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Abstract. Forest disturbance and regrowth are key processes in forest dynamics but detailed information of these processes is 15 

difficult to obtain in remote forests such as the Amazon. We used chronosequences of Landsat satellite imagery (Landsat 5 

Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus) to determine the sensitivity of surface reflectance from all 

spectral bands to windthrow, clearcut, and clearcut and burned (cut+burn) and their successional pathways of forest regrowth 

in the Central Amazon. We also assessed whether the forest demography model Functionally Assembled Terrestrial Ecosystem 

Simulator (FATES) implemented in the Energy Exascale Earth System Model (E3SM) Land Model (ELM), ELM-FATES, 20 

accurately represents the changes for windthrow and clearcut. The results show that all spectral bands from Landsat satellite 

were sensitive to the disturbances but after 3 to 6 years only the Near Infrared (NIR) band had significant changes associated 

with the successional pathways of forest regrowth for all the disturbances considered. In general, the NIR decreased 

immediately after disturbance, increased to maximum values with the establishment of pioneers and early-successional tree 

species, and then decreased slowly and almost linearly to pre-disturbance conditions with the dynamics of forest succession. 25 

Statistical methods predict that NIR will return to pre-disturbance values in about 39 years, 36, and 56 years for windthrow, 

clearcut, and cut+burn disturbances, respectively. The NIR captured the observed, and different, successional pathways of 

forest regrowth after clearcut and cut+burn. Consistent with inferences from the NIR observations, ELM-FATES predicted 

higher peaks of biomass and stem density after clearcuts than after windthrows. ELM-FATES also predicted recovery of forest 

structure and canopy-coverage back to pre-disturbance conditions in 38 years after windthrows and 41 years after clearcut. The 30 

similarity of ELM-FATES predictions of regrowth patterns after windthrow and clearcut to those of the NIR results suggests 

NIR can be used to benchmark forest regrowth in ecosystem models. Our results show the potential of Landsat imagery data 

for mapping forest regrowth from different types of disturbances, benchmarking, and improvement of forest regrowth models. 
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1 Introduction 

 

Old-growth tropical forests are declining in extent at accelerated rates due to deforestation (Keenan et al., 2015), and they 

currently occupy an area about 50% of their original coverage (FAO, 2010). This decline affects the carbon, water, and nutrient 

cycles of the ecosystems and accelerates the loss of ecosystem goods and services (Foley et al., 2007;Nobre et al., 2016). 40 

Furthermore, natural and anthropogenic disturbances may act synergistically to exacerbate forest degradation (Silverio et al., 

2018;Schwartz et al., 2017). Under natural conditions, disturbed forests recover to their pre-disturbance conditions through 

complex interactions that vary across spatial and temporal scales (Chazdon, 2014). In general, it is known that forest pathways 

of regrowth (i.e., pattern of regrowth) initiate with fast-growing and shade-intolerant species (pioneers) that establish from 

seeds and dominate a few years after disturbance, followed by recruitment and establishment of shade-tolerant species, and 45 

finally a closed-canopy old-growth forest (Chazdon, 2014; Denslow, 1980; Mesquita et al., 2001; Swaine and Whitmore, 

1988). Understanding of the dynamics of forest regrowth following natural and anthropogenic disturbances in the Amazon, 

however, has so far been limited by lack of long-term observational data showing different stages of forest regrowth.  

 

Remote sensing data can be used to assess forest regrowth via changes in spectral characteristics (Frolking et al., 2009; Roberts 50 

et al., 2004; Schroeder et al., 201; DeVries et al., 2015; Lucas et al., 2002; McDowell et al., 2015). Landsat satellite imagery 

is appropriate for examining land surface changes due to its long-term record availability and spatial resolution of 30 m 

(Loveland and Dwyer, 2012; NASA, 2016; Wulder et al., 2012; Alcantara et al., 2011; Woodcock et al., 2008; Cohen and 

Goward, 2004; Hansen et al., 2013). Landsat imagery has been used to detect forest disturbance and pathways of regrowth in 

temperate and boreal forests in the United States and Canada (Kennedy et al., 2012; Pickell et al., 2016; Kennedy et al., 2007; 55 

Kennedy et al., 2010; Schroeder et al., 2011; Dolan et al., 2009; Dolan et al., 2017) and for detection of forest disturbance and 

regrowth of biomass in the Amazon (Vieira et al., 2003; DeVries et al., 2015; Lucas et al., 2002; Powell et al., 2010; Lu and 

Batistella, 2005; Steininger, 2000; Shimabukuro et al., 2019). These studies suggest that Landsat may be sensitive to different 

types of disturbances and their subsequent pathways of forest regrowth in the Amazon, but this has not yet been assessed. 

 60 

The ability to forecast future trajectories of forests depends upon the fidelity with which disturbance and regrowth processes 

are represented within terrestrial biosphere models. These models capture processes operating between the leaf and landscape 

scales and can represent regrowth changes over large regions (Fisk, 2015), long time periods (Holm et al., 2017;Putz et al., 

2014), a range of disturbance intensities (Powell et al., 2013), and interactions between multiple disturbance types and 

disturbance histories (Hurtt et al., 2006). But, how well these models simulate and capture the diverse array of successional 65 
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pathways of forest regrowth after anthropogenic or natural disturbances needs to be more thoroughly evaluated, given observed 

increases in disturbance rates (Lewis et al., 2015). The few modeling studies analysing tropical disturbances have focused on 

the effects of fragmented edges or the regrowth of specific tree species (Dantas de Paula et al., 2015; Kammesheidt et al., 

2002).  

 70 

Cohort-based dynamic Vegetation Demographic Models (VDMs) are particularly suitable tools for expanding upon these 

studies (Fisher et al., 2018). In contrast to traditional land surface models, VDMs include ecological demographic processes, 

such as discretized vegetation height, with different plant types competing for light within the same vertical profile, and 

heterogeneity in light availability along disturbance and recovery trajectories, all of which facilitate direct simulation of 

regrowth dynamics during succession. This structured demography in VDMs allows for simulation of canopy gap formation, 75 

competitive exclusion, and co-existence of vegetation, thus producing variability in forest stand age and composition (Fisher 

et al., 2010; Moorcroft et al., 2001; Longo et al., 2019). VDMs are designed for vegetation to dynamically respond to variation 

in traits (Fyllas et al., 2014) leading to differences in plant mortality, growth, and recruitment rates (Shugart and West, 1980). 

These attributes influence the ecosystem fluxes of carbon, energy, and water (Bonan, 2008). Despite their potential for 

simulating regrowth processes, there has been limited VDM testing of regrowth following tropical forest disturbances. 80 

Importantly, projections of future climate using earth system models (ESMs) are strongly influenced by the terrestrial carbon 

cycle in the tropics (Arora et al., 2013; Friedlingstein et al., 2014), which is strongly regulated by disturbance and regrowth 

(Chazdon et al., 2016; Trumbore et al., 2015; Magnabosco Marra et al., 2018). 

