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Abstract. The distribution of fire on Earth has been monitored from space for several decades, yet the geography of global 

fire regimes has proven difficult to reproduce from interactions of climate, vegetation, terrain and land use by empirical and 

process-based fire models. Here, we propose a simple, yet robust, model for global fire potential based on fundamental 

biophysical constraints controlling fire activity in all biomes. In our ‘top-down’ approach we ignored the dynamics of 10 

individual fires and focus on capturing hydroclimatic constraints on the production and (seasonal) desiccation of fuels to 

predict the potential mean annual fractional burned area, here estimated by the 0.99 percentile of the observed mean annual 

fractional burned area (𝐹଴.ଽଽ). We show that 80% of the global variation in 𝐹଴.ଽଽ can be explained from a combination of mean 

annual precipitation and potential evapotranspiration. The proposed hydroclimatic model reproduced observed fire activity 

levels equally well across all biomes and provided the first objective underpinning for the dichotomy of global fire regimes in 15 

two domains characterised by either fuel production limitations on fire or fuel dryness limitations on fire. A sharp transition 

between the two climate-fire domains was found to occur at a mean annual aridity index of 1.9 (1.94±0.02). Our model provides 

a simple but comprehensive basis for predicting fire potential under current and future climates, as well as an overarching 

framework for estimating effects of human activity via ignition regimes and manipulation of vegetation. 

 20 

1 Introduction 

Satellite-based Earth observation is providing an increasingly accurate picture of global fire patterns (Roy et al., 2005;Giglio 

et al., 2013;Robinson, 1991;Chuvieco and Martin, 1994). The highest fire activity is observed in seasonally dry (sub-)tropical 

environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in 

almost all biomes on Earth (Archibald et al., 2013). The particular combinations of these fire characteristics, or fire regimes 25 

(Gill, 1975), are known to emerge from the combined influences of climate, vegetation, terrain and land use, but their global 

distribution has so far proven difficult to reproduce by mathematical models (Hantson et al., 2016). Most current land surface 

models (LSMs) and Dynamic Global Vegetation Models (DGVMs) have some capacity to simulate fire activity from basic 

environmental variables but predictions (Hantson et al., 2016) usually only agree with observations in some biomes (e.g. 

savannas of the Sub-Saharan Africa), while disagreeing in others (e.g. boreal forests of North-America). Humans add further 30 
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complexity to global fire patterns by, amongst others, changing vegetation community composition, structure and 

flammability, active use of fire to clear land or reduce fire hazard, and fire suppression (Knorr et al., 2016;Archibald et al., 

2012;Parisien et al., 2016;Bowman et al., 2011). The partial success of current models in predicting global fire patterns suggests 

that their fire modules fail to capture some aspects of the biophysics that control fire activity across different environments. 

Incomplete understanding of biophysical drivers and constraints that underlie current global fire patterns creates uncertainty 35 

in model predictions of how fire regimes, fire-prone ecosystems and related biogeochemical cycles may respond to rising 

atmospheric [CO2] and climate change (Harris et al., 2016).  

 

Here, we go back to the fundamental biophysics of fire to formulate a simple, yet robust, model for the prediction of potential 

mean annual levels of fire activity across all global biomes. For this study we define fire activity in terms of the mean annual 40 

fractional burned area, 𝐹, of the landscape or land area unit, ranging from 0 in long unburnt landscapes to 1 in landscapes that 

burn completely on an annual basis (Giglio et al., 2013). By predicting 𝐹 we ignore the dynamics of individual fires, but this 

is appropriate in our view given the fact that most fires are orders of magnitude smaller (e.g., Archibald et al., 2013;Malamud 

et al., 2005) than the typical grid size (e.g. 0.5° x 0.5°) of LSMs and DGVMs. 

 45 

Building on Bradstock’s (2010) ‘four-switch’ concept we assume that four fundamental conditions need to be met for a 

landscape fire to occur: i) there must be enough plant biomass (i.e. fuel) to carry a fire, ii) the extant fuel must be dry enough 

to be ignitable, iii) weather conditions need to be favourable (i.e. hot, dry and windy) for a fire to spread, and iv) there must 

be an ignition. Bradstock (2010) conceptualized these conditions as four ‘switches’ in a series circuit that need to be ‘on’ for 

a fire to occur. While any fire will require alignment of all four switches at some point in time, in the context of modelling 50 

global fire patterns we emphasize that the four switches operate at disparate rates, with an associated hierarchy of conditional 

constraints on fire: production of plant biomass and build-up of fuel loads occurs over months to years, fuels dry out over 

weeks to months, and fire weather varies over time scales of hours to days, while ignitions are instantaneous events. Therefore, 

we hypothesize that the mean annual fractional burned area (𝐹) can be predicted from long-term fuel production and fuel 

drying rates (i.e. switches 1-2), while information on fire weather and ignitions (i.e. switches 3-4) is only required when 55 

modelling the specific attributes of individual fires (e.g. size and burn pattern). The hierarchical organization of the four 

switches further implies that the fractional burned area predicted from long-term fuel production and fuel drying rates alone 

represents an upper limit of fire activity that is only reached when fire weather and ignition limitations are minimal.  

