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Abstract 14 

Land surface models are essential parts of climate and weather models. The widely used Noah-15 

MP land surface model requires information on the leaf area index (LAI) and green vegetation 16 

fraction (GVF) as key inputs of its evapotranspiration scheme. The model aggregates all 17 

agricultural areas into a land use class termed “Cropland and Pasture”. In a previous study we 18 

showed that, on a regional scale, GVF has a bimodal distribution formed by two crop groups 19 

differing in phenology and growth dynamics: early covering crops (ECC, ex.: winter wheat, 20 

winter rapeseed, winter barley) and late covering crops (LCC, ex.: corn, silage maize, sugar 21 

beet). That result can be generalized for Central Europe. The present study quantifies the effect 22 

of splitting the land use class “Cropland and Pasture” of Noah-MP into ECC and LCC on surface 23 

energy fluxes and temperature. We further studied the influence of increasing the LCC share, 24 

which in the study area (the Kraichgau region, southwest Germany) is mainly the result of 25 

heavily subsidized biomass production, on energy partitioning at the land surface. We used the 26 

GVF dynamics derived from high-resolution (5 m x 5 m) RapidEye satellite data and measured 27 

LAI data for the simulations. Our results confirm that GVF and LAI strongly influence the 28 

partitioning of surface energy fluxes, resulting in pronounced differences between ECC and LCC 29 

simulations. Splitting up the generic crop into ECC and LCC had the strongest effect on land 30 

surface exchange processes in July-August. During this period, ECC are at the senescence 31 

growth stage or already harvested, while LCC have a well-developed, ground-covering canopy. 32 

The generic crop resulted in humid bias, i.e. an increase of evapotranspiration by +0.5 mm d-1 33 

(LE: 1.3 MJ m-2d-1), decrease of sensible heat flux (H) by 1.2 MJ m-2 d-1 and decrease of surface 34 

temperature by –1°C. The bias increased as the shares of ECC and LCC became similar. The 35 

observed differences will impact the simulations of processes in the planetary boundary layer. 36 

Increasing the LCC share from 28 to 38% in the Kraichgau region led to a decrease of latent heat 37 

flux (LE) and a heating up of the land surface in the early growing season. Over the second part 38 

of the season, LE increased and the land surface cooled down by up to 1 °C.  39 

 40 
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1 Introduction 41 

Within weather and climate models, land surface exchange processes are simulated by so-called 42 

land surface models (LSMs). The main role of an LSM is to partition net radiation at the land 43 

surface into sensible heat (H), latent heat (LE) and ground heat (G) fluxes and to determine the 44 

land surface temperature. Surface energy partitioning has a significant influence on the evolution 45 

of the Atmospheric Boundary Layer (ABL). ABL evolution strongly influences the initiation of 46 

convection, cloud formation, and ultimately the location and strength of precipitation (Crawford 47 

et al. 2001, Koster et al. 2006, Santanello Jr. et al. 2013, van Heerwaarden et al. 2009, Milovac et 48 

al. 2016).  49 

 50 

The surface energy partitioning depends on the physical and physiological properties of the land 51 

surface (Raddatz 2007). In LSMs, the earth's surface is subdivided into different land use classes, 52 

among them cropland. Physiological state variables of crops such as green vegetation fraction 53 

(GVF) and leaf area index (LAI) vary significantly throughout the growing season. This alters the 54 

biophysical parameters surface albedo, bulk canopy conductance, and roughness length, leading 55 

to significant changes in surface energy fluxes (Crawford et al. 2001, Ghilain et al. 2012, 56 

Tsvetsinskaya et al. 2001a, Wizemann et al. 2014). In many parts of the world, cropland covers a 57 

considerable part of the simulation domain area. Therefore, accurately simulating the seasonal 58 

variability of surface energy fluxes highly depends on an adequate representation of plant growth 59 

dynamics.  60 

 61 

One of the widely used LSMs is Noah-MP. It is usually coupled with the Weather Research and 62 

Forecasting (WRF) model, which is intended for use from the large eddy simulation (LES) scale 63 

up to the global scale. Within each grid cell, Noah-MP computes net longwave radiation as well 64 

as LE, H and G separately for the bare soil and the vegetated tile, whereas short-wave radiation is 65 

computed over the entire grid cell (semi-tile approach; Lhomme and Chehbouni 1999, Niu et al. 66 

2011).  67 

 68 

Noah-MP collects agricultural areas into only general land use classes such as “Dryland Cropland 69 

and Pasture”, “Irrigated Cropland and Pasture” or “Mixed Dryland/Irrigated Cropland and 70 

