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Abstract. Forest disturbance and regrowth are key processes in forest dynamics but detailed information of these processes is 15 

difficult to obtain in remote forests as the Amazon. We used chronosequences of Landsat satellite imagery (Landsat 5 Thematic 

Mapper and Landsat 7 Enhanced Thematic Mapper Plus) to determine the sensitivity of surface reflectance from all spectral 

bands to windthrow, clearcutting, and burning clearcut and burned (cut+burn) and their successional pathways of forest 

regrowth in the Central Amazon. We also assess whether the forest demography model Functionally Assembled Terrestrial 

Ecosystem Simulator (FATES) implemented in the Energy Exascale Earth System Model (E3SM) Land Model (ELM), ELM-20 

FATES, accurately represents the changes for windthrow and clearcut. The results show that all spectral bands from Landsat 

satellite were sensitive to the disturbances but after 3 to 6 years only the Near Infrared (NIR) band had significant changes 

associated with the successional pathways of forest regrowth for all the disturbances considered. In general, the NIR decreased 

immediately after disturbance, increased to maximum values with the establishment of pioneers and early-successional tree 

species, and then decreased slowly and almost linearly to pre-disturbance conditions with the dynamics of forest succession. 25 

Statistical methods predict that NIR will return to pre-disturbance values in about 39 years (consistent with observational data 

of biomass regrowth following windthrows), and 36 and 56 years for clearcut and cut+burnburning. The NIR captured the 

observed successional pathways of forest regrowth after clearcut and burning cut+burn that diverge through time. ELM-

FATES predicted higher peaks of initial forest responses (e.g., biomass, stem density) after clearcuts than after windthrows, 

similar to the changes in NIR. However, ELM-FATES also predicted a faster recovery of forest structure and canopy-coverage 30 

back to pre-disturbance conditions for windthrows compared to clearcutsin 38 years after windthrows and 41 years after 

clearcuts. The similarity of ELM-FATES predictions of regrowth patterns after windthrow and clearcut to those of the NIR 

results suggest that the dynamics of forest regrowth for from these disturbances are represented with appropriate fidelity within 
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ELM-FATES can be used  and useful benchmark forest regrowth in ecosystem modelsas a benchmarking tool. Our result show 

the potential of Landsat imagery data for mapping of forests regrowth from different disturbances, benchmarking, and 35 

improvement of forest regrowth models. 

 

Keywords: Landsat, disturbances, regrowth, Vegetation Demographic Models, Amazon  

1 Introduction 

 40 

Old-growth tropical forests are declining in extent at accelerated rates due to deforestation (Keenan et al., 2015), and they 

currently occupy an area about 50% of their original coverage (FAO, 2010). This decline affects the carbon, water, and nutrient 

cycles of the ecosystems and accelerates the loss of ecosystem goods and services (Foley et al., 2007;Nobre et al., 2016). 

Furthermore, natural and anthropogenic disturbances may act synergistically to exacerbate forest degradation (Silverio et al., 

2018;Schwartz et al., 2017). Under natural conditions, disturbed forests recover to their pre-disturbance conditions through 45 

complex interactions that vary across spatial and temporal scales (Chazdon, 2014). In general, it is known that forest pathways 

of regrowth (i.e., pattern of regrowth) initiate with fast-growing and shade-intolerant species (pioneers) that establish from 

seeds and dominate a few years after disturbance, followed by recruitment and establishment of shade-tolerant species, and 

finally a closed-canopy old-growth forest (Chazdon, 2014;Denslow, 1980;Mesquita et al., 2001;Swaine and Whitmore, 1988). 

Understanding of the dynamics of forest regrowth following natural and anthropogenic disturbances in the Amazon, however, 50 

has so far been limited by lack of long-term observational data showing different stages of forest regrowth.  

 

Remote sensing data can be used to assess forest regrowth via changes in spectral characteristics (Frolking et al., 2009;Roberts 

et al., 2004;Schroeder et al., 2011;DeVries et al., 2015;Lucas et al., 2002;McDowell et al., 2015). Landsat satellite imagery is 

appropriate for examining land surface changes due to its long-term record availability and horizontal spatial resolution of 30 55 

m (Loveland and Dwyer, 2012;NASA, 2016;Wulder et al., 2012;Alcantara et al., 2011;Woodcock et al., 2008;Cohen and 

Goward, 2004;Hansen et al., 2013). Landsat imagery has been used to detect forest disturbance and pathways of regrowth in 

temperate and boreal forests in the Unites States and Canada (Kennedy et al., 2012;Pickell et al., 2016;Kennedy et al., 

2007;Kennedy et al., 2010;Schroeder et al., 2011;Dolan et al., 2009;Dolan et al., 2017) and for detection of forest disturbance 

and regrowth of biomass in the Amazon (Vieira et al., 2003;DeVries et al., 2015;Lucas et al., 2002;Powell et al., 2010;Lu and 60 

Batistella, 2005;Steininger, 2000;Shimabukuro et al., 2019). These studies suggest that Landsat may be sensitive to different 

types of disturbances and their subsequent pathways of forest regrowth in the Amazon, but this has not yet been assessed. 

 

The ability to forecast future trajectories of forests depends upon the fidelity with which disturbance and regrowth processes 

are represented within terrestrial biosphere models. These models capture processes operating between the leaf and landscape 65 
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scales and can represent regrowth changes over large regions (Fisk, 2015), long time periods (Holm et al., 2017;Putz et al., 

2014), a range of disturbance intensities (Powell et al., 2013), and interactions between multiple disturbance types and 

disturbance histories (Hurtt et al., 2006). But, an evaluation of how well these models simulate and capture the diverse array 

of successional pathways of forest regrowth after anthropogenic or natural disturbances needs to be more thoroughly evaluated, 

given observed increases in disturbance rates (Lewis et al., 2015). The few modeling studies analyzing tropical disturbances 70 

have focused on the effects of fragmented edges or the regrowth of specific tree species (Dantas de Paula et al., 

2015;Kammesheidt et al., 2002).  

 

Cohort-based dynamic Vegetation Demographic Models (VDMs) are particularly suitable tools for expanding upon these 

studies (Fisher et al., 2018). In contrast to traditional land surface models, VDMs include ecological demographic processes, 75 

such as discretized vegetation height, with different plant types competing for light within the same vertical profile, and 

heterogeneity in light availability along disturbance and recovery trajectories, all of which facilitate direct simulation of 

regrowth dynamics during succession. This structured demography in VDMs allows for simulation of canopy gap formation, 

competitive exclusion, and co-existence of vegetation, thus producing variability in forest stand age and composition (Fisher 

et al., 2010;Moorcroft et al., 2001;Longo et al., 2019). VDMs are designed for vegetation to dynamically respond to variation 80 

in traits (Fyllas et al., 2014) leading to differences in plant mortality, growth, and recruitment rates (Shugart and West, 1980). 

These attributes influence the ecosystem fluxes of carbon, energy, and water (Bonan, 2008). Despite their potential for 

simulating regrowth processes, there has been limited VDM testing of regrowth following tropical forest disturbances. 

Importantly, projections of future climate using earth system models (ESMs) are strongly influenced by the terrestrial carbon 

cycle in the tropics (Arora et al., 2013;Friedlingstein et al., 2014), which is strongly regulated by disturbance and regrowth 85 

(Chazdon et al., 2016;Trumbore et al., 2015;Magnabosco Marra et al., 2018). 