 

To test the hypothesis that the upper quantiles of 𝐹 can be predicted from long-term fuel production and drying rates, we 60 

analysed global burned area data together with indices of fuel productivity and fuel dryness, both calculated from the climatic 

water balance (Stephenson, 1998). Building on the methods developed by a previous study of Australian fire regimes (Boer et 

al., 2016), we propose a new global model that predicts the upper limit (i.e. the 0.99 quantile) of the mean annual fractional 

burned area, 𝐹଴.ଽଽ, from two basic hydroclimatic variables: mean annual precipitation, 𝑃, and potential evapotranspiration, 𝐸଴. 
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The model also predicts the relative importance of either fuel productivity or fuel dryness constraints on 𝐹଴.ଽଽ, which we 65 

hypothesized to vary with the global distribution of land cover types and corresponding fuel types. Consistent with the variable 

constraints hypothesis (Krawchuk and Moritz, 2011), in dryland environments with grassy fuels we expected 𝐹଴.ଽଽ  to be 

primarily limited by fuel productivity constraints, while in more mesic environments dominated by woody vegetation and litter 

fuels 𝐹଴.ଽଽ  was expected to be limited primarily by fuel dryness constraints. Finally, we explored whether the global 

distribution of contemporary fire regime classes or ‘pyromes’ as classified by Archibald et al. (2013) on the basis of four fire 70 

regime metrics (i.e. fire return interval, maximum fire intensity, length of fire season, maximum fire area.) was associated with 

the relative importance of fuel productivity or fuel dryness constraints on 𝐹଴.ଽଽ.  

 

2 Materials and methods 

2.1 Modelling approach 75 

In this study our aim was to predict global patterns of potential mean annual fractional burned area (𝐹଴.ଽଽ) as a function of 

basic biophysical constraints on the production and dryness of fuel material. Following Boer et al. (2016), we assumed that 

both the production and drying of fuel material are essentially functions of the local water and energy budgets available for 

the production and desiccation of plant biomass. The long-term climatic water balance, calculated from mean annual 𝑃 and 

𝐸଴, captures these interactions of biologically available water and energy (Stephenson, 1998). When calculated over long time 80 

scales (>>years) and broad spatial scales (>>km2), changes in the soil water store and lateral water inputs can be assumed to 

be negligible so that the climatic water balance is reduced to: 𝑃 െ 𝑄 െ 𝐸 ൌ 0, where 𝑄 is runoff/drainage losses and 𝐸 is actual 

evapotranspiration. 𝐸  is a reliable predictor of continental patterns of annual primary productivity at annual timescales 

(Rosenzweig, 1968;Yang et al., 2013) and therefore a reasonable proxy for fuel production rates (Meentemeyer et al., 

1982;Matthews, 1997). Similarly, the potential for drying of fuel material can be assumed to be proportional to the atmospheric 85 

moisture demand (∝ 𝐸଴) that cannot be met by available water (∝ 𝐸), which is the climatic water deficit as defined by 

Stephenson (1998), 𝐷 ൌ 𝐸଴ െ 𝐸. For long timescales and large land areas, 𝐸 can be estimated from 𝑃 and 𝐸଴ using the semi-

empirical Budyko curve (Budyko, 1958;Zhang et al., 2010;Williams et al., 2012):  
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 90 

Recently, Boer et al. (2016) demonstrated that continental patterns of 𝐹଴.ଽଽ in Australia can be accurately predicted from mean 

annual 𝐸 and 𝐷. Since most global fire regime classes are represented in Australia (Murphy et al., 2013;Archibald et al., 2013), 

we hypothesized that global 𝐹଴.ଽଽ can also be modelled as a function of mean annual 𝐸 and 𝐷. Here we present a new global 
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𝐹଴.ଽଽ model that consists of two flexible sigmoidal functions, 𝐹଴.ଽଽሺ𝐸ሻ  and 𝐹଴.ଽଽሺ𝐷ሻ, describing the increase in 𝐹଴.ଽଽ with mean 

annual actual evapotranspiration (𝐸) and climatic water deficit (𝐷), respectively: 95 
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 𝐹଴.ଽଽሺ𝐷ሻ ൌ 1  for 𝐷 ൐ 𝐷ଶ (3) 

