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Abstract:

Soil moisture droughts have comprehensive implications for terrestrial ecosystems. Here we study

time-accumulated impacts of the strongest observed droughts on vegetation. The results show that

drought duration, the time during which surface soil moisture is below seasonal average, is a key

diagnostic variable for predicting drought-integrated changes in (i) gross primary productivity, (ii)

evapotranspiration, (iii) vegetation greenness, and (iv) crop yields. Drought-integrated anomalies in

these vegetation-related variables scale linearly with drought duration with a slope depending on

climate. In arid regions, the slope is steep such that vegetation drought response intensifies with

drought duration, whereas in humid regions, it is small such that drought impacts on vegetation are

weak even for long droughts. These emergent large-scale linearities are not well captured by state-

of-the-art  hydrological,  land  surface  and  vegetation  models.  Overall,  the  linear  relationship  of

drought  duration  versus  vegetation  response  and  crop  yield  reductions  can  serve  as  model

benchmark, and support drought impact interpretation and prediction.
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1.  Introduction

Drought  has  complex  and  potentially  severe  impacts  on  the  terrestrial  biosphere  (1,2,3,4).  In

particular, it affects the vegetation and can thereby reduce or even reverse carbon uptake from the

atmosphere  (2),  increase  (heat  wave)  temperatures  through  reduced  evaporative  cooling  (5),

increase wildfire activity (6), and reduce food production (7). These multifaceted drought effects on

vegetation are relevant for economy and society, as well as for natural ecosystems. However, these

effects are complex (3,8,9), with the drought response of plants (partly) non-linearly depending on

various factors. These comprise, e.g., vegetation characteristics, such as root depth, leaf area and

plant physiology, soil characteristics, such as water holding capacity, and hydrological and terrain

characteristics, which in turn affect groundwater level and thereby also soil moisture conditions

above it  (10,11). Moreover, drought history can also play a role through legacy effects  (12). The

interplay of these factors in determining vegetation responses to drought is not yet well understood,

in particular over large spatial scales and with respect to different and changing climate conditions.

Since  recently,  modern  Earth  observation  through  satellites  and  ground  station  networks  in

combination with radiative transfer modeling and/or upscaling approaches provide unprecedented

large-scale datasets. Using such datasets it has become possible to identify dominant connections

between key observed variables during droughts, such as a strong and fast relationship between soil

moisture and runoff deficits, emerging at large scale across hydrological catchments and climate

zones  of  Europe  (13).  Following  and  expanding  this  investigation  pathway,  the  present  study

compiles and analyzes worldwide data, revealing simple and useful relationship(s) that integrate the

complex large-scale vegetation response to droughts of different magnitude. 
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2.  Data and Methods

Drought in this study is determined through surface soil moisture deficits, a simple and widely used

drought indicator  that is directly  related to vegetation-accessible water availability  (1).  For this

purpose  we  use  ESA  CCI  soil  moisture  data  (14). Further,  in  order  to  characterize  the

meteorological drought forcing, we employ precipitation from ERA-Interim (15) and net radiation

data from the SRB and CERES datasets. Moreover, to infer the vegetation drought response, we

consider  data  for  gross  primary  productivity  (GPP,), and  evapotranspiration  (ET)  from  the

FLUXCOM-RS dataset  (16), and normalized differential vegetation index data (NDVI ) from the

GIMMS3g dataset  (17). All employed datasets are derived from observations, and provide global

coverage (see  Table 1 for an overview, and the  supporting information for further details).  We

employ satellite-derived datasets where available, namely for surface soil moisture, net radiation,

and NDVI. For robust drought-effect assessment, these are complemented by precipitation, GPP

and ET datasets, obtained from upscaled/interpolated site observations. 