 

Observational studies have shown that Amazon forests follow a range of successional regrowth pathways after clearcutting 85 

and burning (Mesquita et al., 2001;Mesquita et al., 2015). Thus, the type of disturbance and the pre-disturbance ecosystem 

state are important determinants of the successional pathways of forest regrowth. Nonetheless, this information is difficult to 

obtain in remote forests of the Amazon. In this study, we addressed this issue in the context of windthrow, clearcut, and clearcut 

and burn (cut+burn) disturbances to analyze (i) the sensitivity of Landsat to detect and distinguish these relevant disturbances 

and their pathways of forest regrowth and (ii) the timespan of forest regrowth. This understanding of forest regrowth was used 90 

to (iii) test the modeled forest regrowth of the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) model 

(Fisher et al., 2015) implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM) (Riley et al., 2018; 

Zhu et al. 2019), ELM-FATES. This study provides insights on the use of remote sensing to identify drivers of forest 

disturbance in the Amazon and a better understanding of the pathways of forest regrowth provides insights into the resilience 

of these forests to repeated disturbances and can help improve land models. 95 

 

2 Study Area and Methods 

 

2.1 Study area and sites 
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 100 

Forests in the Central Amazon affected by windthrow, clearcut, and cut+burn were addressed in this study. Windthrows 

(Mitchell, 2013) in the Amazon are caused by strong descending winds that uproot or break trees (Garstang et al., 1998; 

Negrón-Juárez et al., 2018; Nelson et al., 1994). In clearcut areas, forests are cut and cleared and in cut+burn areas forest are 

cleared and burned (Mesquita et al., 2001; Mesquita et al., 2015; Lovejoy and Bierregaard, 1990). The windthrow, clearcut, 

and cut+burn sites used in this study were selected based on the following conditions: (a) prior to disturbance they were upland 105 

(no flooding) old-growth forest and located in the same region, with similar climatic, edaphic, and floristic differences; (b) 

long-term records of satellite imagery and corresponding field data before and after disturbance are available; and (c) no 

subsequent disturbance has occurred.  

 

 110 

 

 

Figure 1: Location of disturbed forests. (a) The disturbed areas were located in Central Amazonia and included (b) a 

windthrow site close to the village of Tumbira, (c) a clearcut site, in the Porto Alegre farm, and (d) a cut+burn site in 

the Dimona farm. These three areas are encompassed in the Landsat scene Path 231 Row 062 as shown in the inset in 115 
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(a). For the spectral characteristics before and after disturbances we used cells of 3×3 pixels (blue squares) over 

disturbed and undisturbed areas. For the pathways of forest regrowth after clearcutting and burning sites we analyzed 

areas with different distances from the disturbance edge (A1, A2 and A3 in yellow). The background image in (a) is from 

Google Earth Pro. The background images in (b), (c) and (d) are from Landsat 5 on July 12, 1987, June 1, 1984 and 

July 12, 1987 and were composed as RGB color using bands 5, band 4 and band 3, respectively. 120 

 

The three windthrow, clearcut, and cut+burn sites analysed in this study are located near the city of Manaus, Central Amazon 

(Figure 1a). The windthrow (centered  at 3°S, 60.75°W, Figure 1b) was located near the village of Tumbira, about 80 km 

southwest of Manaus, occurred in 1987 and covered an area of ~75 ha. At this site, data on forest regrowth including forest 

structure and species composition for trees ≥10 cm DBH (diameter at breast height, 1.3 m) were collected since 2011 covering 125 

disturbed and undisturbed areas and found that  genus Cecropia is one of the dominant species in the highest disturbed areas 

(Magnabosco Marra et al., 2018). The clearcut and cut+burn sites were experimentally created within the Biological Dynamics 

of Forest Fragments Project (BDFFP), which encompass an area of ~1000 km2 (centered at 2.5° S, 60°W) located 80 km north 

of the city of Manaus, Brazil. The BDFFP was established and managed in early 1980’s by Brazil’s National Institute for 

Research in Amazonia (INPA) and the Smithsonian Institution, and is the longest running experiment of forest fragmentation 130 

in the tropics (Bierregaard et al., 1992; Lovejoy et al., 1986; Laurance et al., 2011; Tollefson, 2013; Laurance et al., 2018). 

Further details of the BDFFP are in Bierregaard et al. (2001). The selected clearcut site is located in the Porto Alegre farm 

(centered at 2.35°S, 59.94°W, Figure 1c). This site was clearcut in 1982 without subsequent use, and was dominated by the 

pioneer tree genus Cecropia 6-10 years after abandonment (Mesquita et al., 1999; Mesquita et al., 2001). The cut+burn site is 

located in the Dimona farm (centered at 2.33°S, 60.11°W, Figure 1d), which was clearcut and burned in September 1984 and 135 

maintained as pasture for 2-3 years and then abandoned. By 1993 this site was 6 years old and dominated by the pioneer tree 

genus Vismia (Mesquita et al., 1999; Mesquita et al., 2001). 

 

In the Manaus region the mean annual temperature is 27°C (with higher temperatures from August to November, and peak in 

October) and the mean annual rainfall is 2,365 mm with the dry season (rainfall < 100 mm month-1 (Sombroek, 2001)) from 140 

July to September (Negrón-Juárez et al., 2017). The topography is relatively flat with landforms ranging from 50-105 m above 

sea level (Laurance et al., 2011; Renno et al., 2008; Laurance et al., 2007), and the mean canopy height is ~ 30 m, with emergent 

trees reaching 55 m (Laurance et al., 2011; Lima et al., 2007; Da Silva, 2007). The soil in this region are ferrosols (Quesada 

et al., 2011; Bierregaard et al., 2001; Ferraz et al., 1998) following the Food and Agriculture Organization (FAO) classification, 

and  with similar floristic composition (Bierregaard et al., 2001; Carneiro et al., 2005; Vieira et al., 2004; Higuchi et al., 2004). 145 

In the BDFFP, and for old-growth forest trees with DBH ≥ 10 cm,  there are 261±18 species per hectare, the stem density is 

608 ± 52 stems ha−1 and the basal area is 28 m2 ha-1  (Laurance et al., 2010) that are representative of the region (da Silva et 

al., 2002; Vieira et al., 2004;Carneiro et al., 2005; Magnabosco Marra, 2016; Magnabosco Marra et al., 2014; Magnabosco 
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Marra et al., 2018).  In this region 93% of stems are between 10 and 40 cm in DBH (Higuchi et al., 2012) and the annual tree 

mortality is 8.7 trees ha−1 for trees ≥ 10 cm in DBH (Higuchi et al., 1997). 150 

 

2.2 Landsat satellite data and procedures 

 

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al., 2013; Masek et al., 2006; Masek 

et al., 2013; Masek et al., 2008) surface reflectance (SR) from Landsat 5 Thematic Mapper (TM) was used in this study to 155 

characterize the type of disturbance and their subsequent pathways of forest regrowth over our study areas. LEDAPS was 

developed to ensure that spectral changes in Landsat are associated with regrowth dynamics (Masek et al., 2012; Schmidt et 

al., 2013) and to facilitate robust studies of land surface changes at different temporal and spatial scales in tropical forests (Kim 

et al., 2014; Valencia et al., 2016; Alonzo et al., 2016). LEDAPS SR Landsat 5 TM (L5 hereinafter) is generated by the United 

States Geological Survey (USGS) using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) that corrects 160 

for the influences of, among others, water vapor, ozone, aerosol optical thickness, and digital elevation on spectral bands 

(USGS, 2017; Vermote et al., 1997). L5 bands are derived using per-pixel solar illumination angles and generated at 30-meter 

spatial resolution on a Universal Transverse Mercator (UTM) mapping grid (USGS, 2017). LEDAPS in Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) sensor (L7, hereinafter) were also used to corroborate our predictions (described below). 