 𝐹଴.ଽଽሺ𝐸, 𝐷ሻ ൌ 𝐹௠௔௫𝐹଴.ଽଽሺ𝐸ሻ𝐹଴.ଽଽሺ𝐷ሻ (4) 

where 𝐹௠௔௫ is the global maximum of 𝐹଴.ଽଽ, here set at 1. The shape of 𝐹଴.ଽଽሺ𝐸ሻ  and 𝐹଴.ଽଽሺ𝐷ሻ is set by two parameters (Yin et 

al., 2003): 𝐸ଵ (or 𝐷ଵ) is the value at which 𝐹଴.ଽଽ increases most strongly with 𝐸 (or 𝐷), and 𝐸ଶ (or 𝐷ଶ) the value at which 𝐹଴.ଽଽ 

becomes irresponsive to further increase of 𝐸 (or 𝐷). Since the two predictor variables, 𝐸 and 𝐷, are not independent, the fitted 

𝐸, 𝐷, 𝐹଴.ଽଽ response surface was mapped to (orthogonal) axes of 𝑃 and 𝐸଴ before interpreting the shape of the response surface 100 

in terms of biophysical constrains on global fire activity.  

 

2.2 Data 

2.2.1 Burned area 

Global annual burned area data at 0.25° x 0.25° spatial resolution for the period July 1995 – June 2016 were obtained from the 105 

GFED4 database (Giglio et al., 2013). The mean annual fractional burned area, 𝐹, was calculated by summing the burned areas 

within each grid cell for the entire observation period and dividing by the area of the grid cell and the duration of the observation 

period.  

 

2.2.2 Climatic water balance 110 

Gridded mean annual precipitation, 𝑃, was obtained from WorldClim (Hijmans et al., 2005), while gridded mean annual 

potential evapotranspiration, 𝐸଴, based on the Hargreaves method (Zomer et al., 2007;Zomer et al., 2008), was obtained from 

the Global Aridity and Potential Evapotranspiration Data base at CGIAR-CSI (http://www.cgiar-csi.org/data/global-aridity-
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and-pet-database). Both data layers are based on observations over the 1950-2000 period and have a spatial resolution of 30 

arcseconds; both were resampled to the 0.25° x 0.25° grid of the GFED4 data base using bilinear interpolation. Mean annual 115 

actual evapotranspiration, 𝐸, was predicted from 𝑃 and 𝐸଴ using the Budyko curve (Eq. 1). 

 

2.2.3 Landcover and fuel types 

This study focused on areas of (semi-)natural vegetation. The corresponding vegetation mask was constructed from the Land 

Cover Type product (MCD12Q1) of the Moderate Resolution Imaging Spectroradiometer (MODIS) by first resampling the 120 

data layer to the 0.25° grid of the GFED4 data base, using nearest neighbour interpolation, and reclassifying grid cells of 

excluded land cover types (i.e. water, cropland, urban and built-up, cropland/natural vegetation mosaics, snow and ice, barren 

or sparsely vegetated) to missing values.  

 

2.3 Data analyses 125 

2.3.1 Model fitting and validation 

Data analyses focused on the modelling of global 𝐹଴.ଽଽ as a function of mean annual 𝐸 and 𝐷 (Eq. 2-4) and on the interpretation 

of the model in terms of its consistency with current understanding of global fire patterns. Our complete data set consisted of 

estimates of mean annual 𝐹, 𝑃, 𝐸଴, and 𝐸 for 193,476 grid cells covering the selected land cover types of the global land area, 

except Antarctica, at 0.25° x 0.25° spatial resolution. A randomly selected sample of 50% of the grid cells was used for model 130 

fitting, while the other 50% of the data was set aside for model validation. We used R (R Core Team, 2018) for all data 

analyses, in particular the ‘raster’ (Hijmans, 2016) and ‘quantreg’ packages (Koenker, 2017). 

 

Non-linear quantile regression was used to fit Eq (4) to the 0.99 quantile of 𝐹 as a function of mean annual 𝐸 and 𝐷. To 

minimize bias in the model towards the most common global climates (e.g. desert or boreal climates), we used a simple 135 

bootstrap procedure of two steps: i) the global 𝐸, 𝐷 space was divided into 100 mm by 100 mm bins and all climate bins with 

a minimum of 100 grid cells identified (n=145), ii) a random sample (with replacement) of 100 grid cells was drawn from 

these bins, and iii) Eq (4) was fitted to the sample data. This procedure was run 1000 times to generate 1000 response surfaces 

from which a mean 𝐹଴.ଽଽ response surface was calculated (Geyer, 2011). The means and confidence intervals of the fitted 

model coefficients are listed in Table 1.  140 

 

Model predictions were validated against the 50% of the data that was not used for model fitting. To do so the validation data 

was binned into 100 mm x 100 mm wide 𝐸, 𝐷 bins and the corresponding values of 𝐹଴.ଽଽ identified for all bins with a minimum 
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of 50 observations (N=191). Predicted values of 𝐹଴.ଽଽ were extracted from the modelled mean response surface for the same 

set of 191 𝐸, 𝐷 data pairs. Observed values of 𝐹଴.ଽଽ correspond to the 0.99 quantile value of 𝐹 in each of the 191 100 mm x 145 

