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Abstract. Accurately representing the response of ecosys-
tems to environmental change in land surface models (LSM)
is crucial to making accurate predictions of future climate.
Many LSMs do not correctly capture plant respiration and
growth fluxes, particularly in response to extreme climatic5

events. This is in part due to the unrealistic assumption
that total plant carbon expenditure (PCE) is always equal
to gross carbon accumulation by photosynthesis. We present
and evaluate a simple model of labile carbon storage and util-
isation (SUGAR), designed to be integrated into an LSM,10

that allows simulated plant respiration and growth to vary
independently of photosynthesis. SUGAR buffers simulated
PCE against seasonal variation in photosynthesis, producing
more constant (less variable) predictions of plant growth and
respiration relative to an LSM that does not represent labile15

carbon storage. This allows the model to more accurately
capture observed carbon fluxes at a large-scale drought ex-
periment in a tropical moist forest in the Amazon, relative to
the Joint UK Land Environment Simulator LSM (JULES).
SUGAR is designed to improve the representation of car-20

bon storage in LSMs and provides a simple framework that
allows new processes to be integrated as the empirical un-
derstanding of carbon storage in plants improves. The study
highlights the need for future research into carbon storage

and allocation in plants, particularly in response to extreme 25

climate events such as drought.

Copyright statement. TEXT

1 Introduction

Forests cover nearly 4000 Mha (UN Food and Agriculture
Organization Rome, 2015) of the worlds land surface and 30

store roughly 850 Pg (861±66 Pg) of carbon (Pan et al.,
2011). They represent a significant sink of carbon from
the atmosphere, sequestering 2.4 ± 0.4 PgCyr−1, roughly
25% of total annual anthropogenic carbon emissions (IPCC,
2014). The extent to which carbon uptake by forests will 35

continue under future climate change is uncertain, as global
climate models (GCM) disagree not only on the magnitude
of future terrestrial carbon uptake, but also the sign (Cox
et al., 2000; Sitch et al., 2008; Hewitt et al., 2016; Arora
et al., 2013). Some models predict large increases in terres- 40

trial carbon stocks by the end of the century, while others
predict significant losses, with an uncertainty in projections
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of more than 160PgC by the year 2100 (Lovenduski and Bo-
nan, 2017). Much of this uncertainty stems from deficiencies
in the structure of the land surface model (LSM) component
of GCMs and is exacerbated by positive feedback loops
between the land and atmosphere (Lovenduski and Bonan,5

2017; Huntingford et al., 2009, 2013; Friedlingstein et al.,
2001) Significant improvements in LSMs are required to
constrain model outputs and reduce uncertainty in future
climate projections.

10

The carbon balance of forested ecosystems is dictated
by the relative magnitudes of photosynthesis, plant growth
and autotrophic respiration. Most LSMs simulate growth
and respiration as equal to instantaneous photosynthesis
(Fatichi et al., 2014). Consequently at any given time, the15

total rate of carbon utilisation by respiration and growth,
referred to as plant carbon expenditure (PCE), is equal to the
rate of carbon accumulation by photosynthesis, commonly
referred to as gross primary productivity (GPP). However, in
reality growth and respiration are not so strictly coupled to20

photosynthesis and plants regularly experience periods when
the supply of carbon from photosynthesis does not equal the
demands of growth and respiration (Körner, 2003; Muller
et al., 2011). This asynchrony between supply and demand
is facilitated by reserve pools of labile carbon known25

collectively as non-structural carbohydrates (NSCs). The
NSC pool within a plant accumulates when photosynthesis
exceeds carbon demand and is drawn upon to sustain growth
and respiration when they are not supported by instanta-
neous photosynthetic assimilation (Hartmann and Trumbore,30

2016; Dietze et al., 2014). NSCs therefore act as a buffer,
allowing key functional processes to be maintained, even
when photosynthetic accumulation is low. This buffering
is particularly important during periods of environmental
stress, which can lead to reduced productivity over seasonal35

to multi-annual time-scales. During prolonged periods of
stress, carbon utilisation rates can diverge significantly from
photosynthesis (Metcalfe et al., 2010; Doughty et al., 2015b,
a) and so plants rely heavily on their NSC reserves. Without
simulating NSC storage LSMs remain unable to capture this40

asynchrony between GPP and PCE and so fail to correctly
simulate forest level respiration and growth fluxes.

The ability to sustain respiration and growth during
periods of reduced productivity is an important process45

that can allow plants to survive extreme short-term climate
events, such as drought (Doughty et al., 2015b). Conse-
quently, NSC dynamics are also inextricably linked to plant
mortality. Under low water availability the transport of
water from roots to other organs can be compromised by50

the cavitation of xylem in the plant (Martínez-Vilalta et al.,
2014; Sperry and Love, 2015; Tyree and Sperry, 1989).
Xylem damage can lead to a drop in hydraulic conductance,
resulting in damage to plant tissue and increased risk of
mortality (Rowland et al., 2015; Anderegg and Anderegg,55

2013; McDowell et al., 2008) Plants combat this threat
through control over the aperture of their stomata. Closing
the stomata reduces water loss through transpiration and
lowers the risk of xylem damage and hydraulic failure. The
trade-off to this strategy is a reduction in productivity. The 60

ability of a plant to employ this strategy is therefore reliant
on its ability to store and utilise NSC. Recent developments
in modelling plant hydraulics (Mencuccini et al., 2019;
Eller et al., 2018; Sperry et al., 2017; Baker et al., 2008)
provide more accurate predictions of stomatal behaviour 65

during drought, however, these developments must also
be accompanied by models of carbon storage in order to
effectively simulate the trade-off between hydraulic damage
and productivity loss. If carbon demand exceeds supply
over long periods of drought, NSC reserves will become 70

exhausted, causing essential elements of plant function to
fail, a process termed ‘carbon starvation’. Carbon starvation
can also lead to increased mortality rates (Galiano et al.,
2011; Adams et al., 2013) and so there is a complex bal-
ance between stomatal closure and NSC storage (Mitchell 75

et al., 2013; Adams et al., 2017) that must be captured by
LSMs in order to accurately capture climate driven mortality.

