Report #1 Submitted on 22 Jun 2020 Anonymous Referee #2

In this version, the authors have compared their results with those in the previous studies, which resulted in a more thorough discussion about the nifH phylotypes in OMZs of the world oceans. The manuscript has been improved significantly with these revisions.

Nevertheless, I still have a major concern about the insufficient dataset in this study. According to the information in Table 1, there were few sequences per sample, some samples even have only 3-4 clones being sequenced. This problem is exactly what I was worried about and that's why I asked the authors to provide more details (Table 1) in the previous review. With such limited dataset, it is hard to say anything about the relative abundance of the OTUs or compare the nifH communities at different depth and OMZs. The authors need to either increase the sequencing depth or convince the audiences that their results can really represent "nifH phylotypes/community in the world OMZs". In the current version, it is obvious that the authors could not draw any convincing conclusions. Besides, I have some specific comments as follows.

Response:

The reviewer is correct that clone libraries cannot provide the depth of sequencing we now expect, and *IF* we were performing the sequencing experiments today, we would use NGS, not clone libraries. The fact is that the samples were collected many years ago and it is not possible to analyze them now using NGS.

We disagree, however, with the reviewer's conclusion that the clone libraries are not sufficient to yield interesting and convincing conclusions. As far as we are aware, there is only one NGS study of nifH in an OMZ region (Cheung et al. 2016, and that one sampled a few depths in the Costa Rica Dome, not one of the major OMZs). Thus our study is unique in being able to compare nifH community composition from all three major oceanic OMZs. Most of the other studies, in whose context we frame our results, were clone library studies, with the same limitations as our own, except that they all considered only one of the OMZs. So they are all suboptimal, but useful and interesting in aggregate.

While the individual sequences are interesting in terms of their phylogenetic affiliation, all analysis of patterns and distributions was done on the basis of OTUs, which were determined from the aggregated sequences. Aggregation was done in order to minimize the kind of bias that derives from small samples size, which is the concern of the reviewer.

Given the reviewer's preference for NGS data, the comparison of the present study with Cheung et al. 2016 is particularly interesting. We analyzed 16 samples for DNA and RNA, and found a total of 59 OTUs (41 for Cluster I, 18 for Clusters II, III, IV). Cheung et al. (2016) analyzed 15 samples for DNA only and found 37 OTUs at the 95% level. All of their samples All of their samples showed strong dominance in the community composition. It's really striking that even with many more sequences, that study found only five abundant, i.e., dominant, types and one of them was also in the top four in our study. The 37 OTUs from Cheung et al. do imply that deeper sequencing in our samples would result in higher numbers of OTUs. But it does not imply that we would see a different community composition in terms of structure/ dominance.

This reviewer's critique has helped us to improve and expand the comparative analysis in our manuscript. We hope the conclusions are clearer now, as well as the basis upon which they were made (see below).

L16-17: "The OTUs were biogeographically distinct for the most part – there was little overlap among regions," Would it be a result of limited sequencing depth in your study? Based on Table 1, only the most dominant phylotypes could be detected with 3-50 sequences per sample.

Response:

True, only the most dominant phylotypes would be detected at low sequencing depth – which actually adds ecological significance to the statement that there was little overlap among regions – dominance was observed in all three regions (i.e., the assemblage might be more diverse than we can evaluate but the most abundant types differed between locations). That is probably a robust finding, and we have made that explicit in the revised manuscript. That observation is supported by the only relevant NGS study (Cheung et al. 2016 as described in the preceding paragraph) as well in the other limited clone library studies which are available for comparison.

L54: I did not see 32 samples in Table 1.

Response:

We considered the analysis to include 32 samples because 16 samples were analyzed separately for RNA and DNA. We've revised it to make clear that there were 16 water samples but 30 clone libraries.

L88: You should construct maximum-likelihood tree and choose the best-fit model using model test.

Response:

We have taken that suggestion and redone the phylogenetic tree using Maximum Likelihood methods. We used the Poisson model as the one used by previous authors working with nifH (including Cheung et al. 2016). All of the major branch points are identical to the previously presented Neighbor Joining tree for Cluster I, but there were several changes for Clusters II, III, IV, which make the positions more consistent with previous work.

L149: How can you compare community composition and biogeography with 3-50 sequences per sample?

Response:

These comparisons were all made by grouping depths and stations within regions. The OTUs were defined from groups of sequences (Table 2). All the groups contained 86 – 275

sequences, with one exception: 10 sequences for Clusters II, III, IV for the Arabian Sea. None of the comparisons were made on the basis of 3- 50 sequences.

L405-408: It seems over-speculation to me. The "similar metabolic types" was not supported by the result. You only sequenced some clones of nifH gene fragments. Also, without the actual abundance (i.e. gene copy number), you cannot make any statement about "bloom". "Most of the sites/depths, both in this study and in others from OMZ regions, are dominated by one or a few OTUs" could be due to limited sequencing depth or low diversity of nifH phylotypes in the samples.

Response:

As described above, the conclusion that there are probably only a few important OTUs when the sequences are grouped by depth or region is a robust finding. Deeper sequencing would not discover new dominants, it would only make the tail of the distribution longer. Good point about the metabolic types. We have changed the wording to make it clear that the metabolic type is an assumption based on the phylogenetic affiliation of the nifH sequence (Line 410) by inserting the phrase "nifH genes associated with" similar metabolic types...

Report #2 Submitted on 30 Jun 2020 Anonymous Referee #3

Review

Jayakumar and Ward present an intercomparison of the diazotroph community composition of three prominent OMZs (ETNP, ETSP and Arabian Sea). The approach is used to analyse diversity is clone sequencing, which is arguably outdated nowadays and does not provide enough coverage, and the authors should acknowledge this drawback more clearly and be more cautious when interpreting their results accordingly. Nevertheless, the strength of the manuscript is the intercomparison of the three regions, which has not been addressed in previous studies. Hence, I consider that this work is of interest for the community and deserves publication, but first some minor changes are needed. The ecological role of diazotrophs in OMZs is not properly introduced, nor discussed. The results and discussion section look more like a report than a proper discussion. Finally, interpretations and conclusions need to be reformulated and acknowledge the drawbacks of the methods used. Below I provide specific comments.

Response:

We recognize the limitations of the clone library approach (see response to Referee #2) and have taken the advice of both referees to acknowledge that in the text and to point out where different conclusions might derive from deeper sequencing. We discuss our results in the context of all the nifH/OMZ publications we could find and have been careful not to overstate the power of the analysis.

It's not clear what more we can say about the "ecological role of diazotrophs in the OMZs". That question is one of the motivations for the work, but the analysis so far does not point to an obvious answer to why nifH genes are so prevalent or what role N fixation might play in the OMZ.

Introduction

L26: "sp." should not be italicized.

Response:

Done.

L29: I suggest using sunlit waters or euphotic zone instead to account for the depth range where cyanobacterial diazotrophs are found in (sub)tropical waters.

Response:

We added "sunlit" to the description but kept the word "surface" as well, because we use "surface" as category in the later analysis (L35).

L33: The hypothesis tested in Deutsch et al. 2007 has been extensively turned down by several publications in the past years (e.g. Bonnet et al., 2017; Knapp et al., 2016). Please account for this in your text. As it reads now, the reader perceives that this is a confirmed hypothesis still.

Response:

We have always been skeptical of this hypothesis. However, it was a motivating factor in the research. The sentence simply states that the Deutsch et al. proposed the idea, not that it is true.

L43: But check (Bentzon-Tilia et al., 2015).

Response:

Bentzon-Tilia et al 2015 detected N2 fixation in samples in which heterotrophic diazotrophs were abundant and were able to estimate indirectly that the heterotrophs might have contributed 20 - 50 % to one of the measured rates. That study was in two very shallow estuaries, so it's hard to know how to relate them to this work or the N fixation phenomenon in OMZs. Interestingly, however, some of the non-cyanobacterial nifH OTUs were phylogenetically very similar to the heterotrophic diazotrophs reported here and elsewhere. We can cite the Bentzon-Tilia et al. paper and replace "not" with "rarely".

Materials and Methods

The methods are described in great detail. However, can the authors confirm that a DNase treatment was used and no-RT controls run?

Response:

RT controls were mentioned in the text (implied no-RT) but we have made both of these steps explicit in the revised text (L 82).

L49: Please indicate which are the three major OMZ regions you include in your analysis. Perhaps it would fit better in the introduction, a brief description of the three regions, what they have in common, what they differ on ...

Response:

We have added very brief descriptions of the three OMZ regions in the introduction (L55).

L51: For no expert readers, an introduction to what ODZ means (which oxygen thresholds are considered), would be helpful.

Response:

We removed this unnecessary acronym.

L93-94: This is unclear. Each sequence that was 3% different from each other was considered an OTU? Can you provide a reference?

Response:

An OTU is simply defined by some threshold cutoff in identity. There is no standard cutoff, so we looked at several cutoffs (between 3% and 10%) and settled on 3% as the one that makes phylogenetic and biogeographically meaningful distinctions. So yes, sequences that are 3% different would be in different OTUs. Useful OTU cutoffs differ among different genes (e.g., ribosomal genes are less variable than functional genes as a rule) and some functional genes are more highly conserved than others (e.g., RuBisCO is much more conserved that nitrate reductase in diatoms). We cited Schloss and Handlesman (2009) for the OTU threshold method and Gaby et al (2018) for the threshold that is meaningful for nifH.