100 mm 𝐸, 𝐷  bins. The relationship between observed and predicted 𝐹଴.ଽଽ  was evaluated by linear regression analysis 

(Supplementary Material, S1). Deviations between observed and predicted 𝐹଴.ଽଽ were quantified using the mean difference 

(MD) and root mean squared difference (RMSD):  

𝑀𝐷 ൌ ∑ ሺ𝑦ො௜ െ 𝑦௜ሻ
௡
௜ୀଵ /𝑛          (5) 

𝑅𝑀𝑆𝐷 ൌ ඥ∑ ሺ𝑦ො௜ െ 𝑦௜ሻଶ௡
௜ୀଵ /𝑛         (6) 150 

where 𝑦ො௜, 𝑦௜ are predicted and observed values of 𝐹଴.ଽଽ and n=191. To measure agreement between the spatial patterns of 

observed and predicted 𝐹଴.ଽଽ, we used the normalised mean error (NME) and normalised mean squared error (NMSE), as 

proposed by Kelley et al. (2013): 

𝑁𝑀𝐸 ൌ ∑ |𝑦ො௜ െ 𝑦௜|௜ / ∑ |𝑦௜ െ 𝑦ത|௜          (7) 

𝑁𝑀𝑆𝐸 ൌ ∑ ሺ𝑦ො௜ െ 𝑦௜ሻଶ
௜ / ∑ ሺ𝑦௜ െ 𝑦തሻଶ

௜         (8) 155 

where 𝑦ො௜ is the predicted value of 𝐹଴.ଽଽ at grid cell i, 𝑦௜ the corresponding observed value, and 𝑦ത the mean of all observed 

values. By normalising by the spatial variability of the observations, NME and NMSE provide a measure of the spatial error 

of the model, with NME or NMSE close to 0 indicating perfect agreement between observed and predicted patterns, and both 

metrics approaching unity when agreement is similar to that of a model that predicts a spatially uniform value equal to the 

mean of all observations (Kelley et al., 2013). 160 

 

2.3.2 Identification of climate-fire domains 

Following Boer et al. (2016) two climate-fire domains were distinguished on the 𝑃, 𝐸଴, 𝐹଴.ଽଽ response surface depending on 

whether the direction of the 𝐹଴.ଽଽ gradient was more parallel to the local 𝐸 gradient or 𝐷 gradient, indicating predominance of 

fuel productivity or fuel dryness limitation on fractional burned area, respectively. The boundary between the two climate-fire 165 

domains was identified analytically using a gradient analysis of the 𝐹଴.ଽଽ response surface relative to gradients of 𝐸 and 𝐷 in 

𝑃, 𝐸଴ space (Supplementary Material, S3).  

As in Boer et al. (2016) we refer to these two domains as productivity-limited (PL) fire and dryness-limited (DL) fire domains 

and analysed whether the affinity to either domain was related to the vegetation type being dominated by grasses/herbaceous 

or woody plants. To this end, areas of homogeneous land cover type were identified on the GlobeLand30 map (Chen et al., 170 

2015). The GlobeLand30 product (Chen et al., 2015) is based on 30 m resolution Landsat imagery and classifies land cover 

types according to the dominant plant life form (e.g. forest, shrubland and grassland), which can be more readily related to 

distinct fuel types than biome classifications that often include classes of mixed life forms (e.g. woody savanna in MCD12Q1). 

A large random sample (N=9,053) of ca. 30 km x 30 km areas of homogeneous land cover type was drawn by sampling 16 

blocks of 1000 x 1000, 30 m grid cells from each of the 853 GlobeLand30 tiles and keeping all blocks with at least 75% in a 175 
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single land cover class. The geographical coordinates of the 9,053 homogeneous sample blocks were first used to extract 

corresponding values of 𝑃 and 𝐸଴ from the climate grids, which were then used to extract the corresponding domain class from 

the 𝑃, 𝐸଴, 𝐹଴.ଽଽ response surface. 

The distribution of the five global fire regime classes (‘pyromes’) distinguished by Archibald et al. (2013) over the 

productivity-limited (PL) and dryness-limited (DL) fire domains was analysed by: i) mapping all grid cells of the global 180 

pyrome map (i.e. Fig. 2 in Archibald et al., 2013) to the 𝑃, 𝐸଴, 𝐹଴.ଽଽ response surface via their corresponding mean annual 𝑃 

and 𝐸଴, ii) dividing the global 𝑃, 𝐸଴ space in 100 mm x 100 mm bins and identifying the pyrome class with the highest relative 

frequency in all 𝑃, 𝐸଴ bins with a minimum of 50 data points (N=185), iii) a qualitative evaluation of the consistency of the 

predicted 𝐹଴.ଽଽ and relative importance of fuel production and fuel dryness constraints on fire with the defining characteristics 

of the five pyrome classes (Archibald et al., 2013).  185 

3 Results 

3.1 Burned area 

According to the GFED4 data base (Giglio et al., 2013), global burned areas amounted to 2.3% of the terrestrial land area per 

year over the 1995-2016 observation period. The observed mean annual fractional burned area, 𝐹, was highest in the tropical 

savanna regions of Africa, Australia and (to a lesser extent) South America, where 𝐹 values in the 0.3-0.4 range were common 190 

and as high as 0.7-0.8 in localized areas. In other fire-prone environments, 𝐹 was much lower, with values of up to ~0.10 for 

shrublands and in the 0.01-0.03 range for most forests. 