Accurately simulating forest mortality is vital to accu-
rate predictions of climate. This is particularly true in 80

tropical regions where terrestrial carbon storage is large (Pan
et al., 2011) and forests are frequently subjected to intense
periods of environmental stress. Intense dry periods can
reduce vegetation productivity and increase plant mortality
in the tropics, over both short-term (Phillips et al., 2009; 85

Bastos et al., 2018; Luo et al., 2018; Gloor et al., 2018) and
multi-annual time-scales (Rowland et al., 2015; Meir et al.,
2018; Metcalfe et al., 2010; Fisher et al., 2007; da Costa
et al., 2010). When combined with the effects of fire and
land-use change, drought can cause regions such as the 90

Amazon basin to shift from a net sink to a net source of
carbon to the atmosphere (Gatti et al., 2014; Liu et al.,
2017; Phillips et al., 2009). Loss of terrestrial carbon in
the Amazon represents a significant feedback loop in the
climate system (Cox et al., 2000) and large losses of biomass 95

could cause drastic and irreversible changes to the climate.
However, the nature of this ‘tipping point’ is uncertain,
and without accurate representation of forest resilience,
including the balance between hydraulic failure and carbon
starvation, predictions of large-scale forest die-back will 100

remain unreliable. Drought is predicted to increase in
both frequency and severity across the tropical rainforest
biome in response to climate change (Marengo et al., 2018;
IPCC, 2014). Accurately simulating drought responses is,
therefore, a priority for the global modelling community 105

(Corlett, 2016; Fatichi et al., 2016), although many efforts to
date have focused on simulating plant hydraulic properties
and have largely ignored the development of a NSC pool in
models.

110
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Despite their clear role in forest function, our current
understanding of how NSCs are produced, stored and used
remains poor (Hartmann and Trumbore, 2016). Absolute
pool sizes are difficult to quantify (Quentin et al., 2015)
and it is not clear how NSC reserves are distributed and5

transported between different plant organs under stress
(Martínez-Vilalta et al., 2016; Sevanto et al., 2014). It is
also not clear whether NSC storage is the passive result of
asynchrony between supply demand as described above, or
whether plants also have the capacity to actively regulate10

NSC stores at the expense of growth and respiration (Körner,
2003; Palacio et al., 2014; Wiley and Helliker, 2012). This
may go some way to explaining the apparent absence of
substrate-based modelling approaches within many LSMs.
Some optimised modelling studies have been conducted that15

explore models of NSC storage and the substrate limitation
of respiration and growth (Thornley, 1970, 1971, 1972a, b,
1977, 1991, 1997, 2011; Thornley and Cannell, 2000; Dewar
et al., 1999). These provide a theoretical framework to
develop mechanistic models of NSC storage and utilisation20

(Hemming et al., 2001; Fritts et al., 2000; Salomón et al.,
2019) that allow detailed simulations of plant function.
However, there have been few attempts to develop such
models in a manner that would be compatible with large
scale LSMs (De Kauwe et al., 2014). This can largely25

be attributed to a scarcity of ecosystem level data (NSC
content and distribution) that can be used to parametrise
and evaluate models for a range of species and climates
that covers all plant functional types (PFTs) used in LSMs
(Fatichi et al., 2019). Given our current knowledge and30

data-availability it is necessary to develop a simplistic model
that can be easily parametrised off data sources that can be
more effectively collected (e.g. growth and respiration data),
yet capture the essential characteristics of representing a
NSC pool (e.g. de-coupling photosynthesis from growth and35

respiration). Such an effort will not only constrain future
climate projections, but may also be used to stimulate further
research that improves our empirical understanding of NSC
storage and use.

40

In this study we present ‘Substrate Utilisation by Growth
and Autotrophic Respiration’ (SUGAR), a simplified model
of substrate utilisation, designed to work within an LSM.
The aim of the model is to allow the decoupling of PCE
and GPP in order to provide a more accurate representation45

of respiration and growth fluxes, in particular in response
to environmental stress. To demonstrate its behaviour and
applicability to large scale ecosystem modelling, we use
SUGAR to simulate PCE fluxes over the Amazon basin,
using GPP data from an ensemble of LSMs, constrained50

by global fluorescence measurements from the Greenhouse
Gases Observing SATellite (GOSAT) (Parazoo et al., 2014)
as driving data. We assess the sensitivity of the model
to initialised NSC content, within a reasonable range of
possible pool sizes and assess the changes the model makes55

to predictions of ecosystem carbon expenditure. We also
test the model under stressed and non-stressed conditions
by simulating the world’s longest running tropical rainforest
through-fall exclusion (TFE) experiment and corresponding
control forest in the Caxiuanã National forest, Brazil, over a 60

16-year period. Previous simulations of the TFE experiment
by multiple LSMs has highlighted their inefficiency at cap-
turing the effects of the artificial drought on forest function
(Powell et al., 2013). It remains unclear to what extent the
lack of NSC dynamics is responsible for the discrepancies 65

between model predictions and observations in these pre-
vious studies. We examine the role NSC dynamics has on
model predictions during the drought by post processing
the output of one of these LSMs, namely the Joint UK
Land Environment Simulator (JULES). We compare the 70

results from JULES and the new predictions from SUGAR
to observations (Metcalfe et al., 2010; da Costa et al., 2014)
as well as a time-series of net primary productivity (NPP)
derived from data collected in Rowland et al. (2015).

2 Model description 75

Our ‘Substrate Utilisation by Growth and Autotrophic Res-
piration (SUGAR)’ model simulates a single pool of carbo-
hydrate at a gridbox scale, for each vegetation tile, and is de-
signed to sit below the photosynthesis component of a LSM
(Fig. 1). Assimilated carbon from photosynthesis (GPP) is 80

collected by the NSC pool and the total carbon allocated to
respiration and growth is then calculated and taken directly
from the NSC pool. The respired carbon is released into the
atmosphere and the carbon allocated to growth is given to the
demography component of the LSM to be allocated to struc- 85

tural pools. Both growth and respiration depend on tempera-
ture and the amount of carbohydrate in the NSC pool relative
to the total structural biomass.

2.1 Non-structural carbohydrate pool

The rate of change of NSC content (CNSC) is described by: 90

dCNSC
dt

= ΠG−Rp−G (1)

where ΠG is canopy GPP, Rp is total plant respiration, and
G is plant growth.

95

Using the definition of net primary productivity (ΠN ):

ΠN = ΠG−Rp

equation (1) is written as:

dCNSC
dt

= ΠN −G (2)

100

To quantify the size of the NSC pool we consider the model
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under steady state. Under steady state conditions we assume
that the NSC mass fraction, defined as the ratio of NSC to
structural carbon, is invariant. We denote the steady state
mass fraction by fNSC (Eq. (3)), which we also use to ini-
tialise the model.5

fNSC =

(
CNSC
Cv

)∗

(3)

where Cv is structural biomass and the asterisk indicates
steady state.