Pasture” etc.. Vegetation dynamics and its seasonal development are described in the Noah-MP 71 
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model by the plant variables GVF and LAI. The surface energy fluxes critically depend on 72 

accurately representing GVF and LAI dynamics (Chen and Xie 2011, Crawford et al. 2001, 73 

Refslund et al. 2014). In Noah-MP, GVF and LAI are fixed quantities: they do not depend on the 74 

weather conditions during a simulation. GVF is defined as the grid-cell fraction covered by a green 75 

canopy (Gutman and Ignatov 1998). It is a function of the upper canopy (Rundquist 2002) and 76 

represents the horizontal density of vegetation in each grid cell (Gutman and Ignatov 1998). LAI 77 

represents the vertical density of the canopy. Certain biophysical parameters in Noah-MP such as 78 

surface albedo, roughness and emissivity are considered linear functions of LAI.  79 

 80 

By default, Noah-MP derives GVF values from the normalized difference vegetation index 81 

(NDVI) obtained from the NESDIS/NOAA satellite. These data have a resolution of 15 km × 82 

15 km. Due to the mixing of croplands, forest and urban areas, the overall GVF is often positively 83 

biased. Moreover, as shown by Imukova et al. (2015), seasonal GVF data are strongly smoothed 84 

compared to the actual GVF dynamics. Milovac et al. (2016) and Nielsen et al. (2013) found that 85 

the GVF grid data used in Noah-MP LSM are outdated and stated that these should be updated 86 

given their importance for ABL evolution.  87 

 88 

In a previous study, we derived GVF data with a resolution of 5 m x 5 m (Imukova et al. 2015) for 89 

a region in southwest Germany (Kraichgau) using RapidEye satellite data. On the regional scale, 90 

GVF shows a bimodal distribution mirroring the different phenology of crops. Crops could be 91 

grouped into two classes. Early covering crops (ECC), such as winter wheat, winter rape, winter 92 

barley and spring barley, develop early in spring, achieve maximum GVF usually between late 93 

May and mid-June, and become senescent in July. Late covering crops (LCC), such as corn, silage 94 

maize, and sugar beet, are drilled in spring and develop maximum ground-covering canopy from 95 

July to August. They are still green in September, when the ECC are already harvested. The 96 

dynamics of ECC and LCC vary to some degree from season to season and from region to region.  97 

 98 

The shares of ECC and LCC may change over time, often reflecting economic decisions that may 99 

depend on policy interventions. In Germany, a substantial change in these shares was introduced 100 

by subsidizing biogas production. In 2005, 1.7 million ha of maize were cultivated in Germany. 101 
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Only 70,000 ha of this area were cropped with silage maize for biogas production (SRU Special 102 

Report 2007). In 2009, the area cropped with maize for biogas production had increased to about 103 

500,000 ha, while the total maize area remained almost constant (Huyghe et al. 2014). In 2012, 104 

the total acreage of maize had increased to 2.57 million ha with 0.9 million ha intended for biogas 105 

plants. The increase occurred mainly at the expense of grassland. Since then, the total maize crop 106 

area has remained almost constant: 2.6 million ha in 2018 (Fachagentur Nachwachsende Rohstoffe 107 

e. V. 2019). From 2005 to 2018, the maize area in Germany increased by about 53%.  108 

 109 

The objectives of the present study were 1) to elucidate the extent to which surface energy fluxes 110 

simulated with Noah-MP are affected by aggregating early and late covering crops into one generic 111 

cropland class, and 2) to quantify the effect of a land use change, driven by the expansion of maize 112 

cropping as a response to the increasing demand for biogas plants, on energy partitioning and 113 

surface temperature in the Kraichgau region (southwest Germany). Additionally, we tested the 114 

performance of the Noah-MP on LE data measured with the Eddy Covariance technique. 115 

 116 

2 Materials and methods 117 

2.1 Study site and weather data measurements 118 

The site under study is the agricultural field belonging to the farm “Katharinentalerhof”. The field 119 

is located north of the city of Pforzheim (48.920N, 8.700E). The central research site is a part of 120 

the Kraichgau region. Kraichgau region covers about 1500 km2. Mean annual temperature ranges 121 

between 9-10° C and annual precipitation between 730 and 830 mm. The Neckar and Enz rivers 122 

form the borders to the east. To the north and south, the region is bounded by the low mountain 123 

ranges Odenwald and Black Forest. In the west, it adjoins the Upper Rhine Plain (Oberrheinisches 124 

Tiefland). Kraichgau has a gently sloping landscape with elevations between 100 and 400 m above 125 

sea level (a.s.l.). Soils predominantly formed from loess material. The region is intensively used 126 

for agriculture: around 46 % of the total area is used for crop production. Winter wheat, winter 127 

rapeseed, spring barley, corn, silage maize and sugar beet are the predominant crops. 128 