The 0.99 quantile of the mean annual fractional burned area, 𝐹଴.ଽଽ, was found to be a highly predictable function of the climatic 

water balance terms 𝐸 and 𝐷, and therefore of mean annual precipitation (𝑃) and potential evapotranspiration (𝐸଴) (Fig. 1a-c). 

Linear regression analysis of observed versus predicted 𝐹଴.ଽଽ for validation sites showed that the hydroclimatic model (Eq. 4, 195 

Fig. 1c) explained 80% of the global variation in 𝐹଴.ଽଽ (𝑅ଶ ൌ 0.80), with a Mean Difference (MD) between observed and 

predicted values of 0.05, Root Mean Squared Deviations (RMSD) of 0.14, Normalised Mean Error (NME) of 0.45 and 

Normalised Mean Square Error (NMSE) of 0.27. Further details on the validation of the 𝐹଴.ଽଽ  model are provided in 

Supplementary Material, S1.  

The predicted global pattern of 𝐹଴.ଽଽ was very similar to the observed pattern of 𝐹 in the tropical savannas of Sub-Saharan 200 

Africa and Australia, where tropical wet-dry climates combine high levels of fuel production during the wet season with intense 

drought during the dry season, producing 𝐹 values as high as 0.8-1.0 (Fig. 2a-b). In woody ecosystems outside of the tropical 

savannas and semiarid grasslands 𝐹଴.ଽଽ seldom exceeded 0.5, which is consistent with the fact that most predominantly woody 

vegetation communities cannot survive such high levels of fire activity over long periods (Bond and Keeley, 2005). Zonal 

medians of predicted 𝐹଴.ଽଽ were 0.17 for Mediterranean forests, woodlands and scrub, 0.05-0.12 for temperate forests, and 0.01 205 

for boreal forest environments Supplementary Material, S2. 
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3.2 Climate-fire domains 

The fitted 𝑃, 𝐸଴, 𝐹଴.ଽଽ response surface consists of two distinct domains (Fig. 1d) characterized by different climate constraints 

on fire (Boer et al., 2016). The first domain (green zone in Fig. 1d) is characterized by 𝐹଴.ଽଽ increasing with mean annual actual 210 

evapotranspiration (𝐸) but not with variation in climatic water deficit (𝐷), consistent with potential fire activity levels being 

primarily limited by fuel production (hereafter: PL-type fire). In the second domain (orange zone in Fig. 1d), 𝐹଴.ଽଽ increases 

strongly with 𝐷 but varies little with increasing 𝐸, consistent with potential fire activity levels being primarily limited by the 

capacity of the atmosphere to dry-out fuel material to ignitable levels (DL-type fire).  

A visual interpretation of the fitted 𝑃, 𝐸଴, 𝐹଴.ଽଽ response surface suggests that the domain shift from PL-type fire to DL-type 215 

fire occurs at some threshold aridity index (i.e. the ratio of mean annual potential evapotranspiration and precipitation: 
ாబ

௉
). 

The equation for the boundary between the two domains can be derived analytically from Equations (1-4) and is approximately 

linear for the region covered by the observations: 𝐸଴  ൌ  ሺ1.94 േ 0.02ሻ𝑃 ሺp ൏ 0.001  and 𝑅ଶ ൌ 0.996 ) (Supplementary 

Material, S3). 

Using gridded mean annual climate data, the domains of PL- and DL-type fire were mapped to geographical space (Fig. 2c). 220 

The global pattern of PL- and DL-type fire is similar to the global distribution of climate aridity and biome types, as expected 

given that the boundary between PL- and DL-type fire corresponds to an aridity index of ~1.9. Dryland environments at mid 

latitudes on all continents were classified in the domain of PL-type fire, while wet and cold environments at all latitudes were 

classified in the domain of DL-type fire. The domain classification indicates whether the primary limiting factor on mean 

annual fire activity levels was fuel production or fuel dryness, which can be expected to correlate strongly with the dominant 225 

vegetation lifeform and fuel type (litter versus grass). Using the GLC30 global lifeform mapping (Chen et al., 2015) we found 

that areas of forest, wetland and tundra were predominantly classified in the domain of DL-type fire (i.e. they are typically too 

wet to burn for much of the time), whereas grasslands, shrublands and barren lands were predominantly classified in the domain 

of PL-type fire (i.e. fuels are typically sparse and discontinuous for much of the time) (Fig. 3). The shrubland class is an 

interesting case: these ecosystems occur most frequently in the domain of PL-type fire even though they are dominated by 230 

woody vegetation and woody plant litter forms an important fuel component. However, classification as PL-type fire makes 

sense because (semiarid and arid) shrublands can often only support large fires when herbaceous vegetation fills in the gaps 

and connects the fuel array after above-average rainfall (e.g., O'Donnell et al., 2011;Prior et al., 2017). 