Though L5 and L7 use the same wavelength bands they are different sensors and differences in surface reflectance may exist, 165 

especially in tropical forests due to high atmospheric effects (Claverie et al., 2015). Landsat 8 was not used since comparison 

between Landsat 8 and both L5 and L7 is not straightforward due to differences in the spectral bandwidth of these sensors. We 

used LEDAPS since a long time series of data is available with high spectral performance (Claverie et al., 2015) and it is 

suitable for ecological studies in the Amazon (van Doninck and Tuomisto, 2018; Valencia et al., 2016). L5 and L7 are available 

in Google Earth Engine (Gorelick et al., 2017), which we used to retrieve and analyze these data. 170 

 

The L5 and L7 spectral bands used in this study were BLUE (0.45-0.52μm), GREEN (0.52-0.62 μm), RED (0.63-0.69 μm), 

Near Infrared (NIR) (0.76-0.90 μm), Shortwave Infrared 1 (SWIR1) (1.55-1.75 μm), and Shortwave Infrared 2 (SWIR2) (2.08-

2.35 μm). L5 and L7 measurements provide the fraction of energy reflected by the surface and ranges from 0 (0%) to 10000 

(100%). Only scenes from June, July, and August were used since these dry season months present less cloud cover over our 175 

study area (Negrón-Juárez et al., 2017). This procedure also reduces effects associated with illumination or phenology since 

images correspond to the same period each year. Only images with cloud free, cloud shadow free, and haze free over our 

disturbed areas were used to eliminate errors associated with these elements. For this procedure, visual inspection of visible 

bands and quality information from L5 and L7 were used. No further corrections were applied due to the robustness of L5 

imagery over the Amazon (Valencia et al., 2016). All the disturbances are in the Landsat scene path 231/row 062. The dates 180 

of L5 images used were (Landsat 5 operational imaging ended in 2011)  6/1/1984 (except for the windthrow), 7/6/1985, 
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7/12/1987, 8/2/1989, 7/20/1990, 8/8/1991, 7/31/1994, 6/21/1997, 7/26/1998, 7/13/1999, 7/24/2003, 8/4/2007, 8/6/2008, 

7/27/2010, and 8/31/2011. The dates of L7 images used were 8/7/2011, 6/22/2012, 6/12/2014, 8/2/2015 and 8/7/2017. 

 

The spectral characteristics of old-growth forests and their changes after disturbances were investigated using 19 cells of 3×3 185 

pixels (Figure 1 b,c,d). The average of each cell was used in our analysis. Spectral characteristics for old-growth forests for 

each site were determined from cells located in the same position of the disturbance but previous to disturbance, and/or from 

adjacent areas. Five cells of old-growth forests were located from 1 to 2 km away from the windthrow site. Though closer 

distances may also represent old-growth forests, we were conservative since Landsat is not sensitive to clusters of downed 

trees comprising fewer than 8 trees (Negrón-Juárez et al., 2011). For the clearcut and cut+burn sites the spectral characteristics 190 

of their respective old-growth forests (control) were studied from 3 cells per site located 500 to 800 meters away from the edge 

of the disturbance to minimize edge effects that are relevant in the first 100 m (Lovejoy et al., 1986; Laurance et al., 2007; 

Mesquita et al., 1999). The spectral characteristics for the windthrow were acquired from two cells containing the highest level 

of SWIR1 in 1987 that is associated with the maximum disturbance (Negrón-Juárez et al., 2011; Magnabosco Marra et al., 

2018; Nelson et al., 1994). For the clearcut site three cells were located 400-500 m from the edge and for the cut+burn three 195 

other cells distant from 100-300 m with respect to the edge. For the clearcut site we also selected four areas: A1, A2, A3, and 

AT (AT = A1+A2+A3), shown in Figure 1c and for the cut+burn site, three areas: A1, A2, and AT (AT =A1+A2), shown in Figure 

1d  

 

L5 data for the windthrow, clearcut, and cut+burn sites encompass a period of 28 years with 13 years of missing data due to 200 

cloud-cover or lack of image. In order to assess the forest regrowth to spectral levels similar to old-growth forests (control), 

we applied a gap filling method (Gerber, 2018) of time series to obtain estimates for missing years using the R package “zoo” 

(Zeileis et al., 2018). The gap-filled datasets were analyzed using the smoothing spline technique (R, 2017). To determine 

whether L5 bands were sensitive to regrowth, we analyzed changes in the slope (β) of the bands across our chronosequence. 

A t-test on the slope coefficient was used to test the null hypothesis that β is zero (H0:β=0) against the alternative hypothesis 205 

(H1:β≠0) at a 5% significance level (α=0.05). If the computed test statistic (t-stat) was inside the critical values then the H0 

was not rejected. The critical values (±t1-α/2, n-2, n is the number of data points) were obtained from statistical tables (Neter et 

al., 1988). Forests in the Manaus region affected by windthrows are dominated by tree species from genera Cecropia and 

Pourouma in about 3-5 years (Magnabosco Marra et al., 2018;Nelson and Amaral, 1994) and the clearcut and cut+burn sites 

were dominated by Cecropia and Vismia about 6 years after the disturbances (Mesquita et al., 1999;Mesquita et al., 2001). 210 

The slopes of the time series were determined after these periods, i.e. 1991, 1987, and 1990 for windthrow, clearcut, and 

cut+burn sites, respectively. 

 

A comparison of successional pathways of forest regrowth among studied disturbances was conducted that was feasible due 

to the similar conditions of climate, soils, and structure and composition of the old-growth forests. Time series of L5 bands 215 
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were analyzed using the statistical nonparametric function (univariate fit), with the smoothing spline and the Gaussian 

regression ANOVA (analysis of variance) model. Calculations were conducted on the R 3.5.2 software platform (R, 2017) 

using the package gss (general smoothing splines) (Gu, 2018). We calculated the smooth spline (using the cubic fit algorithm) 

of observed data and the associated standard errors, from which we calculated Bayesian 95% confidence intervals.  Predictions 

of the time after disturbance needed to reach old-growth forests values are based on these data using the function "ssanova" 220 

(Fitting Smoothing Spline ANOVA Models) of the R package "gss" (General Smoothing Splines), Version: 2.1-9. The 

predictions were compared with published field observations (Section 2.1) where data were available and L7 images were used 

to assess the reliability of our predictions.  