In  addition  to  observational  data,  we  use  state-of-the-art  modelled  datasets.  In  particular,  we

consider (surface) soil moisture and ET from the GLEAM dataset (2118) and from 6 models from

the Earth2Observe model ensemble (version 1,  (2219),  see also supporting information),  which

provide these two required variables. GLEAM is a land surface model that assimilates observations

of soil moisture, vegetation optical depth, and snow water equivalent. The Earth2Observe ensemble

includes  ordinary  land  surface  models  as  well  as  hydrological  models.  These  models  provide

estimates of surface soil moisture, typically representing the top 2-10 cm (exact values are model-

dependent (2219)), and can as such be compared with the satellite-derived product. In addition, the

models provide total column soil moisture (representing typically 1-5 m; exact depths are model-

dependent), which is used to assess the impact of considered soil moisture depth on our results.

Besides these models, we further consider an ensemble of land surface and vegetation models from

the TRENDY project (version 3,  (20, 2123,24), see also supporting information). These models

provide ET and total column soil moisture. All model simulations considered here are uncoupled

and forced with observation-based gridded meteorological data.
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Constrained by concurrent  availability  of different  required data  streams,  we consider the time

period 2001-2015, half-degree spatial resolution, and half-monthly temporal resolution of the data

for the observation-based analyses (see supporting information). While we use the same temporal

and spatial resolution for the model-based analyses, the time period considered in this context is

slightly shifted, 1998-2012. This is because the Earth2Observe simulations do only extent until

2012.  All time series are de-trended prior to further analyses, with trends determined using a 3-

year moving average window. To study the biospheric drought response, we focus on droughts that

peak during the local growing season. This is determined for each location (half-degree grid cell) as

the 5 consecutive months with highest multi-year average NDVI, or ET in the case of the model-

based analyses.

We consider for each grid cell the strongest drought in terms of surface soil moisture within the

study period 2001-2015. This drought is identified in three steps: (i) we compute soil moisture

anomalies by removing the mean seasonal cycle from the actual time series; (ii) we determine the

driest anomaly in each year’s growing season; and (iii) we select the drought with the greatest dry

anomaly out  of the total  15 peak anomalies  over the whole time-period.  The duration of each

drought is then the period before and after drought peak, during which the soil moisture anomalies

are  negative,  i.e.  when  soil  moisture  is  drier  than  the  seasonal  mean.  Note  that  our  drought

definition therefore does not include an indication for vegetation water stress; furthermore, rain

events may occur during diagnosed drought periods.   

Anomalies  are  also computed for the other  investigated  variables,  in the same way as for soil

moisture. To enable direct comparison of anomalies across variables, and across observations and

models, we compute z-scores. This is done by perform a standardizationing by dividing all anomaly

values by dividing them with a characteristic variability value. This  value  is computed for each

variable and each grid cell as the standard deviation across all half-monthly growing-season values.

This way, all anomalies discussed and illustrated in this study are scaled by and expressed as inter-

annual standard deviations to be expressed as z-scores. 
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Whenever vegetation-related anomalies are integrated over the course of particular droughts, the

integration is performed across a time window of 8 months. It starts 3 months before the half-

monthly period denoting drought peak, and finishes 4.5 months after the peak period. Not using the

specific actual duration of each drought for the integrations ensures to avoid spurious correlations

between drought duration and the drought-integrated vegetation response. Also for this purpose, the

above-described standardization is performed after the time-integration.

Finally,  to  characterize  the climate,  and to  measure the relative  roles  of  water-  versus  energy-

limitation for the water use by the vegetation, we compute an aridity index (Figure S1). This index

was originally introduced as the ratio between mean potential  evapotranspiration over the study

period and the respective mean precipitation, with the latter scaled by the latent heat of vaporization

to  yield  a  unitless  index value  (25).  We use  an  adapted  form where  we replace  the  potential

evapotranspiration with satellite-derived net radiation. This index is derived by dividing the mean

net radiation over the entire study period by the corresponding precipitation mean.
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3.  Results

3.1  Global vegetation drought response

The global GPP response to the respective strongest grid-cell drought during the study period 2001-

2015  is  displayed  in  Figure  1.  Strongest  negative  anomalies  are  found  across  central  North