 129 
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Weather data used to force the Noah-MP model were acquired at an agricultural field (EC1, 14 ha) 130 

belonging to the farm “Katharinentalerhof”. The terrain is flat (elevation a.s.l.: 319 m). The 131 

predominant wind direction is south-west. The study site has been described in detail in several 132 

studies (Imukova et al. 2015, Ingwersen et al. 2011, Wizemann et al. 2014). 133 

 134 

An Eddy Covariance (EC) station was operated in the center of the EC1 field. Wind speed and 135 

wind direction were measured with a 3D sonic anemometer (CSAT3, Campbell Scientific, UK) 136 

installed at a height of 3.10 m. Downwelling longwave and downwelling shortwave radiation were 137 

measured with a NR01 4-component sensor (NR01, Hukseflux Thermal Sensors, The 138 

Netherlands). Air temperature and humidity were measured in 2 m height (HMP45C, Vaisala Inc., 139 

USA). All sensors recorded data in 30-min intervals. Rainfall was measured using a tipping bucket 140 

(resolution: 0.2 mm per tip) rain gauge (ARG100, Campbell Scientific Ltd., UK). For further 141 

details about instrumentation and data processing see Wizemann et al. (2014). 142 

 143 

2.2 Eddy Covariance measurements 144 

In order to test the Noah-MP performance, we used the EC measurements of latent heat flux over 145 

maize (EC2) and winter wheat field (EC3) of 2012 growing season. EC2 and EC3 agricultural 146 

fields are also belonging to the farm “Katharinentalerhof” introduced above. They are 23 ha and 147 

15 ha large. The winter wheat was planted in autumn 2011 and harvested on 29th of July. The 148 

maize was drilled on 2nd of May and harvested on 20th of September. The EC station was 149 

operated in the center of each field. The latent heat flux was measured in a 30-min resolution. 150 

For the maize, the LE data was only available till 20th of September, whereas for the winter 151 

wheat field there were no missing data. A detailed information on the EC measurements is given 152 

in Imukova et al. (2016). The EC flux data were processed with the TK3.1 software (Mauder M., 153 

2011). Surface energy fluxes were computed from 30-min covariances. For data quality analysis 154 

we used the flag system after Foken (Mauder M., 2011). LE half-hourly values with flags from 1 155 

to 6 (high and moderate quality data) were used to test the performance of the Noah-MP LSM. 156 

LE data was gap filled using the mean diurnal variation method with an averaging window of 14 157 

days (Falge et al., 2001). The random error of the LE flux, which consist of the instrumental 158 

noise error of the EC station and the sampling error was computed by the TK3.1 software 159 
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(Mauder et al., 2013). For more details on EC data processing, please refer to Imukova et al. 160 

(2016).  161 

 162 

The model performance is usually tested against field measurements of sensible and latent heat 163 

flux performed with Eddy Covariance (EC) technique (Ingwersen et al., 2011; El Maayar et al., 164 

2008; Falge et al., 2005). EC method is widely used method for this purpose although it has one 165 

well-known problem. The energy balance of EC flux data is typically not closed, which means LE 166 

and/or H fluxes measured with EC technique are most probably underestimated. Previous study 167 

showed the EC technique provides reliable LE measurements at our study site and these data can 168 

be used for model testing (Imukova et al. 2016). 169 

 170 

2.3 The Noah-MP v1.1 land surface model  171 

2.3.1 Model parameterization 172 

Multi-physics options of Noah-MP were set as shown in the Table 1. For the simulation we used 173 

the USGS land use dataset. The vegetation type index was set to 2 (Dryland cropland and 174 

Pasture) and soil type index to 4 (Silt loam). The model was forced with half-hourly weather data 175 

(wind speed, wind direction, temperature, humidity, pressure, precipitation, downwelling 176 

longwave and shortwave radiation) measured at EC1 from 2011 to 2012. Simulations were 177 

initialized with a spin up period of one year (2011) and run with a time step of 1800 seconds. 178 
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Table 1. Setting of the multi-physics options used in the Noah-MP simulation. 179 

Multi-physics option Setting 

Vegetation model opt_dveg = 1: prescribed [table LAI, shdfac=FVEG] 

Canopy stomatal resistance opt_crs = 2: Jarvis 

Soil moisture factor for stomatal resistance opt_btr = 1: Noah 

Runoff and groundwater model opt_run = 1: SIMGM 

Surface layer drag coefficient (CH & CM) opt_sfc = 1: based on Monin-Obukhov similarity theory 