Results and Discussion

L109-111: The authors should make it clear that this is a compilation of previously published data.

Response:

The papers in which they were previously published are explicitly cited in L135, previously L110.

L174: Groups that are both denitrifiers and N_2 fixers are rather common in low oxygen environments, including coastal sediments. A discussion on the double ecological role of these groups in OMZs would be appreciated.

Response:

True, the cooccurrence of N2 fixers and denitrifiers, even of both capabilities within the same microbe, is often observed. To comment on the ecological role or the biogeochemical significance of that finding would be pure speculation here, as we have no information to go on other than the presence of the sequences.

L205-206: Not sure what the authors mean here, why the separation between alfa and beta was unlear?

Response:

Alpha and Beta -proteobacterial are distinguished on the basis of their 16S rRNA genes, but their nifH sequences don't always follow the same distinctions. So you can't always tell from the nifH alone whether it comes from an Alpha or a Beta -proteobacterium. That must mean a combination of lateral gene transfer and evolution has occurred somewhat independently for the functional gene, which is subject to different selection than is the rRNA gene. In the phylogenetic tree, it is obvious that the nifH sequences do not fall out exactly along the branch pattern predicted from the 16S rRNA tree for the Betaproteobacteria.

L224: Please add references.

Response:

The references can be found by following the accession numbers, which are clearly presented in the tree itself. It is not usually necessary to list the citations for every sequence, when that information is associated with the unique accession numbers. Each of the sequences listed in this paragraph is identified exactly in the tree and the reader can follow the references from the accession numbers. This is the usual convention for citation because not every sequence is associated with a literature publication and not every sequence included in the tree is mentioned in the text.

L251-253: This is a nice hypothesis but it is not sufficiently explained or referenced. How could this be tested? (idem for L355-357). What references do the authors have of noncyanobacterial diazotrophs blooming upon important inputs of organic matter?

Response:

We mention it as a hypothesis, but testing it is far beyond the scope of this work. The analogy of denitrifiers was provided, and we have now added a sentence about a published study in which N2 fixation was stimulated by organic matter addition (L301).

L357-359: Please add a reference at the end of this sentence.

Response:

That sentence is just another statement of the hypothesis mentioned above. It is a suggestion derived from our own work, not a citation.

L366: Replace N for N₂.

Response:

Done.

L367: Or rather for the nitrogen budget of OMZ zones...

Response:

If it is a minor contribution to the N budget of the OMZ, it is certainly a minor contribution to the N budget of the ocean. It is the latter that people have been trying to address by looking for N fixation in OMZs, i.e., the ocean is the box of interest here, not the OMZ as a separate box in the oceanic inventory.

L370: This is the first time that OMZ is included as part of the "dark ocean". No explanation or comparison with non-cyanobacterial diazotrophy in the dark ocean realm are provided in the manuscript.

Response:

We removed reference to the dark ocean.

Tables Table 1: A reference of the base of the photic zone at each of these stations would be useful.

Response:

Thanks for suggesting that clarification. We have added a column to Table 1 to indicate which samples were considered surface (within the euphotic zone) and which were OMZ (all of which are below the euphotic zone).

References

Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S., Markager, S., & Riemann, L. (2015). Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME Journal, 9(2), 273–285. https://doi.org/10.1038/ismej.2014.119 Bonnet, S., Caffin, M., Berthelot, H., & Moutin, T. (2017). Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N2 fixation and denitrification. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1619514114 Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G., & Capone, D. G. (2016). Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proceedings of the National Academy of Sciences, 113(16), 4398–4403. https://doi.org/10.1073/pnas.1515641113

List of all relevant changes made in the manuscript:

1. As suggested by both referees, we have explicitly addressed the limitations of clone libraries for diversity and biogeographic analysis. Referee #2 may still be critical, but we point out where and how the analysis would be affected by increased sequencing depth. Importantly, we point out that one of the major patterns observed is strong dominance of a few OTUs, which is observed in all the clone library studies and in the one NGS study available for comparison. We point out the strength of the current data set, as appreciated by Referee #3, which is the ability to compare all three OMZs using similar kinds of data sets. Because our analysis is based on grouped samples, the small sample size problem emphasized by Referee #2 is minimized within the constraints of the clone library approach.

2. A few sentences were added to the abstract to emphasize the main findings of the paper.

3. A few additional citations have been added, in order to support some of the inferences drawn from our data (e.g., Bonnet et al. 2013, Hamersley et al. 2011).

4. We have redone the phylogenetic trees in figures 3 and 6, using methods suggested by Referee #2 and have implemented minimal changes to the manuscript to accompany the minor changes in the interpretation of the results. Three new citations for the methods used to produce the new trees are included.

5. We have added a brief description of OMZs in the introduction as suggested by Referee #3.

6. A new column has been inserted in Table 1, as suggested by Referee #3, to indicate which samples were considered surface (within the euphotic zone) and which were within OMZs.

1 Diversity and distribution of Nitrogen Fixation Genes in the Oxygen Minimum Zones of the

2 World Oceans

- 3 ¹Amal Jayakumar and ¹Bess B. Ward
- 4
- 5 ¹Department of Geosciences
- 6 Princeton University
- 7 Princeton, NJ 08544
- 8

9 Abstract

- 10 Diversity and community composition of nitrogen fixing microbes in the three main oxygen
- 11 minimum zones (OMZs) of the world ocean were investigated using operational taxonomic unit
- 12 (OTU) analysis of *nifH* clone libraries. Representatives of the all four main clusters of *nifH* genes
- 13 were detected. Cluster I sequences were most diverse in the surface waters and the most abundant
- 14 OTUs were affiliated with Alpha- and Gammaproteobacteria. Cluster II, III, IV assemblages were
- 15 most diverse at oxygen depleted depths and none of the sequences were closely related to sequences
- 16 from cultivated organisms. The OTUs were biogeographically distinct for the most part there was
- 17 little overlap among regions, between depths or between cDNA and DNA. In this study of all three
- 18 OMZ regions, and from the few other published reports from individual OMZ sites, dominance by a
- 19 few OTUs was commonly observed. This pattern suggests dynamic response of the components of
- 20 the overall diverse assemblage to variable environmental conditions. Community composition in
- 21 most samples was not clearly explained by environmental factors, but the most abundant OTUs were
- 22 differentially correlated with the obvious variables, temperature, salinity, oxygen and nitrite
- 23 concentrations. Only a few cyanobacterial sequences were detected. The prevalence and diversity
- 24 of microbes that harbour *nifH* genes in the OMZ regions, where low rates of N fixation are reported,
- 25 remains an enigma.

Deleted:

-	-
•)	1
_	٠

28 Introduction 29 Nitrogen fixation is the biological process that introduces new biologically available 30 nitrogen into the ocean, and thus constrains the overall productivity of large regions of the ocean 31 where N is limiting to primary production. The most abundant and most important diazotrophs 32 in the ocean are cyanobacteria, members of the filamentous genus Trichodesmium and several 33 unicellular genera, including Chrocosphaera sp. and the symbiotic genus Candidatus Formatted: Font: Not Italic Atelocyanobacterium thalassa (UCYN-A). Although these cyanobacterial species are wide 34 35 spread and have different biogeographical distributions (Moisander et al. 2010), they are restricted to sunlit surface waters, mainly in tropical or subtropical regions. 36 37 Because diazotrophs have an ecological advantage in N depleted waters, and because those conditions occur in the vicinity of oxygen minimum zones, due to the loss of fixed N by 38 denitrification, it has been proposed that N fixation should be favoured in regions of the ocean 39 40 influenced by OMZs (Deutsch et al. 2007). It has also been suggested that the energetic constraints on N fixation might be partially alleviated under reducing, i.e., anoxic, conditions (Großkopf and 41 42 LaRoche 2012). In response to these ideas, the search for organisms with the capacity to fix 43 nitrogen has been focused recently in regions of the ocean that contain OMZs. That search usually takes the form of characterizing and quantifying one of the genes involved in the fixation reaction, 44 *nifH*, which encodes the dinitrogenase reductase enzyme. Diverse *nifH* assemblages have been 45 reported from the oxygen minimum zone of the Eastern Tropical South Pacific (Turk-Kubo et al. 46 47 2014, Loescher et al. 2016, Fernandez et al. 2011) and the Costa Rica Dome, at the edge of the OMZ in the Eastern Tropical North Pacific (Cheung et al 2016). The search for non cyanobacterial 48 49 diazotrophs has resulted in discovery of diverse nifH genes, but they have rarely been associated Deleted: not