 

2.3 Forest regrowth simulation in ELM-FATES 225 

 

Time series of L5 bands sensitive to disturbances and the pathways of forest regrowth were compared with modeling results 

from FATES (Fisher et al., 2015; Fisher et al., 2010; Holm et al. 2020). The underlying model structure and concepts in FATES 

are based on the Ecosystem Demography (ED) concept (Moorcroft et al., 2001), and is described in detail at 

https://github.com/NGEET/fates. A major development is the modularization of the model structure in FATES so that 230 

boundary conditions and vegetation can be coupled with ESM land models. FATES is integrated into the E3SM Land Model 

(ELM) (Riley et al., 2018;Zhu et al., 2019) and within the Community Land Model (CLM) (Fisher et al., 2019; Lawrence et 

al. 2020) coupled to the Community Earth System Model (Hurrell et al., 2013). In this study we used ELM-FATES. ELM-

FATES simulates vegetation that varies in successional age and size, plant competition, and dynamic rates of plant mortality, 

growth, and recruitment, all on landscapes partitioned by areas of disturbance. The main updates and modifications in ELM-235 

FATES compared with ED include changes to carbon allocation and allometry and introduction of the Perfect Plasticity 

Approximation (PPA) (Purves et al., 2008; Fisher et al., 2010) used for the accounting of crown spatial arrangements 

throughout the canopy and organizing cohorts into discrete canopy layers. Photosynthesis and gas exchange physiology in 

ELM-FATES follows the physics within the Community Land Model v4.5, CLM,  (Bonan et al., 2011), and unlike ED, uses 

the original Arrhenius equation from Farquhar et al. (1980). ELM-FATES tropical forest simulations conducted here were 240 

based on parameter and demography sensitivity analysis at a site 40 km from the BDFFP (Holm et al., 2020), at the ZF2 

research station (Magnabosco Marra et al., 2014).  Holm et al. (2017) found that with the improved parameterization, ELM-

FATES closely matched observed values of basal area, leaf area index (LAI), and mortality rates but underestimated stem 

density for a Central Amazon old-growth forest near the BDFFP.  

 245 

Model simulations were driven by climate-forcing data derived from measurements collected between the years 2000 to 2008 

at the K34 flux tower located at (2.6°S, 60.2°W) (de Araujo et al., 2002) about 40 km from the BDFPP, at the ZF2 research 

station. ELM-FATES (using the git commit “4a5d626” and the version corresponding to tag ‘sci.1.0.0_api.1.0.0’) was run and 

spun-up for 400 years until a stable biomass equilibrium was reached within the modeled forest. We then simulated a one-time 
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logging treatment of a near-complete mortality of all trees (98% “clearcut”) with a remaining of 2% consisting of only small 250 

trees > 5cm DBH to aid in recruitment (Mesquita et al., 2015). Second, we simulated a one-time windthrow disturbance that 

killed 70% of trees (“windthrow”) as was reported in a recent observational study on windthrows in the same region 

(Magnabosco Marra et al., 2018). All dead trees were ‘removed’ and therefore did not enter modeled soil pools. The fire 

module in ELM-FATES is currently under final development and testing and therefore burned simulations are not included in 

this study. The old-growth forest simulated by ELM-FATES, used as a pre-disturbance metric, was based on previously 255 

validated tropical parameterization and sensitivity testing in the same region (Holm et al., 2020); and see supplemental material 

from Fisher et al. (2015) for description of plant functional type specific carbon allocation and allometry schemes and updates 

from the ED model framework. Simulations of disturbance and subsequent vegetation regrowth were initiated from this old-

growth forest state. The model design used here only allows for simulating intact forests with natural disturbances (e.g., gap 

dynamics or windthrows) or harvested forests, but not both at the same time or in adjacent patches. Accounting for distance to 260 

intact forests was excluded due to the current limited understanding of seed dispersal mechanisms (i.e., spatial variability, 

dispersal limitation, etc.) in tropical forests (Terborgh et al., 2019). We use a more general form of seed production, such that 

the individual cohorts in ELM-FATES use a targeted fraction of net primary production (NPP) during the carbon allocation 

process (after accounting for tissue turnover and storage demands), which adds to the site-level seed pool for recruitment of 

new cohorts. Field data was not used to simulate or calibrate the modeled forest regrowth post disturbance. 265 

 

To account for uncertainty in the representation of plant physiology within tropical evergreen forests, we analyzed an ensemble 

of 20 simulations varying in targeted plant functional traits. We prescribed each ensemble with a single tropical evergreen 

plant functional type (PFT) that varied in wood density (0.44 to 1.06 g cm-3) and maximum rate of carboxylation (Vcmax; 42 to 

55 umol m2 s-1) (Table 1), via random sampling. To evaluate changes in canopy coverage of the forest stand each PFT 270 

additionally varied by an allometric coefficient (1.35 to 1.65) determining crown area to diameter ratio, and a leaf clumping 

index (0.59 to 1.0 out of 0-1 fraction) that determines how much leaf self-occlusion occurs and decreases light interception, 

and the direct and diffuse extinction coefficients in the canopy radiation calculations. The default values for these parameters 

are based on, or derived from references given in Table 1. Each ensemble member represents a single PFT across the spectrum 

of fast-growing ‘pioneer’ PFTs and slow-growing ‘late successional’ PFTs to provide a reasonable spread across the trait 275 

uncertainty when assessing regrowth from disturbance. We characterized pioneer plants in our simulations as having low wood 

density (Baker et al., 2004) and high Vcmax based on the inverse relationship between these two plant traits, as well as a low 

crown area coefficient and low leaf clumping factor; i.e., monolayer planophile distribution (Lucas et al., 2002). These 

correlated relationships were applied in the ensemble-selected traits (Figure 2). The opposite relationship was applied for slow-

growing, ‘late successional’ PFTs (e.g., high wood density, low Vcmax, high crown area coefficient, and high leaf clumping 280 

factor).  
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Table 1. The range (minimum to maximum) of four key model input parameters used in the 20-ensembles ELM-FATES 

simulations for both windthrow and clear-cut simulations, to account for uncertainty in the representation of plant 

traits, along with the default value used in the ELM-FATES model. Wood density value from Moorcroft et. al. (2001), 285 

Vcmax based on  Oleson et al. (2013) and Walker et al. (2014), crown area:DBH derived from Farrior et al. (2016) and 

adjusted based on site specific sensitivity tests, and the leaf clumping index based on radiation transfer theory of 

Norman (1979).  

 

 Variations in ensemble parameters in ELM-FATES 

 default minimum maximum Range 

Wood density (g cm-3) 0.7 0.44 1.06 0.62 

Vcmax (μmol m2 s-1) 50 42 55 13 

Crown area : DBH (unitless) 1.5 1.35 1.65 0.30 

Leaf clumping (0-1) 0.85 0.59 1.00 0.41 

     

 290 

 

 

Figure 2: Imposed trait variation used in the parameterization of ELM-FATES tropical evergreen plant functional 

types (PFTs) for the 20-ensemble simulations and the resulting average growth rate average over the 50-year simulation 

period. Each simulation consisted of a single PFTs varying by all four traits at once: wood density, Vcmax, the canopy 295 

area allometric coefficient, and leaf clumping index for leaf self-occlusion. Dark green points represent fast-growing 

evergreen pioneer PFTs, while light green points represent slow-growing late successional PFTs. 

