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S1. Validation of the climate-fire response surface

The modelled F; 99 response surface (Figure 1¢) was validated against the 50% of the data that was not used for model fitting.
The validation data was binned into 100 mm x 100 mm wide E, D bins and the corresponding values of F, o9 identified for all
bins with a minimum of 50 observations (N=191). Predicted values of F; o9 Were extracted from the modelled mean response
surface using the same set of 191 E, D coordinates. To evaluate the fit of the model, a linear regression was fitted to the 191
pairs of observed (y;) and predicted values (¥;) of F; o9 (Fig. S1.1):

Vi=a+ By (SL.1)

where y; and J; are observed and predicted values of F; g9 and a and S are fitted coefficients.

The linear regression model was highly significant (p<2.2e-16), with adjusted R?=0.80, slope () of 0.83 (95% CI: 0.76-0.90)
and intercept () of -0.004 and not significantly different from zero. As recommended by Piiieiro et al.(2008) and Valbuena et
al. (2017), Theil’s (1958) partial inequality coefficients were used to evaluate the proportions of the total model error due to

the unexplained variance (Uegyror ), model slope (Ugjope), and bias (Up;qs):

Uerror = Zi=1(Pi —¥:)? /n (S1.2)
Usiope = [(1 = B)? Ziea (D — 3)?1/SS (81.3)
Upias = [n.MD?]/SS (S1.4)
5§ =31 — yi)? (S1.5)
MD =%, —yi) /n (S1.6)

where ¥;, y; are predicted and observed values of F o9, fis the slope of the linear regression of y; against y; (Fig. S1.1), SS
is squared sum of squared residuals, MD the mean deviation between y; and ¥;, and » the number of validation data pairs.
The resulting Uerror, Usiope, and Upiqs were 0.73, 0.13, and 0.14, indicating that the largest proportion of predictive error
was due to unexplained variance, while small proportions were associated to the slope and bias. Consistent with the slight
overprediction of the F; o9 model, the distribution of model residuals peaked at slightly negative values (Fig. S1.2).
Relatively large residuals (e.g. absolute values > 0.2) were more common for validation points of PL-type fire (green dots,
Fig. S1.1) than for validation points of DL-type fire (orange dots, Fig. S1.1); this was to be expected because observed Fy g9

of 0.4 and higher are more common in the domain of PL-type fire but very rare in the domain of DL-type fire.
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45  Figure S1.1. Observed versus predicted Fg o9 for 191 validation grid points evenly spread across E, D space. The continuous black
curve is the linear regression line (y; = —0.004 + 0.083y;) and the dashed lines indicates the 1:1 relationship. Data points are
colour coded according to the climate-fire domain being of PL-type (green) or DL-type (orange) fire.
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Figure S1.2. Fy 99 model (eq. 4) residuals for 191 validation grid points evenly spread across E, D space. Green and orange curves
50 show densities of residuals for validation points in the climate-fire domains of PL-type or DL-type fire, respectively.
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Figure S1.3. Observed versus predicted F( 99 for 191 validation grid points evenly spread across E, D space. The continuous black
curve is the linear regression line (y; = —0.004 + 0.083y;) and the dashed lines indicates the 1:1 relationship. Data points are
colour coded according to the nine classes of the Moderate Resolution Imaging Spectroradiometer (MODIS) landcover classification
(MCD12Q1, version 5.1) represented in the validation data points (N=191): 1) Evergreen needleleaf forest, 2) Evergreen broadleaf
forest, 3) Deciduous needleleaf forest, 5) Mixed forest, 7) Open shrublands, 8) Woody savannas, 9) Savannas, 10) Grasslands, 16)
Barren or sparsely vegetated.



S2. Summary statistics of observed and predicted fire potential by biome

Table S2.1. Quantiles of observed mean annual fractional burned area (F) and predicted potential mean annual fractional burned
area (Fgg9) for the WWF Biomes included in this study. The global WWF Biome classification is described in Olson et al. (2001)
and can be downloaded from: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

WWEF Biomes F — biome quantiles Fg.99 — biome quantiles

Code Description 0.025 0.250 | 0.500 | 0.750 0.975 | 0.025 0.250 | 0.500 | 0.750 0.975
(Sub-)Tropical
Moist
Broadleaf

1 Forests 0.00 0.00| 0.00| 0.01 0.14| 0.02 0.11| 029 | 044 0.78
(Sub-)Tropical
Dry Broadleaf
2 Forests 0.00 0.00| 0.01| 0.03 037 013 0.55| 071 | 0.86 0.96
(Sub-)Tropical
Coniferous
3 Forests 0.00 0.00| 0.01 | 0.0 0.05| 006 030| 049 | 0.63 0.88
Temperate
Broadleaf
4 Mixed Forests 0.00 0.00| 0.00| 0.00 0.03| 0.00 0.03]| 0.12| 026 0.63
Temperate
5 Conifer Forest 0.00 0.00| 0.00| 0.00 0.03| 0.01 0.02| 0.05| 0.14 041
Boreal Forests
6 Taiga 0.00 0.00| 0.00| 0.01 0.04| 0.00 0.00]| 0.01| 0.01 0.03
(Sub-)Tropical
Grasslands
Savannas
7 Shrublands 0.00 0.01| 0.08] 025 0.70| 0.09 044 | 0.63| 0.80 0.98
Temperate
Grasslands
Savannas
8 Shrublands 0.00 0.00| 0.00| 0.03 0.14| 0.02 0.05| 0.08| 021 0.56
Flooded
Grasslands
9 Savannas 0.00 0.03| 0.10| 026 0.75| 0.06 056| 0.77 | 0.84 0.94
Montane
Grasslands
10 Shrublands 0.00 0.00| 0.00| 0.01 0.18| 0.01 0.04| 0.16| 041 0.66
11 Tundra 0.00 0.00| 0.00| 0.01 0.03| 000 0.00| 0.00| 0.01 0.0l
Mediterranean
Forests
Woodlands
12 Scrub 0.00 0.00| 0.00| 0.02 0.05| 0.06 0.13]| 0.17| 025 043
Deserts Xeric
13 Shrubland 0.00 0.00| 0.01| 0.05 0.18| 0.02 0.05| 0.10| 0.19 0.77
14 Mangroves 0.00 0.00| 0.00| 0.02 0.12| 0.03 0.04| 0.07| 038 0.76
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S3. Classification of climate-fire domains using gradient analysis