 

Observational studies have shown that Amazon forests follow a range of successional regrowth pathways after clearcutting 

and burning (Mesquita et al., 2001;Mesquita et al., 2015). Thus, the type of disturbance and the pre-disturbance ecosystem 

state are important determinants of the successional pathways of forest regrowth. Nonetheless, this information is difficult to 90 

obtain in remote forests of the Amazon. In this study, we addressed this issue in the context of windthrow, clearcutting, and 

clearcut and burning (cut+burn) disturbances to analyze (i) the sensitivity of Landsat to detect and distinguish these relevant 

disturbances and their pathways of forest regrowth and (ii) the timespan of forest regrowth. This understanding of forest 

regrowth was used to (iii) test the modeled forest regrowth of the Functionally Assembled Terrestrial Ecosystem Simulator 

(FATES) (Fisher et al., 2015) implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM) (Riley et 95 

al., 2018),: ELM-FATES. This study provides insights on the use of remote sensing to identify drivers of forest disturbance in 

the Amazon and a better understanding of the pathways of forest regrowth provides insights into the resilience of these forests 

to repeated disturbances and can help improve land models. 
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2 Study Area and Methods 100 

 

2.1 Study area and sites 

 

Forests in the Central Amazon affected by windthrow, clearcuting, and cut+burning were addressed in this study. Windthrows 

(Mitchell, 2013) in the Amazon are caused by strong descending winds that uproot or break trees (Garstang et al., 1998;Negrón-105 

Juárez et al., 2018;Nelson et al., 1994). In clearcut areas, forests are cut and cleared and in cut+burning areas forest are cleared 

and burned (Mesquita et al., 2001;Mesquita et al., 2015;Lovejoy and Bierregaard, 1990). The windthrow, clearcut, and 

cut+burned sites used in this study were selected based on the following conditions: (a) prior to disturbance they were upland 

(no flooding) old-growth forest and located in the same geographic region, with no or minimalsimilar climatic, edaphic, and 

floristic differences; (b) long-term records of satellite imagery and corresponding field data before and after disturbance are 110 

available; and (c) no subsequent disturbance has occurred.  
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Figure 1: Location of disturbed forests. (a) The disturbed areas were located in Central Amazonia and included (b) a 

windthrow site close to the village of Tumbira, (c) a clearcut site, in the Porto Alegre farm, and (d) a cut+burned site 

in the Dimona farm. These three areas are encompassed in the Landsat scene Path 231 Row 062 as shown in the inset 

in (a). For the spectral characteristics before and after disturbances we used boxes cells of 33 pixels (blue squares) 

over disturbed and undisturbed areas. For the pathways of forest regrowth after clearcutting and burning sites we 120 

analyzed different areas with different distances from the disturbance edge (A1, A2 and A3 in yellow). The background 

image in (a) is from Google Earth Pro. The background images in (b), (c) and (d) are from Landsat 5 on July 12, 1987, 

June 1, 1984 and July 12, 1987 and were composed as RGB color using bands 5, band 4 and band 3, respectively. 

 

The windthrow, clearcut, and cut+burned sites analyzedanalysed in this study are located near the city of Manaus, Central 125 

Amazon (Figure 1a). The windthrow (centered  at 3°S, 60.75°W, Figure 1b) was located near the village of Tumbira, about 80 

km southwest of Manaus, occurred in 1987 and covered an area of ~75 ha. At this site, data on forest regrowth including forest 

structure and species composition for trees ≥10 cm DBH (diameter at breast height, 1.3 m) were collected since 2011 covering 

disturbed  and undisturbed areas and found that  genus Cecropia is one of the dominant species in the highest disturbed areas 
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(Magnabosco Marra et al., 2018). The clearcut and cut+burned sites were experimentally created within the Biological 130 

Dynamics of Forest Fragments Project (BDFFP), which encompass an area of ~1000 km2 (centered at 2.5° S, 60°W) located 

80 km north of the city of Manaus, Brazil. The BDFFP was established and managed in early 1980’s by Brazil’s National 

Institute for Research in Amazonia (INPA) and the Smithsonian Institution, and is the longest running experiment of forest 

fragmentation in the tropics (Bierregaard et al., 1992;Lovejoy et al., 1986;Laurance et al., 2011;Tollefson, 2013;Laurance et 

al., 2018). Further details of the BDFFP are in Bierregaard et al. (2001). The selected clearcut site is located in the Porto Alegre 135 

farm (centered at 2.35°S, 59.94°W, Figure 1c). This site was clearcut in 1982 without subsequent use, and was dominated by 

the pioneer tree genus Cecropia 6-10 years after abandonment (Mesquita et al., 1999;Mesquita et al., 2001). The cut+burned 

site is located in the Dimona farm (centered at 2.33°S, 60.11°W, Figure 1d), which was clearcut and burned in September 1984 

and maintained as pasture for 2-3 some years and then abandoned. By 1993 this site was 6 years old and dominated by the 

pioneer tree genus Vismia (Mesquita et al., 1999;Mesquita et al., 2001). 140 

 

In the Manaus region the mean annual temperature is 27°C (with higher temperatures from August to November, and peak in 

October) and the mean annual rainfall is 2,365 mm with the dry season (rainfall < 100 mm month -1 (Sombroek, 2001)) from 

July to September (Negrón-Juárez et al., 2017). The topography is relatively flat with landforms ranging from 50-105 m above 

sea level (Laurance et al., 2011;Renno et al., 2008;Laurance et al., 2007), and the mean canopy height is ~ 30 m, with emergent 145 

trees reaching 55 m (Laurance et al., 2011;Lima et al., 2007;Da Silva, 2007). The soil in this region are ferrosols (Quesada et 

al., 2011;Bierregaard et al., 2001;Ferraz et al., 1998)  following the Food and Agriculture Organization (FAO) classification, 

and  with similar and floristic composition in this region are summarized in Negrón-Juárez et al. (2017) (Bierregaard et al., 

2001;Carneiro et al., 2005;Vieira et al., 2004;Higuchi et al., 2004). In the BDFFP, and for old-growth forest trees with DBH 

≥ 10 cm,  areas there are 26118 species per hectare,  and the stem density is 608  52 stems ha−1 and the basal area is 28 m2 150 

ha-1 (trees ≥ 10 cm in DBH) (Laurance et al., 2010) that  This stem density is representativeare representative of the region (da 

Silva et al., 2002;Vieira et al., 2004;Carneiro et al., 2005;Magnabosco Marra, 2016;Magnabosco Marra et al., 

2014;Magnabosco Marra et al., 2018).  In this region  93% of stems are between 10 and 40 cm in DBH (Higuchi et al., 2012) 

and the  annual tree mortality is of 8.7 trees ha−1 for trees ≥ 10 cm in DBH (Higuchi et al., 1997). 

 155 

2.2 Landsat satellite data and procedures 

 

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al., 2013;Masek et al., 2006;Masek 

et al., 2013;Masek et al., 2008) surface reflectance (SR) from Landsat 5 Thematic Mapper (TM) was used in this study to 

characterize the type of disturbance and their subsequent pathways of forest regrowth over our study areas. LEDAPS was 160 

developed to ensure that spectral changes in Landsat are associated with regrowth dynamics (Masek et al., 2012;Schmidt et 

al., 2013) and to facilitate robust studies of land surface changes at different temporal and spatial scales in tropical forests (Kim 

et al., 2014;Valencia et al., 2016;Alonzo et al., 2016). LEDAPS SR Landsat 5 TM (L5 hereinafter) is generated by the United 
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States Geological Survey (USGS) using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) that corrects 

for the influences of, among others, water vapor, ozone, aerosol optical thickness, and digital elevation on spectral bands 165 

(USGS, 2017;Vermote et al., 1997). L5 bands are derived using per-pixel solar illumination angles and generated at 30-meter 

spatial resolution on a Universal Transverse Mercator (UTM) mapping grid (USGS, 2017). LEDAPS in Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) sensor (L7, hereinafter) were also used to corroborate our predictions (described below). 