Supercooled liquid water opt_frz = 1: NY06 

Frozen soil permeability opt_inf = 1: NY06 

Radiation transfer opt_rad = 3: gap=1—Fveg 

snow surface albedo opt_alb = 2: CLASS 

rainfall & snowfall opt_snf = 1: Jordan91 

lower boundary of soil temperature opt_tbot = 2: Noah 

snow/soil temperature time scheme opt_stc = 1: Semi-implicit 

 180 

 181 

2.3.2 GVF dynamics  182 

The GVF data required by the Noah-MP model were derived from high-resolution (5 m x 5 m) 183 

RapidEye satellite data. A detailed information on the deriving of the GVF data used in the current 184 

research can be found in Imukova et al. (2015). The GVF data were calculated from the 185 

Normalized Difference Vegetation Index (NDVI) computed from the red and near-infrared bands 186 

of the satellite images. The relationship between GVF and NDVI was established by linear 187 

regression using ground truth measurements. GVF maps for the Kraichgau region were derived in 188 

a monthly resolution. 189 
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Table 2. GVF dynamics of early covering crops (ECC) and late covering crops (LCC) in 2012 and 2013 190 
in the Kraichgau region, southwest Germany as well as the GVF dynamics of the generic crop. 191 

GVF  15 Apr 15 May 15 Jun 15 Jul 15 Aug 15 Sep 

GVF 2012 ECC - b 0.74 0.83 0.37 0.01 c 0.01 

 LCC - b 0.01 0.35 0.74 0.69 c 0.56 

GVF 2013 ECC 0.54 0.80 0.57 c 0.29 0.01 0.01 

 LCC 0.01 0.06 0.37 c 0.69 0.74 0.75 

Mean GVF  ECC 0.54 0.77 0.70 0.33 0.01 0.01 

 LCC 0.01 0.04 0.36 0.72 0.72 0.66 

Generic crop GVFa 0.39 0.57 0.60 0.44 0.21 0.19 

a Weighted mean GVF calculated based on fractions of ECC (72%) and LCC (28%) in Kraichgau  
b No RapidEye scenes were available for April 
c No RapidEye scenes were available for these months, GVF values were derived by linear interpolation between adjacent 

months 

 192 

Table 2 shows the observed and mean GVF dynamics of ECC and LCC over the growing seasons 193 

2012 and 2013 as well as the GVF dynamics of the generic crop in the Kraichgau region. The GVF 194 

values on the 15th day of each month, as required by Noah-MP model, were calculated by linearly 195 

interpolating the monthly values derived from the GVF maps. A generic GVF dynamics was 196 

calculated as the weighted mean of ECC and LCC from 2012 and 2013. The areal distribution of 197 

ECC and LCC was determined from the GVF maps of May. All pixels with a GVF value below 198 

0.5 were counted as LCC, whereas pixels with values above that threshold were assigned to ECC. 199 

Figure 1 shows the spatial distribution of early and late covering crops in Kraichgau. The estimated 200 

areal distribution of ECC and LCC was 72% and 28%, respectively. These results correspond well 201 

with data of the Statistisches Landesamt Baden-Württemberg (http://www.statistik.baden-202 

wuerttemberg.de/ ). 203 

 204 
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 205 

Figure 1. Map of early covering (ECC) and late covering crops (LCC) in Kraichgau region, Southwestern 206 

Germany. 207 
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2.3.3 LAI dynamics  208 

Noah-MP requires prescribed LAI data for each month. Data were derived from field 209 

measurements. LAI was measured biweekly using a LAI-2000 Plant Canopy Analyzer (LI-COR 210 

Biosciences Inc., USA). In 2012 and 2013, LAI of the crops was measured on five permanently 211 

marked plots of 1 m2 on three different fields. Detailed information about the study plots can be 212 

found in Imukova et al. (2015). In 2009-2011, LAI and the phenological development of the crops 213 

were measured on five permanently marked plots of 4 m2 in the same three fields. The growth 214 

stages of crops were determined using the BBCH scale (Meier et al. 2009). More details on the 215 

measurements can be found in Ingwersen et al. (2011) and Ingwersen et al. (2015). Table 3 shows 216 

measured and mean LAI dynamics as well as generic LAI dynamics estimated considering shares 217 

of ECC (72%) and LCC (28%) in the study region. LAI dynamics of winter wheat and winter rape 218 

were assigned to ECC, those of maize to LCC. Mean LAI dynamic of ECC was estimated based 219 

on the measurements conducted in winter wheat and winter rape stands during the 2012 and 2013 220 

growing seasons. Since LAI data were not available for maize in 2013, the mean LAI dynamic of 221 

LCC were assessed using field data from the same fields collected in 2009-2012.  222 