The division between the PL-type and DL-type domains can be computed numerically and an analytical solution can also be
attempted. As defined in the main text, the potential mean annual fractional burned area (F; 99) depends on both mean annual
actual evapotranspiration (E) and climatic water deficit (D). We can, therefore, see where in climate space Fy o9 1S more
dependent on E (productivity limited, PL-type) and where it is more dependent on D (dryness limited, DL-type). Since D is
not independent of E (as in D = E, — E’) we cannot directly examine how F; o9 varies with either variable (where increases in

E are larger we would observe PL-type conditions and vice versa). Instead, a different approach must be taken.

We take advantage of the fact that all three functions (Fj 99, D and E) are dependent entirely on observable variables (potential
evapotranspiration, E,, and precipitation, P) and perform a gradient analysis on these three functions. We compare the
directional change (gradient; indicated by the symbol V) with respect to Ey and P of Fj o9 and E and F g9 and D. We must
consider that the units of E and D are different to those of F;, 99 and so is the order of magnitude of this function. Therefore,
we only consider the directions of the gradients instead of the distances between the vectors. We do this by comparing the
angles between VE and VF; 49, and VD and VF,, o9 (Fig. S3.4). Where the first is smaller we assign the PL-type domain and

vice versa. The angles between the gradients are computed through the simple trigonometric formula:

-1 VEVFy.99

0 = cos S3.7

EFp.99 |VE||VFp.99] ( )
—1 VDVFy99

0 = cos 1 —22_ S3.8

DFp.99 |VD||VFp 99| ( )

where Ogg, ., and Oy, ., are the angles between Fj o and E and D respectively (Fig. S3.4).

Additionally, since we are only interested in which domain a grid point belongs to, we can omit the calculation of the angle

and focus on the values of the cosines. We assign a domain association parameter K:

_ _VEVFog99 _ _VDVFog9 (S3.9)
IVE||VFo.99]  |VDI|VFo.90] '

K can then tell us which domain F ¢ belongs to:
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K< 0 = DL-type
K =0 = undefined, (S3.10)
K>0 = PL-—type

within the limits 0 < E < E, and 0 < D < D, (see eq. 2-4, main text).

The K formula is further computed using the symbolics package in Matlab R2018a. However, the resulting model for X is
complex and non-linear. Nevertheless, within the above limits of Fj, g9 K is approximately linear (Fig. S3.5). We therefore used
linear regression through the origin point on the numerically derived dataset for K = 0. The resulting line £, = (1.94 +

0.02)P is significant (p-value < 0.001 and R? = 0.9955).
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Figure S3.4. An illustration of how gradients of the three model components are compared. Contours of the response surfaces of
Fy.09, E and D are shown in dashed black, green and orange curves, respectively, while the vectors VF g9, VE, and VD are shown in
solid black, green and orange arrows. Within the orthogonal P, E, space, where the angle between the gradients of Fj g9 (VF99)
and D (VD), Opp,,,, is smaller than the angle between the gradients of Fj o9 (VFg9) and E (VE), Oy, ,,, We see the predominance
of fuel dryness driving mean annual fractional burned area (DL-type fire) and where the angle 0, is larger than the angle Oy,
we see a predominance of fuel productivity being the dominant component (PL-type fire).
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115 Figure S3.5. Distribution of the domains of PL- and DL-type fire in P, E, space (within the limits 0 < E < E; and 0 < D < D)
estimated from an analysis of the direction of gradients F 99, E and D. Contours of the F 99 model are in grey.



S4. Frequency of dry fuel moisture days against climatic water deficit

120
The mean annual frequency of days (1980-2017) with predicted fine dead fuel moisture content (DFMC) under 10% was
computed using global MERRAZ2 reanalysis daily vapour pressure deficit data (VPD). Daily DFMC was predicted for global
forest regions from daily VPD using the model proposed by Resco de Dios et al. (2015). The 10% DFMC threshold was
shown to be a critical threshold in the level of fire activity in temperate forests of SE Australia (Nolan, Boer, Resco de Dios,
125 Caccamo, & Bradstock, 2016), and similar thresholds were found for forests in Portugal (Boer et al., 2017). Mean annual
climatic water deficit was computed from mean annual precipitation and potential evapotranspiration as described in the

Methods section of the main text.

350

300
|

Annual frequency of days DFMC<10%
100 150 200
| | |

50
|

T T T T
0 500 1000 1500

D (mmy™)

Figure S4.6. The mean annual frequency of days with predicted fine dead fuel moisture content (DFMC) below 10% in global forest
130 regions against mean annual climatic water deficit, D. The continuous black curve is the linear regression model, y=-34.15+0.22x,
which has an adjusted R?>=0.76 and p<2e-16)
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