As expected, the five pyromes distinguished by Archibald et al. (2013) were found to occupy distinct domains in 𝑃, 𝐸଴ climate 

space (Fig. 4): i) the ‘RIL’ pyrome, characterized by rare, intense, large fires was restricted to low 𝑃 environments in the 235 

climate domain of PL-type fire (green grid cells, Fig. 4) with a median predicted 𝐹଴.ଽଽ of 0.05, consistent with its geographical 

distribution in the more arid zones of boreal forests and temperate coniferous forests, plus areas of Mediterranean vegetation 

and xeric vegetation; ii) the ‘FIL’ pyrome, characterized by frequent, intense, large fires (yellow grid cells, Fig. 4), was found 
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in the climate domain of PL-type fire across a broad range of mean annual 𝑃 combined with high 𝐸଴ and with a median 

predicted 𝐹଴.ଽଽ of 0.55, which is typical for the tropical savannas in Australia and Africa where this pyrome prevails; iii) the 240 

‘FCS’ pyrome, characterized by frequent, cool (low-intensity), small fires (orange grid cells, Fig. 4), was found across both 

climate domains in the region that combines high 𝑃, high 𝐸଴, and very high predicted 𝐹଴.ଽଽ (median=0.63), corresponding 

mainly to tropical grasslands and shrublands as well as tropical dry broadleaf forests; iv) the ‘RCS’ pyrome, characterized by 

rare, cool, small fires (pink grid cells, Fig. 4) was found mostly in the domain of DL-type fire in the region of intermediate 𝑃 

and 𝐸଴  with the median of predicted 𝐹଴.ଽଽ  just below 0.09. The geographical distribution of the RCS pyrome spans all 245 

continents and a range of biomes, including large fractions (0.4-0.5) of boreal forests, temperate coniferous and broadleaf 

forests, as well as smaller fractions (0.2-0.4) of Mediterranean vegetation and Montane grasslands; v) the ‘ICS’ pyrome, the 

most ‘human-driven’ pyrome according to Archibald et al. (2013), is characterized by intermediate frequency of cool, small 

fires (blue grid cells, Fig. 4) and was found in both climate domains, PL- and DL-type, across wide ranges of 𝑃 and 𝐸଴, which 

translates to a wide range of predicted 𝐹଴.ଽଽ  (median=0.25). The geographical distribution of the ICS pyrome is also 250 

widespread, including large fractions (0.4-0.6) of all tropical forest biomes, and smaller but substantial fractions (0.2-0.4) of 

temperate forests, (tropical) grasslands and shrublands, which is consistent with the spread across climate domains of both fuel 

productivity limitations (PL-type) and fuel dryness limitations (DL-type). 

 

4 Discussion 255 

This study has shown that climate sets strong and highly predictable constraints on the global distribution of fire on Earth. In 

particular, climate constrains the amounts and timing of plant available water and energy and thereby determines the 

probability that the two most basic conditions for fire are met, namely the production and desiccation of plant biomass and 

derived fuels. We showed that the strength of those two fundamental climate constraints on fire, and global variation therein, 

are captured well by the mean annual climatic water balance, which provides a simple yet biophysically sound basis for the 260 

prediction of potential fractional burned area from just two readily available climate variables: mean annual precipitation and 

potential evapotranspiration. The proposed hydroclimatic model was validated against independent burned area data and found 

to explain 80% of the global variation in potential fractional burned area (𝐹଴.ଽଽ) with a slight tendency to overpredict 𝐹଴.ଽଽ, but 

an NME of 0.45 indicating good agreement between predicted and observed spatial patterns of 𝐹଴.ଽଽ. A direct comparison of 

model performance with existing global fire models is difficult since most existing models predict 𝐹 rather than 𝐹଴.ଽଽ and 265 

systematic evaluation of their performance is ongoing as part of the fire modelling intercomparison project (FIREMIP) 

(Hantson et al., 2016;Rabin et al., 2017;Teckentrup et al., 2019;Forkel et al., 2019). Our hydroclimatic model is conceptually 

similar to a global model proposed by Kelley et al. (2019) that predicts burned area as a function of four limitations (i.e. fuel 

continuity, fuel moisture, potential ignitions and a suppression index). Kelley et al. (2019) report an NME score of 0.60-0.63 
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for their model predictions of mean annual burned area against the GFED4s data set (Randerson et al., 2012;Giglio et al., 270 

2013), indicating a lack of agreement between the spatial pattern of predicted and observed burned area. 