 

In order to evaluate ELM-FATES performance during forest regrowth we compared NIR, the most sensitive band to regrowth 

(see results), with ELM-FATES outputs of aboveground biomass (AGB, Mg ha-1), total stem density of trees ≥10 cm DBH 300 
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(stems ha-1), leaf area index (LAI, one-sided green leaf area per unit ground surface area, m2 m-2), and total live crown area 

(m2 m-2) since these variables directly influence the surface reflectance (Ganguly et al., 2012; Lu, 2005; Masek et al., 2006; 

Powell et al., 2010; Ruiz et al., 2005). We suggest that testing an array of modeled forest variables (e.g., biomass structure, 

density coverage of vegetation, and proportion of the tree crown that has live foliage) provides a robust comparison for 

comparison to NIR due to multiple forests characteristics contributing to and affecting NIR reflectance (Ollinger, 2011), and 305 

reduces model unknowns and biases that can rise when using only one model variable. The usage of different stand structure 

and canopy processes can be helpful when evaluating ELM-FATES during different phases of forest regrowth. In addition, we 

averaged modeled outputs of crown area, stem density, and LAI since each of these variables influence the reflectance of 

forests, and defined this average as the modeled ‘canopy-coverage’. Measurements of forest canopy cover have been used to 

analyze plant growth and survival, and it is an important ecological parameter related to many vegetation patterns (Ganey and 310 

Block, 1994; Jennings et al., 1999; Paletto and Tosi, 2009). Modeled diameter growth rates (cm y-1) for trees with DBH ≥10 

cm are also shown to provide information on the successional dynamics within ELM-FATES. 

 

3 Results 

 315 

3.1 L5 bands and disturbances 

 

All L5 bands showed an increase in surface reflectance immediately after windthrow, clearcut, and cut+burn sites except NIR 

which decreased (with higher decrease after burning) (Figure 3 a, b and c). This decrease in NIR was due to exposed woody 

material and dry leaves, typical after windthrow (Negrón-Juárez et al., 2010a; Negrón-Juárez et al., 2011) and clearcutting 320 

(Chapter 7 in Adams and Gillespie, 2006) or the dark surface following burning (Pereira et al., 1997). For windthrows, such 

effects last about one year after which vegetation regrowth covers the ground surface (Negrón-Juárez et al., 2010a; Negrón-

Juárez et al., 2011). The spectral characteristics of old-growth and disturbances are shown in Figure 3 d-f with the error bands 

representing the standard deviation of all pixels from respective cells. About one year after the disturbance the bands that 

experienced increases in surface reflectance showed a decrease in surface reflectance (the opposite for NIR) due to the 325 

increases in vegetation cover. A similar response is expected for the clearcut that occurred in 1982 and therefore before the 

beginning of our available data (L5 imagery are available from 1984, Figure 3e). The similarity of spectral signatures for the 

control forests previous to the disturbances suggests comparable structure and floristic composition. 

 

 330 
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Figure 3: L5 (LEDAPS SR Landsat 5) spectral characteristics for (a) windthrow (July 12, 1987), (b) clearcut (June 1 , 

1984), and (c) cut+burn (July 12, 1987) (in red) and control (old-growth) forests (in green) sites. Time series of each L5 

spectral bands for (d) windthrow, (e) clearcut, and (f) cut+burn sites. The bars represent the standard deviation from 

all pixels from all 3×3 cells comprising the respective disturbances shown in Fig. 1. Vertical dashed line in (d), (e) and 335 

(f) represents the year of the disturbance. 

 

 

3.2 Pathways of forest regrowth 

 340 

About six years after the disturbance, NIR reached a maximum value after and then decreased slowly with time showing a 

significant negative trend (Table 2). SWIR1 also showed a significant negative trend with time but only for the clearcut site 

(Table 2).  In general, GREEN, BLUE, RED, SWIR1, and SWIR2 bands returned to pre-disturbance values (control) about 

six years after the disturbance (Figure 3d, e, f and Table 2). Therefore, we used NIR (which remained higher than pre-

disturbance values throughout the time series, and is potentially sensitive to ecosystem properties of re-growing forest) to 345 

investigate the regrowth dynamics in comparison to our control forests. 
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We used the relationships presented in Figures 4, 5, and 6 to determine the time that NIR from the disturbance sites became 

similar to control NIR. The average control NIR was 28±1%. For the windthrow site the NIR became similar to control levels 

after about 39 years (range 32 to 57 years). For the clearcut and cut+burn sites, this period was estimated to be 36 years (range 350 

31 to 42 years) and 56 years (range 42 to 93 years), respectively. From Figure 4-6 it is evident that the type of disturbance has 

a clear effect on the pathways of NIR recovery. L7 data, in general, are within the 95% CI of predictions.  

 

 

Table 2. Test of the significance for the slopes of the time series of six bands from L5 (LEDAPS SR Landsat 5) for the 355 

windthrow (period 1991-2011), clearcut (period 1987-2011), and cut+burn (period 1990-2011) cases in Central 

Amazonia shown in Figures 3d-f. The critical values (t0.975,8 and  t0.975,12 ) for the t distribution were obtained from 

statistical tables. Bold represents H1. 

 

 windthrow 
t0.975,12=2.179 

 clearcut 
t0.975,8=2.306 

 cut+burn 
t0.975,8=2.306 

 β t-stat  β t-stat  β t-stat 
BLUE -1.51 -1.10  -0.63 -0.25  -3.92 -1.15 
GREEN -0.03 -0.02  -0.72 -0.31  -3.03 -0.78 
RED -0.12 -0.68  -0.18 -0.08  -3.19 -0.93 
NIR -12.36 -4.07  -35.1 -10.17  -11.72 -2.83 
SWIR1 0.87 0.70  -4.83 -4.52  -2.25 -1.98 
SWIR2 0.95 1.45  0.17 0.22  -0.48 0.36 

 360 

 

 

During the first 12 years following the windthrow, the spline curve fitted to the NIR data decreased by ~0.13% y-1 after which 

the rate of decrease doubled (0.26% y-1, Figure 4). For clearcutting, NIR decreased faster, i.e. ~0.4% y-1. The decrease of NIR 

for the clearcut site appears to be independent of the distance from the edge of the disturbance since the changes in NIR of all 365 

selected areas (A1, A2, A3 and AT) are similar (Figure 5). For the cut+burn site, the rate of change of NIR to values similar to 

the control forests was the slowest among all disturbances considered (~0.15% y-1) (Figure 6). The cut+burn site showed 

differences with respect to the border of the disturbance (areas A1, A2, and AT), which may be related to the spatial 

heterogeneity of burnings and forest responses. 