2.2 Growth

Plant growth depends on temperature and NSC availability.10

The temperature dependence is assumed to follow a Q10

exponential relationship and the NSC dependence follows
Michaelis-Menten reaction kinetics:

G=G0FQ(T )Cv
CNSC

CNSC +KmCv
(4)

where G0 (yr−1) is the maximum specific growth rate at the15

reference temperature 25◦C, T (◦C) is temperature,Cv (kg C
m−2) is total structural carbon biomass, Km is a half satura-
tion constant equal to the NSC mass fraction at which growth
rate is half of its maximum value at the reference temperature
and related to the steady state NSC mass fraction by Eq. (6),20

and FQ(T ) is the Q10 temperature dependence given by:

FQ(T ) = q
0.1(T−25)
10 = exp

(
ln(q10)

(T − 25)

10

)
(5)

where q10, which is a constant taken to be 2.0 by default.

Km = aKm
fNSC (6)

and aKm
is a constant with the default value of 0.525

2.3 Respiration

Plant respiration is split into maintenance and growth compo-
nents. Growth respiration is calculated as a constant fraction
of plant growth:

Rg =
1−Yg
Yg

G (7)30

where Yg is the growth conversion efficiency, or yield, with
a default value of 0.75 (Thornley and Johnson, 1990).

Maintenance respiration has the same temperature and
NSC dependence as plant growth:35

Rm =Rm0FQ(T )Cv
CNSC

CNSC +KmCv
(8)

where Rm0 (yr−1) is the maximum specific rate of mainte-
nance respiration at the reference temperature 25◦C.

2.4 Total carbohydrate utilisation

The total rate of NSC utilisation, U , is defined as the sum of 40

plant respiration and growth:

U =Rp +G (9)

U here is exactly equivalent to PCE and is only denoted dif-
ferently for convenience and ease of reading. Using this def-
inition, Eq. (1) can be written as: 45

dCNSC
dt

= ΠG−U (10)

Since both respiration and growth have the same NSC and
temperature dependence, U is given by:

U = φFQ(T )Cv
CNSC

CNSC +KmCv
(11)

where φ=Rm0
+
G0

Yg
is the maximum specific rate of utili- 50

sation of carbohydrate at the reference temperature 25◦C.

2.5 Parameter estimation

Values of φ, Rm0
and G0 may be found in terms of com-

monly measurable variables.
55

First, φ is related to the steady state structural carbon
turnover time τ , by the parameter aKm and the steady state
Q10 function (F ∗

Q(T )):

φ=
1 + aKm

τF ∗
Q(T )

(12)

where τ is defined as: 60

τ =
Cv
ΠG

(13)

The parameter α is defined as the ratio of G0 to φ:

α=
G0

φ
(14)

α is set equal to the steady state carbon use efficiency (CUE) 65

of the ecosystem:

α= CUE∗ (15)

G0 and Rm0
are then given by:

G0 = α
1 + aKm

τF ∗
Q(T )

(16)

and 70

Rm0
=

(
1− α

Yg

)
1 + aKm

τF ∗
Q(T )

(17)
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Equations (12) and (15) have been derived by considering
the model under steady state conditions (see appendix).

Finally, fNSC is set equal to an estimate of ecosystem5

scale NSC concentration, given as a fraction between 0 and
1.

3 Methods

3.1 Sensitivity study over the Amazon-Basin

To demonstrate how SUGAR influences predictions of PCE,10

we conduct a series of simulations over a six and a half
year period from June 2009 to December 2015, across the
whole Amazon, where fNSC is varied from 0.0005-0.08.
As fNSC represents the initial fraction of the biomass pool
that is NSC, a value of 0.0005 is effectively representing15

a model without NSC. The upper bound of 0.08 is an
estimate of the ecosystem NSC content in a tropical forest
in Panama (Würth et al., 2005). The model is driven with
monthly GPP data from an ensemble of LSMs constrained
by global fluorescence measurements from the Greenhouse20

Gases Observing SATellite (GOSAT) (Parazoo et al., 2014),
and temperature data from CRU-JRA (Harris, 2019). An
estimate for τ in each grid-box is found using biomass
estimates across the Amazon (Avitabile et al., 2016) and the
first year of GOSAT GPP. All other parameters (Yg , aKm

25

, q10) are kept constant at their default values (see model
description).

To assess the effect that the SUGAR model has on the
seasonality of PCE, the coefficient of variation of simulated30

PCE in each grid cell is calculated and presented on a
colour-mesh map for each value of fNSC . The Pearson
correlation coefficient of simulated PCE and driving GPP,
and PCE and the Q10 function in each grid cell is also
calculated for each value of fNSC and presented on maps.35

3.2 Methods - Simulating responses to drought

To evaluate the effectiveness of SUGAR at simulating re-
sponses to drought, we tested it at the world’s longest tropical
drought experiment.

3.2.1 Site Description40

The TFE experiment is located in Caxiuanã National Forest,
Pará State, Brazil (1◦43’3.5”S, 51◦27’36”W), where mea-
surements of meteorology and plant physiology of two 1ha
plots began in 2001. In January 2002, panels were introduced
into one of the plots, excluding c. 50% of rainfall from the45

soils and subjecting the plot to an artificial drought. Mea-
surements of meteorology and forest physiology continue
to the present day (this study looks only up to 2016-12-09).

During this period mean annual rainfall was between 1772.6
and 2967.1 mm. Daily incident radiation varied from 419.8 50

Wm−2 to 731.1 Wm−2. A full summary of experimental
set up and the most recent collection of results from the site
is available in Meir et al. (2018).

At the start of the experiment, total estimated above- 55

ground biomass was 213.9±14.2 Mgha−1 in the control
forest, and 200.6±13.2 Mgha−1 in the TFE plot. After 13
years of the drought treatment, biomass loss to mortality
in the TFE plot had increased by 41.0±2.7% relative to
2001 values (Rowland et al., 2015). Observations and 60

modelling studies at the site suggest that while GPP declined
in response to the artificial drought, PCE was maintained at
close to pre-drought levels during at least the first 3-4 years
of the experiment (Metcalfe et al., 2010; Fisher et al., 2007).
NSC reserves are thought to have sustained PCE during 65

this time and it is estimated that the forest had access to
c. 20 MgCha−1 of available NSC (c. 8% of live biomass)
during the drought (Metcalfe et al., 2010). It is not possible
for LSMs to accurately predict both growth and respiration
in the TFE forest without simulating some kind of NSC 70

storage, and makes the experiment an ideal opportunity to
test SUGAR.