Overprediction of 𝐹଴.ଽଽ  by our model was somewhat more pronounced in environments of the DL-type fire than in 

environments of PL-type fire (see Supplementary Material, S1), but model residuals had similar distributions for a wide range 

of MODIS landcover types, supporting the notion that the model captures the main climatic constraints on global fire activity 

levels. Existing fire models tend to struggle predicting the fire regimes of temperate and boreal forest regions, that burn much 275 

more infrequently than tropical savannas (Archibald et al., 2013), but we did not observe that model fit suffered in any 

particular biome because we employed a mechanistic, hydroclimatic approach that captured the fundamental biophysics 

underlying global fire regimes.  

The bias in performance of existing global fire models is likely due to a limited capacity to simulate fuel drying dynamics in 

forest and woodland environments. Whereas the seasonally wet-dry climate of tropical savannas makes annual production and 280 

subsequent desiccation of fuels highly predictable, fire activity in forests and woodlands is primarily constrained by the 

moisture content of the (inherently abundant) fuels, which varies at (sub)daily to monthly timescales (Nolan et al., 

2016;Caccamo et al., 2012;Boer et al., 2017). The fuel moisture models within several of the existing global fire models (Rabin 

et al., 2017) are driven by some implementation of the Nesterov index: 𝑁 ൌ ∑ ሺ𝑇௜ െ 𝑇ௗ௣,௜ሻ𝑇௜
ఠ
௜ୀଵ , where 𝜔 is the number of days 

since the last rainfall exceeding 3 mm d-1, 𝑇௜  is the daily 3 pm air temperature (°C) and 𝑇ௗ௣,௜  the daily 3pm dew point 285 

temperature (°C). As shown by Schunk et al.(2017) the Nesterov Index was a poor predictor of the moisture content of 1-hour 

and 10-hour fuels from four main forest species in Germany. With fuel moisture variation modelled by the Nesterov index 

global fire models lack the critical capacity to predict when, or how frequently, forests and woodlands switch from a moist/non-

flammable state to a dry/flammable state and are therefore unlikely to reproduce observed spatiotemporal variation in burned 

area in those biomes. In contrast, our hydroclimatic model does not predict fuel moisture content; instead, the mean annual 290 

climatic water deficit (𝐷) is used as an estimate of the probability of extant fuels drying out to ignitable levels during some 

fraction of the year. With 𝐷 being a measure of the atmospheric moisture demand that cannot be met by the soil water store 

(Stephenson, 1998), 𝐷 captures the basic biophysics involved in the desiccation of fuels and accounts for the fact that sparse 

fuels (low 𝐸) require less energy (𝐸଴) to dry out than dense/heavy fuels. 

 295 

Further evidence for 𝐷 being a reasonable indicator of the mean annual probability of forests and woodlands being in a dry 

fuel state can be derived from previous studies on climate-fire relations in the southwest Unites States (Williams et al., 

2015;Abatzoglou et al., 2017) and studies on dead fuel moisture (Resco de Dios et al. 2015) and fire activity in temperate 

forests of SE Australia (Nolan et al., 2016) and Portugal (Boer et al., 2017) that showed that cumulative burned area in these 

different forest regions responds strongly non-linearly to predicted fine dead fuel moisture content dropping below thresholds 300 

identified at 14-18% and 10-12%, respectively. Using the Resco de Dios et al. (2015) fuel moisture model with gridded global 

vapour pressure deficit data to predict daily fine dead fuel moisture content for global forests and woodlands, we found that 
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mean annual 𝐷 is strongly and linearly related (adj. R2: 0.76, p<2e-16) to the mean annual frequency of predicted daily fine 

dead fuel moisture content dropping below 10% (Supplementary Material, S4).  

The hydroclimatic model allowed us to objectively distinguish climatic domains for a predominance of either fuel productivity 305 

(PL-type) or fuel dryness (DL-type) constraints on mean annual fractional burned area, and showed their geographical 

distribution to be consistent with global patterns of herbaceous vs. woody vegetation types and corresponding fuel types, in 

accordance with the variable constraints hypothesis (Krawchuk and Moritz, 2011). Further, we demonstrated (see 

Supplementary Material, S3) that the boundary between the domains of PL- and DL-type fire is well approximated by an 

aridity index of 1.9 (1.94±0.02), providing the first objective identification of where in climate space (Fig. 1d), and in 310 

geographical space (Fig. 2c), fire regimes switch from fuel load limitations to fuel moisture limitations. We showed that the 

hydroclimatic model and associated classification in two contrasting climate-fire domains is consistent with the hydroclimatic 

distribution of pyromes (Archibald et al., 2013), indicating that key aspects of global fire regimes vary in a predictable way 

with global gradients in mean annual precipitation and potential evapotranspiration.  