America, eastern South America, southern Africa, and Australia. Note that these are normalized

anomalies; especially in very dry regions with low inter-annual vegetation variability, such as inner

Australia, the actual absolute anomalies are comparatively low. In contrast, we find positive GPP

anomalies across eastern China, northern Europe, central Russia and eastern North America, even

though the magnitude is overall smaller compared with the aforementioned negative anomalies. In

these regions, GPP anomalies are mostly insensitive to soil moisture drought but rather induced by

co-variations of dry soil moisture with other, in this case more relevant GPP-limiting factors such

as  radiation  and  temperature (26).  Averaging  the  results  across  grid  cells  with  similar  aridity

reveals a strong dependency of the vegetation drought response on climate. This is the first main

result of our study; whereas anomalies are small in energy-limited conditions (aridity index < 1, i.e.

more precipitation than (equivalent) net radiation), they increase markedly for increasingly water-

limited  conditions  (aridity  index  >  1).                 

This aridity finding is consistent with results in (272), and is mechanistically explainable by more

water being available as deeper soil water and groundwater in wetter regions. Further, this greater

water amount is also (more) accessible to the vegetation because the fraction of tree cover is higher

in  wetter  regions,  implying  deeper  rooting  systems.  Accessing these  water  reservoirs  can  help

vegetation to bridge surface-soil drought conditions, while also benefitting from a surplus in net

radiation which is often associated with less precipitation (283). Similar results as for GPP are also

obtained for ET and NDVI  (see Figures S2 and S3 in the supporting information), illustrating the

robustness of these findings.
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3.2  Time evolution of drought and biospheric response

The evolution of drought across climate regions is analyzed by averaging data for each investigated

variable across grid cells with similar aridity.  The results of this composite approach  (294) are

displayed  in  Figure  2  for  all  meteorological  forcing  and  biospheric  response  variables.  The

precipitation deficits during drought buildup are commonly accompanied by a net radiation surplus.

They jointly lead to soil moisture deficits. The comparatively large soil moisture anomalies result

from our drought definition based on driest soil moisture anomalies. Only in the driest considered

climate,  no net radiation  surplus is  found. This might  have to  do with drought-induced albedo

changes, which enhance the outgoing radiation.  Interestingly,  the peak vegetation responses are

delayed and occur after drought peak. This is consistent with site- and/or time-specific findings in

earlier studies, analyzing particular drought events  (294,  -2305). Aside from plant-physiological

reasons,  this  can  be  explained  with  the  pre-peak  radiation  surplus  which  tends  to  enhance

vegetation  functioning.  By  contrast,  in  the  post-peak  period,  with  both  soil  water  deficit  and

radiation deficit,  the vegetation functioning is decreased.  The radiation deficit  follows from the

recovery precipitation and the associated clouds that occur by definition after drought peak.     

While the drought forcing shown in Figure 2a-c is comparable in regions with similar aridity, the

vegetation  drought response changes  strongly as  aridity  exceeds 2.  This  non-linear  response is

consistent with findings in Figure 1. Finally, the GPP and NDVI signals are similar, illustrating

robustness  in  observed vegetation  response  to  drought  across  these  different  vegetation-related

variables and associated data products. 
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3.3   Drought  duration  shaping  the  biospheric  drought  response                   

In Figure 3 we analyze the role of drought duration (i.e. the time period with below-normal soil

moisture). Drought duration has no systematic influence on the vegetation drought response in wet

areas (aridity index < 1), where GPP anomalies are comparatively small anyway. By contrast, the

emerging linearity between the drought-integrated GPP anomalies and the mean drought duration

with increasing slope towards drier conditions is another main result of this study. The slope does

not increase further between dry and very dry regions (aridity index > 4) as already the shortest

droughts lead to negative impacts due to limited (ground)water availability. The relatively large

inter-quartile range underlying the relationships shown in Figure 3 is likely due to the considerable

aridity condition variety within each considered aridity class that spans across a factor of 2. The

range also illustrates  that  other  processes and conditions than just  aridity  and drought duration

contribute to the vegetation drought responses locally. These results are not sensitive to the chosen

drought definition; using the longest growing-season drought duration instead of the strongest half-

monthly soil  moisture anomaly to determine the strongest drought at  each grid cell,  we obtain

similar linearity relationships (Figure S4). Further, as the choice of an 8-month time period for

integrating the vegetation drought response is necessarily arbitrary, we repeat the analysis from