3.2.2 Simulation descriptions

The TFE experiment and corresponding control plot are
simulated over the period 2001-01-01 to 2016-12-09. The 75

first set of simulations are conducted using the Joint UK
Land Environment Simulator (JULES) (Best et al., 2011;
Clark et al., 2011), driven with the meteorological data
collected at Caxiuanã. JULES version 5.2 is used with a
pre-existing parametrisation of the site and then optimised 80

so that annual GPP and NPP in the control forest agree
with observations. The same configuration is then used to
simulate the TFE forest. Both control and TFE plot were
initialised and spun up for 176 years using a repeated loop
of the control meteorological data. To simulate the effect of 85

the drought experiment, precipitation is halved in the TFE
simulation from January 1, 2002, in line with estimates of
average exclusion rate.

Gridbox GPP (gpp_gb) and grid-box temperature at 90

1.5 m above canopy height (t1p5m_gb) outputs from JULES
are then used to drive the SUGAR model off-line in each
plot. In order to examine how SUGAR compares relative
to JULES, it is initialised using the first year of output
data from JULES (i.e. the year before panels are put in the 95

TFE plot) rather than observations from Caxiuanã (with the
exception of an estimate of NSC pool size (fNSC), which
is necessary given JULES does not model NSC). Since the
SUGAR simulations are off-line (i.e. not coupled to a Dy-
namic Global Vegetation Model (DGVM)) we assume that 100

biomass (Cv) remains constant throughout the experiment.
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This is a necessary assumption that allows the simulations
to be performed off-line and the effect of the NSC pool to be
examined in isolation.

3.2.3 Model Evaluation

Snapshot fluxes (NPP, Rp, PCE) from JULES and SUGAR5

are evaluated against observations from (Metcalfe et al.,
2010) and (da Costa et al., 2014) for the periods 2005 and
2009-2011. Model growth output is evaluated against an ob-
served time-series of NPP from both plots. Observed NPP is
calculated as the sum of observed biomass increment change10

and total local litterfall (Rowland et al., 2018). Biomass in-
crement is calculated using tree trunk diameter at breast
height (DBH) data and a number of allometric equations
(Table 2. The DBH data were collected every 1-3 years for
each tree in each plot using dendrometers between July 200015

and December 2014. The error bars presented are the sum of
measurement error from the litterfall data and the 95% con-
fidence intervals of the ensemble of allometric equations.

4 Results

4.1 Sensitivity study over the Amazon-Basin20

In simulations of PCE across the Amazon Basin, the SUGAR
model dampens the seasonal variations in both respiration
and growth, relative to GPP, maintaining a less variable rate
of PCE (Fig. 2). The mean coefficient of variation (CV) of
the GPP data across the Amazon is 17.6% (bounds: 7.47 –25

40.9%, Fig. 2). When the SUGAR model is initialised with
fNSC = 0.0005, effectively representing a model with no
NSC, the mean CV of PCE across the Amazon is 16.5%
(bounds: 6.57 – 37.4%, Fig. 2). As fNSC increases the coef-
ficient of variation decreases across all grid boxes. At fNSC30

= 0.08, the mean CV value across the Amazon is 8.96%
(bounds: 3.78 – 25.1%, Fig. 2). Increasing the effective size
of the NSC pool also reduces the spatial variation in PCE
seasonality across Amazonia. Relative to the wetter northern
Amazon, the more seasonally dry southern Amazon experi-35

ences far greater seasonal variation in GPP. This pattern is
mirrored in the seasonal variation of simulated PCE, how-
ever, with more NSC in the model the difference between
PCE seasonality in the north and south declines, due to a
larger decrease in seasonal variation of growth and respira-40

tion in the southern regions. This decline in seasonal vari-
ation is caused by an increase in dry season carbon expen-
diture and a decrease in the wet season carbon expenditure.
The buffering effect is a consequence of the de-coupling of
respiration and growth from GPP, reflected in the decline45

in the mean correlation coefficient between GPP and PCE
from 0.980 (bounds: 0.939 – 1.00) to 0.181 (bounds -0.501
– 0.997) from simulations with the 0 to 8% mass fraction of
NSC (Fig. 3). With this decoupling effect there is also a shift
in the primary driver of simulated PCE, from GPP (in the50

0% NSC mass fraction simulation) to the Q10 function (in
the 8% NSC mass fraction simulation). This is reflected in
the increase in the mean correlation coefficient between sim-
ulated PCE and the Q10 function (Eq. (5)) in SUGAR from
-0.0485 (bounds: -0.651 to 0.517) to 0.637 (bounds: -0.456 55

to 0.956) in the 0 to 8% NSC mass fraction simulations (Fig.
4).

4.2 Simulations in a tropical moist forest

In the simulations of the control plot, in which the forest
was not subject to any artificial drought stress, JULES and 60

SUGAR produce similar results of long term NPP accumu-
lation (Fig. 5), that are both consistent with observations. By
the end of the NPP observation period (2014-12-17), JULES
predicts a total accumulated NPP of 155.6 MgCha−1 and
SUGAR 154.7 MgCha−1. Both results are consistent with 65

observations (Fig. 5, 161.5±22.0 MgCha−1) from the site.

There are some larger differences between JULES and
SUGAR on annual time-scales, but in general the models
predict comparable annual mean values of control plot PCE, 70

Ra and NPP (Fig. 6). During the first three years of the exper-
iment (2002, 2003, 2004), JULES predicts an annual mean
PCE of 35.13 MgCha−1yr−1, and SUGAR predicts 34.79
MgCha−1yr−1. Both these results lie within the confidence
intervals of the observations from the site (Fig. 6, 33.0±2.9 75

MgCha−1yr−1). The two models differ most in the natural
drought years of 2005, 2010 and 2015 in which predicted
annual GPP is at its lowest. In 2005 JULES predicts a
decrease (relative to the 2002-2004 period) in annual mean
PCE to 33.32 MgCha−1yr−1 (-5.15%) whereas SUGAR 80

predicts an increase to 36.18 MgCha−1yr−1 (+4.00%). The
decrease in JULES PCE is caused by a decrease in predicted
GPP in 2005. In SUGAR this decrease in GPP is buffered by
NSC storage, and increase in the annual mean temperature
drives the increase in predicted PCE. Both results are close 85

to the observed value although the SUGAR result is outside
the observed confidence intervals by 0.780%. In 2010
average annual rainfall was 1772.6 mmyr−1, the lowest in
the 16 year period (c. 25% decrease on the 16-year mean
2324.2 mmyr−1). This causes a decline in predicted GPP on 90

the control plot from 35.92 MgCha−1yr−1 in 2008 to 32.94
MgCha−1yr−1 in 2010. Consequently, JULES predicts
a mean PCE of 33.60 MgCha−1yr−1 over the period
2009-2011 which lies below observed values. SUGAR is
able to buffer the forest against the 2010 decline in GPP and 95

allows elevated PCE in 2010 (36.52 MgCha−1yr−1) relative
to 2008 (34.53 MgCha−1yr−1). This allows SUGAR to
maintain a mean PCE value over the 2009-2011 period of
36.07 MgCha−1yr−1 which is close to observations (Fig.
6). 100
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4.3 Simulating responses to drought