51	with significant rates of N fixation (Moisander et al. 2017, Bentzon-Tilia et al. 2015). <u>Thus the</u>
52	occurrence and diversity of putative diazotrophs in nitrogen rich aphotic waters remains
53	unexplained.
54	Here we report on the distribution and diversity of <i>nifH</i> genes in all three of the world
55	ocean's major OMZs; The two Pacific OMZs, the Eastern Tropical North (ETNP) and South (ETSP) Deleted:
56	Pacific, are both highly productive eastern boundary regions. The ETSP is the one of the most
57	productive regions in the world ocean and has an oxygen depleted layer of about 400 m at its
58	greatest depth. The ETNP is less well ventilated and less productive, with an anoxic layer of more
59	than 700 m. The third major OMZ is the Arabian Sea, which is geographically constrained to the
60	northern Indian Ocean. It experiences an annual monsoon cycle but is permanently and stably
61	stratified with a maximum apoxic layer of about 800 m. Both surface and apoxic depths and both
62	DNA and cDNA (i.e. both presence and expression of the <i>niff</i> genes) were investigated. The
02	DivA and CDivA (i.e., both presence and expression of the <i>n</i> frif genes <u>) were investigated</u> . The
63	approach used here to investigate diazotroph assemblages is based on clone library analysis of <u><i>niff</i></u> (Formatted: Font: Italic
64	sequences. Next generation amplicon sequencing would yield greater numbers of sequences,
65	although it might not overcome the primer bias associated with PCR and cloning. The strength of
66	the current study is the inclusion of similar data from all three OMZs. By comparing these results to
67	previous studies using the same and other methods, we find robust biogeographical patterns and
68	community structure among the non-cyanobacterial diazotroph assemblages.
69	
70	Materials and Methods:
71	Samples analysed for this study were collected from the three major OMZ regions of the Deleted: 32
72	world oceans (16 total samples, Table1) from surface and oxygen minimum zone (OMZ, including Deleted: and 2 Deleted:
73	oxycline and <u>anoxic</u>) depths. Particulate material from water samples (5 – 10 L), collected using
1	beited. oxygen depicted

82	Niskin samplers, mounted on a CTD (Conductivity-Temperature-Depth) rosette system (Sea-Bird Deleted: ,
83	Electronics), was filtered onto Sterivex capsules (0.2 µm filter, Millipore, Inc., Bedford, MA)
84	immediately after collection using peristaltic pumps. The filters were flash frozen in liquid nitrogen
85	and stored at -80°C until DNA and RNA could be extracted. For samples from the Arabian Sea,
86	DNA extraction was carried out using the PUREGENE TM Genomic DNA Isolation Kit (Qiagen,
87	Germantown, MD) and the RNA was extracted using the ALLPrep DNA/RNA Mini Kit (Qiagen,
88	Germantown, MD). For samples collected from ETNP and ETSP DNA and RNA were
89	simultaneously extracted using the ALLPrep DNA/RNA Mini Kit (Qiagen, Germantown, MD).
90	SuperScript III First Strand Synthesis System (Invitrogen, Carlsbad, CA, USA) was used to
91	synthesise cDNA immediately after extraction following purification of RNA using the procedure
92	described by the manufacturer, including no-RT controls. The extracted DNA was treated with
93	DNase before transcription and no-RT controls verified the absence of <i>nifH</i> DNA in the RNA preps. Formatted: Font: Italic
94	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with
94 95	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards.
94 95 96	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on
94 95 96 97	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction
94 95 96 97 98	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR
94 95 96 97 98 99	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified
94 95 96 97 98 99	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified for 30 cycles (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the
94 95 96 97 98 99 100	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified for 30 cycles (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the inner PCR primers 50 pmoles each (Zehr and McReynolds 1989). Water for negative controls and
94 95 96 97 98 99 100 101	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified for 30 cycles (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the inner PCR primers 50 pmoles each (Zehr and McReynolds 1989). Water for negative controls and PCR was freshly autoclaved and UV-irradiated every day. Negative controls were run with every
94 95 96 97 98 99 100 101 102	DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) calibrated with several dilutions of phage lambda standards. PCR amplification of <i>nifH</i> genes from environmental sample DNA and cDNA was done on an MJ100 Thermal Cycler (MJ Research) using Promega PCR kit following the nested reaction (Zehr et al. 1998), with slight modification as in Jayakumar et al. (2017). Briefly, 25µl PCR reactions containing 50 pmoles each of outer primer and 20-25ng of template DNA, were amplified for 30 cycles (1 min at 98°C, 1 min at 57°C, 1 min at 72°C), followed by amplification with the inner PCR primers 50 pmoles each (Zehr and McReynolds 1989). Water for negative controls and PCR was freshly autoclaved and UV-irradiated every day. Negative controls were run with every PCR experiment, to minimize the possibility of amplifying contaminants (Zehr et al. 2003). The

106	amplification cycles was limited to 30 for each reaction. Each reagent was tested separately for
107	amplification in negative controls. <i>nifH</i> bands were excised from PCR products after electrophoresis
108	on 1.2% agarose gel, and were cleaned using a QIAquick Nucleotide Removal Kit (Qiagen). Clean
109	nifH products were inserted into a pCR®2.1-TOPO® vector using One Shot® TOP10 Chemically
110	Competent E. coli, TOPO TA Cloning® Kit (Invitrogen) according to manufacturer's specifications.
111	This process resulted in 30 clone libraries, 16 of DNA and 14 of RNA from the 16 samples (Table
112	<u>1).</u>
113	Inserted fragments were amplified with M13 Forward (-20) and M13 Reverse primers from
114	randomly picked clones. PCR products were sequenced at Macrogen DNA Analysis Facility using
115	Big Dye TM terminator chemistry (Applied Biosystems, Carlsbad, CA, USA). Sequences were edited
116	using FinchTV ver. 1.4.0 (Geospiza Inc.), and checked for identity using BLAST. Consensus nifH
117	sequences (359 bp) were translated to amino acid (aa) sequences (108 aa after trimming the primer
118	region) and aligned using Clustal W, in MEGA X (Kumar et al. 2018, Stecher et al. 2020) along with Deleted: X (Thompson et al. 1997)
119	published <i>nifH</i> sequences from the NCBI database. The alignment was used to construct a Deleted: Kumar et al 2018 Deleted: Fundational Deleted: Fundational Deleted: Produced, Deleted:
120	maximum likelihood (ML) phylogenetic tree in MEGA X, based on the Poisson model and the
121	phylogenetic tree was edited using iTOL (Letunic and Bork 2016). Bootstrap analysis was used to
122	estimate the reliability of phylogenetic reconstruction (1000 iterations). The <i>nifH</i> sequence from
123	Methanosarcina lacustris (AAL02156) was used as an outgroup. The accession numbers from
124	GenBank for the <i>nifH</i> sequences in this study are Arabian Sea DNA sequences JF429940- JF429973
125	and cDNA sequences accession numbers JQ358610-JQ358707, ETNP DNA sequences KY967751-
126	KY967929 and cDNA sequence KY967930-KY968089, and ETSP DNA sequences MK408165-
127	MK408307 and cDNA sequences MK408308-MK408422.
 128	

135	The nifH nucleotide alignment (of 787 sequences) was used to define operational	
136	taxonomic units (OTUs) on the basis of DNA sequence identity. Distance matrices based on this	
137	nucleotide alignment were generated in MOTHUR (Schloss and Handlesman 2009). The	
138	relative <i>nifH</i> richness within each clone library was evaluated using rarefaction analysis. OTUs	
139	were defined as sequences which differed by $\leq 3\%$ using the furthest neighbor method in the	
140	MOTHUR program (Schloss and Handlesman 2009). The 3% OTU definition is similar to the	
141	level at which species are conventionally defined using 16S rDNA sequences, so it may	
142	overestimate the meaningful diversity of the functional gene. Redundancy analysis was	
143	performed in R using the vegan package. Environmental variables were transformed using	
144	decostand.	
145		
146	Results and Discussion:	
147	DNA and cDNA sequences (787 in total) derived from the OMZ regions of the Arabian	
148	Sea (AS), Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP)	
149	were subjected to OTU and phylogenetic analyses to compare the diversity and community	
150	composition, biogeography and gene expression, of <i>nifH</i> possessing microbes among the three	
151	OMZ regions. Phylogenetic analysis of the sequences from the AS, ETNP and ETSP were	
152	reported separately in previous publications (Jayakumar et al. 2012, Jayakumar et al. 2017,	Deleted: previously
153	Chang et al. 2019), but the sequences have been combined for additional global analyses here.	
154	We compared the threshold OTU definitions at 3 and 10% and found that the number of OTUs	
155	decreased, as expected, as the resolution decreased. Even at the 3% threshold, however, OTUs	
156	tended to separate by depth and location, indicating a functionally useful distinction at this level.	
157	Thresholds of $3-5\%$ as the OTU definition correspond to within and between species level	