By focusing exclusively on the roles of fuel production and fuel dryness constraints, our hydroclimatic model was designed to 315 

predict the potential or maximum mean annual fractional burned area, which provides a useful reference for bottom-up process-

based modelling approaches used in many DGVMs (Hantson et al., 2016). Further work should be extended to predicting 

annual, rather than potential mean annual, fractional burned area by modelling the deviations between predicted 𝐹଴.ଽଽ and 

observed annual fractional burned area as a function of fire weather and ignition constraints on fire activity, thus completing 

the formalisation and implementation of the four-switch concept (Bradstock, 2010). Other future work could also examine the 320 

drivers, such as fire management and other human activities, of geographical variation between 𝐹 and 𝐹଴.ଽଽ. 

 

5 Conclusion 

At long time scales the global distribution of fire on Earth is highly predictable from fundamental biophysical constraints on 

the production and seasonal desiccation of plant biomass (i.e. fuel), which in turn are proportional to mean annual precipitation 325 

and potential evapotranspiration. The sharp transition of global fire regimes from domains of fuel production limitations on 

fire (PL-type) to fuel dryness limitations on fire (DL-type) can be identified from the mean annual aridity index being above 

or below a threshold value of 1.9. Our model provides a simple but comprehensive basis for predicting fire potential under 

current and future climates, as well as an overarching framework for estimating effects of human activity via ignition regimes 

and manipulation of vegetation. In these respects, it offers a significant advance on existing global fire models and therefore a 330 

basis for improving predictions from coupled global vegetation models. 

 

Data availability.  

Global Fire Emissions Database (GFED) data are freely available at: http://www.globalfiredata.org/.  
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WorldClim gridded climate data can be downloaded from: http://worldclim.org/.  335 

Gridded mean annual global potential evapotranspiration can be downloaded from CGIAR-CSI: 

https://cgiarcsi.community/data/global-aridity-and-pet-database/.  

The Globeland30 (GLC30) global landcover classification layer can be downloaded from: http://www.globallandcover.com/. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) landcover classification (MCD12Q1) can be downloaded 

from: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1. 340 

The global pyrome classification layer is available upon request from Sally Archibald. 
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Tables 

 

Table 1. Mean and 95% confidence intervals of model coefficients (Eq. 4) obtained from 1000 model fits. 485 

Coefficient Dimension Mean 95% CIs 

𝑬𝟏  mm.y-1 577 554, 597 

𝑬𝟐 mm.y-1 976 952, 1126 

𝑫𝟏 mm.y-1 607 591, 626 

𝑫𝟐 mm.y-1 1034 986, 1088 
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Figures 

 

Figure 1. a) Mean annual actual evapotranspiration (𝑬, mmy-1), b) climatic water deficit (𝑫, mmy-1), and c) the 0.99 quantile of 490 
mean annual fractional burned area (𝑭𝟎.𝟗𝟗) as functions of mean annual precipitation (𝑷) and potential evapotranspiration (𝑬𝟎). d) 
Distribution of the domains of PL- and DL-type fire in 𝑷, 𝑬𝟎 space, with contours of the 𝑭𝟎.𝟗𝟗 model in grey. Coloured dots in panel 
c) correspond to independent observations of 𝑭𝟎.𝟗𝟗 used for validation. 
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Figure 2. a) Observed (1995-2016) mean annual fractional burned area (𝑭). b) Predicted 0.99 quantile of mean annual fractional 495 
burned area (𝑭𝟎.𝟗𝟗). c) Geographical distribution of domains of PL- and DL-type fire in green and orange tones, respectively. In 
white land areas the observed mean annual fractional burned area was negligible (𝑭 <0.000001).  
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Figure 3. Distributions of probabilities of classification in the domain of DL-type fire for a large sample (N=9053) of 30 km x 30 km 500 
areas of homogenous landcover drawn from the GLC30 global lifeform database (Chen et al., 2015). Bars are coloured green where 
P(DL-type)<0.5, to indicate prevailing affinity to the domain of PL-type fire, and coloured orange where P(DL-type)>0.5 to indicate 
prevailing affinity to the domain of DL-type fire. 
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  505 

Figure 4. a) Distribution of global pyrome classes (Archibald et al., 2013) in 𝑷, 𝑬𝟎 space, with contours of the fitted global 𝑭𝟎.𝟗𝟗 
model in black and grey cells indicating climate space where none of the five pyromes had a relative frequency exceeding 0.2. b) 
Geographical distribution of pyrome classes, redrawn from Archibald et al., 2013. 

 

https://doi.org/10.5194/bg-2019-441
Preprint. Discussion started: 25 November 2019
c© Author(s) 2019. CC BY 4.0 License.