Though L5 and L7 use the same wavelength bands they are different sensors and differences in surface reflectance may exist, 

especially in tropical forests due to high atmospheric effects (Claverie et al., 2015). Landsat 8 was not used since comparison 170 

between Landsat 8 and both L5 and L7 is not straightforward due to differences in the spectral bandwidth of these sensors. We 

used LEDAPS since has a long time series of data, is promptly available, have with high spectral performance comparable to 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Claverie et al., 2015) and several datasets (Vuolo et al., 

2015;Nazeer et al., 2014) and it is suitable for ecological studies in the Amazon (van Doninck and Tuomisto, 2018;Valencia 

et al., 2016). L5 and L7 are available in Google Earth Engine (Gorelick et al., 2017), which we used to retrieve and analyze 175 

these data. 

 

The L5 and L7 spectral bands used in this study were BLUE (0.45-0.52μm), GREEN (0.52-0.62 μm), RED (0.63-0.69 μm), 

Near Infrared (NIR) (0.76-0.90 μm), Shortwave Infrared 1 (SWIR1) (1.55-1.75 μm), and Shortwave Infrared 2 (SWIR2) (2.08-

2.35 μm). L5 and L7 measurements provide the fraction of energy reflected by the surface and ranges from 0 (0%) to 10000 180 

(100%). Only scenes from June, July, and August were used since these dry season months present less cloud cover over our 

study area (Negrón-Juárez et al., 2017). This procedure also reduces effects associated with illumination or phenology since 

images correspond to the same period each year. Only images with cloud free, cloud shadow free, and haze free over our 

disturbed areas were used to eliminate errors associated with these elements. For this procedure, visual inspection of visible 

bands and quality information from L5 and L7 were used. No further corrections were applied due to the robustness of L5 185 

imagery over the Amazon (Valencia et al., 2016). All the disturbances are in the Landsat scene path 231/row 062. The dates 

of L5 images used were (Landsat 5 operational imaging ended in 2011)   6/1/1984 (except for the windthrow), 7/6/1985, 

7/12/1987, 8/2/1989, 7/20/1990, 8/8/1991, 7/31/1994, 6/21/1997, 7/26/1998, 7/13/1999, 7/24/2003, 8/4/2007, 8/6/2008, 

7/27/2010, and 8/31/2011. The dates of L7 images used were 8/7/2011, 6/22/2012, 6/12/2014, 8/2/2015 and 8/7/2017. 

 190 

The spectral characteristics of old-growth forests and their changes after disturbances were investigated using 19several boxes 

of 33 pixels (Figure 1 b,c,d) as shown in Figures 3a-c. The average of each box was used in our analysis. Spectral 

characteristics for old-growth forest for each site were determined from boxes located in the same position of the disturbance 

but previous to disturbance, as well asand/or from adjacent areas. Five boxes of old-growth forests were located from 1 to 2 

km away from the windthrow site. Though closer distances may also represent old-growth forests, we were conservative since 195 

Landsat is not sensitive to clusters of downed trees comprising fewer than 8 trees (Negrón-Juárez et al., 2011). For the clearcut 

and cut+burned sites the spectral characteristics of their respective old-growth forests (control) were studied from 333 boxes 
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per site located 500 to 800 meters away from the edge of the disturbance to minimize edge effects that are relevant in the first 

100 m (Lovejoy et al., 1986;Laurance et al., 2007;Mesquita et al., 1999). Boxes containing old-growth forests were also used 

as controls. The spectral characteristics for the windthrow were acquired from two boxes containing the highest level of SWIR1 200 

in 1987 that is associated with the maximum disturbance (Negrón-Juárez et al., 2011;Magnabosco Marra et al., 2018;Nelson 

et al., 1994). For the clearcut site three boxes were located 400-500 m from the edge and for the cut+burning three other boxes 

distant from 100-300 m with respect the edge. For the clearcut site we also selected four areas: A1, A2, A3, and AT (AT = 

A1+A2+A3), shown in Figure 1c and for the cut+burn site, three areas: A1, A2, and AT (AT =A1+A2), shown in Figure 1d The 

spectral characteristics of old-growth and disturbances are shown is Figure 3 d-f with the error bands representing the standard 205 

deviation of all pixels from respective boxes.  

 

L5 data for the windthrow, clearcut, and cut+burned sites encompass a period of 27 28 years with 12 13 years of missing data 

due to cloud-cover or lack of image. In order to assess the forest regrowth to spectral levels similar to old-growth forests 

(control), we applied a gap filling method (Gerber, 2018) of time series to obtain estimates for missing years using the R 210 

package “zoo” (Zeileis et al., 2018). The gap-filled datasets were analyzed using the smoothing spline technique (R, 2017).  

 

To determine whether L5 bands were sensitive to regrowth, we analyzed changes in the slope () of the bands across our 

chronosequence. A t-test on the slope coefficient was used to test the null hypotheses that  is zero (H0:=0) against the 

alternative hypothesis (H1:0) at a 5% significant level (=0.05). If the computed test statistic (t-stat) was inside the critical 215 

values then the H0 was not rejected. The critical values (t1-/2, n-2, n is the number of data points) were obtained from statistical 

tables (Neter et al., 1988). Forests in the Manaus region affected by windthrows are dominated by tree species from genera 

Cecropia and Pourouma in about 3-5 years (Magnabosco Marra et al., 2018;Nelson and Amaral, 1994) and the clearcut and 

cut+burned sites were dominated by Cecropia and Vismia about 6 years after the disturbances (Mesquita et al., 1999;Mesquita 

et al., 2001). The slopes of the time series were determined after these periods, i.e. 1991, 1987, and 1990 for windthrow, 220 

clearcut, and cut+burned sites, respectively. 

 

A comparison of successional pathways of forest regrowth among studied disturbances was conducted that was possible 

feasible due to the similar conditions of climate, soils, and structure, and composition of the old-growth forests. For 

windthrows, we analyzed the areas of maximum disturbance since the spectral signature of these areas last the longest in 225 

Landsat imagery (Nelson et al., 1994). For clearcut and burned sites we used areas with different distances from the disturbance 

edge to determine whether distance is a factor affecting the regrowth. For the clearcut site we selected four areas: A1, A2, A3, 

and AT (AT = A1+A2+A3), shown in Figure 1c and for the burned site, three areas: A1, A2, and AT (AT =A1+A2), shown in 

Figure 1d. Time series of L5 bands were analyzed using the statistical nonparametric function (univariate fit), with the 

smoothing spline and the Gaussian regression ANOVA (analysis of variance) model. Calculations were conducted on the R 230 
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3.5.2 software platform (R, 2017) using the package gss (general smoothing splines) (Gu, 2018). We calculated the smooth 

spline (using the cubic fit algorithm) of observed data and the associated standard errors, from which we calculated Bayesian 

95% confidence intervals.  Predictions of the time after disturbance needed to reach old-growth forests values are based on 

these data using the function "ssanova" (Fitting Smoothing Spline ANOVA Models) of the R package "gss" (General 

Smoothing Splines), Version: 2.1-9. The predictions were compared with published field observations (Section 2.1) where 235 

data were available and L7 images were used to assess the reliability of our predictions.  

 

2.3 Forest regrowth simulation in ELM-FATES 

 

Time series of L5 bands sensitive to disturbances and the pathways of forest regrowth were compared with modeling results 240 

from FATES (Fisher et al., 2015;Fisher et al., 2010). The underlying model structure and concepts in FATES are based on the 

Ecosystem Demography (ED) concept (Moorcroft et al., 2001), and is described in detail at https://github.com/NGEET/fates. 

