
a
::::
leaf

:::
area

:::::
index

::::
larger

::::
than

::
1,

::::
fluxes

:::::::
referring

::
to
::::::
ground

::::::
surface

:::
area

:::::
could

::
be

:::::
higher.

:::::
Model

::::::::
parameter

:::::
values

::::
from

:::
this

:::::
study

::
are

:::::
given

::
as

:::::::
averages

:::
and

::::::
standard

::::::::
deviation.

:::
The

:::::
latter

::::::
statistic

:::::::
expresses

:::
the

::::
value

:::::
range

::::::::
throughout

:::
two

:::::
annual

::::::
courses

::
as

:::::
shown

::
in

:::::
Figure

::
7

::::
rather

::::
than

:::::::
parameter

:::::::::
uncertainty.

Reference Plant species TERveg Ra Pmax α

This study, drained section

Betula pubescens, Salix spp.,

2.5 ± 2.9 14.4 ± 13.8 0.04 ± 0.04

Eriophorum vaginatum,

E. angustifolium, Molinia caerulea,

Calla palustris, Typha latifolia,

Carex spp., Juncus effusus,

Calamagrostis canescens

This study, rewetted section —"— 3.0 ± 2.1 10.5 ± 10.6 0.05 ± 0.03

Vanselow-Algan et al. (2015)
Molinia caerulea, Betula pubescens,

> 10
Eriophorum angustifolium (summer)

Beyer and Höper (2015)
Molinia caerulea ≤ 7 15 to 30

Eriophorum angustifolium ≤ 5 20 to 70

Patankar et al. (2013)

Salix pulchra ≤ 2

Eriophorum vaginatum ≤ 3

Carex bigelowi ≤ 1

Körner (1982) Carex curvula 1

Murchie and Horton (1997) Carex flacca 1.5

Kaipiainen (2009) Salix dasyclados 0.8 to 1.2 0.04 to 0.08

Patankar et al. (2013); Gu et al. (2008) Betula spp. 1 to 5 10 to 15

Lienau (2014) Betula pubescens 32 to 41

Nygren and Kellomäki (1983) Betula pubescens 4 to 17

Hoogesteger and Karlsson (1992) Betula pubescens 8

Chen et al. (2010) Typha latifolia 25 0.02 to 0.07

Ögren (1993) Salix spp. 16 to 29

Vernay et al. (2016) Molinia caerulea 7 to 15 0.03
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Table C2.
:::::::::
Comparison

:
of
::::
total

::::::::
ecosystem

::::::::
respiration

:::::
fluxes

::::
from

:::
bare

::::
peat

::::
areas

::::::
without

::::::::
vegetation

:::::::
(TERbare) ::::::

between
:::
our

::::
study

::::
(see

:::::
Figure

:
7,
:::::
panel

:
A
:::
for

:::
full

::::
time

:::::
series)

:::
and

:::::::
literature

:::::
values

:::::
(closed

:::::::
chamber

:::::::
methods)

::::
from

:::
the

::::
same

:::
and

:::::
similar

::::
peat

::::::::
extraction

::::
sites.

Site

Reference Land use Name, Location TERbare, µmol m-2 s-1

This study
Active mining 1.1 ± 0.5 (annual average and standard deviation)

Ceased mining, rewetted Himmelmoor, 0.8 ± 0.7 (annual average and standard deviation)

Vanselow-Algan et al. (2015) Active mining NW-Germany, 0.5 ± 0.1 (annual average and uncertainty)

Vybornova et al. (2019)
Active mining 53◦N 0 to 1 (annual range), 3 (maximum)

Ceased mining, rewetted 0 to 0.5 (annual range), 1.4 (maximum)

Waddington et al. (2002)
Ceased mining, wet year Sainte-Marguerite-Marie, 0.8 (May to August average)

Ceased mining, dry year SE Canada, 48◦N 3 (May to August average)

Shurpali et al. (2008) Active mining
Linnansuo, 1.3 (end of August maximum)

SE Finland, 62 ◦N 0.2 (mid-November minimum)
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