159	distinctions for <i>nifH</i> (Gaby et al. 2018). The sequences from the OMZ regions represented three	Deleted: all
160	of the four sequence clusters (I, II, III, IV) described by Zehr et al. (1998).	
161		
162	Cluster I nifH OTU distributions: Diversity analysis of the nifH cluster 1 sequences	
163	for the three OMZs based on OTUs using MOTHUR identified 41 OTUs at a distance threshold	
164	of 3% (Table 2). The number of sequences and the number of OTUs varied widely	Deleted: Supplemental
165	among depths and stations, so the results are grouped by region (AS, ETNP, ETSP) or depth	Deleted: 1A
166	horizon (surface or OMZ, including upper oxycline depths) or cDNA vs DNA (Table 2).	
167	Grouping the sequences by depth horizon (surface or OMZ), region (AS, ETSP, ETNP) or	
168	DNA/RNA, allows the detection of patterns that are not driven by the relatively low number of	
169	sequences obtained from some of the individual clone libraries. The OTUs are numbered in order	
170	of decreasing abundance in the clone library, i.e., OTU-1 was the most common OTU.	
171	For all regions and depths combined, the number of OTUs detected (41) was less than the	
172	sum of OTUs detected when each region was analyzed separately (45), indicating that there was	
173	some overlap of OTUs among regions. The overlap was not large, however. Only three of the 12	
174	most abundant OTUs contained sequences from more than one region and none contained	
175	sequences from all three regions (Figure 1A). When sequences for all three regions were	
176	combined, only four of the 12 most abundant OTUs contained sequences from both depth	
177	horizons (Figure 1B). Most OTUs represented a single depth, and many a single sample. This	
178	suggests a pattern of dominance, rather than evenness, in the <i>nifH</i> assemblage. Deeper	Formatted: Font: Italic
179	sequencing is therefore expected to discover a larger number of rare OTUs, but might not change	
180	the picture that emerges here of a small number of abundant clades. Interestingly, Cheung et al.	
181	(2016) reported a similar pattern of dominance based on a larger DNA sequence dataset from	

185	only one location. Using 454-pyrosequencing to obtain a similar number of OTUs (37 total)	
186	from the Costa Rica Dome, all of the 15 samples investigated by Cheung et al. (2016) were	
187	dominated (>50%) by one of five major OTUs.	
188	The Arabian Sea was strikingly less diverse than other regions and sample subsets	
189	(Figure 2). For example, when all DNA and cDNA sequences for all depths are grouped	
190	together, the Arabian Sea ($OTUs = 14$, Chao = 21) contains less species richness than the	
191	combined surface samples from all three regions ($OTUs = 25$, $Chao = 52$), despite having a	
192	similar number of total sequences (178 for the Arabian Sea, 198 for all surface samples	
193	combined). This lack of diversity in the AS data may be partly due to the preponderance of	
194	cDNA sequences, which generally contained less diversity than a similar number of DNA	
195	sequences (see below).	
196	Although similar numbers of sequences were obtained for cDNA (255) vs DNA (257),	
197	the OTU "density", i.e., number of OTUs per number of sequences analyzed, was higher for	
198	DNA (0.136 for DNA, 0.094 for cDNA). The Chao statistic verified this observation for the	
199	combined data from each region in predicting higher total numbers of OTUs for DNA (Chao =	
200	42) than for cDNA (Chao = 24). This difference could indicate that some of the <i>nifH</i> genes	
201	present were not expressed at the time of sampling, but the cDNA sequences were not simply a	
202	subset of the DNA community. Half of the 12 most abundant OTUs contained either cDNA or	
203	DNA (Figure 1C), meaning that some genes were never expressed and some expressed genes	
204	could not be detected in the DNA. Based on a similar number of sequences from each sample (1	
205	- 52 per sample) from the ETSP, Turk-Kubo et al. (2014) also found that DNA and cDNA	
206	clones were differently distributed among stations; one phylotype was recovered exclusively	
207	from cDNA and only one phylotype occurred in both DNA and cDNA. The relatively low	
1		

210	sequencing depth associated with clone library studies limits the sensitivity of this comparison,
211	but it clearly shows that dominant components of the DNA and cDNA libraries frequently
212	represent different subsets of the total assemblage.
213	For all regions combined, similar numbers of OTUs were detected in surface waters
214	(OTUs = 25) and in OMZ samples (OTUs = 23), although a larger number of sequences was
215	analyzed for the OMZ environment (198 vs. 314 sequences for surface and OMZ depths,
216	respectively). It might be expected that the presence of phototrophic diazotrophs in the surface
217	water would lead to greater diversity there, but only one OTU representing a known
218	cyanobacterial phototroph (OTU-12 = Katagmynene spiralis or Trichodesmium) was identified,
219	so most of the additional diversity must be present in heterotrophic or unknown sequences.
220	Rarefaction curves (Figure 2) indicate that sampling did not approach saturation either for
221	region or depth. The Chao statistic also indicated that much diversity remains to be explored,
222	despite the great uncertainty in these estimates. The total number of OTUs detected, the shape of
223	the rarefaction curve and the diversity indicators (Figure 2, Table 2) all indicate that the greatest
224	nifH diversity occurred in surface waters, and much of that diversity was in singletons, i.e., not
225	represented in the 12 most abundant OTUs, which represented 441 (86 %) of the total 512 nifH
226	Cluster 1 sequences analyzed. Most of that diversity was contained in the ETNP, not solely a
227	function of number of sequences analyzed (Figure 2).
228	Cluster I nifH Phylogeny: Phylogenetic affiliations at both DNA and protein level are
229	shown for the 12 most abundant OTUs in Table 3. The most abundant OTU (129 sequences),
230	OTU-1, contained Gammaproteobacterial DNA and cDNA sequences from both surface and
231	OMZ depths of the ETNP and cDNA sequences from oxycline and OMZ depths in the Arabian

 $\label{eq:232} \textbf{Sea} (Figure 3). \ Although very similar to each other, none of these sequences had higher than$

233	91% identity at the DNA level (96% at AA level) with cultivated strains and were most closely
234	related to Pseudomonas stutzeri. P. stutzeri is a commonly isolated marine denitrifier, but it is
235	also known to possess the capacity for N fixation (Krotzky and Werner 1987). OTU-4, OTU-6
236	and OTU-8 also contained Gammaproteobacterial sequences. All had high identity with
237	cultivated strains at the protein level but none were >91% identical to cultivated strains at the
238	DNA level.
239	Gammaproteobacterial sequences with very close identities to Azotobacter vinelandii have
240	been reported from the Arabian Sea ODZ and also from the ETSP (Turk-Kubo et al. 2014). This
241	group of <i>nifH</i> sequences with close identities to A. vinelandii was also retrieved from the English
242	Channel, Himalayan soil, South Pacific gyre, Gulf of Mexico, mangrove soil and many other
243	environments (Figure 3). Azotobacter- like sequences were included in OTU-6 but were not closest
244	identity at the DNA level. Although a large number of clones were analyzed here, no sequence that
245	was closely associated with A. vinelandii was retrieved from the three regions. None of the g-
246	244774A11 sequences, Gammaproteobacterial relatives that were abundant in the South Pacific
247	(Moisander et al. 2014), were detected in this study.
248	OTUs-2, 3, 5, 10, and 11 all represented Alphaproteobacterial sequences, with closest
249	identities to various Bradyrhizobium, Sphingomonas and Methylosinus species. Thus,
250	Alphaproteobacterial sequences (206 sequences) were the most abundant in the clone library. OTU-2
251	contained almost exclusively ETSP ODZ DNA and cDNA sequences (plus one AS ODZ DNA
252	sequence). OTU-3 contained DNA sequences from ETNP surface waters. OTU-5 contained
253	exclusively Arabian Sea DNA sequences from Station 3, while OTU-10 contained only surface
254	samples from the ETNP. An OTU threshold of 11% grouped all (179 sequences in five OTUs) of

255	these Alphaproteobacterial sequences together, but the 3% threshold is consistent with the
256	phylogenetic tree, which shows small scale biogeographical separation of sequence groups.
257	OTUs-7 and -9 were identified as Betaproteobacteria with closest identities to Rubrivivax
258	gelatinosum and Burkholderia, 91 and 90% respectively at the DNA level. However, at the AA
259	level, these sequences were 99 and 100% identical to Novosphingobium malaysiense and S.
260	azotifigens, both Alphaproteobacteria, and again were biogeographically distinct. OTU-7 contained
261	25 DNA sequences from the ODZ depths in the Arabian Sea, and OTU-9 contained 17
262	Burkholderia-like sequences from the oxycline at Station 1 in the Arabian Sea. No
263	Betaproteobacterial <i>nifH</i> sequences were detected in the ETNP or ETSP, but sequences similar to
264	Burkholderia phymatum, Cupriavidus sp. and Sinorhizobium meliloti were reported from ETSP
265	previously (Fernandez et al. 2015). Consistent with our previous report, however, there is no clear
266	separation between the alfa and the beta groups in <i>nifH</i> phylogeny (Jayakumar et al 2017).
267	Most of the Cluster I ETSP sequences from this study were contained in two OTUs (2 and 4).
268	OTU-2 contained 89 Alphaproteobacterial sequences with >98% identity to <i>nifH</i> sequences from
269	Bradyrhizobium sp. Uncultured bacterial sequences retrieved from the South China Sea, English
270	Channel, mangrove sediment, wastewater treatment and grassland soil were related to these ETSP
271	sequences. OTU-4 contained 29 Gammaproteobacterial sequences retrieved from both surface and
272	ODZ depths. Four of the remaining ETSP Cluster I sequences were grouped together as OTU-17
273	(Alphaproteobacteria, 89 and 96% identities with Methyloceanibacter sp. and Bradyrhizobium sp. at
274	the DNA and AA level respectively), three were in OTU-23 (Bradyrhizobium 100% identity) and
275	two were singletons. One of the singletons was most closely related to uncultured soil and sediment
276	sequences and to Azorhizobium sp. (86%) and one had 97% identity with Bradyrhizobium
277	denitrificans and many sequences from marine sediments.