A major development is the modularization of the model structure in FATES so that boundary conditions and vegetation can 

be coupled with ESM land models. FATES is integrated into the E3SM Land Model (ELM) (Riley et al., 2018;Zhu et al., 

2019) and within the Community Land Model (CLM) (Fisher et al., 2019;Lawrence et al., 2019) coupled to the Community 245 

Earth System Model (Hurrell et al., 2013). In this study we used ELM-FATES. ELM-FATES simulates vegetation that varies 

in successional age and size, plant competition, and dynamic rates of plant mortality, growth, and recruitment, all on landscapes 

partitioned by areas of disturbance. The main updates and modifications in ELM-FATES compared with ED include changes 

to carbon allocation and allometry and introduction of the Perfect Plasticity Approximation (PPA) (Purves et al., 2008;Fisher 

et al., 2010) used for the accounting of crown spatial arrangements throughout the canopy and organizing cohorts into discrete 250 

canopy layers.  Photosynthesis and gas exchange physiology in ELM-FATES follows the physics within the Community Land 

Model v4.5, CLM,  (Bonan et al., 2011), and unlike ED, uses the original Arrhenius equation from Farquhar et al. (1980). 

ELM-FATES tropical forest simulations conducted here were based on parameter and demography sensitivity analysis at a 

site 40 km from close tothe BDFFP (Holm et al., 2020), at the ZF2 research station (Magnabosco Marra et al., 2014).  Holm 

et al. (2017) found that with the improved parameterization, ELM-FATES closely matched observed values of basal area, leaf 255 

area index (LAI), and mortality rates but underestimated stem density for a Central Amazon old-growth forest near the BDFFP.  

 

Model simulations were driven by climate-forcing data derived from measurements collected between the years 2000 to 2008 

at the K34 flux tower located at (2.6°S, 60.2°W) (de Araujo et al., 2002) about 40 km from the BDFPP, at the ZF2 research 

station. ELM-FATES (using the git commit “4a5d626” and the version corresponding to tag ‘sci.1.0.0_api.1.0.0’) was run and 260 

spun-up for 400 years until a stable biomass equilibrium in the model was reached within the forest. We then simulated a one-

time logging treatment of a near-complete mortality of all trees (98% “clearcut”) with a remaining of 2% consisting of only 

small trees > 5cm DBH to aid in recruitment (Mesquita et al., 2015). Second, we simulated a one-time windthrow disturbance 

that killed 70% of trees (“windthrow”) as was reported in a recent observational study on windthrows in the same region 
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central Amazon (Magnabosco Marra et al., 2018). All dead trees were ‘removed’ and therefore did not enter modeled soil 265 

pools. Burning The fire module in ELM-FATES is currently under tests final development and testing and therefore burned 

simulations will are not be doneincluded in this study. The old-growth forest simulated by ELM-FATES, used as a pre-

disturbance metric, was based on previously validated tropical parameterization and sensitivity testing in the same region 

(Holm et al., 2020); and see supplemental material from Fisher et al. (2015) for description of plant functional type specific 

carbon allocation and allometry schemes and updates from the ED model framework. Simulations of disturbance and 270 

subsequent vegetation regrowth after disturbance were initiated from this old-growth forest state. The model design used here 

only allows for simulating intact forests with natural disturbances (e.g., gap dynamics or windthrows) or harvested forests, but 

not both at the same time or in adjacent patches. Accounting for distance to intact forests was excluded due to the current 

limited understanding of seed dispersal mechanisms (i.e., spatial variability, dispersal limitation, etc.) in tropical forests 

(Terborgh et al., 2019). We use a more general form of seed production, such that the individual cohorts in ELM-FATES use 275 

a targeted fraction of net primary production (NPP) during the carbon allocation process (after accounting for tissue turnover 

and storage demands), which adds to the site-level seed pool for recruitment of new cohorts. Field data was not used to simulate 

or calibrate the modeled forest recovery regrowth post disturbance. 

 

To account for uncertainty in the representation of plant physiology within tropical evergreen forests, we analyzed an ensemble 280 

of 20 simulations varying in targeted plant functional traits. We prescribed each ensemble with a single tropical evergreen 

plant functional type (PFT) that varied in wood density (0.44 to 1.06 g cm-3) and maximum rate of carboxylation (Vcmax; 42 to 

55 umol m2 s-1) (Table 1), via random sampling. To evaluate changes in canopy coverage of the forest stand each PFT 

additionally varied by an allometric coefficient (1.35 to 1.65) determining crown area to diameter ratio, and a leaf clumping 

index (0.59 to 1.0 out of 0-1 fraction) that determines how much leaf self-occlusion occurs and decreases light interception, 285 

and the direct and diffuse extinction coefficients in the canopy radiation calculations. The default values for these parameters 

are based on, or derived from references given in Table 1. Each ensemble member represents a single PFT across the spectrum 

of fast-growing ‘pioneer’ PFTs and slow-growing ‘late successional’ PFTs to provide a reasonable spread across the trait 

uncertainty when assessing regrowth from disturbance. We characterized pioneer plants in our simulations as having low wood 

density (Baker et al., 2004) and high Vcmax based on the inverse relationship between these two plant traits, as well as a low 290 

crown area coefficient and low leaf clumping factor; i.e., monolayer planophile distribution (Lucas et al., 2002). These 

correlated relationships were applied in the ensemble-selected traits (Figure 2). The opposite relationship was applied for slow-

growing, ‘late successional’ PFTs (e.g., high wood density, low Vcmax, high crown area coefficient, and high leaf clumping 

factor).  

 295 

Table 1. The range (minimum to maximum) of four key model input parameters used in the 20-ensembles ELM-FATES 

simulations for both windthrow and clear-cut simulations, to account for uncertainty in the representation of plant 

traits, along with the default value used in the ELM-FATES model. Wood density value from Moorcroft et. al. (2001), 
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Vcmax based on  Oleson et al. (2013) and Walker et al. (2014), crown area:DBH derived from Farrior et al. (2016) and 

adjusted based on site specific sensitivity tests, and the leaf clumping index based on radiation transfer theory of 300 

Norman (1979).  

 

 Variations in ensemble parameters in ELM-FATES 

 default minimum maximum Range 

Wood density (g cm-3) 0.7 0.44 1.06 0.62 

Vcmax (mol m2 s-1) 50 42 55 13 

Crown area : DBH (unitless) 1.5 1.35 1.65 0.30 

Leaf clumping (0-1) 0.85 0.59 1.00 0.41 

     

 

 

 305 

Figure 2: Imposed trait variation used in the parameterization of ELM-FATES tropical evergreen plant functional 

types (PFTs) for the 20-ensemble simulations and the resulting average growth rate average over the 50-year simulation 

period. Each simulation consisted of a single PFTs varying by all four traits at once: wood density, Vcmax, the canopy 

area allometric coefficient, and leaf clumping index for leaf self-occlusion. Dark green points represent fast-growing 

evergreen pioneer PFTs, while light green points represent slow-growing late successional PFTs. 310 

 

In order to evaluate ELM-FATES performance during forest regrowth we compared NIR, the most sensitive band to regrowth 

(see results), with ELM-FATES outputs of aboveground biomass (AGB, Mg ha-1), total stem density of trees ≥10 cm DBH 

(stems ha-1), leaf area index (LAI, one-sided green leaf area per unit ground surface area, m2 m-2), and total live crown area 

(m2 m-2) since these variables directly influence the surface reflectance (Ganguly et al., 2012;Lu, 2005;Masek et al., 315 