 370 
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Figure 4: Changes in NIR for windthrows and prediction (based on extrapolation of fitted spline curve) of NIR to pre-

disturbance values (in blue). The plots show the SR data (dots), the fit (solid lines), and the 95% confidence interval 

(CI, dashed lines). Grey bar represents the control (old-growth forests) NIR of 28±1% and the black horizontal dashed 

line is 28%.  375 
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Figure 5: Changes in NIR after clearcuts for areas A1, A2, A3, and AT =A1+A2+A3 (showed in Figure 1c) and prediction 

of NIR to pre-disturbance values (in blue). The plots show the data (circles), the fit (solid line), and the 95% confidence 

interval (CI, dashed lines). Grey bar represents the control (old-growth forests) NIR of 28±1% and the black horizontal 380 

dashed line is 28%. 
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Figure 6: Changes in NIR for cut+burn site in areas A1, A2 and AT =A1+A2 shown in Figure 1) and prediction of NIR 

to pre-disturbance values (blue). The linear fit (solid liner) and the 95% CI (dashed line) are shown. Grey bar represents 

the control (old-growth forests) NIR of 28±1% and the black horizontal dashed line is 28%. 385 

 

 

3.3 FATES model and regrowth from forest disturbance 

 

To address our goal of improving the connection between remote sensing, model benchmarking and the fidelity of future 390 

predictions of forest regrowth processes, we examine the representation of such processes within ELM-FATES. The average 

of the ELM-FATES 20-member ensemble predicted a continuous, and almost linear, regrowth of biomass (Figure 7a) after 

clearcut and windthrows. The modeled recovering biomass returned to modeled old-growth forest values quicker for 
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windthrows (37 years, range 21 to 83 years) compared to clearcuts (42 years, range 27 to 80 years). However, the annual rate 

of change of biomass regrowth over 50 years was faster in the clearcut simulation (2.5 Mg ha-1 yr-1) than the windthrow 395 

simulations (2.0 Mg ha-1 yr-1), which was due to the clearcut site recovering from initial biomass of near-zero and 

proportionally greater contribution of fast-growing pioneer species.  

 

The model simulation of stem density, LAI, and crown area are shown in Figures 7b-d, respectively. For stem density, ELM-

FATES (black line) predicted an average of up to eight years before any new stems reached ≥10 cm DBH (a stand developing 400 

period, Figure 7b) for the clearcut. The simulated stem density for old-growth forests (Figure 7b; green line) was ~200 stems 

ha-1 (≥10 cm at 1.3 m), ~ 408 trees lower than observations. The model ensembles with typical early successional traits 

predicted a forest with many fast-growing, small-diameter stems <10 cm, with maximum early successional stem densities 

reaching 1,560 and 1,414 stems ha-1 for clearcut and windthrows, respectively. Once the canopy closes and self-thinning 

dominates (average of 15 years after disturbance), there are declines in stem density as trees gain biomass, and canopy closure 405 

forces some trees into the understory, where they die at faster rates due to shading. The modeled forests returned to old-growth 

stem density conditions 39 and 41 years after windthrows and clearcut, respectively (Table 3). Though the two disturbance 

types had very similar times to return to pre-disturbance conditions, they differ in the speed of recovery. ELM-FATES predicts 

faster diameter growth increments (1.3 cm yr-1) and canopy closure for a forest composed of all ‘pioneer’ type PFTs and slower 

(0.5 cm yr-1) diameter growth and more open canopies for ‘late successional’ forest type (Figure 8). Diameter growth is an 410 

emergent model feature of dynamical plant competition for light and stand structure, and in coherence with observational 

studies of secondary forests growing through succession (Brown and Lugo, 1990; Winter and Lovelock, 1999; Chapin III et 

al., 2003).  

 

The LAI of the modeled old-growth forest (4.0 m-2 m-2), prior to disturbances, was close to observed LAI (4.7 m-2 m-2) 415 

measured near our study sites (Chambers et al., 2004). Due to disturbance, the initial modeled LAI (Figure 7c) and total crown 

area (Figure 7d) decreased, as expected. During regrowth from disturbance both LAI and total crown area rapidly recovered, 

and LAI even surpassed pre-disturbance values. This pattern resembles the initial NIR spike due to fast growing PFTs. These 

two canopy coverage attributes reached maximum values after 3 to 6 years, depending on the disturbance and response of 

forest attributes (Table 3). To evaluate model results against remote sensing observations, we compared the initial period after 420 

the disturbance of the spikes in NIR to the ‘canopy-coverage’ metric (combination of LAI, stem density, total crown area) over 

the same modeled period. ELM-FATES predicted that after a windthrow the forest took 5.7 years to reach maximum values 

of canopy-coverage, which was sooner than the clearcut simulation (7 years). While the modeled timespan for this initial 

period was similar to that inferred from NIR, there was disagreement between which disturbance recovery occurred fastest 

(windthrow in ELM-FATES vs. clearcut in NIR), similar to disagreement in recovery of AGB (Table 3). 425 
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Figure 7: Simulated regrowth of the Central Amazon forest after a clearcut (98% tree mortality; black line), and 

windthrow event (70% tree mortality; orange line) using 20 simulations of the demographic model ELM-FATES, 

compared to the modeled old-growth values prior to disturbance (dashed green line), and against field  data (solid green 430 

line) from close sites, except for crown area data that was taken from Lidar data in Acre, Brazil (Figueiredo et al., 

2016). The shaded grey and orange areas represent the spread across the ensembles, showing minimum and maximum 

values of each forest attribute over its regrowth. (a) Regrowth of aboveground biomass (AGB; Mg C ha-1). (b) Regrowth 

of stem density (stems ha-1) of stems >10 cm DBH and years of returning to modeled old-growth values. (c) Regrowth 

of leaf area index (m-2 m-2), and (d) regrowth of total crown area. 435 
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Figure 8: Change in predicted diameter increment growth rate (cm yr-1) for one simulation, from the 20 ensembles, 

that represented a fast-growing ‘pioneer’ forest stand and a slow-growing ‘late successional’ forest stand from a clear-

cut disturbance (black and grey) and a windthrow disturbance (orange). Variations in diameter increment are a result 440 

of differences in the following traits: wood density, Vcmax, crown area, and a leaf clumping index.  

 

Table 3. Summary of different times of regrowth (years) to old-growth forest status after two disturbance types; 

windthrows and clearcuts from ELM-FATES model results and remote sensing. As well as the time (years) it takes 

forest attributes to reach maximum values during regrowth, and the corresponding value at this maximum peak. AGB 445 

(Mg C ha-1), stem density (stems ha-1), LAI, and crown area (m2 m-2) refer to simulation results, as compared against 

NIR remote sensing. The average of AGB and stem density is characterized as modeled ‘forest structure’. The average 

of crown area, stem density, and LAI is characterized as modeled ‘canopy-coverage’ in this study, and additionally 

compared against NIR.  

 450 

 

 

 

 

 455 
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 Regrowth to old-growth (years)  
Disturbance type ELM-FATES  

AGB 
ELM-FATES 
stem density 

ELM-FATES 
LAI 

Model average of 
forest structure  

 NIR 

Windthrow 37 39 53 38.0 39 
Clearcut 42 41 26 41.5 36.1 
 Time to reach maximum values of regrowth (years)  
Disturbance type ELM-FATES 

crown area 
ELM-FATES 
stem density 

ELM-FATES 
LAI 

Model average of 
canopy-coverage  

NIR 

Windthrow 6 9 3 6 7 
Clearcut 7 10 6 7.0 6 
 Values at maximum peak of regrowth  
Disturbance type ELM-FATES 

crown area 
(m2 m-2) 

ELM-FATES 
stem density 
(stems ha-1) 

ELM-FATES 
LAI 

 (m2 m-2) 

 NIR 
(%) 

Windthrow 0.99 1414 4.9  35.5 
Clearcut 0.99 1560 7.5  42.0 

 

 

ELM-FATES provided a prediction of the values in each forest variable when the stand reached its production limit and full 

canopy closure, at which point there was a shift to a declining trend and decreases in forest attributes that outpaced any gains 465 

(Table 3). At maximum peak recovery and carrying capacity limit, the highest forest values occurred in the clearcut simulation, 

matching the higher NIR from clearcut a few years after the disturbance (Figure 4-6). Over the longer self-thinning period 

modeled LAI decreased and returned to modeled old-growth values 26 years after clearcut, and gradually over 53 years for 

windthrows (Table 3). LAI was the only variable that had a noticeable faster recovery in the clearcut simulations. After both 

disturbances the total crown area permanently remained high (0.99 m2 m-2) and slightly higher than the crown area of the 470 

simulated old-growth forests (0.98 m2 m-2), suggesting that disturbances can generate a denser canopy, as discussed below.  