278	OTU-22 represents the Deltaproteobacterial group. This novel group was reported
279	previously from the ETNP (Jayakumar et al. 2017) and has three sequences from Arabian sea (OTU-
280	22) and two singletons from ETNP surface waters. <i>nifH</i> possessing Deltaproteobacteria have been
281	reported not only from all the three ODZs but also in several other marine environments including
282	Chesapeake Bay water column, microbial mats from intertidal sandy beach in a Dutch barrier island,
283	Jiaozhou Bay sediment, Rongcheng Bay sediment, Bohai Sea, Mediterranean Sea, Narragansett Bay,
284	and the south Pacific gyre.
285	Proteobacteria-like sequences, especially Alpha- and Gammaproteobacteria, are the most Deleted:
286	frequently reported <i>nifH</i> sequences from the OMZs studied here and similar environments. Thirty
287	one of 37 OTUs detected by Cheung et al. (2016) in the Costa Rica Dome OMZ were
288	Proteobacteria, the two most common OTUs being closely related to Alphaproteobacterium
289	Methylocella palustris and the Gammaproteobacterium Vibrio diazotrophicus. Loescher et al.
290	(2014, 2016) also found V. diazotrophicus-like sequences, as well as several other
291	Gammaproteobacteria in the ETSP. V. diazotrophicus was reported previously in the Arabian Sea
292	(Jayakumar et al. 2012) but was not prominent in the present study. Sequences most similar to
293	various V. diazotrophicus, other Vibrio species, and other Gammaproteobateria, including P.
294	stutzeri, were the most common non-cyanobacterial Cluster I sequences reported for the low oxygen
295	waters of the Southern California Bight (Hamersley et al. 2011). Bradyrhizobium spp., one of the
296	most common genera reported here and in surface waters of the Arabian Sea (Bird and Wyman
297	2013) and by Fernandez et al. (2011) in the ETSP, were also detected in the Costa Rica Dome OMZ
298	and were the dominant OTU at 1000 m at one station (Cheung et al. 2016). <i>Bradyrhizobium</i> -like Formatted: Font: Italic
299	sequences were the most abundant among those amplified from ODZ incubations in which the N ₂
300	fixation rate was enhanced by the addition of glucose (Bonnet et al 2013). In addition to

302	Bradyrhizobium-like and Teredinibacter-like nifH sequences, Turk-Kubo et al. (2014) found four
303	other abundant Gammaproteobactera-like nifH sequences, which were entirely novel. The "Gamma
304	A", which are commonly reported non-cyanobacteria diazotroph nifH sequences from non-OMZ
305	environments (Langlois et al. 2015, Moisander et al. 2017), were represented by a singleton from the
306	ETNP in the present study.
307	nifH sequences related to various Alphaproteobacterial methylotrophs are commonly found
308	in OMZs: Methylosinus trichosporium-like sequences, which are reported here in OTU-5 from the
309	Arabian Sea at both surface and ODZ depths, were also reported by Fernandez et al. (2011) in the
310	ETSP. Methylocella palustris-like nifH genes comprised the most common OTU in the ODZ core
311	depths in the Costa Rica Dome (Cheung et al. 2016). M trichosporium and M. palustris represent
312	obligate and facultative methanotrophs, respectively, both also obligately aerobic. Detection of <i>nifH</i>
313	genes closely related to those of methanotrophs does not prove that methanotrophy is present or
314	important in the anoxic environment of the ODZ but the consistency of this finding across sites
315	motivates further investigation of the potential for methane production and consumption in ODZs. Deleted: on
316	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance
316 317	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of
 316 317 318	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied
) 316 317 318 319	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied episodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respond
 316 317 318 319 320	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied episodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respond rapidly in bloom like fashion. This bloom scenario has been described for denitrifying bacteria
 316 317 318 319 320 321	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominancein each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern oforganic matter-supported growth. That is, we suggest that organic matter, which is suppliedepisodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respondrapidly in bloom like fashion. This bloom scenario has been described for denitrifying bacteriabased on the OTU patterns observed in the <i>nirS</i> and <i>nirK</i> genes as a function of the stage of
316 317 318 319 320 321 322	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied episodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respond rapidly in bloom like fashion. This bloom scenario has been described for denitrifying bacteria based on the OTU patterns observed in the <i>nirS</i> and <i>nirK</i> genes as a function of the stage of denitrification in both natural assemblages and incubated samples from OMZs (Jayakumar et al.
316 317 318 319 320 321 322 322 323	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied episodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respond rapidly in bloom like fashion. This bloom scenario has been described for denitrifying bacteria based on the OTU patterns observed in the <i>nirS</i> and <i>nirK</i> genes as a function of the stage of denitrification in both natural assemblages and incubated samples from OMZs (Jayakumar et al. 2009). Amino acids and glucose both stimulated N ₂ fixation in OMZ samples from the ETSP, and
 316 317 318 319 320 321 322 323 324 	The pattern of high diversity of <i>nifH</i> -bearing mostly heterotrophic microbes, but dominance in each sample by one or a small number of <i>nifH</i> OTUs, suggests a bloom and bust pattern of organic matter-supported growth. That is, we suggest that organic matter, which is supplied episodically in the upwelling regimes, stimulates the growth of copiotrophic microbes that respond rapidly in bloom like fashion. This bloom scenario has been described for denitrifying bacteria based on the OTU patterns observed in the <i>nirS</i> and <i>nirK</i> genes as a function of the stage of denitrification in both natural assemblages and incubated samples from OMZs (Jayakumar et al. 2009). Amino acids and glucose both stimulated N ₂ fixation in OMZ samples from the ETSP, and <i>pifH</i> sequences associated with Alpha- and Gammaproteobacteria, as well as Cluster III phylotypes. Formatted: Font: Italic

326	were found in a glucose enrichment experiment (Bonnet et al. 2013) The role of <i>nifH</i> in these
327	heterotrophic microbes is unclear, especially because rates of nitrogen fixation in these locations in
328	the absence of cyanobacteria or nutrient enrichment is often very low (Turk-Kubo et al. 2014,
329	Loescher et al. 2016, Chang et al. 2019).
330	Although Trichodesmium-like clones have been retrieved from the surface waters of the
331	Arabian Sea and the ETNP OMZs, only ten clones (OTU-12) in the combined clone library analyzed
332	here were related to Trichodesmium (98% identity), including both cDNA and DNA from the
333	Arabian Sea and cDNA from the ETNP. These sequences were actually 100% identical to
334	Katagnymene spiralis, a close relative of Trichodesmium isolated from the South Pacific Ocean.
335	Turk-Kubo et al. (2014) also retrieved only a few cyanobacterial sequences from the ETSP. No other
336	cyanobacterial <i>nifH</i> sequences were identified.
337	Clusters II, III, IV nifH OTU distributions: The other three nifH clusters were combined
338	for OTU analysis due to the limited number of sequences and OTUs obtained. A total of 18 OTUs
339	were identified in the combined set of 275 sequences with a 3% distance threshold (Table 2). Most
340	of the Cluster II, III, IV sequences were from the ETNP and ETSP. As with the Cluster I sequences,
341	there was very little geographic and depth overlap among these OTUs (Figure 4A, 4B). Only OTU-
342	1 contained sequences from more than one site, the ETNP and the ETSP. OTU-2 contained only
343	cDNA sequences representing ODZ depths at both ETNP stations. OTU-3 contained exclusively
344	ETSP DNA sequences from surface and cDNA sequences from ODZ depths. Only 10 of the Cluster
345	II, III, IV sequences were from the Arabian Sea, and they formed three separate OTUs, a greater
346	"OTU density" than was present at either of the Pacific sites. As observed for Cluster I, most of the
347	OTUs that were detected in the DNA were not being expressed, and those that were expressed were
348	not detected in the DNA (Figure 4C).