2006;Powell et al., 2010;Ruiz et al., 2005). We suggest that including testing an array of forest variablesmodeled forest 
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variables (e.g., biomass structure, density coverage of vegetation, and proportion of the tree crown that has live foliage) 

provides a robust comparison for comparison to NIR provides a robust comparison due to multiple forests characteristics 

contributing to and affecting across several variables that affect NIR reflectance (Ollinger, 2011), and reduces model unknowns 

and biases that can rise when using only one model variable. The usage of different stand structure and canopy processes can 320 

be helpful when evaluating ELM-FATES during different phases of forest regrowth. In addition, we averaged modeled outputs 

of crown area, stem density, and LAI since each of these variables influence the surface reflectance of forests, and defining 

this average as the modeled ‘canopy-coverage’. Measurements of forest canopy cover have been used to analyze plant growth 

and survival, and it is an important ecological parameter related to many vegetation patterns (Ganey and Block, 1994;Jennings 

et al., 1999;Paletto and Tosi, 2009). Modeled diameter growth (cm y-1) once for trees with DBH were ≥10 cm at 1.3 m wasis 325 

also show to provide results information on the successional dynamics of forest stands typical of early or late successional 

characteristics within a demographic modelELM-FATES. 

 

3 Results 

 330 

3.1 L5 bands and disturbances 

 

Overall, aAll L5 bands showed an increase in surface reflectance associated withimmediate after windthrow, clearcut, and 

cut+burned sites except NIR which decreased (with higher decrease after burning) (Figure 3 a, b and c). This decrease in NIR 

was due to exposed woody material and dry leaves,  (typical after windthrow (Negrón-Juárez et al., 2010a;Negrón-Juárez et 335 

al., 2011) and clearcutting (Chapter 7 in Adams and Gillespie, 2006)) or the dark surface following burning (Pereira et al., 

1997). For windthrows  Ssuch effects last about one year after which vegetation regrowth covers the ground surface (Negrón-

Juárez et al., 2010a;Negrón-Juárez et al., 2011). The spectral characteristics of old-growth and disturbances are shown is Figure 

3 d-f with the error bands representing the standard deviation of all pixels from respective boxescells. About one year after the 

disturbance the bands that experienced increase in surface reflectance showed a decrease in surface reflectance (the opposite 340 

for NIR) (Figure 3d - f) due to the increases in vegetation cover. A similar behavior response is expected for the clearcutting 

that occurred in 1982 and therefore before the beginning of our available data (L5 imagery are available from 1984, Figure 

3e). On the other hand, in our control (old-growth) forests, we observed typically high NIR reflectance due to the cellular 

structure of leaves  (Chapter 7 in Adams and Gillespie, 2006), absorption of red radiation by chlorophyll (Tucker, 1979), and 

absorption of SWIR1 by the water content in leaves (Chapter 7 in Adams and Gillespie, 2006). The similarity of spectral 345 

signatures for the control forests previous to the disturbances suggests  comparable structure and species floristic composition. 
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Figure 3: L5 (LEDAPS SR Landsat 5) spectral characteristics for (a) windthrow (July 12, 1987), (b) clearcut (June 1 , 350 

1984), and (c) cut+burned (July 12, 1987) (in red) and control (old-growth) forests (in green) sites. Time series of each 

L5 spectral bands for (d) windthrow, (e) clearcut, and (f) burned cut+burn sites. The bars represent the standard 

deviation from all pixels from all 33 boxes comprising the respective disturbances showed in Fig. 1. Vertical dashed 

line in (d), (e) and (f) represents the year of the disturbance. 

 355 

 

3.2 Pathways of forest regrowth 

 

About six years after the disturbance, NIR reached a maximum value after which it decreased slowly with time showing a 

significant negative trend (Table 2). SWIR1 also showed a significant negative trend with time but only for the clearcut site 360 

(Table 2).  In general, GREEN, BLUE, RED, SWIR1, and SWIR2 bands returned to pre-disturbance values (control) about 

six years after the disturbance (Figure 3d, e, f and Table 2). Therefore, we used NIR (which remained higher than pre-

disturbance values throughout the time series, and is potentially sensitive to ecosystem properties of re-growing forest) to 

investigate the regrowth dynamics in comparison to our control forests. 
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 365 

We used the relationships presented in Figures 4, 5, and 6 to determine the time that NIR from the disturbance sites became 

similar to control NIR. The average control NIR was 281%. For the windthrow site the NIR become became similar to control 

levels after about 39 years (range 32 to 57 years). For the clearcut and cut+burned sites, this period was estimated to be 36 

years (range 31 to 42 years) and 56 years (range 42 to 93 years), respectively. From Figure 4-6 it is evident that the type of 

disturbance has a clear effect on the pathways of NIR recovery. L7 data, in general, are within the 95% CI of predictions.  370 

 

 

Table 2. Test of the significance for the slopes of the time series of six bands from L5 (LEDAPS SR Landsat 5) for the 

windthrow (period 1991-2011), clearcutting (period 1987-2011), and cut+burning (period 1990-2011) cases in Central 

Amazonia shown in Figures 3d-f. The critical values (t0.975,8 and  t0.975,12 ) for the t distribution were obtained from 375 

statistical tables. Boldt represents H1. 

 

 

 

 380 

 

 

 

 

 385 

 

During the first 12 years following the windthrow, the spline curve fitted to the NIR data decreased by ~0.13% y-1 after which 

the rate of decrease doubled (0.26% y-1, Figure 4). For clearcutting, NIR decreased faster, i.e. ~0.4% y-1. The decrease of NIR 

for the clearcutting site appears to be independent of the distance from the edge of the disturbance since the changes in NIR of 

all selected areas (A1, A2, A3 and AT) are similar (Figure 5). For the cut+burned site, the rate of change of NIR to values similar 390 

to the control forests was the slowest among all disturbances considered (~0.15% y-1) (Figure 6). The cut+burned site showed 

differences with respect to the border of the disturbance (areas A1, A2, and AT), which may be related to the spatial 

heterogeneity of burnings and forest responses. 

 

 windthrow 
t0.975,12=2.179 

 clearcut 
t0.975,8=2.306 

 cut+burned 
t0.975,8=2.306 

  t-stat   t-stat   t-stat 
BLUE -1.51 -1.10  -0.63 -0.25  -3.92 -1.15 
GREEN -0.03 -0.02  -0.72 -0.31  -3.03 -0.78 
RED -0.12 -0.68  -0.18 -0.08  -3.19 -0.93 
NIR -12.36 -4.07  -35.1 -10.17  -11.72 -2.83 
SWIR1 0.87 0.70  -4.83 -4.52  -2.25 -1.98 
SWIR2 0.95 1.45  0.17 0.22  -0.48 0.36 
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 395 

Figure 4: Changes in NIR for windthrows and prediction (based on extrapolated of fitted spline curve) of NIR to pre-

disturbance values (in blue). The plots show the SR data (dots), the fit (solid lines), and the 95% confidential interval 

(CI, dashed lines). Grey bar represents the control (old-growth forests) NIR of 281% and the black horizontal dashed 

line is 28%.  

 400 
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Figure 5: Changes in NIR after clearcuts for areas A1, A2, A3, and AT =A1+A2+A3 (showed in Figure 1c) and prediction 

of NIR to pre-disturbance values (in blue). The plots show the data (circles), the fit (solid line), and the 95% confidential 

interval (CI, dashed lines). Grey bar represents the control (old-growth forests) NIR of 281% and the black horizontal 

dashed line is 28%. 405 
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Figure 6: Changes in NIR for cut+burn site in areas A1, A2 and AT =A1+A2 showed in Figure 1) and prediction of NIR 

to pre-disturbance values (blue). The linear fit (solid liner) and the 95% CI (dashed line) are shown. Grey bar represents 

the control (old-growth forests) NIR of 281% and the black horizontal dashed line is 28%. 