 

4. Discussion 

 

Our results show that Landsat reflectance observations were sensitive to the initial changes of vegetation following 475 

windthrows, clearcut, and cut+burn, three common disturbances in the Amazon. Specifically, a decrease in NIR and an increase 

in SWIR1 were the predominant spectral changes immediately (within a few years) following disturbances. The increase in 

SWIR1 was different among the disturbances with the maximum increase observed in the cut+burn, followed by clearcut and 

then the windthrow site. The highest increase in SWIR1 in cut+burn sites may be related to the highest thermal emission of 

burned vegetation (Riebeek, 2014). Likewise, the relatively higher moisture content of woody material in the windthrow site 480 

decreases the reflection of SWIR2. On the other hand, in our control (old-growth) forests, we observed typically high NIR 

reflectance due to the cellular structure of leaves  (Chapter 7 in Adams and Gillespie, 2006), absorption of red radiation by 

chlorophyll (Tucker, 1979), and absorption of SWIR1 by the water content in leaves (Chapter 7 in Adams and Gillespie, 2006). 
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While SWIR1 is frequently used to identify exposed woody biomass immediately after disturbances (Negrón-Juárez et al., 485 

2010b; Negrón-Juárez et al., 2008), we found that NIR was more sensitive to the successional pathways of regrowth for all the 

disturbances considered. NIR has also been associated with succession (Lu and Batistella, 2005) and regrowth (Roberts et al., 

1998) in natural and anthropogenic disturbed tropical forests (Laurance, 2002; Chazdon, 2014; Magnabosco Marra, 2016; 

Laurance et al., 2011). Previous studies have shown that changes in NIR are related to leaf structure and surface characteristic 

(Roberts et al., 1998; Xiao et al., 2014) with youngest leaves having higher NIR with respect to fully formed and older leaves 490 

(Roberts et al., 1998). Maximum values of NIR were observed about 6 years after clear cut, which is the time pioneers form a 

closed canopy (Mesquita et al., 1999; Mesquita et al., 2015; Mesquita et al., 2001) and characterized by a relative  uniform 

distribution of tree diameter and heights (Vieira et al., 2003). This maximum in NIR was higher in the clearcut site dominated 

by species from the genus Cecropia and Pourouma (Mesquita et al., 2015; Massoca et al., 2012) than the site affected by 

cut+burn dominated by Vismia species (Mesquita et al., 2015; Laurance et al., 2018). The higher NIR values in Cecropia and 495 

Pourouma is due to their monolayer planophile distribution of large leaves that produced high reflectance compared to Vismia 

that have a rougher and denser canopies that traps more NIR (Lucas et al., 2002). The high values in NIR might be related to 

the low leaf wax (Chavana-Bryant et al., 2017) from new trees and/or scattering related to leaf and canopy water (Asner, 2008). 

NIR decreases with the dynamics of succession due to increase in the canopy roughness (Hallik et al., 2019). 

 500 

After the establishment of pioneers, the NIR decreases with time but with different rates depending on the type of disturbances. 

In windthrown areas, tree mortality and subsequent recruitment may continue for several decades, promoting changes in 

functional composition and canopy architecture (Magnabosco Marra et al., 2018). Cecropia and Pourouma trees grow 

relatively quickly and after closing the canopy they limit light penetration due to their large leaves creating a dark, cooler, and 

wetter understory (Mesquita et al., 2001; Jakovac et al., 2014). As a result, light levels in the understory decline faster with 505 

time and thus allow the recruitment and establishment of shade tolerant species. The cohort of Cecropia and Pourouma species 

has relatively short lifespan and, ~20 years after disturbance, secondary and old-growth forest species start to establish 

(Mesquita et al., 2015). With the self-thinning of Cecropia and Pourouma, the growing understory traps more light and 

consequently albedo decreases (Roberts et al., 2004). This pattern is consistent with the decline of NIR and observed changes 

in canopy architecture (Mesquita et al., 2015), photosynthesis, and LAI (Saldarriaga and Luxmoore, 1991). In contrast, the 510 

architecture of Vismia species that dominate cut+burn areas allows higher light levels in the understory and subsequent 

recruitment of Vismia or other genera with similar light requirements. As a consequence, species turnover and structural 

changes are relatively slower than in clearcut areas (as  found by Jakovac et al. (2014) in a study conducted a few kilometers 

from the BDFFP) and windthrows, consistent with changes in NIR. In the course of succession, Vismia tends to be replaced 

by Bellucia, which is a species with similar leaf and canopy structure as Vismia (Mesquita et al., 2015). This pattern favors the 515 

penetration of light through the canopy (Longworth et al., 2014) for several decades before a more shaded understory allows 

the germination and establishment of old-growth species (Williamson et al., 2014).  
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For the windthrow we estimate that the NIR should become similar to pre-disturbance conditions in about 39 years. This value 

agrees with the 40 years of biomass regrowth found using ground-based data in the Central Amazon (Magnabosco Marra et 520 

al., 2018). This result also corroborates previous studies that NIR operates in the best spectral region to distinguish vegetation 

biomass (Tucker, 1979, 1980) and photosynthesis (Badgley et al., 2017). For clearcutting and cut+burn, the regrowth time was 

about 36 and 56 years respectively, but no ground-based estimates were available for comparison. Still, NIR showed that the 

pathways of regrowth from clearcut and cut+burn are divergent with time (Figure 5 and Figure 6), which is consistent with 

observational studies (Mesquita et al., 2015).  525 

 

In general, we found that NIR may be used as a proxy in modeling studies aimed at addressing forest regrowth after 

disturbances. Though NIR is useful to distinguish successional stages up to decades after the disturbance, it may not represent 

the whole successional processes. As soon as the forest canopy becomes structurally similar to that of the mature forest, NIR 

will no longer be sensitive to changes in vegetation attributes (Lucas et al., 2002). Though L5 NIR may be complemented with 530 

current Landsat measurements (L5 NIR has comparable performance to the Landsat 8 NIR Operational Land Imager algorithm 

(OLI) (Vermote et al., 2016)), it is important to emphasize that our estimates of recovered reflectance and biomass in disturbed 

areas do not capture full recovery of diversity in floristic attributes and species composition that can take centuries (Rozendaal 

et al., 2019). The predominance of Cecropia, after clearcut, and Vismia, after cut+burn, have also been found in the Western 

(Gorchov et al., 1993; Saldarriaga et al., 1986) and the Southern (Rocha et al., 2016) Amazon suggesting that our findings are 535 

applicable to other regions. However, an Amazon-wide study is beyond the scope of our work, which is to explore the 

sensitivity of Landsat to different disturbance types. 