349	Rarefaction curves (Figure 5) indicate that sampling for Cluster II, III, IV did not
350	approach saturation. The Chao statistic also indicated that much diversity remains to be
351	explored, despite the great uncertainty in these estimates. Unlike the Cluster I analysis, there
352	were relatively few singletons in the Cluster II, III, IV data and the assemblages were dominated
353	by a few types.
354	Clusters II, III, IV nifH phylogeny: Four large OTUs (OTU-1, -2, -4 and -6) in Clusters
355	III, IV belonged to nifH Cluster IV and Alphaproteobacteria/Spirochaeta and Deltaproteobacteria
356	were the dominant phylogenies (Table 3, Figure 6). The largest OTU, OTU-1, contained 88 DNA
357	sequences from the ETNP ODZ depths from both stations and from both depths in the ETSP. This
358	OTU had no similarity to any cultured microbe. OTU-4 contained 30 sequences from the ETSP, at
359	cDNA from one surface station, in <i>nifH</i> Cluster IV.
360	OTU-2 (75 sequences) in Cluster IV contained only cDNA sequences, all from ODZ
361	samples in the ETNP (both stations), and had no close relatives among cultivated species.
362	Although Turk-Kubo et al. (2014), retrieved a few clones identified as belonging to Cluster II
362 363	<u>Although</u> Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU-
362 363 364	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface
362 363 364 365	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18
362 363 364 365 366	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five most
362 363 364 365 366 367	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences analyzed), only one could be
362 363 364 365 366 367 368	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences analyzed), only one could be identified to a closely related genus (i.e., OTU-4 with 90% identity with <i>R. palustris</i>) and there
362 363 364 365 366 367 368 369	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster IIfrom the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU-3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surfacedepths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five mostcommon OTUs (89% of the total Cluster II, III, IV sequences analyzed), only one could beidentified to a closely related genus (i.e., OTU-4 with 90% identity with <i>R. palustris</i>) and therewas no overlap between DNA and cDNA OTUs from the same depths.
362 363 364 365 366 367 368 369 370	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences analyzed), only one could be identified to a closely related genus (i.e., OTU-4 with 90% identity with <i>R. palustris</i>) and there was no overlap between DNA and cDNA OTUs from the same depths. The other 13 OTUs in the Cluster II, III, IV sequences represented either Cluster III or IV.
362 363 364 365 366 367 368 369 370 371	Although Turk-Kubo et al. (2014) retrieved a few clones identified as belonging to Cluster II from the euphotic zone of the ETSP, we did not find any sequence falling into this Cluster. OTU- 3 contained 35 sequences in Cluster III and was dominated by DNA sequences from surface depths of the ETSP. OTU-5 represented Deltaproteobacteria in <i>nifH</i> Cluster III and contained 18 identical DNA sequences from 90 m at Station BB1 in the ETNP. Thus, of the five most common OTUs (89% of the total Cluster II, III, IV sequences analyzed), only one could be identified to a closely related genus (i.e., OTU-4 with 90% identity with <i>R. palustris</i>) and there was no overlap between DNA and cDNA OTUs from the same depths. The other 13 OTUs in the Cluster II, III, IV sequences represented either Cluster III or IV. None of these were very closely related to any cultivated sequences. OTU-6 contained both DNA

375	and cDNA from the OMZ at one ETSP station. OTU-7 contained four sequences from ETNP
376	surface waters with close identities with a sequence retrieved from Bohai sea. OTU-11, had one
377	DNA and one cDNA sequences from the ETSP. All of the other sequences were less than 84%
378	identical to any sequence in the database and could only be loosely identified as Firmicutes or
379	Proteobacteria.
380	Although there were few high identities with known species, many of the Cluster II, III, IV
381	sequences (OTUs -2, -5, -7, -9, -10) were most closely affiliated with sulfate reducing clades at
382	either the DNA or protein level. Four OTUs with highest identity to known sulfate reducers were
383	reported by Cheung et al. (2016) and one of them comprised nearly 40% of the sequences in one
384	anoxic sample. <i>nifH</i> sequences that cluster with <i>Desulfovibrio spp</i> . are often reported from ODZ
385	samples (Turk-Kubo et al. 2014, Loescher et al. 2014, Fernandez et al. 2011). Consistent reports of
386	nifH genes associated with obligate anaerobes involved in sulfate reduction suggests a role for this
387	metabolism in the ODZ, again motivating further research on the significance of both sulfate
388	reduction and associated N ₂ fixation in ODZ waters.
389	Biogeography and Environmental Correlations: The dominant factor determining OTU
390	composition and distribution is clearly biogeography (Figure 4). That geographical factor is also
391	evident in the redundancy analysis (Figure 7). (Only sites that contained sequences from one of the
392	top OTUs are represented in the plots, so the number of site symbols is less than 30 for both plots.) Deleted: 2
393	For example, Cluster I OTU-5 containing only Arabian Sea surface sequences was positively
394	correlated with both T and S and all of the Arabian Sea samples clustered in the quadrant associated
395	with high T and S (Figure 7A). Surface samples from the ETSP were also in that quadrant, but
396	surface ETNP samples were negatively correlated with S. The surface ETNP samples correlated
397	with OTUs-36, -10 and -11, all of which contained exclusively surface samples. The two largest

399	Cluster I OTUs were associated with the deep samples from the ETNP and ETSP and correlated
400	positively with nitrite concentration and negatively with oxygen – a signature of the <u>OMZ</u> . Nitrate
401	concentration and depth did not increase the power of the analysis and were omitted from the Cluster
402	I RDA. Most of the sites and five of the most common Cluster I OTUs were not well differentiated
403	by any of the usual environmental parameters.
404	The Arabian Sea contained very few sequences in Clusters II, III, IV and none of them were
405	in the top six OTUs, so only ETNP and ETSP samples are represented in the RDA for these clusters
406	(Figure 7B). The two largest OTUs in Clusters II, III, IV were negatively correlated with T and S
407	but separated along the second RDA axis, demonstrating opposite relationships with oxygen, nitrite,
408	and nitrate concentrations. OTU-1 included ETSP surface sequences, as well as ODZ sequences
409	from both ETNP and ETSP, while OTU-2 contained only ODZ sequences but both OTUs were
410	phylogenetically related to anaerobic clades (Table 2). Inclusion of all six environmental variables
411	was necessary to obtain maximum separation of the sites and OTUs for Clusters II, III, IV.
412	
413	Conclusions
414	The OMZ regions of the world ocean contain substantial <i>nifH</i> diversity, both in surface
415	waters and oxygen depleted intermediate depths. Surface waters contained greater diversity for
416	Cluster I, but the ODZ held the highest diversity for Clusters II, III, IV. Cyanobacterial sequences
417	were rare in the combined dataset and were not detected in the ETSP. The ETSP contained the least
418	diversity of Cluster I sequences, while Cluster II, III, IV were least abundant and least diverse in
419	clone libraries from the Arabian Sea. Most of the sequences in all three Clusters of the conventional Deleted: four
420	nifH phylogeny were not closely related to any sequences from cultivated Bacteria or Archaea. The
421	most abundant OTUs in Cluster I and in Clusters II, III, and IV could be assigned to the

424	Alphaproteobacteria, followed by the Gammaproteobacteria for Cluster I and Deltaproteobacteria for Deleted: accounted
425	Clusters II, III, IV sequences. Most of the OTUs were not shared among regions, depths or DNA vs
426	cDNA and sometimes were restricted to individual samples. Some Cluster I sequences had high
427	identity to known species (e.g., Bradyrhizobium, Trichodesmium) but most of the Cluster II, III, IV
428	sequences were only distantly related to any cultured species.
429	The assemblage composition of <i>nifH</i> -bearing microbes is mainly explained by region, but
430	OTU composition was also consistent with the influence of key environmental parameters such as
431	oxygen and temperature, and reflects association with the secondary nitrite maximum for deep
432	samples. There are few studies that report <i>nifH</i> sequences from oceanic OMZs (Jayakumar et al.
433	2012, Arabian Sea; Fernandez et al. 2011, Loescher et al. 2014, Turk-Kubo et al. 2014, all from the
434	ETSP) or similar environments (Cheung et al. 2016, Costa Rica Dome and Hamersley et al. 2011,
435	hypoxic basins in the Southern California Bight). Combining those reports from individual regions,
436	plus the new sequences from the ETNP reported here, shows that most of the sites/depths, both in Deleted: M
437	this study and in others from OMZ regions, are dominated by one or a few OTUs, which suggests
438	bloom-type dynamics within a diverse background assemblage. Microbes occupying very similar
439	niches and present at low population levels might respond differentially to episodic inputs of organic
440	matter, resulting in spatially and temporally varying dominance by a few clades. Thus we find <u>niff</u> Formatted: Font: Italic
441	sequences associated with similar metabolic types represented across all the OMZs, although the
442	specific species and genus level affiliations differ. The consistent detection of <i>nifH</i> sequences
443	related to those found in known sulfate reducers and methanotrophs suggests the need for further
444	investigation of these pathways in ODZs.
445	While measurements of N ₂ fixation rates are not reported here, the abundance of cDNA
446	sequences suggests that the cells harboring these genes are active. Low, but analytically significant,

449	rates have been detected in ODZ depths in the ETNP (Jayakumar et al. 2017) and ETSP (Chang et
450	al. 2019), which suggests that non-cyanobacterial N ₂ fixation could make a minor contribution to the Formatted: Subscript
451	nitrogen budget of the ocean. It is therefore important in future work to determine how the diversity
452	described here actually contributes to biogeochemically significant reactions and what
453	environmental and biotic factors might influence or control the activity of diazotrophs in the <u>OMZ</u> Deleted: dark Deleted: ocean
454	