 410 

 

3.3 FATES model and regrowth from forest disturbance 

 

To address our goal of improving the connection between remote sensing and model benchmarking and the fidelity of future 

predictions of forest regrowth processes, we examine the representation of such processes within ELM-FATES. The average 415 

of the ELM-FATES 20-member ensemble predicted a continuous, and almost linear, regrowth of biomass (Figure 7a) after 

both clearcut and windthrows. The Mmodeled recovering biomass returned to modeled old-growth forest values quicker for 
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windthrows (37 years, range 21 to 83 years) compared to clearcuts (42 years, range 27 to 80 years), with old-growth 

characterized as when biomass reached equilibrium with values similar to observed old-growth biomass. However, the annual 

rate of change of biomass regrowth over 50 years was faster in the clearcut simulation (2.5 Mg ha-1 yr-1) than the windthrow 420 

simulations (2.0 Mg ha-1 yr-1), which is likelywas due to the clearcut site recovering from initial biomass of near-zero initial 

biomass and proportionally greater contribution of fast-growing pioneer species.  

 

The model simulation of stem density, LAI and crown area are shown in Figures 7b-d, respectively. For stem density, ELM-

FATES (black line) predicted an average of up to eight years before any new stems reached ≥10 cm DBH (a stand developing 425 

period, Figure 7b) for the clearcut. The simulated stem density for old-growth forests (Figure 7b; green line) was ~200 stems 

ha-1 (≥10 cm at 1.3 m), ~ 408 trees lower than observations. The model ensembles with typical early successional traits 

predicted a forest with many fast-growing, small-diameter stems <10 cm, with maximum early successional stem densities 

reaching 1,560 and 1,414 stems ha-1 for clearcut and windthrows, respectively. Once the canopy closes and self-thinning 

dominates (average of 15 years after disturbance), there are fast declines in stem density as trees gain more biomass, and 430 

canopy closure forces some trees into the understory, where they die at faster rates due to shading. The model predicts faster 

diameter growth increments (1.3 cm yr-1) and canopy closure for a forest comprised of all ‘pioneer’ type PFTs and slower (0.5 

cm yr-1) diameter growth and more open canopies for ‘late successional’ forest type (Figure 8). Diameter growth is an emergent 

model feature of dynamical plant competition for light and stand structure demographics, and in coherence with observational 

studies of secondary forests growing through succession (Brown and Lugo, 1990;Winter and Lovelock, 1999;Chapin III et al., 435 

2003). The modeled forests return to old-growth stem density conditions (i.e., 200 stems ha-1) after 39 and 41 years from 

windthrows and clearcut, respectively (Table 3). Thought they two disturbance types were had very similar times to return to 

pre-disturbance conditions, they differ in the speed of recovery (Figure 7), as discussed below. The model predicts faster 

diameter growth increments (1.3 cm yr-1) and canopy closure for a forest comprised of all ‘pioneer’ type PFTs and slower (0.5 

cm yr-1) diameter growth and more open canopies for ‘late successional’ forest type (Figure 8). Diameter growth is an emergent 440 

model feature of dynamical plant competition for light and stand structure demographics, and in coherence with observational 

studies of secondary forests growing through succession (Brown and Lugo, 1990;Winter and Lovelock, 1999;Chapin III et al., 

2003). 

 

The LAI of the modeled old-growth forest (4.0 m-2 m-2), prior to disturbances, was close to the observed LAI (4.7 m-2 m-2) 445 

measured near our site (Chambers et al., 2004). Due to disturbance, the initial modeled LAI (Figure 7c) and total crown area 

(Figure 7d) decreased, as expected. During regrowth from disturbance both LAI and total crown area rapidly recovered LAI 

even and surpassed pre-disturbance values. This behavior resembles the initial spike in NIR due to fast growing PFTs. These 

two canopy coverage attributes reached maximum values after 3 to 6 years, depending on the disturbance and canopy attribute 

(Table 3). To evaluate model results against remote sensing observations, we compared the initial period after the disturbance 450 

of the spikes in NIR to the ‘canopy-coverage’ metric (combination of LAI, stem density, total crown area) over the same 
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modeled period. ELM-FATES predicted that after a windthrow the forest took 5.7 years to reach maximum values of canopy-

coverage, which was sooner than the clearcut simulation (7 years). While the modeled timespan for this initial period was 

similar to the NIR, there was disagreement between which disturbance recovery occurred fastest (windthrow in ELM-FATES 

vs. clearcut in NIR), similar to disagreement in recovery of AGB (Table 3). 455 
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Figure 7: Simulated regrowth of the Central Amazon forest after a clearcut (98% tree mortality; black line), and 

windthrow event (70% tree mortality; orange line) using 20 simulations of the demographic model ELM-FATES, 460 

compared to the modeled old-growth values prior to disturbance (dashed green line), and against field  data (solid green 

line) from close sites, except for crown area data that was taken from Lidar data in Acre, Brazil (Figueiredo et al., 

2016) . The shaded grey and orange areas represent the spread across the ensembles, showing minimum and maximum 

values of each forest attribute over its regrowth. (a) Regrowth of aboveground biomass (AGB; Mg C ha-1). (b) Regrowth 

of stem density (stems ha-1) of stems >10 cm DBH and years of returning to modeled old-growth values. (c) Regrowth 465 

of leaf area index (m-2 m-2), and (d) regrowth of total crown area (m-2 m-2). 

 

 

 

 470 
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Figure 8: Change in predicted diameter increment growth rate (cm yr-1) for one simulation, from the 20 ensembles, 

that represented a fast-growing ‘pioneer’ forest stand and a slow-growing ‘late successional’ (LS) forest stand from a 475 

clear-cut disturbance (black and grey) and a windthrow disturbance (orange). Variations in diameter increment are a 

result of differences in the following traits: wood density, Vcmax, crown area, and a leaf clumping index.  

 

 

 480 

Table 3. Summary of different times of regrowth (years) to old-growth forest status after two disturbance types; 

windthrows and clearcuts from ELM-FATES model results and remote sensing. As well as the time (years) it takes 

forest attributes to reach maximum values during regrowth, and the corresponding value at this maximum peak. AGB 
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(Mg C ha-1), stem density (stems ha-1), LAI, and crown area (m2 m-2) refer to simulation results, as compared against 

NIR remote sensing. The average of AGB and stem density is characterized as modeled ‘forest structure’. The average 485 

of crown area, stem density, and LAI is characterized as modeled ‘canopy-coverage’ in this study, and additionally 

compared against NIR.  