 

Our analysis demonstrates that this version of ELM-FATES has the capacity to reproduce initial response to disturbance and 

regrowth patterns after the clearcut and windthrow that occurred over similar time ranges compared to NIR. The strongest 540 

agreement occurred when ELM-FATES predicted higher peaks of post disturbance stem density and LAI in clearcuts than in 

windthrows, which can be used for future benchmarking, consistent with the higher peak of NIR from clearcuts (Figure 5 vs. 

Figure 4). This effect may be due to ELM-FATES having more homogeneous canopies after clearcuts as well as more open 

disturbed area for fast growing plants, which is also an observed trend. In addition, the average regrowth times to pre-

disturbance values were close between ELM-FATES and NIR (Table 3), showing that pathways of forest regrowth in ELM-545 

FATES are comparable to observed patterns in tropical forests. ELM-FATES predicted a continuous, and almost linear, 

regrowth of biomass for the first 50 years of simulation after both clearcut and windthrows, (Figure 7a) consistent with NIR 

results, and observational studies (Mesquita et al., 2015; Saldarriaga et al., 1988; Jakovac et al., 2014; Magnabosco Marra et 

al., 2018). In addition the changes in biomass rates predicted by ELM-FATES were similar to biomass observations recorded 

after clearcut (2.3 vs. 2.6 Mg ha-1 yr-1) (Mazzei et al., 2010), as well as a faster rate of AGB accumulation after clearcut 550 

compared to windthrow, similar to a study reporting higher regrowth rates in more highly-disturbed sites (Magnabosco Marra 

et al., 2018).  
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Landsat showed a faster recovery of NIR to pre-disturbance conditions in clearcuts compared to windthrows. Faster growth is 

characteristic of anthropogenically driven secondary forests that reflect rapid colonization and monodominance of adapted 555 

species and genera to changed environmental conditions; e.g., high growth rates, low self-competition, high leaf area index, 

low herbivory rates, etc. (Poorter et al., 2016; Mesquita et al., 2015; Rozendaal and Chazdon, 2015). Alternatively, ELM-

FATES predicted a faster recovery of structural AGB and canopy-coverage to pre-disturbance conditions for windthrows (70% 

tree mortality) compared to clearcuts (98% tree mortality). A major contributing factor to this pattern resulted from larger 

modeled diameter increments after windthrows (0.92 cm yr-1) compared to clearcuts (0.82 cm yr-1) in the first 20 years after 560 

the disturbance, setting the trajectory for faster regrowth to pre-disturbance after windthrows. Only LAI had a faster recovery 

to pre-disturbance values after clearcuts, which is expected due to the newly developed forest having simplified forest structure 

and the canopy being more homogeneous after a clearcut (Rosenvald and Lohmus, 2008). ELM-FATES predicted the timing 

of peak canopy-coverage was marginally sooner after windthrows compared to clearcuts, opposite to the NIR pattern. This 

discrepancy may be related to more biomass loss and open canopy coverage, followed by a lack of rapid colonization in the 565 

modeled clearcut. Due to the higher stand disturbance that naturally occurs from clearcuts, and the diverse complexities in 

tropical forest composition, we emphasize that the dynamics of different competing PFTs in ELM-FATES requires further 

investigation. Emerging modeling studies that include plant trait trade-offs, for example, in leaf and stem economic spectrum 

or fast vs. slow growth strategies may help to better capture the drivers of forest productivity and demography, enabling 

improved modeled responses to global change scenarios (Fauset et al., 2019; Sakschewski et al., 2015). Here we test the basic 570 

representation of biomass demographics, prior to the more challenging aspects of representing interacting functional diversity 

in recovering systems (Fisher et al., 2015; Powell et al., 2018).  

 

ELM-FATES predicts the total stem density for a closed canopy forest to be very low compared to observations (200 simulated 

vs 600 stems ha-1), but modeled total AGB was close to that reported for the same region (110 simulated vs. ~150 MgC ha-1 575 

(Chambers et al., 2013)). This discrepancy is due to ELM-FATES predicting a disproportionately high number of large trees 

(Figure 9; with 8% of stems >60 cm and 4.5% of stems >100 cm), resulting in a crowded canopy, which out-compete smaller 

understory trees. Higuchi et al. (2012) reports 93% of trees  ≥ 10 cm DBH in the study site  to be below 40 cm DBH, while 

ELM-FATES predicted noticeably less trees below 40 cm DBH (Figure 9). Low stem density could be attributed to multiple 

model assumptions, such as high density-dependent mortality and self-thinning due to the marginal carbon economics of 580 

understory trees, low branch-fall turnover, a need for greater limitation of maximum crown area than currently modeled, and 

increases in mortality rates with tree size (Johnson et al., 2018). Our findings here will guide future ELM-FATES and 

ecosystem modeling development efforts towards improving the representation of forests comprised of dense canopies, and 

how they shift during regrowth.  

 585 
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Land surface models do not typically simulate spectral leaf reflectance, but there is potential to include such output within 

radiative transfer schemes as is currently done in CLM. That addition would greatly assist our ability to compare with Earth 

observations datasets. In lieu of this development, we show that with successional aging modeled forest structure returns to 

pre-disturbed values (through canopy closure) with similar recovery time as inferred from NIR, occurring with the process of 

canopy closure, all which can be compared against remote sensing vegetation indices (see Supplementary Figure 1) and 590 

metrics. Which vegetation index (e.g., Normalized Difference Vegetation Index (Rouse et al., 1973), Enhanced Vegetation 

Index (Huete et al., 2002), etc.) or metric properly represent the successional pathways following disturbances remains an 

important area of study. 

 

 595 

 

Figure 9: Total stem density (stems ha-1) separated into six diameter (cm) size classes from Central Amazon field data 

located at the near-by ZF2 site (green bars) averaged from 1996-2011, and predicted by ELM-FATES (gray bars). The 

percentages represent the proportion of stems in each size class relative to the total stem density.  

 600 

 

5. Conclusions  

 

We tested the sensitivity of Landsat surface reflectance to windthrow, clearcut, and cut+burn forest in Central Amazon. NIR 

was more responsive to the successional pathways of forest regrowth years after the disturbance. NIR showed that pathways 605 

of forest regrowth were different among the disturbances, with cut+burn being the most different in terms of spatial 
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heterogeneity and regrowth time to old-growth status, in agreement with observational studies. Our results indicate that after 

disturbances the NIR will reach old-growth forest values in about 39 years following windthrows (in agreement with observed 

biomass regrowth), 36 years for clearcuts, and 56 years for cut+burn. These results were then compared with simulations of 

regrowth after windthrows and clearcut from ELM-FATES. The simulated forest structure and the remote sensing NIR from 610 

the windthrow and clearcut have similar return time to old-growth forest conditions. Future studies applying ELM-FATES 

should focus on improving stem density predictions, which were underestimated, and on enhancing the capacity to compare 

with remote sensing observations through representation of canopy spectral reflectance characteristics. 

 

 615 
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