Table 3. LAI dynamics of early covering crops (ECC) and late covering crops (LCC) in 2012 and 2013 in 223 
the Kraichgau region, southwest Germany, as well as the LAI dynamics of the generic crop. 224 

Green LAI  15 Apr 15 May 15 Jun 15 Jul 15 Aug 15 Sep 

LAI 2012 ECC 2.4 4.4 4.6 0.0 0.0 0.0 

 LCC 0.0 0.1 0.9 3.2 5.0 3.7 

LAI 2013 ECC 1.7 4.2 4.3 0.0 0.0 0.0 

 LCC b - - - - - - 

Mean LAI ECC 2.1 4.3 4.5 0.0 0.0 0.0 

 LCC c 0.0 0.1 0.9 3.1 4.5 3.8 

Generic crop LAI a 1.5 3.1 3.5 0.9 1.3 1.1 

a Weighted mean LAI calculated based on fractions of ECC (72%) and LCC (28%) in Kraichgau 

b LAI data for maize in 2013 were not measured 

c Since LAI data for maize in 2013 were not available, LAI dynamics were derived from the field data of 2009-2012 for maize 

in the Kraichgau region 

 225 

 226 

2.4 Simulation runs 227 
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We firstly quantified the extent to which ECC and LCC differ with regard to their energy and water 228 

fluxes, surface (TS) and soil temperature (TG). For this, we performed one local simulation for 229 

each crop group using the mean LAI and the mean GVF dynamics observed during the two 230 

growing seasons (see Table 2 and Table 3). 231 

 232 

Secondly, to determine the effect of splitting up the vegetation dynamics of a generic crop into 233 

that of ECC and LCC, we compared the following two local simulation runs: 234 

Run 1: Noah-MP was forced with the GVF and LAI dynamics of the generic crop (Table 2 and 235 

Table 3). Accordingly, in this simulation, we first computed the weighted mean of the vegetation 236 

properties (GVF and LAI), and subsequently simulated the surface energy fluxes, TS and TG. 237 

Run 2: We first simulated the energy and water fluxes separately for ECC and LCC with their 238 

crop-specific vegetation dynamics. Afterwards, we calculated the weighted averages of the 239 

simulated fluxes and temperatures based on the share of early covering (72%) and late covering 240 

crops (28%) in Kraichgau. 241 

 242 

Thirdly, we studied the effect of increasing the LCC share on the surface energy fluxes, surface 243 

and soil temperatures. As mentioned in the Introduction, the maize cropping area in Germany 244 

increased by 53% over the last decade. In our study region, this increase corresponds to a rise of 245 

the LCC share from 28% to 38%. To study the effect of this land use change on the Noah-MP 246 

simulations, we performed one additional generic crop simulation, but this time the generic crop 247 

dynamics was computed with a LCC share of 38%. 248 

 249 

2.5 Statistical analysis 250 

The model performance was evaluated based on the model efficiency (EF), root mean square error 251 

(RMSE) and bias. EF is defined as the proportion of the total variance explained by a model:  252 
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where Pi denotes predicted values, Oi and O  – observed values and their mean, respectively, while 253 

N is the number of observations. RMSE and bias were calculated as  254 
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 256 

 257 

3 Results 258 

3.1 ECC vs. LCC 259 

Over the growing season, ECC and LCC show distinct differences with regard to energy 260 

partitioning at the land surface (Figure 2). The observed shifts were strongest for LE and H. Early 261 

covering crops already reached their maximum LE flux in May, after which LE declined during 262 

the growing season. In contrast, LCC showed a continued increase in LE over the season, peaking 263 

three months later in August. The smallest difference in evapotranspiration between both crops 264 

types was on average 0.4 mm day-1 (LE 0.9 MJ m-2day-1) in June, while the largest mean deviation 265 

of -2.3 mm day-1 (LE -5.7 MJ m-2day-1) occurred in August (Table 4). With regard to the H flux, 266 

the situation was opposite (Figure 2). In the case of ECC, H flux increased continuously over the 267 

course of the growing season, peaking in August. In contrast, LCC already reached the H 268 

maximum in May. Afterwards, H decreased continuously until late August. As for LE, the smallest 269 

(-1.2 MJ m-2day-1) and largest (5.3 MJ m-2day-1) mean differences in H between ECC and LCC 270 

were observed in June and August, respectively (Table 4). Compared with LCC, the higher latent 271 

heat fluxes of ECC in May and June resulted in a cooler land surface, on average by -2.6°C and -272 