Figure  3  with  an  integration  period  of  6  months  and  find  very  similar  results  (Figure  S5).  

Overall, these findings indicate that in addition to a region’s mean aridity, drought duration is a key

diagnostic variable for characterizing the large-scale vegetation drought response, and consequently

also for inferring drought impact on the land-atmosphere exchanges of carbon and water. While the

relevance of drought duration has been recognized in previous studies  (26, 2731, 32), the simple

linear relationships identified here are an essential new step for straightforward representation and

advancement  in  understanding  of  drought  impacts  on  vegetation,  e.g.,  comparatively  between

different historic time periods  (3328), and associated ecosystem functioning and land-atmosphere

exchanges. Drought duration as a main diagnostic variable integrates different interacting factors

on vegetation functioning during drought. These include higher (lower) general and drought-initial

soil moisture levels in wetter (drier) climate, in which shorter (longer) droughts can develop, while

also  water  stresses  are  smaller  (greater)  and  induce  less  (more)  severe  drought  effects  on
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vegetation.

The emergent linearity between vegetation response and drought duration is not trivial, given the

complex interacting processes contributing to biospheric drought responses (1,3). This complexity

is, for example, illustrated by the delayed peak in the vegetation drought response in Figure 2d-e.

Further research is needed to better understand why and how such simple large-scale relationships

can  capture  the  interplay  of  various  small(er)-scale  processes.               

Figure  S6  compares  the  explanatory  power  of  drought  duration  to  infer  the  large-scale  GPP

response to drought with that of several alternative controls.  It is computed by (i) obtaining  the

drought-related GPP anomaly accumulated over an 8-month time window containing the drought

period (see methods), and the respective drought metric values for each grid cell and its respective

strongest drought, and (ii) calculating the correlation between the drought-related GPP anomalies

and the respective drought metric  values across all  grid cells  of  each aridity  class.  The results

confirm the role of drought duration as a simple and efficient prediction measure for biospheric

drought impacts in semi-humid to arid regions (aridity index > 1), for which significant slopes are

found (Figure 3). Other common drought description metrics fail to achieve similar explanatory

power in these climate regions, including the number of consecutive dry days, which was proposed

as a preferred drought index (in addition to the soil moisture anomalies used to derive drought

duration in this study) by the IPCC special report on extremes  (1).  Only the number of dry days

(within the soil moisture-diagnosed drought duration) yields slightly higher correlations as in the

case  of  drought  duration,  which  results  from  the  additional,  precipitation-based  information

contained in the number of dry days.
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3.4   Modelled  versus  observed  vegetation  drought  response                             

While the large-scale vegetation response to drought duration was analyzed with GPP data in the

previous sections, in Figure 4 we additionally consider ET and NDVI as alternative observation-

based variables, which also indicate the functioning of the vegetation. Overall, similar relationships

are found for the 3 variables;  this  highlights  the significance of the emerging linear  pattern in

summarizing various influences contributing to the biospheric drought response. However, in semi-

humid climate (0.5 < aridity index < 2) the ET drought response differs somewhat from the NDVI

and GPP responses, possibly due to changes in water use efficiency. Further, the NDVI drought

response is slightly less pronounced than those of GPP and ET in very dry regions (aridity index >

4).                                     

In  a  further  step,  we  evaluate  the  vegetation  drought  response  from  several  state-of-the-art

hydrological  and land surface  models  in  relation  to  the  observation-based results.  Note  that  a

different time period is used in for the model-based analyses, 1998-2012 instead of 2001-2015.