In the TFE plot simulations, SUGAR and JULES diverge
significantly in their predictions of NPP, PCE and Ra, with
SUGAR more accurately capturing observations than JULES
(Figs. 5&6). JULES is able to capture NPP accumulation for5

approximately 1 year after the start of the drought treatment,
however, from 2003 onwards, predicted NPP accumulation
drops significantly below the confidence intervals of the
observations (Fig. 5). This is driven predominantly by a
sharp decline in GPP in response to the declining water10

availability. SUGAR is able to capture NPP accumulation for
much longer and predictions remain within the confidence
intervals of the observations until the start of 2009 (Fig.
5). By the end of the observation period JULES predicts a
total of 60.6 MgCha−1 of accumulated and SUGAR 105.815

MgCha−1. Neither result lies within observed confidence
intervals of the observations (Fig. 5, 126.8±16.9 MgCha−1)
although the SUGAR result represents a significant improve-
ment relative to JULES.

20

During the first 3 years of the experiment, SUGAR is
able to buffer a significant decline in predicted GPP on
the TFE plot, which drops from 34.90 MgCha−1yr−1

in 2001, to a minimum of 19.61 MgCha−1yr−1 in 2003
(-43.8%). Since JULES does not contain an NSC storage25

component and PCE is equal to GPP, PCE in JULES also
drops by 43.8%, from 34.90 MgCha−1yr−1 in 2001 to
19.61 MgCha−1yr−1 in 2003. As a result JULES predicts a
mean PCE value of 24.84 MgCha−1yr−1 over the first three
years of drought treatment (2002,2003,2004). These values30

are outside the confidence intervals of the observations
and 26.7% below the mean PCE value observed in the
TFE plot (33.9±3.6 MgCha−1yr−1, Fig. 6). The SUGAR
model is able to maintain PCE at a higher level than JULES
during these first three years by drawing upon a mean 5.5335

MgCha−1 of NSC each year to support growth and respi-
ration. This results in a mean PCE of 30.37 MgCha−1yr−1

over the period 2002-2004, which lies within the observed
confidence interval (Fig. 6). The NSC buffering effect in
SUGAR continues in 2005 with SUGAR expending 5.8040

MgCha−1 more carbon than JULES during that year. This
means that the predicted annual mean PCE in SUGAR is
23.03 MgCha−1yr−1 compared to 17.23 MgCha−1yr−1

in JULES. Both results lie below the lower bound of the
observed confidence intervals (33.9±3.6 MgCha−1yr−1,45

Fig. 6), however, the SUGAR result represents a significant
improvement relative to JULES. In the latter years of
the drought simulations (2009 onwards), the NSC pool
becomes significantly depleted and the buffering effect in
SUGAR (described above) diminishes. Consequently, on50

annual time-scales, the mean PCE in JULES and SUGAR
during the 2009-2011 period are similar (20.76 and 21.21
MgCha−1yr−1 respectively), although the allocation of
carbon to respiration and growth is different, with SUGAR

expending more (6.70 MgCha−1yr−1) carbon on growth 55

than JULES (3.06 MgCha−1yr−1). This difference in
allocation allows SUGAR to predict the observed NPP
with more skill than JULES, however it means that respi-
ration predictions are reduced relative to JULES and the
observations. 60

5 Discussion

SUGAR alters the relationship between photosynthesis and
carbon expenditure. This has implications for simulations
of both extreme and more gradual changes in climatic
and meteorological conditions. By decoupling PCE from 65

GPP, SUGAR creates a buffering effect that decreases the
seasonal variation of carbon expenditure, even in ecosystems
where the variation of GPP is already low. As we increase
the levels of stored substrate within our simulations, the
variability in PCE declines, due to an increased ability to 70

maintain respiration and growth when GPP is low, and
replenishment of the NSC pool when GPP is high. This
effect is most pronounced in the semi-arid regions of the
southern Amazon where there is a strong seasonal cycle in
GPP (Fig. A1), corresponding to a strong seasonal pattern of 75

precipitation. Semi-arid regions provide the largest contri-
bution to the global carbon sink anomaly, in part due to this
high variability in GPP (Poulter et al., 2014; Ahlström et al.,
2015). To represent this contribution, land surface models
must capture the response of vegetation to the climate 80

variability experienced in these regions now and in the
future. SUGAR provides a mechanistic approach to achieve
this by simulating respiration and NPP as a separate function
to GPP. Given the strong evidence from observations that
NPP and respiration do not have the same seasonal and 85

climatic responses as GPP (Liu et al., 2017; Girardin et al.,
2016; Doughty et al., 2015a), accurately predicting future
variability in atmospheric CO2 concentrations (Cox et al.,
2013) will be reliant on a sub-model such as SUGAR which
can allow this de-coupling to occur. Research demonstrating 90

the importance of highly seasonal arid regions highlights
the necessity of substrate-based approaches in large scale
ecosystem models and should motivate the community to
focus on improving our understanding of NSCs and how to
model them. 95

The sensitivity of the biosphere to climate change has
large impacts on the future climate. For example, large
losses of tropical forest carbon may represent a tipping
point in the climate system that could have highly adverse 100

and irreversible consequences for the global climate (Cox
et al., 2000). However, both the nature and likelihood of
such a tipping point is uncertain. Feedbacks between the
climate and the carbon cycle mean that small perturbations
in the state of the biosphere can make significant changes 105

to the future state of the climate (Friedlingstein et al.,



8 Simon Jones: A Simple Representation of NSC

2001). Small changes in the sensitivity of a tropical forest to
climate change, may be the difference between the continued
absorption of CO2 by ecosystems such as the Amazon, and
the severe die-back scenarios predicted by some models
(Huntingford et al., 2013; Phillips et al., 2009). Therefore5

the difference between a forest that is able to buffer the
effects of even a short drought or reduction in productivity,
and a forest that is not, may be significant at a global context
in the future, even if it appears small in the present day.
Non-conservative propagation of perturbations in the state10

of vegetated ecosystems contributes to large uncertainty in
climate models (Huntingford et al., 2009), which greatly
reduces our ability to constrain future climate possibilities
and tipping points within the carbon-cycle. Accurately
representing the response of forest biomass, particularly15

in the tropics, to changes in climate is crucial to reducing
this uncertainty and is a major goal of the climate and land
surface modelling community. The buffering effect demon-
strated in SUGAR may have an indirect yet large impact
on the predictions of future climate by LSMs and provide20

a more realistic representation of forest sensitivity to climate.