1.0°C, respectively (Table 4). From July to August the situation was reversed: because latent heat 273 

fluxes of ECC are distinctly lower than that of LCC, the surface temperature at ECC sites was up 274 

to 4°C warmer than at LCC sites (Figure 3). 275 

 276 
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The mean difference in daily ground heat flux between ECC and LCC during the growing season 277 

ranged between -0.2 MJ m-2 and 0.2 MJ m-2 (Table 4). Also for the ground heat flux, the smallest 278 

difference between both crops types was observed in June (0.05 MJ m-2). 279 

Table 4. Mean differences (ECC minus LCC) in latent (LE), sensible (H) and ground heat (G) fluxes, 280 
mean surface temperature (TS) and mean ground temperature (TG) between ECC and LCC simulations. 281 

Month DOY 
LE H 

MJ m-2 d-1 

G 

MJ m-2 d-1 

TS 

°C 

TG 

°C mm d-1 MJ m-2 d-1 

May 121 – 151 1.3 3.3 -3.1 -0.2 -2.6 -2.2 

June 152 – 181 0.4 0.9 -1.2 0.05 -1.0 -0.9 

July 182 – 212 -1.5 -3.8 3.3 0.2 2.1 1.8 

August 213 – 243 -2.3 -5.7 5.3 0.1 3.2 2.4 

September 244 – 273 -0.7 -1.8 2.1 -0.1 1.9 1.2 
DOY -  day of a year 
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 282 

283 

284 

285 
Figure 2. Simulation results of Noah-MP LSM for latent (LE), sensible (H) and ground heat (G) flux. 286 
Simulations were performed for two types of crops: early covering (solid line) and late covering (dashed 287 
line). 288 
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3.2 Noah-MP vs. Eddy Covariance measurements 300 

The average random error of the latent heat flux measured with EC technique for the entire growing 301 

season was about 25% over the winter wheat field and about 21% over the maize field. 302 

 303 

The simulated latent heat flux based on ECC and LCC parametrization agreed fairly well with the 304 

Eddy Covariance data (Table 5-6, Figure 4-5). The model efficiency over the entire simulation 305 

period was 0.87 for ECC and 0.90 for LCC.  The best agreement between the observations and the 306 

Noah-MP LSM using crop-type-specific sets was achieved for winter wheat in June and for maize 307 

in August and September. The generic crop parametrization showed less satisfying modeling 308 

results, particularly for the maize field (Table 5-6). For the entire growing season, EF was 0.78 for 309 

winter wheat and only 0.57 for maize. Over the winter wheat field, LE was overestimated. 310 

Overestimation of the LE was highest in in July and August. Over the maize field, LE was 311 

overestimated in May and June and underestimated in July, August and September. Particularly in 312 

May and August, the bias increased to 68.8 Wm-2 and -56 Wm-2, respectively. The best model 313 

performance using generic crop set was achieved for the winter in June wheat and for the maize in 314 

July.  315 

Table 5. Root mean square error (RMSE), bias and modeling efficiency (EF) of the latent heat flux for 316 
the simulation runs for winter wheat stand (EC3 field). 317 

Variant May June July August September Overall 

RMSE (Wm-2) 

ECC 45.4 35.4 33.0 26.3 13.5 32.5 

Generic crop 36.3 33.0 59.6 63.6 20.9 45.7 

Bias (Wm-2) 

ECC 27.3 17.9 14.2 17.1 0.8 15.5 

Generic crop 20.5 15.2 33.9 41.7 7.7 23.8 

EF (1) 

ECC 0.88 0.91 0.80 0.74 0.89 0.87 

Generic crop 0.91 0.92 0.62 0.41 0.85 0.78 

 318 
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Table 6. Root mean square error (RMSE), bias and modeling efficiency (EF) of the latent heat flux for 319 
the simulation runs for maize stand (EC2 field). 320 

Variant May June July August September Overall 

RMSE (Wm-2) 

LCC 53.1 37.3 31.8 28.1 18.9 35.7 

Generic crop 102.0 50.9 29.8 85.8 43.7 68.0 

Bias (Wm-2) 

LCC 37.4 21.5 13.7 -14.9 -2.5 11.0 

Generic crop 68.6 29.9 -10.6 -56.0 -22.9 1.8 

EF (1) 

LCC 0.59 0.87 0.94 0.96 0.96 0.90 

Generic crop 0.30 0.80 0.91 0.12 0.77 0.57 

 321 
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3.3 Run 1 vs. Run 2 (Generic crop vs. weighted mean of ECC and LCC) 328 

The generic crop simulation run (Run 1) generally yielded higher LE fluxes than Run 2 (i.e. 329 

splitting up the generic crop into ECC and LCC) (Figure 6). During the growing season the mean 330 

difference in evapotranspiration between two runs was 0.1 mm day-1 (LE 3.7 MJ m-2day-1) (Table 331 