While we cannot exclude an impact of this period shift on our conclusions, we can assume that it is

minimal as the observational and modelled time periods are of the same length, and they largely

overlap.  

In particular, we compare the state-of-the-art GLEAM model dataset with simulation results from

the  Earth2Observe  model  comparison  project  (see  Section  2).  In  general,  the  modelled  ET

responses to drought are overestimated in wet climate and underestimated in dry climate compared

with the observations-based relationships. This result implies relatively low sensitivity to climate in

the modelled vegetation drought response. The sensitivity is slightly higher for GLEAM than for

the Earth2Observe models, leading to generally better GLEAM agreement with the observation-

based  relationships.  Interestingly,  the  models  capture  the  observed  linearity  in  the  vegetation

drought response only for short-to-medium drought durations. As such, in dry climate they fail to

capture  the  further  intensification  of  the  ET drought  response  towards  droughts  longer  than  6

months.  The  individual  model  results  are  broadly  similar  (see  Table  S1  in  the  supporting

information),  with a spread comparable  to the inter-quartile  range of the observation-based ET
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relationship.   

In order to test the role of surface versus total-column soil moisture, we also re-compute Figure 4

with root-zone (GLEAM) and total-column soil moisture (Earth2Observe models). The results in

Figure S7 (see Table S2 in the supporting information for individual model results) show a slightly

weaker ET response to deeper soil moisture drought than to surface soil moisture drought. Overall,

there  is  remarkable  similarity  across  the  drought  response  relationships  for  both  soil  moisture

depths, indicating relatively small soil-moisture depth impact on our results. This finding suggests

that, while plant water availability is actually determined by deep(er) soil moisture, surface soil

moisture  is  a  reasonable  proxy  for  meaningful  estimation  of  the  drought  duration-vegetation

response  relationships  studied  here.  In  addition  to  the  models  used  above,  we  also  consider

TRENDY models that only provide total soil moisture (see Section 2). The results found for these

models confirm the results of the Earth2Observe models; the TRENDY models generally do not

capture the differences in the drought response relationships for different climates. Also the spread

across  the  drought  response  patterns  of  the  TRENDY  models  is  comparable  to  that  of  the

Earth2Observe models.

 

Overall, the difficulties of models to capture the linearity between vegetation drought response and

drought duration emerging from observations likely arise from the complex interplay of several

small-scale processes leading to the large-scale relationships. Further model development efforts

are required to improve simulated drought responses; the emergent linear relationships identified in

this study can serve as a straightforward guideline and constrain in this context.
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3.5   Drought  duration  and  food  production                            

The global vegetation drought responses emerging in the previous sections for GPP, ET, and NDVI

should  also  be  reflected  in  crop  yields,  with  high  social  relevance.  As  crop  yield  data  with

consistent format and quality is only available across Europe, we correspondingly focus in the crop

yield  analysis  in  this  section  on  Europe.  Specifically,  we analyze  agricultural  yield  anomalies

averaged across 5 common crops (see supporting information), in the strongest drought year for

various European countries. In the grid-cell analyses above, the year of the strongest drought has

been determined at each grid cell through the strongest half-monthly soil moisture anomaly. While

the strongest droughts therefore might occur in different years across the grid cells of a country, we

select the year in which most of the strongest grid-cell droughts occur as the country-based drought

year (see supporting information, (3429)). The drought duration in this country-based drought year

is  then  determined  as  the  mean  across  all  grid-cell-based  drought  durations,  weighted  by  the

fraction of agricultural area in each grid cell (2934).

                                

As shown in Figure 5, we find that, in addition to the drought-integrated GPP and NDVI anomalies,

also the agricultural yield anomalies in drought years are linearly related to drought duration. Short

droughts can even be beneficial for food production, due to the associated net radiation surplus.