As well as a buffering of carbon expenditure, SUGAR
also enables a transition of the primary driver of growth
and respiration. With little or no carbohydrate, carbon ex-25

penditure in SUGAR is driven predominantly by the rate of
photosynthesis (Fig 4). Carbon is used by the ecosystem as
soon as it is assimilated, meaning that the rate of expenditure
is highly correlated with the rate of photosynthesis. This is
often described as ‘source driven carbon dynamics’ meaning30

that photosynthesis is the key driving flux in determining
the carbon balance of the ecosystem. ‘Source driven carbon
dynamics’ are at the centre of many LSMs including JULES.
As more carbohydrate is added to the ecosystem in SUGAR,
temperature becomes the predominant driver of PCE via35

the Q10 function (Eq. (5), Fig. 4). As more carbon is
stored, growth and respiration become less carbon limited
and more controlled by the Q10 function within SUGAR.
This shift can be seen as a transition towards ‘sink driven
carbon dynamics’. Under the theory of sink driven carbon40

dynamics, environmental variables such as temperature
and water-availability exert a direct control over carbon
expenditure that can be larger than that of photosynthesis
(Körner, 2003; Wiley and Helliker, 2012; Palacio et al.,
2014; Fatichi et al., 2014). Processes such as end-product45

inhibition (Stitt, 1991), in which photosynthesis is inhibited
by an excess of assimilate in the leaves, mean that growth
and respiration may even exert indirect control over the
rate of photosynthesis. The result is that ‘sink’ fluxes (i.e
respiration and growth), driven by environmental variables,50

are the predominant determinants of ecosystem carbon
balance. Since the NSC pool in SUGAR does not exert any
control over photosynthesis (e.g. via end-product inhibition)
the behaviour of SUGAR here cannot be described as
truly sink driven. However, SUGAR provides a framework55

that allows processes such as end-product inhibition to be
implemented, and so provides the opportunity to represent
both sink and source driven dynamics in LSMs. This allows
a greater representation of how the limiting factors of growth
and respiration interact with, and respond to a changing 60

climate.

Using the Caxiuanã control simulations we demonstrate
that SUGAR and JULES predict very similar long-term
NPP accumulation in the natural climate conditions of a 65

tropical moist forest. However, there are larger differences
between SUGAR and JULES on an annual time-scale,
due to the buffering of the natural variability in GPP by
SUGAR. These results further highlight the importance of
substrate-based modelling to better capture the responses 70

to natural variation, even under current climate conditions
and without extreme events (Doughty et al., 2015a). In
the TFE plot, SUGAR makes significant improvements
to the prediction of ecosystem carbon fluxes, particularly
for accumulated NPP. This improvement is caused by a 75

combination of two processes that occur in SUGAR and that
are not present in JULES. The first process is the utilisation
of the NSC pool during the early stages of the experiment.
SUGAR expends a mean 5.53 Mgha−1 more carbon than is
assimilated through photosynthesis in the first three years of 80

drought (2002-2004) and a further 5.80 Mgha−1 in 2005.
This allows an increase in both NPP and respiration relative
to JULES and is consistent with the analysis in Metcalfe
et al. (2010), which suggests the TFE plot was expending
7±4.5 MgCha−1yr−1 more than it was accumulating in 85

2005, implying that NSC stores were being depleted in
response to the drought. The second process is the down
regulation of respiration in response to the depleting NSC
pool. In the JULES simulations, photosynthesis declines
much faster than respiration and, since growth is equal to 90

GPP – Ra in JULES, this means that NPP drops significantly
as GPP declines in response to the drought. The result of
this effect is that in two years (2005 and 2007), the predicted
annual mean NPP by JULES, is negative. Negative NPP
is generally considered to be unrealistic, particularly over 95

the time-scale of a year (Roxburgh et al., 2005), and since
JULES does not contain a labile carbon pool to support the
deficit, missing carbon is taken from the structural pool. The
physical interpretation of this is that trees in JULES respire
away their structural carbon and shrink. While there is some 100

evidence of recycling and remobilisation of structural com-
pounds, the magnitude of structural carbon being allocated to
respiration (via the resulting negative NPP) in these JULES
simulations is not realistic. In SUGAR, respiration declines
due to the depletion of the NSC pool. This down-regulation 105

of Ra means that a larger proportion of instantaneous GPP
is available for NPP, resulting in larger predictions of NPP
in SUGAR than JULES, despite similar estimates of total
PCE. While NPP (GPP-Ra) may be negative in SUGAR
when respiration exceeds photosynthesis, the growth flux 110
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that is sent to the structural pools (Eq. (4)) has a lower
bound of zero. This eliminates the possibility of unrealistic
negative growth rates and the respiration of structural carbon.

The ability of SUGAR to accurately capture PCE re-5

sponses to drought is somewhat limited by the GPP used
to run it. Photosynthesis in JULES has a high sensitivity to
reductions in soil moisture (eg., Harper et al., 2016; Williams
et al., 2018). In the Caxiuanã simulations JULES predicts
an average decline in annual GPP of 4.42 MgCha−1yr−1

10

from 2001 to 2005 in the TFE plot. Combining the observed
PCE rates in the TFE plot with the predicted GPP by JULES
would imply that the forest is using an average of 10.96
MgCha−1yr−1 carbon more than it is assimilating in the
first four years. This would then imply that the forest has15

access to at least 43.86MgC/ha of NSC, c. 22% of estimated
forest biomass. Such a high NSC content is unlikely for
tropical forests, which are more likely to have reserves close
to 10% (Würth et al., 2005). The other, and more likely
explanation is that JULES is overestimating the decline in20

photosynthesis in response to the drought. The recent work
to improve stomatal responses to drought stress (Mencuccini
et al., 2019; Eller et al., 2018; Sperry et al., 2017) has the
potential to significantly improve GPP predictions in LSMs
such as JULES. However, there is a clear link between25

hydraulics and labile carbon storage, given stomatal closure
comes at the cost of a reduction in carbon assimilation. The
ability of a plant to store and use labile carbon is crucial
to its ability to survive, and recover from, drought-induced
stomatal closure (Sala and Mencuccini, 2014; O’Brien et al.,30