5). Smallest mean monthly differences occurred in June and September: 0.02 mm day-1 (LE 0.4 MJ 332 

m-2day-1) and 0.03 mm day-1 (LE 1 MJ m-2day-1), respectively. The most pronounced differences 333 

in LE flux were recorded in late July (DOY 197-208) (Figure 7). The average difference in half-334 

hourly fluxes over this period, between 9 a.m. and 6 p.m, was 36 W m-2, and the highest half-335 

hourly deviation between both runs was 83 W m-2 (Figure 7). The highest daily deviation was 0.8 336 

mm day-1 (Figure 6). Over the whole season, the cumulative difference in evapotranspiration 337 

between two runs was 20 mm, leading to a 16 percent lower seasonal water balance (SWB) in Run 338 

1 (SWB: -133 mm) than in Run 2 (SWB: -113 mm). 339 

Table 5. Mean differences in latent (LE), sensible (H) and ground heat (G) fluxes, surface 340 

temperature (TS) and ground temperature (TG) between Run 1 and Run 2 simulations. Numbers 341 

in brackets: the relative difference between Run 1 and Run 2 simulations in percentage. 342 

Month DOY 
LE  H 

MJ m-2 d-1 
G 
MJ m-2 d-1 

TS 

°C 

TG 

°C mm d-1 MJ m-2 d-1 

May 121 – 151 0.1 (3) 0.3 -0.3 (19) -0.003 (1) -0.3 (2) -0.02 (0.1) 

June 152 – 181 0.02 (0.4) 0.04 -0.1 (4) 0.001 (1) -0.1 (1) 0.01 (0.05) 

July 182 – 212 0.3 (7) 0.6 -0.6 (21) -0.016 (4) -0.4 (2) -0.1 (0.6) 

July* 197 – 208 0.5 (14) 1.3 -1.2 (46) -0.034 (10) -1.0 (4) -0.2 (1) 

August 213 – 243 0.2 (7) 0.5 -0.6 (18) 0.004 (2) -0.3 (1) 0.01 (0.03) 

September 244 – 273 0.03 (1) 0.1 -0.2 (5) 0.005 (3) -0.1 (1) 0.1 (0.4) 

Mean  0.1 (3.7) 0.3 -0.4 (13.2) -0.002 (1) -0.2 (1.4) -0.01 (0.1) 

DOY -  day of a year 

 343 

 344 

In contrast, H fluxes of Run 1 were mostly lower over all months than those simulated in Run 2 345 

(Figure 6). From May to September, the mean difference in H fluxes was about -0.4 MJ m-2 (-346 

13 %) (Table 5). The smallest difference occurred again in June, the largest difference again in 347 

late July (Figure 7). During DOY 197-208 the mean differences in half hourly H fluxes was about 348 

-29 W m-2, the peak deviation being -72 W m-2 (9 a.m.-6 p.m) (Figure 7). Cumulating these 349 
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differences over the day reduced the production of sensible heat on average in the order of 350 

1.2 MJ m-2, corresponding to a 46 %reduction compared to Run 2 (Table 5). Ground heat fluxes 351 

as well as soil temperature were affected only moderately by the different vegetation 352 

parameterization of Run 1 and 2 (Figure 7, Figure 6). As for LE and H, the largest mean differences 353 

in G fluxes were observed during DOY 197-208 ( -0.034 MJ m-2 = 10%) (Table 5). 354 

 355 

Due to the humid bias of Run 1, the canopy surface was cooler than in Run 2 in all months. On 356 

average, TS of Run 1 was 0.2 °C (~1.4%) lower during the growing season than in Run 2. In late 357 

July (DOY 197-208) the mean daily difference was -1 °C (Table 5, Figure 6) and reached a daytime 358 

(9a.m.-6p.m.) peak difference of up to -2.6 °C (Figure 7).  359 

 360 
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3.4 Land use change towards LCC 366 

Increasing the LCC fraction from 28% to 38% mainly led to changes in LE and H fluxes (Table 367 

6). That LCC increase lowered the LE flux (-0.3 MJ m-2 day-1-or ET 0.1 mm day-1) early in the 368 

season. This was accompanied by a higher H flux (+0.3 MJ m-2 day-1), which in turn led to a 0.3 369 

°C warmer surface temperature than for the runs with the actual ECC-LCC ratio. From July to 370 

September, increasing the LCC fraction boosted evapotranspiration by about 0.2 mm day-1 (LE 371 