Significantly different linear regression slopes (t-test, 5% level) are found for countries with and

without large-scale irrigation. Countries without irrigation exhibit a steeper line slope and a higher

explained fraction of variance (0.65 versus 0.25) than countries with irrigation, where the added

irrigation water tends to mitigate drought impacts, as reflected from the associated less steep line

slope. These differences are well in line with the contrast seen between arid and humid regions in

Figures 3 and 4. Overall, these results highlight the important socio-economic relevance of drought

duration as a key diagnostic variable for predicting vegetation drought response and associated

crop-yield anomalies.
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4.   Conclusions                                                        

The  identified  large-scale,  aridity-dependent  linearity  in  biosphere  responses  to  drought  has

important  practical  implications,  especially  as it  is found globally and robustly across different

ecosystem-response variables. Drought duration as a key diagnostic variable in this context is: (i)

straightforward  to  measure  and  monitor,  and  (ii)  efficient  for  representation  and  comparative

understanding  of  observed/interpreted  vegetation  responses  to  droughts  (3328), as  well  as  for

anticipation and planning for adaptation to impacts on agricultural crop yields of possible/projected

forthcoming drought  years.  This diagnostic  also enables  us to  infer  associated  implications  for

water and carbon cycling, and consequently also for atmospheric feedbacks. Such knowledge can

complement  existing  drought  monitors  (3530) and  support  efficient  irrigation  efforts  (3631).

Moreover,  the  identified  linear  relationships  can  serve  as  constraints  that  inform future  model

developments;  such  observation-based  references  are  required  to  improve  modelled  vegetation

responses to drought, which are currently largely insufficient. These model improvements can in

turn  also contribute  to  improve  weather  forecasting  through a  more  accurate  representation  of

(drought-related)  water  and  carbon  fluxes  on  land  (3732).                

Caveats of our analysis include, firstly, that observation-based global soil moisture is only available

for the surface soil, as microwave remote sensing only penetrates into the upper few centimeters of

the soil. In fact, the vegetation drought response rather depends on the root-zone soil moisture,

where  the  depth  and  extent  of  the  root  zone  is  also  species-dependent.  Nevertheless,  our

conclusions are still valid due to the close soil hydraulics links between soil moisture at the surface

and in deeper  soil.  At  daily  time scales,  surface soil  moisture has  been reported to  reflect  the

moisture dynamics across the top 10-20 centimeters (3833), and this depth is likely even greater at

the monthly-seasonal time scales considered in this study, thereby capturing (at least part of) the

actual root zones of many plant species. Moreover, we have tested the impact of using surface

versus total-column soil  moisture in our model  analyses,  finding only minor  differences  in the

results (Figures 4 and S7). Secondly, due to limited observation data availability, we could in this

study only consider the strongest drought over 15 years. Hence the investigated droughts represent

relatively weak extreme events, and it remains unclear if and how this affects the (strength) of the

emergent linear relationships found in our study. Nevertheless, in some grid cells, droughts with
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return periods clearly exceeding 15 years occurred during the study period, for example in 2003

and 2015 in Europe (34, 3539, 40). While we may have only captured a few very extreme droughts,

future research is needed to revisit our analysis with longer observational records capturing more

extreme droughts. Thirdly, when analyzing the link between the vegetation drought response and

drought duration it  is  inevitable  that  both variables are assessed over (partly) overlapping time

periods. To avoid introducing a spurious relationship in this context, we use in this study a constant

time window for the integration of the vegetation drought response (8 months, and comparatively

also 6 months), independent of the actual diagnosed drought duration. Further, the results obtained

for the independent  country-wise anomalies of yearly crop yield confirm the linearity  resulting

from  the  grid-cell-based  analyses  using  the  8-month  (or  6-month)  window.      