2014; Trugman et al., 2018). Without including at least
simple representations of NSC storage, the potential of
this recent work to improve the representation of stomatal
behaviour in response to drought in LSMs, is unlikely to be
realised.35

SUGAR is a purposefully simple model of NSC storage
and is missing some key processes known to be important
in defining the complexities of NSC storage and use within
a plant. A more complex NSC model might, for example,40

distinguish between starch and sugar pools, or represent
multiple pools for each plant organ, and actively control
the input or output of NSC into pools (Martínez-Vilalta
et al., 2016; Hartmann and Trumbore, 2016). However,
such models would likely require representation of substrate45

transport between pools and the scaling of NSC values to
the level of trees and forests. Recent advancements in mea-
surement protocols may allow these datasets to be reliably
collected (Landhäusser et al., 2018), however, previously
the level of uncertainty on such figures has been up to 400%50

(Quentin et al., 2015). As a result, comprehensive NSC
data-sets, measured through time in response to climatic
variations and across enough biomes to allow all model
PFTs to be evaluated are currently not available. Therefore,
this is not a currently viable way to constrain model output.55

Instead SUGAR is designed to break the direct link between
PCE and GPP found in many LSMs and to provide more
mechanistic predictions of growth and respiration. It can
be parametrised, initialised and evaluated with data that is
commonly collected across the globe – Biomass, GPP and 60

temperature (to calculate carbon residency time); CUE (to
find α); and respiration and NPP (for evaluation). It also
requires an input of initialised NSC fraction (fNSC) which
is not easily measured for an ecosystem, although values of
fNSC can be constrained within sensible bounds (Würth 65

et al., 2005). It may also be possible to use SUGAR as a
tool to further constrain observed values of NSC content by
conducting sensitivity studies of fNSC . Given the existing
level of knowledge, it is more robust and realistic to use
a simple model such as SUGAR which can be evaluated 70

against more easily available observations such as Ra, PCE,
NPP and GPP. As the accuracy and spatial extent of NSC
data grows models such as SUGAR can act as a simple
skeleton that allows new processes to be implemented into
LSMs, to more accurately represent the complexity of plant 75

carbon storage and use.

6 Conclusions

We have developed a simple model of NSC storage, designed
to be integrated into an LSM. The model makes significant
changes to the variability of growth and respiration predic- 80

tions in both extreme and more stable climatic conditions.
This has large implications for simulations of future climate
given the importance of predicting the variability of atmo-
spheric CO2 concentrations. The model also allows a more
mechanistic representation of the limiting factors of carbon 85

expenditure which may become increasingly important as the
climate changes in the future. Due to the simplicity of the
model it is easily parametrised using pre-existing data and
does not require complex datasets of NSC storage which are
currently unavailable. This makes the model attractive since 90

it can be easily integrated into LSMs without introducing un-
reasonable uncertainty in parameter values. The magnitude
of the change demonstrates the importance of representing
carbon storage in LSMs and we hope will motivate both the
modelling and empirical communities to further develop our 95

understanding and model representation of NSC dynamics.

Code availability. A model example of SUGAR for a single site
and set up to run at Caxiuanã using output from JULES is avail-
able at http://doi.org/10.5281/zenodo.3547613 For further informa-
tion or code please contact sj326@exeter.ac.uk 100
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Appendix A: Derivation of model parameters

A1 Derivation of φ

The NSC model is parametrised using steady state data
where the NSC pool can be assumed to be in equilibrium.
Equation (10) is integrated over the data period, P .5

1

P

t+P∫
t

dCNSC
dt

dt=
1

P

t+P∫
t

ΠG−U dt (A1)

Using the assumption that the non-structural carbohydrate
pools are approximately invariant over this period, it follows
that:10

dCNSC
dt

∗
≈ 0 (A2)

and

U∗ ≈ φF ∗
Q(T ) C∗

v

C∗
NSC

C∗
NSC +KmC∗

v

(A3)

where the asterisk denotes temporal averaging. i.e for vari-
able X(t):15

X∗ =
1

P

t+P∫
t

X(t)dt

Substituting Eq. (A2) and Eq. (A3) into Eq. (A1) and rear-
ranging using Eq. (3), results in the expression:

φ=
Π∗
G

C∗
NSCF

∗
Q

(fNSC +Km) (A4)

Using Eq. (6), this is further simplified to:20

φ=
Π∗
G

C∗
NSCF

∗
Q

(1 + aKm)fNSC (A5)

and using Eq. (3), this becomes:

φ=
Π∗
G

C∗
vF

∗
Q

(1 + aKm
) (A6)

Using

τ =
Cv
ΠG

(A7)25

where τ is the turnover time of structural carbon of the
ecosystem, which under steady state conditions is equal to
structural carbon residency time, φ is given by:

φ=
1 + aKm

τF ∗
Q(T )

(A8)

A2 Derivation of α 30

Using Eq. (4) & Eq. (11), the ratio of growth to PCE is:

G

U
=
G0

φ
(A9)

which is, by definition, equal to α. Under steady state condi-
tions growth is equal to NPP and PCE is equal to GPP (from
Eq. (2) and Eq. (10)). Hence it follows that: 35

α=
Π∗
N

Π∗
G

(A10)

i.e α is equal to the steady state, or mean carbon use effi-
ciency of the ecosystem during the parametrisation period.
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(a)

(b)

Figure 1. Flow diagrams that demonstrate how SUGAR is designed to change the model structure of carbon allocation within the Joint
UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011)). Arrows represent fluxes of carbon and black boxes
represent carbon pools. (a) A representation of the current structure of carbon allocation in JULES. Maintenance respiration (Rm) depends
on temperature (T), leaf nitrogen (N) and optionally, water availability (θ). Growth respiration (RG) is equal to a constant fraction of growth
(G) which is equal to photosynthesis (ΠG) less total plant respiration (RG +Rm). Total utilisation of carbon (Rm +RG +G) is always
exactly equal to carbon assimilation by photosynthesis (ΠG). (b) A representation of how SUGAR would sit within JULES. The red dashed
box represents the model boundary of SUGAR. Both maintenance respiration and growth depend on temperature via a Q10 function (FQ),
structural biomass (Cv) and non-structural carbohydrate content (CNSC ). Growth respiration is a constant fraction of growth.
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(a)
GPP

(b)
fNSC = 0.0005

(c)
fNSC = 0.01

(d)
fNSC = 0.02
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fNSC = 0.04

(f)
fNSC = 0.08
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Figure 2. The coefficient of variation of (a) GPP (Parazoo et al., 2014) and (b-f) simulated Plant Carbon Expenditure (PCE) for different
initialised carbohydrate content as a fraction of grid-box Biomass (fNSC ).
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fNSC = 0.0005 fNSC = 0.005 fNSC = 0.01

fNSC = 0.02 fNSC = 0.04 fNSC = 0.08
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Pearson Correlation coefficient of PCE and GPP