 

 

 490 

 

 

 

 Regrowth to old-growth (years)  

Disturbance type 
ELM-FATES  

AGB 
ELM-FATES 
stem density 

ELM-
FATES 

LAI 

Model average of 
forest structure  

 NIR 

Windthrow 37 39 53 38.0 39 
Clearcut 42 41 26 41.5 36.1 

 Time to reach maximum values of regrowth (years)  

Disturbance type 
ELM-FATES 

crown area 

ELM- 
FATES stem 

density 

ELM-
FATES 

LAI 

Model average of 
canopy-coverage  

NIR 

Windthrow 56 9 3 5.676 7 
Clearcut 57 10 6 7.0 6 

 Values at maximum peak of regrowth  

Disturbance type ELM-FATES 
crown area 

(m2 m-2) 

ELM-FATES 
stem density 
(stems ha-1) 

ELM-
FATES 

LAI 
 (m2 m-2) 

 
NIR 
(%) 

Windthrow 0.99 1414 4.9  35.5 
Clearcut 0.9899 1560 7.5  42.0 

 

 495 

ELM-FATES provided a prediction of the values in each forest variable when the stand reached its production limit and full 

canopy closure, at which point there was a shift to a declining trend and decreases in forest attributes that outpaced any gains 

(Table 3). The highest values, aAt maximum peak recovery and carrying capacity limit, the highest forest values occurred in 

the clearcut simulation (with a very small exception in crown area), matching the higher NIR from clearcut some a few years 

after the disturbance (Figure 4-6). Over the longer self-thinning period modeled LAI decreased and returned to modeled old-500 

growth values 26 years after clearcut, and gradually over 53 years for windthrows (Table 3). LAI was the only variable that 

had a noticeable faster recovery in the clearcut simulations. After both disturbances the total crown area permanently remained 

higher (0.9965 m2 m-2) and slightly higher than the crown area of the simulated old-growth forests (0.958 m2 m-2), suggesting 

that disturbances can generates a denser canopy, as discussed below.  

 505 
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4. Discussion 

 

Our results show that Landsat reflectance observations were sensitive to the initial changes of vegetation regrowth following 

windthrows, clearcut, and cut+burning, three common disturbances in the Amazon. Specifically, a decrease in NIR and an 

increase in SWIR1 were the predominant spectral changes immediately (within a few years) following disturbances. The 510 

increase in SWIR1 was different among the disturbances with the maximum increase observed in the cut+burned, followed by 

clearcut and then the windthrow site. The highest increase in SWIR1 in cut+burned sites may be related to the highest thermal 

emission of burned vegetation (Riebeek, 2014). Likewise, the relatively higher moisture content of woody material in the 

windthrow site decreases the reflection of SWIR2. On the other hand, in our control (old-growth) forests, we observed typically 

high NIR reflectance due to the cellular structure of leaves  (Chapter 7 in Adams and Gillespie, 2006), absorption of red 515 

radiation by chlorophyll (Tucker, 1979), and absorption of SWIR1 by the water content in leaves (Chapter 7 in Adams and 

Gillespie, 2006). 

 

While SWIR1 is frequently used to identify exposed woody biomass immediately after disturbances (Negrón-Juárez et al., 

2010b;Negrón-Juárez et al., 2008), we found that NIR was more sensitive to the successional pathways of regrowth for all the 520 

disturbances considered. NIR has also been associated with succession (Lu and Batistella, 2005) and regrowth (Roberts et al., 

1998) in natural and anthropogenic disturbed tropical forests (Laurance, 2002;Chazdon, 2014;Magnabosco Marra, 

2016;Laurance et al., 2011;Vieira et al., 2003). Previous studies have shown that changes in NIR are related to leaf structure 

and surface characteristics (Roberts et al., 1998;Xiao et al., 2014)with youngest leaves having higher NIR with respect to fully 

formed and older leaves (Roberts et al., 1998).Maximum values of NIR were observed about 6 years after clear cut, which is 525 

the time pioneers form a closed canopy in the Amazon (Mesquita et al., 1999;Mesquita et al., 2015;Mesquita et al., 2001) and. 

characterized by a relative  uniform distribution of tree diameter and heights (Vieira et al., 2003) NIR found that tThis 

maximum of NIRwas higher in the clearcut site dominated by species from the genus Cecropia and Pourouma (Mesquita et 

al., 2015;Massoca et al., 2012) than the site affected by cut+burnings dominated by Vismia species (Mesquita et al., 

2015;Laurance et al., 2018). The higher NIR values in Cecropia and Pourouma  is due to their monolayer planophile 530 

distribution of large leaves that produced high reflectance different fromcompared to Vismia that have a more rougher and 

denser canopiesy that traps more NIR (Lucas et al., 2002). The high values in NIR might be related to the low leaf wax 

(Chavana-Bryant et al., 2017)  from new trees  and/or scattering related to leaf and canopy water (Asner, 2008). NIR decreases 

with the dynamics of succession due to increase in the canopy roughness (Hallik et al., 2019). 

 535 

After the establishment of pioneers, the NIR decreases with time but with different rates depending on the type of disturbances. 

In windthrown areas, tree mortality and subsequent recruitment may continue for several decades, promoting changes in 

functional composition and canopy architecture (Magnabosco Marra et al., 2018). Cecropia and Pourouma trees grow 

relatively quickly and after closing the canopy they limit light penetration due to their large leaves creating a dark, cooler, and 
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wetter understory (Mesquita et al., 2001;Jakovac et al., 2014). As a result, light levels in the understory decline faster with 540 

time and thus allow the recruitment and establishment of shade tolerant species. The cohort of Cecropia and Pourouma species 

has relatively short lifespan and ~20 years after disturbance, secondary and old-growth forest species start to establish 

(Mesquita et al., 2015). Consequently, light is intercepted by several understory layers/strata formed by different guilds of 

trees, which drives decreases in NIR over time. With the self-thinning of Cecropia and Pourouma, the growing understory 

traps more light and consequently albedo decreases (Roberts et al., 2004). This pattern is consistent with the decline of NIR 545 

and observed changes in canopy architecture (Mesquita et al., 2015), photosynthesis, and LAI (Saldarriaga and Luxmoore, 

1991). In contrast, the architecture of Vismia species that dominate cut+burned areas allows higher light levels in the understory 

and subsequent recruitment of Vismia or other genera with similar light requirements. As a consequence, species turnover and 

structural changes are relatively slower than in clearcutting areas, (as  found by Jakovac et al. (2014) found in a study conducted 

a few kilometers from the BDFFP) and windthrows, consistent with changes in NIR. In the course of succession, Vismia tends 550 

to be replaced by Bellucia, which is a species with similar leaf and canopy structure as Vismia (Mesquita et al., 2015). This 

pattern favors the penetration of light through the canopy (Longworth et al., 2014) for several decades before a more shaded 

understory allows the germination and establishment of old-growth species (Williamson et al., 2014).  

 

For the windthrow we estimate that the NIR should become similar to pre-disturbance conditions in about 39 years. This value 555 

is in agreementagrees with the 40 years of biomass regrowth using found using ground-based data estimates of biomass 

regrowth from windthrows in the Central Amazon (40 years) (Magnabosco Marra et al., 2018). This result corroborates 

previous studies that NIR operates in the best spectral region to distinguish vegetation biomass (Tucker, 1979, 1980) and 

photosynthesis (Badgley et al., 2017). For clearcutting and cut+burning, the regrowth time was about 36 and 56 years 

respectively, but no ground-based estimates were available for comparison. Still, NIR showed that the pathways of regrowth 560 

from clearcut and cut+burning are divergent with time (Figure 5 and Figure 6), which is consistent with observational studies 

(Mesquita et al., 2015).  