Finally,  while  we have  found aridity  and drought  duration  as  main  controls  of  the  vegetation

drought response at large spatial scales (climate regions), this is not necessarily the case at smaller

scales.  In  fact,  the spread around the  moving average  relationships  shown in  Figures  3 and 4

suggests  more  drivers  at  play.  These  may include  vegetation  types,  soil  characteristics,  and/or

legacy  effects.  These  drivers  can  intensify  or  dampen  the  local  vegetation  drought  response

compared with the large-scale response induced by the identified large-scale controls, 

Overall,  our  results  highlight  an  important  role  of  climate  (aridity)  in  shaping  the  large-scale

biospheric drought response, in addition to the drought duration. While droughts in energy-limited

regions (aridity index < 1) usually have no or even beneficial impacts, droughts in water-limited

regions (aridity index > 1) have major implications.  These contrasting drought impacts imply a

critical need for future climate projections to accurately capture regions where the climate can be

expected  to  change  from  transitional  (aridity  index  ≈  1)  to  water-limited  (aridity  index  >  1)

conditions.  In  such  regions,  the  vegetation  drought  response  will  likely  become  much  more

pronounced,  assuming that  the  relationships  identified  here  also  hold  for  increased  future  CO2

levels. 
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Table 1: Overview of employed observation-based datasets.

Meteoro-
logical 
Forcing

Soil Moisture ESA CCI 1979-2018 Daily 0.25° x 0.25° (18), (19), 
(20)

Precipitation ERA-Interim 1979-2018 Sub-daily 0.25° x 0.25° (15)

Net Radiation SRB and 
CERES

1983-2007
(SRB)
2000-2018
(CERES)

Sub-daily 1° x 1° https://
gewex-
srb.larc.nasa.
gov (SRB), 
https://ceres.
larc.nasa.gov
/ (CERES)

Biospheri
c Drought 
Response

Gross Primary 
Productivity

FLUXCOM-
RS

2001-2015 8-daily 0.5° x 0.5° (16)

Evapotrans-
piration

FLUXCOM-
RS

2001-2015 8-daily 0.5° x 0.5° (16)

Normalized 
Difference 
Vegetation Index

GIMMS3g 1982-2018 bi-
monthly

0.083° x 
0.083°

(17)
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Figure 1: GPP anomalies integrated over 8 months during the strongest soil moisture drought 

observed during the study period 2001-2015, expressed as accumulated z-scores. Barplot denotes 

mean anomalies across aridity regions. Regions shown in white have too little soil moisture and/or 

vegetation data to obtain meaningful results (less than 8 years of at least 50% growing season data

availability). 515



Figure 2: Aridity-specific time evolution of meteorological forcing (a-c) and biospheric response 

(d-e) during drought. Evolution for each variable computed as a composite across all grid cells of 

the respective aridity regions. To ensure comparability of anomalies across variables, values are 

normalized by and expressed as inter-annual standard deviation of each variable (z-scores, left 

axes). Normalization is performed by dividing the actual anomalies (right axes, example for aridity

values between 2-4) through the typical aridity-specific variability as expressed by the inter-annual

standard deviation across all absolute, half-monthly growing-season anomalies averaged across 

all grid cells of each aridity region. 
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Figure 3: Drought duration controls integrated biospheric drought response across global aridity 

regions.  Lines obtained through averaging within a 1-month moving window, i.e. GPP anomaly at 

e.g. 4 months drought duration is inferred with data between 3.5 and 4.5 months drought duration. 

GPP anomalies are expressed as accumulated z-scores. Lines are computed if more than 50 values

are available within moving window. Shadows denote inter-quartile range determined within 

moving window.  
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Figure 4: Drought duration control on biospheric drought response in observations and models. 

Response of drought-integrated biospheric anomalies across observation-based variablesreference

data (ET, NDVI, and GPP as displayed in Fig. 3), as well as for modelled ET (GLEAM and 

Earth2Observe models).
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Figure 5: Drought duration further controls drought-induced yearly agricultural yield anomalies 

across various European countries. Different line slopes are found for countries where irrigation is

applied in agriculture (light blue least-squares fit) than for countries without large-scale 

agricultural irrigation (gray least-squares fit).  
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