Figure 3. The Pearson correlation coefficient of simulated plant carbon expenditure (PCE) and driving gross primary productivity (GPP) for
different initialised carbohydrate contents as a fraction (fNSC ) of grid-box biomass. This gives an indication of how important a driver GPP
is for PCE in each grid-box.
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fNSC = 0.0005 fNSC = 0.005 fNSC = 0.01

fNSC = 0.02 fNSC = 0.04 fNSC = 0.08
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Pearson Correlation coefficient of PCE and FQ(T)

Figure 4. The Pearson correlation coefficient of simulated plant carbon expenditure (PCE) and driving Q10 (FQ) for different initialised
carbohydrate contents as a fraction (fNSC ) of grid-box biomass. This gives an indication of how important a driver the Q10 function is for
PCE in each grid-box.
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Figure 5. Accumulated Net Primary Productivity at Caxiuanã in (a) Control plot, (b) TFE plot and (c) The difference between the drought and
control forest (TFE-control). Observations are calculated as the accumulated sum of biomass increment change and local litter-fall (Rowland
et al., 2018). The presented confidence intervals are the sum of the litterfall measurement error and the 95% confidence intervals of biomass
increment calculated from 8 allometric equations using trunk diameter at breast height (DBH) data from Caxiuanã.
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Figure 6. Net primary productivity (NPP), Autotrophic respiration (Rp) and Plant Carbon Expenditure (PCE = NPP+Rp); for the periods
2002-2004, 2005 and 2009-2011. The left column is from the control plot and the right is from the through-fall exclusion (TFE) plot.
Model predictions from JULES and SUGAR are calculated by taking the mean of each flux over each period. Observations for 2005 are from
Metcalfe et al. (2010) and observations from 2009-2011 are from da Costa et al. (2014). Simulated photosynthesis in JULES responded almost
instantly to the introduction of the panels on the TFE plot which meant that NPP, Rp and PCE changed significantly in both models between
2002 and 2005. To demonstrate this change we show predicted fluxes during the 2002-2004 period as well as from 2005. Observations for
this period are not available to such a comprehensive degree as they are for 2005 and the 2009-2011 period. For this reason we compare the
model predictions for 2002-2004 to the 2005 observations. This is reasonable in the control plot where it is plausible that the forest was in
steady state (Metcalfe et al., 2010) and so fluxes from 2005 will be similar to those during the 2002-2004 period. In the TFE plot while there
were some significant changes in observed carbon fluxes during the first 3 years of the experiment, (for example the production of leaves,
flowers and fruits, and fine wood (Rowland et al., 2018; Meir et al., 2018)), the forest largely resisted the effects of the drought during this
period (significant increases in mortality were not seen until 2005 (Rowland et al., 2015; Meir et al., 2018)) and so we can similarly expect
fluxes from 2002-2004 to be comparable to those from 2005. Nonetheless, care should be taken with these comparisons in both plots.



22 Simon Jones: A Simple Representation of NSC

0.002

0.004

0.006

0.008

0.010 0 1 2 3 4

0.002

0.004

0.006

0.008

0.010 5 6 7 8 9

0.002

0.004

0.006

0.008

0.010 10 11 12 13 14

0.002

0.004

0.006

0.008

0.010 15 16 17 18 19

0.002

0.004

0.006

0.008

0.010 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12

23

1 2 3 4 5 6 7 8 9 10 11 12

24

1 2 3 4 5 6 7 8 9 10 11 12

0.002

0.004

0.006

0.008

0.010 25

1 2 3 4 5 6 7 8 9 10 11 12

26

1 2 3 4 5 6 7 8 9 10 11 12

27

30°S

0°

60°W

0 1 2
3 4 5 6
7 8 9 10

11 12 13 14 15
16 17 18 19
20 21 22 23 24

25 26
27

Legend and gridbox key

GPP
PCEFl

ux
 (

gC
 m

2  
da

y
1 )

Month

Figure A1. The mean seasonal trend of simulated plant carbon expenditure (PCE) and forcing gross primary productivity (GPP) (Parazoo
et al., 2014) for each gridbox in the fNSC =0.08 SUGAR simulations. The map key shows which plot corresponds to which grid-box.
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Symbol Units Definition

aKm Saturation parameter
CNSC kg C m−2 NSC content
Cv kg C m−2 Structural carbon content
fNSC Equilibrium NSC mass fraction
FQ Q10 function for growth and respiration
G kg C m−2 s−1 Plant growth
G0 s−1 Specific growth rate
q10 Q10 value for plant respiration and growth
Rg kg C m−2 s−1 Growth respiration
Rm kg C m−2 s−1 Maintenance respiration
Rm0 s−1 Specific rate of maintenance respiration
Rp kg C m−2 s−1 Total plant respiration
T ◦C Temperature
U kg C m−2 s−1 Plant carbon expenditure
Yg Growth yield coefficient
α Ratio of plant growth to PCE
Π kg C m−2 s−1 Net primary productivity
ΠG kg C m−2 s−1 Gross primary productivity
τ s Ecosystem carbon residency time
φ s−1 Specific rate of carbohydrate utilisation

Table 1. Definitions of Symbols



24 Simon Jones: A Simple Representation of NSC

Author Equation a b c d E

Brown 97a a+ bD+ cD2 42.69 -12.8 1.242

Brown 97b exp(a+ bloge(D)) -2.134 2.53

Carvalho 98 1000aexp(b+ cloge(D/100)) 0.6 3.323 2.546

Araujo 99 abDc 0.6 4.06 1.76

Chambers 01 exp(a+ bloge(D) + cloge(D)2 + dlog(D)3) -0.37 0.333 0.933 -0.122

Baker 04 exp(a+ bloge(D) + cloge(D)2 + dlog(D)3)(ρ/0.67) -0.37 0.333 0.933 -0.122

Chave 05 exp(a+ bloge(D) + cloge(D)2 + dlog(D)3)(ρ) -1.499 2.148 0.207 -0.0281

Chave 14 exp(a− 0.976E+ bloge(D) + cloge(D)2 + dlog(ρ)) -1.803 2.673 -0.0299 0.976 -0.0510307

D = Diameter at breast height (dbh); ρ = Wood density; a, b, c, d, E are constants.

Table 2. Allometric equations used to calculate above-ground biomass, Cv (kg)