458	Figure Legends	
459	Figure 1. Histogram of the 12 most common OTUs from Cluster I nifH clone libraries from the	
460	three OMZ regions. OTUs were considered common if the total number of sequences in an	
461	OTU was $\geq 2\%$ of the total number of <i>nifH</i> clones analyzed (The common OTUs contained 441)	
462	of the 512 Cluster I sequences). OTUs were defined according to 3% nucleotide sequence	
463	difference using the furthest neighbor method. OTU designation is from most common (OTU-1)	
464	to least. A) OTU distribution among regions. B) OTU distribution between OMZ (including	
465	core of the ODZ and the upper oxycline depths) and surface depths (oxygenated water). C)	
466	OTU distribution of cDNA vs DNA clones.	
467		
468		
469	Figure 2. Rarefaction curve displaying observed OTU richness versus the number of clones	
470	sequenced for Cluster I nifH sequences (cDNA and DNA). OTUs were defined and designated as	
471	in Figure 1. Chao estimators (individual symbols) are shown for each of the same subsets	
472	represented in the rarefaction curves.	
473		
474	Figure 3. Maximum likelihood (ML) phylogenetic tree, based on Poisson model of Cluster I,	
475	partial <i>nifH</i> translated amino acid sequences from DNA and cDNA. Bootstrap values >50% of	
476	1,000 replications are labeled with black circles on the branches. Accession number of reference	Deleted: Phylogenetic tree of Cluster 1 based on amino acid sequences
477	sequences from NCBI are provided at the end of each reference names. Positions of the OTUs	Formatted: Font: Italic
478	are shown relative to their nearest neighbors from the database. Individual sequence identities	
479	comprising each OTU are listed in Table <u>3</u> .	Deleted: Supplemental
l 480		Deleted: 2

485	Figure 4. Histogram of the 6 most common OTUs from Cluster II, III, IV nifH clone libraries	
486	from the three OMZ regions. OTUs were considered common if the total number of sequences	
487	in an OTU was $\geq 2\%$ of the total number of <i>nifH</i> clones analyzed (the common OTUs contained	
488	252 of the 275 Cluster II, III, IV sequences). OTUs were defined according to 3% nucleotide	
489	sequence difference using the furthest neighbor method. OTU designation is from most common	
490	(OTU-1) to least. A) OTU distribution among regions. B) OTU distribution between OMZ	
491	(including core of the ODZ and the upper oxycline depths) and surface depths (oxygenated	
492	water). C) OTU distribution of cDNA vs DNA clones.	
493		
494	Figure 5. Rarefaction curve displaying observed OTU richness versus the number of clones	
495	sequenced for Cluster II, III, IV nifH sequences (cDNA and DNA). OTUs were defined and	
496	designated as in Figure 4. Chao estimators (individual symbols) are shown for each of the same	
497	subsets represented in the rarefaction curves.	
498		
499	Figure 6. Maximum likelihood (ML) phylogenetic tree, based on Poisson model, of Cluster II,	
500	III, IV partial nifH translated amino acid sequences from DNA and cDNA, Bootstrap values	Deleted: Phylogenetic tree of Clusters II, III, IV based on amino acid sequences
501	>50% of 1,000 replications are labeled with black circles on the branches. Accession number of	
502	reference sequences from NCBI are provided at the end of each reference names. Positions of the	
503	OTUs are shown relative to their nearest neighbors from the database. Individual sequence	
504	identities comprising each OTU are listed in Table 3.	Deleted: Supplemental
505		Dereteq. 2
506	Figure 7. RDA plots for (A) Cluster I and (B) Clusters II, III, IV illustrating the relationships	
507	among OTUs (green circles <u>containing the OTU number</u>) and sites. DNA = squares; cDNA =	

512	circles. Arabian Sea = cyan (surface) and blue (OMZ); ETNP = pink (surface) and red (deep);
513	ETSP = yellow (surface) and orange (deep). (A) Twelve most abundant OTUs for Cluster I and
514	the four most independent environmental variables. T = temperature, S = salinity, NO2 = nitrite
515	concentration, O2 = oxygen concentration. (B) Six most abundant OTUs for Clusters II, III, IV
516	and all six environmental variables. NO3 = nitrate concentration, $Z = depth$.
517	
518	
519	Tables
520	Table 1. Sampling regions and depths and sequences derived from each depth. $S = Surface$
521	(within the euphotic zone). OMZ = oxycline or core of the OMZ, all below the euphotic zone.
522	
523	Table 2. OTU summary for both clusters
524	Richness and diversity statistics for <i>nifH</i> clone libraries from three OMZ regions. ACE and
525	Chao are non-parametric estimators that predict the total number of OTUs in the original sample.
526	
527	Table 3. OTU identities for both clusters
528	Cultivated species with closest nucleotide identity to the OTUs identified in the <i>nifH</i> clone
529	libraries from three OMZ regions. Only the 12 most common OTUs (out of 41 total) are listed
530	for Cluster 1 sequences, and the six most common (out of 18 total) for the Clusters II, III, IV
531	libraries.
532	
533	Supplemental

535 S Table 1A and B. List of sequences in each OTU for both clusters

536	S Table 2. Distribution of OTUs among sites
537	
538	
539	

541 References	5
----------------	---

543	1. Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S.,
544	Markager, S. and Riemann, L., 2015. Significant N-2 fixation by heterotrophs,
545	photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. Isme
546	Journal. 9, 273-285.
547	2. Bird, C. and Wyman, M., 2013. Transcriptionally active heterotrophic diazotrophs are
548	widespread in the upper water column of the Arabian Sea. Fems Microbiology Ecology.
549	84, 189-200.
550	3. Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O.,
551	Zehr, J. P. and Capone, D. G., 2013. Aphotic N-2 Fixation in the Eastern Tropical South
552	Pacific Ocean. Plos One. 8.
553	4. Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. M., Mulholland, M. R. and
554	Ward, B. B., 2019. Low rates of dinitrogen fixation in the eastern tropical South Pacific.
555	Limnology And Oceanography. 64, 1913-1923.
556	5. Cheung, S. Y., Xia, X. M., Guoand, C. and Liu, H. B., 2016. Diazotroph community structure in
557	the deep oxygen minimum zone of the Costa Rica Dome. Journal of Plankton Research.
558	38, 380-391.
559	6. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. and Dunne, J. P., 2007. Spatial
560	coupling of nitrogen inputs and losses in the ocean. Nature. 445, 163-167.
561	7. Fernandez, C., Farias, L. and Ulloa, O., 2011. Nitrogen Fixation in Denitrified Marine Waters.
562	Plos One. 6.
563	8. Fernandez, C., Lorena Gonzalez, M., Munoz, C., Molina, V. and Farias, L., 2015. Temporal and
564	spatial variability of biological nitrogen fixation off the upwelling system of central Chile
565	(35-38.5 degrees S). Journal of Geophysical Research-Oceans. 120, 3330-3349.
566	9. Gaby, J. C., Rishishwar, L., Valderrama-Aguirre, L. C., Green, S. J., Valderrama-Aguirre, A.,
567	Jordan, I. L. and Kostka, J. E., 2018. Diazotroph community characterization via a high-
568	throughput nifH amplicon sequencing and analysis pipeline. Applied And Environmental
569	Microbiology. 84, eO1512-01517.
570	10. Großkopf, T. and LaRoche, J., 2012. Direct and indirect costs of dinitrogen fixation in
571	Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle.
572	Frontiers in Microbiology. 3.
573	11. Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P., Gunderson, T. and
574	Capone, D. G., 2011. Nitrogen fixation within the water column associated with two
575	hypoxic basins in the Southern California Bight. Aquatic Microbial Ecology. 63, 193-205.
576	12. Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B. and Mulholland, M. R., 2012. Diversity,
577	distribution, and expression of diazotroph nifH genes in oxygen-deficient waters of the
578	Arabian Sea. Fems Microbiology Ecology. 82, 597-606.
579	13. Jayakumar, A., Chang, B. N. X., Widner, B., Bernhardt, P., Mulholland, M. R. and Ward, B. B.,
580	2017. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical
581	North Pacific ocean. Isme Journal. 11, 2356-2367.

- 14. Jayakumar, A., O'Mullan, G. D., Naqvi, S. W. A. and Ward, B. B., 2009. Denitrifying bacterial
 community composition changes associated with stages of denitrification in oxygen
 minimum zones. Microbial Ecology. 58, 350-362.
- 15. Krotzky, A. and Werner, D., 1987. NITROGEN-FIXATION IN PSEUDOMONAS-STUTZERI.
 Archives of Microbiology. 147, 48-57.
- 587 16. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018. MEGA X: Molecular
 588 Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and
 589 Evolution. 35, 1547-1549.
- 17. Langlois, R., Grokopf, T., Mills, M., Takeda, S. and LaRoche, J., 2015. Widespread
 Distribution and Expression of Gamma A (UMB), an Uncultured, Diazotrophic, gamma Proteobacterial nifH Phylotype. Plos One. 10.
- 18. Letunic, I. and Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display
 and annotation of phylogenetic and other trees. Nucleic Acids Research. 44, W242W245.
- Loescher, C. R., Bange, H. W., Schmitz, R. A., Callbeck, C. M., Engel, A., Hauss, H., Kanzow, T.,
 Kiko, R., Lavik, G., Loginova, A., Melzner, F., Meyer, J., Neulinger, S. C., Pahlow, M.,
 Riebesell, U., Schunck, H., Thomsen, S. and Wagner, H., 2016. Water column
 biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and
 eastern tropical South Pacific oceans. Biogeosciences. 13, 3585-3606.
- 20. Loescher, C. R., Grosskopf, T., Desai, F. D., Gill, D., Schunck, H., Croot, P. L., Schlosser, C.,
 Neulinger, S. C., Pinnow, N., Lavik, G., Kuypers, M. M. M., LaRoche, J. and Schmitz, R. A.,
 2014. Facets of diazotrophy in the oxygen minimum zone waters off Peru. Isme Journal.
 8, 2180-2192.
- 21. Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A.,
 Montoya, J. P. and Zehr, J. P., 2010. Unicellular Cyanobacterial Distributions Broaden the
 Oceanic N-2 Fixation Domain. Science. 327, 1512-1514.
- 22. Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E. and Riemann, L.,
 2017. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic
 Environments. Frontiers in Microbiology. 8.
- 611 23. Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A. and Zehr, J. P., 2014.
 612 Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the
- 613 South Pacific Ocean. The ISME Journal 8, 1962–1973.
- Schloss, P. D. and Handlesman, J., 2009. Introducing DOTUR, a computer program for
 defining operational taxonomic units and estimating species richness. Applied and
 Environmental Microbiology. 71, 1501-1506.
- 517 25. Stecher, G., Tamura, K. and Kumar, S., 2020. Molecular Evolutionary Genetics Analysis
 618 (MEGA) for macOS. Molecular Biology and Evolution. 37, 1237-1239.
- 26. Turk-Kubo, K. A., Karamchandani, M., Capone, D. G. and Zehr, J. P., 2014. The paradox of
 marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not
 account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environmental
 Microbiology. 16, 3095-3114.
- 27. Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O. and Jenkins, B. D., 2003.
 Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of
 functional genes. Biotechniques. 35, 996-1005.