 

In general, we found that NIR may be used as a proxy in modeling studies aimed at addressing forest regrowth after 

disturbances. Though NIR is useful to distinguish successional stages up to decades after the disturbance, it may not represent 565 

the whole successional processes. As soon as the forest canopy becomes structurally similar to that of the mature forest, NIR 

will no longer be sensitive to changes in vegetation attributes (Lucas et al., 2002). Thought Though L5 NIR may be 

complemented with current Landsat measurements - L5 NIR has comparable performance to the Landsat 8 NIR Operational 

Land Imager algorithm (OLI) (Vermote et al., 2016)-, it is important to emphasize that our estimates of recovered reflectance 

and biomass in disturbed areas do not capture full recovery of diversity in floristic attributes and species composition 570 

succession in floristic and functional compositionthat can take centuries (Rozendaal et al., 2019). A full recovery of diversity 

in floristic attributes and species composition will take much longer. Furthermore, tThe predominance of Cecropia, after 

clearcut, and Vismia, after cut+burns, have also been found in the Western (Gorchov et al., 1993;Saldarriaga et al., 1986) and 
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the Southern (Rocha et al., 2016) Amazon suggesting that our findings are applicable to other regions. However, an Amazon-

wide study is beyond the scope of our work which is to explore the sensitivity of Landsat to differentiate disturbance types. 575 

 

Our analysis demonstrates that this version of ELM-FATES has the capacity to reproduce initial response to disturbance and 

regrowth patterns after the clearcut and windthrow that occurred over similar time ranges compared to NIR. The strongest 

agreement, which can be used for future benchmarking,  occurred because when ELM-FATES predicted higher peaks of initial 

post disturbance stem density and LAI in clearcuts than in windthrows, which can be used for future benchmarking, consistent 580 

with the higher peak of NIR from clearcuts (Figure 5 vs. Figure 4). This effect may be due to ELM-FATES having more 

homogeneous canopies after clearcuts as well as more open disturbed area for fast growing plants, which is also an observed 

trend. In addition, the average regrowth times to pre-disturbance values were very similclosear in ELM-FATES and NIR 

(Table 3), showing that pathways of forest regrowth in ELM-FATES are comparable to observed patterns in tropical forests. 

ELM-FATES predicted a continuous, and almost linear, regrowth of biomass for the first 50 years of simulation after both 585 

clearcut and windthrows, (Figure 7a) consistent with NIR results, and observational studies (Mesquita et al., 2015;Saldarriaga 

et al., 1988;Jakovac et al., 2014;Magnabosco Marra et al., 2018). In addition the changes in biomass rates predicted by ELM-

FATES were similar to biomass observations recorded after clearcut (2.3 vs. 2.6 Mg ha-1 yr-1) (Mazzei et al., 2010), as well as 

a faster rate of AGB accumulation after clearcut compared to windthrow, similar to a study reporting higher regrowth rates in 

more highly-disturbed sites (Magnabosco Marra et al., 2018).  590 

 

Landsat showed a faster recovery of NIR to pre-disturbance conditions in clearcuts compared to windthrows. Faster growth is 

characteristic of anthropogenically driven secondary forests that reflect rapid colonization and consequent monodominance of 

highly adapted species and genera to changed environmental conditions; e.g., high growth rates, low self-competition, high 

leaf area index, low herbivory rates, etc. (Poorter et al., 2016;Mesquita et al., 2015;Rozendaal and Chazdon, 2015). 595 

Alternatively, ELM-FATES predicted a faster recovery of structural AGB and canopy-coverage to pre-disturbance conditions 

for windthrows (70% tree mortality) compared to clearcuts (98% tree mortality). A major contributing factor to this pattern 

resulted from larger modeled diameter increments after windthrows (0.92 cm yr-1) compared to clearcuts (0.82 cm yr-1) in the 

first 20 years after the disturbance, setting the trajectory for faster regrowth to pre-disturbance after windthrows. Only LAI had 

a faster recovery to pre-disturbance values after clearcuts, which is expected due to the newly developed forest having 600 

simplified forest structure and the canopy being more homogeneous after a clearcut (Rosenvald and Lohmus, 2008). ELM-

FATES predicted that the timing of peak canopy-coverage was marginally sooner after windthrows compared to clearcuts, 

opposite to the NIR pattern. This discrepancy may be related to the higher disturbancemore biomass loss and open canopy 

coverage, followed by a lack of rapid colonization in the modeled clearcut. Due to the higher stand disturbance that naturally 

occurs from clearcuts, and the diverse complexities in tropical forest composition, we emphasize that the dynamics of different 605 

competing PFTs in ELM-FATES requires further investigation. Emerging modeling studies that include plant trait trade-offs, 

for example, in leaf and stem economic spectrum or fast vs. slow growth strategies may help to better capture the drivers of 
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forest productivity and demography, enabling improved modeled responses to global change scenarios (Fauset et al., 

2019;Sakschewski et al., 2015). Here we test the basic representation of biomass demographics, prior to the more challenging 

aspects of representing interacting functional diversity in recovering systems (Fisher et al., 2015;Powell et al., 2018).  610 

 

ELM-FATES predicts the total stem density for a closed canopy forest to be very low compared to observations (200 simulated 

vs 600 stems ha-1), but modeled total AGB was close to that reported for the same region (110 simulated vs. ~150 MgC ha-1 

(Chambers et al., 2013)). This discrepancies discrepancy is due to ELM-FATES predicting a disproportionately high number 

of large trees (Figure 9; with 8% of stems >60 cm and 4.5% of stems >100 cm), resulting in a crowded canopy, which out-615 

compete smaller understory trees. Higuchi et al. (2012) reports 93% of stems to be below 40 cm (and ≥ 10 cm) in DBH in the 

study sites, while ELM-FATES only has 88% below 40 cm (Figure 9). Low stem density could be attributed to multiple model 

assumptions, such as high density-dependent mortality and self-thinning due to the marginal carbon economics of understory 

trees, low branch-fall turnover, a need for greater limitation of maximum crown area than currently modeled, and increases in 

mortality rates with tree size (Johnson et al., 2018). Our findings here will guide future ELM-FATES and ecosystem modeling 620 

development efforts towards improving the representation of forests comprised of dense canopies, and how they shift during 

regrowth.  

 

Land surface models do not typically simulate spectral leaf reflectance, but there is potential to include such output within 

radiative transfer schemes as is currently done in CLM. That addition would greatly assist our ability to compare with Earth 625 

observations datasets. In lieu of this development, we show that with successional aging modeled forest structure returns to 

pre-disturbed values (through canopy closure) with similar recovery time as NIR, occurring with the process of canopy closure, 

all which can be compared against remote sensing vegetation indices metrics(see Supplementary Figure 1) and metrics. Which 

vegetation index (eg. Normalized Difference Vegetation Index (Rouse et al., 1973), Enhanced Vegetation Index (Huete et al., 

2002), etc) or metrics properly represent the successional pathways following disturbances remains an important area of study.. 630 
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Figure 9: Total stem density (stems ha-1) separated into six diameter (cm) size classes from Central Amazon field data 

located at the near-by ZF2 site (green bars) averaged from 1996-2011, and predicted by ELM-FATES (gray bars). The 635 

percentages represent the proportion of stems in each size class relative to the total stem density.  

 

 

5. Conclusions  

 640 

We tested the sensitivity of Landsat surface reflectance to windthrow, clearcut, and cut+burned forest in Central Amazon. NIR 

was more responsive to the successional pathways of forest regrowth years after the disturbance. NIR showed that pathways 

of forest regrowth were different among the disturbances, with cut+burning being the most different in terms of spatial 

heterogeneity and regrowth time to old-growth status, in agreement with observational studies. Our results indicate that after 

disturbances the NIR will reach old-growth forests values in about 39 years following windthrows (in agreement with observed 645 

biomass regrowth), 36 years for clearcuttingclearcuts, and 56 years for cut+burnburning. These results were then compared 

with simulations of regrowth after windthrows and clearcut from ELM-FATES. The simulated forest structure and the remote 

sensing NIR from the windthrow and clearcut have similar return time to old-growth forest conditions. Future studies applying 

ELM-FATES should focus on improving stem density predictions, which were underestimated, and on enhancing the capacity 

to compare with remote sensing observations through representation of canopy spectral reflectance characteristics. 650 
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