- 28. Zehr, J. P. and McReynolds, L. A., 1989. Use of degenerate oligonucleotides for amplification
 of the *nifH* gene from the marine cyanobacterium *Trichodesmium theiebautii*. Applied
 and Environmental Microbiology. 55, 2522-2526.
- 29. Zehr, J. P., Mellon, M. T. and Zani, S., 1998. New nitrogen-fixing microorganisms detected in
 oligotrophic oceans by amplification of nitrogenase (nifH) genes. Applied and
- 631 Environmental Microbiology. 6, 3444-3450.
- 631 632

637 Figure. 2

647 Figure. 5.

Deleted:

0.05 changes

Figure 7A

RDA1 (54.7 %)

OMZ	Station	Latitude	Longitude	Depth	Depth	DNA	cDNA
Region				(m)	Feature	Seqs	Seqs
Arabian Sea	S1	19°N	67°E	10	<u>S</u>	3	0
Arabian Sea	S1	19°N	67°E	60	<u>s</u>	20	0
Arabian Sea	S1	19°N	67°E	150	<u>OMZ</u>	23	25
Arabian Sea	S1	19°N	67°E	175	<u>OMZ</u>	10	22
Arabian Sea	S2	15°N	64°E	150	<u>OMZ</u>	4	25
Arabian Sea	S3	12°N	64°E	10	<u>s</u>	25	4
Arabian Sea	S3	12°N	64°E	110	<u>OMZ</u>	4	23
ETNP	BB1	20 9.6°N	106°W	0	<u>s</u>	26	5
ETNP	BB1	20 9.6°N	106°W	18	<u>s</u>	24	17
ETNP	BB1	20 9.6°N	106°W	90	<u>OMZ</u>	42	38
ETNP	BB2	16 31°N	107 6.8°W	0	<u>s</u>	40	35
ETNP	BB2	16 31°N	107 6.8°W	150	<u>OMZ</u>	47	67
ETSP	BB1	13 59.9°S	81 12.0°W	2	<u>s</u>	29	1
ETSP	BB1	13 59.9°S	81 12.0°W	130	<u>OMZ</u>	46	44
ETSP	BB2	20. 46.1°S	70 39. 5°W	20	<u>S</u>	45	30
ETSP	BB2	20. 46.1°S	70 39. 5°W	115	OMZ	23	40

657

Deleted: Sampling position details

Formatted Table

Sample subset	Depths, regions included	No. of Sequences	No. of Unique Sequences	No. of OTUs (cutoff ~3)	OTU /seq	Shannon	Simpson	Chao	Ace
AS	Arabian Sea, all depths	178	36	14	0.079	1.8	0.22	21	45
ETNP	ETNP, all depths	207	80	25	0.121	2.37	0.14	37	34
ETSP	ETSP, OMZ depths	127	51	6	0.047	0.87	0.53	7	8
All Clusterl	Three regions, all depths	512	165	41	0.080	2.7	0.11	59	67
All Clusterl DNA	Three regions, all depths	257	97	35	0.136	2.8	0.08	42	45
All Clusterl cDNA	Three regions, all depths	255	75	24	0.094	1.7	0.25	24	27
All Clusterl Surface	Three regions, surface denths	198	73	25	0.126	2.5	0.10	52	75
All Clusterl OMZ	Three regions, all depths	314	98	23	0.073	0.9	0.23	30	37
Clusters II, III, IV									
AS	Arabian Sea, all depths	10	6	3	0.300	1.09	0.27	3	3
ETNP	ETNP, all depths	134	49	8	0.060	1.19	0.39	14	38
ETSP	ETSP, all depths	131	64	8	0.061	1.37	0.30	9	19
All Clusters II,III,IV	Three regions, all depths	275	117	18	0.065	1.88	0.21	28	26
All Clusters II,III,IV DNA	Three regions, all depths	155	65	12	0.077	1.20	0.37	22	17
All Clusters II,III,IV cDNA	Three regions, all depths	120	56	9	0.075	1.11	0.45	12	15
All Clusters II,III,IV Surface	Three regions, surface depths	86	46	6	0.070	1.32	0.29	7	13
All Clusters II,III IV OMZ	Three regions, OMZ depths	189	76	15	0.079	1.57	0.29	46	24

659 Table 2 OTU Summary

Table 3 <u>OTU identities</u>

Formatted: Font: (Default) +Body (Calibri), 10 pt

	No. of Sequences	Phylogenetic Affiliation	Closest cultured relative (DNA)	Identity DNA %	Coverage %	Closest cultured relative (Protein)	Identity AA %	Coverage %
Cluster								
OTU-1	129	Gamma	Psuedomonas stutzeri	91	98	Pseudomonas stutzeri strain SGAir0442	95.8	99
OTU-2	89	Alpha	Bradyrhizobium sp	99	100	Bradyrhizobium denitrificans strain LMG 8443	99	99
OTU-3	40	Alpha	Bradyrhizobium sp. TM124	94	98	Bradyrhizobium sp. MAFF 210318	99	98
OTU-4	29	Gamma	Marinobacterium lutimaris	87	100	Oleibacter sp	100	99
OTU-5	29	Alpha	Methylosinus trichosporium	92	99	Sphingomonas azotifigens	99	100
OTU-6	25	Gamma	Azotobacter chroococcum strain B3	81	99	Psuedomonas stutzeri	94	99
OTU-7	25	Beta/Alpha	Rubrivivax qelatinosus	91	99	Novosphingobium malasiense	99	100
OTU-8	17	Gamma	Psuedomonas stutzeri	91	98	Azotobacter chroococcum strain B3	97	100
OTU-9	17	Beta/Alfa	Burkholderia	90	100	Sphingomonas azotifigens	100	100
OTU-10	16	Alpha	Bradyrhizobium	97	98	Bradyrhizobium sp. ORS 285	99	99
OTU-11	15	Alpha	Bradyrhizobium	97	98	Bradyrhizobium diazoefficiens	98	99
OTU-12	10	Cyanobacterium	Katagnymene spiralis	100	99	Trichodesmium erythraeum	100	99
Clusters I	I, III IV							
OTU-1	88	Alpha/Spirochaet	Rhizobium sp	74	59	Treponema primitia ZAS-11	55	98
OTU-2	75	Delta/Firmicutes	Geobacter	73	43	Desulfitobacterium hafniense	98	61
OTU-3	35	Verrumicrobia	Opitutaceae bacterium	82	99	Coraliomargarita akajimensis	95	99
OTU-4	30	Alpha	Rhodopseudomon as palustris	90	98	Rhodoplanes	96	99
OTU-5	18	Delta/Chlorobi	Desulfovibrio	79	99	elegans Prosthosochloris	92	99
			piezophilus			sp. V1.		
						Chloroherpeton		
						thalassium,		
						Chloroherpeton		
						thalassium		
OTU-6	6	Beta/Delta	Azoarcus communis	70	88	Enhygromyxa salina	70	74
OTU-7	4	Delta	Desulfovibrio carbinolicus strain	81	99	Desulfovibrio	90	99
		n i fei i i	DSM 3852			inopinatus	a-	
UTU-8	4	Deita/Firmicutes	Desulfovibrio desulfuricans strain IC1	77	100	Sporobacter termitidis	99	99

ОТU-9	3	Delta/Lentisphae rae	Desulfovibrio magneticus RS-1 DNA	84	100	Lentisphaerae bacterium GWF2_57_35, Desulfatitalea tepidiphila, Desulfobacteraceae bacterium	84	100
OTU-10	3	Delta/Methanoc occi	Desulfovibrio desulfuricans strain IC1	77	100	Methanocaldococcus villosus	65	99
OTU-11	2	Verrucomicrobi a	Verrucomicrobia bacterium S94	87	100	Verrucomicrobia bacterium S94	97	99