0.4 MJ m-2 day-1) and decreased the H flux by about 0.3 MJ m-2 day-1 (Table 6). The largest half-372 

hourly differences occurred in August (DOY 213-243, Figure 8), amounting to +40 W m-2 373 

and -30 W m-2 for LE and H, respectively. The smallest deviations for both fluxes were recorded 374 

in June. Over the July–September period, the higher LE flux of the simulation run with the 375 

increased LCC fraction cooled the land surface up to -1 °C (Figure 8). In general over the growing 376 

season, increasing the LCC share by 10% led to an increase in cumulative evapotranspiration, 377 

which in turn resulted in a 10 mm lower seasonal water balance (SWB: -143 mm).  378 

 379 

With regard to the ground heat flux, increasing the LCC fraction led to an up to 10 W m-2 higher 380 

flux over the noon time during the second part of the growing season (Figure 8), whereas early in 381 

the season the differences did not exceed 0.2°C (Table 6). 382 

Table 6. Mean differences in latent (LE), sensible (H) and ground heat (G) fluxes, surface temperature 383 

(TS) and ground temperature (TG) between simulations with the LCC fraction increased by 10 % and the 384 

baseline simulation (increased LCC share minus baseline simulation). Numbers in brackets: the relative 385 

difference between increased LCC share and baseline simulation in percentage 386 

Month DOY 
LE H  

MJ m-2d-1 

G  

MJ m-2d-1 

TS  

°C 

TG  

°C mm d-1 MJ m-2d-1 
May 121 – 151 -0.1 (3.3) -0.3 0.3 (14) 0.02 (1) 0.3 (2) 0.2 (1) 

June 152 – 181 -0.04 (1.0) -0.1 0.1 (6) -0.005 (0.5) 0.1 (1) 0.1 (1) 

July 182 – 212 0.2 (4.3) 0.4 -0.3 (12) -0.02 (6) -0.2 (1) -0.2 (1) 

August 213 – 243 0.2 (7.6) 0.6 -0.5 (17) -0.01 (1) -0.3 (2) -0.2 (1) 

September 244 – 273 0.1 (3.8) 0.2 -0.2 (4) 0.01 (4) -0.2 (1) -0.1 (1) 

DOY -  day of a year 

 387 

 388 
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4 Discussion 390 

The comparison of the ECC and LCC simulations confirmed that GVF and LAI significantly affect 391 

the partitioning of surface energy fluxes. LE flux increases with crop growth and peaks when the 392 

canopy is fully developed, i.e. have maximum LAI and GVF. By contrast, the highest H and G 393 

fluxes were observed at sparsely covered fields or on the fields with a senescent canopy. During 394 

the main growth period of crops, H and G fluxes were quite low. ECC and LCC crops vary 395 

significantly in sowing and harvest date, leaf area and senescence dynamics, water use efficiency 396 

and phenology. Their surface energy fluxes therefore differ distinctly. Our simulation results are 397 

in agreement with experimental data of Wizeman et al. (2014) as well as with modeling studies of 398 

Sulis et al. (2015), Tsvetsinskaya et al. (2001b), Xue et al. (1996) or Ingwersen et al. (2018).  399 

 400 

Simulation results based on ECC and LCC parametrization are in complete harmony with the field 401 

observations at our study site. The performance test of the Noah-MP on the EC data showed the 402 

crop-type-specific sets significantly improve the simulation of latent heat flux at the field scale. In 403 

contrast, generic crop parametrization showed less satisfying modeling results. In general, it 404 

performed better for winter wheat stand than for maize. Based on the generic crop set, simulation 405 

results tend to greatly overestimate the latent heat flux for maize in the beginning of the growing 406 

season when the plants are small. In August and September, the latent heat flux was in contrast 407 

distinctly underestimated, during this period the maize canopy is fully developed. For wheat, 408 

model overestimates the latent heat flux, particularly during July – September period, when the 409 

winter wheat stand ripened and senescence or harvested. 410 

 411 

Besides the vegetation dynamics, the simulated energy and water fluxes depend on additional 412 

model settings as well. Ingwersen et al. (2011) performed a sensitivity study with the Noah model 413 

for our study site. He found that among the vegetation parameters the minimum stomatal resistance 414 

(RS) and a parameter used in the radiation stress function of the Jarvis scheme (RGL) are the most 415 

sensitive parameters. Using constant RS, as it is implemented in Noah, results in the 416 

underestimation of sensible heat flux and overestimation of latent heat flux during the ripening 417 

stage of the cereals. Considering a monthly varying RS helped to distinctly improve the simulation 418 

of the energy and water fluxes at the land surface. Ingwersen et al. (2010) concluded, integrating 419 

the crop growth model which delivers daily RS, LAI and GVF values into Noah would greatly 420 
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enhance the overall performance of the land surface model. Among the soil parameters, the most 421 

sensitive parameters are the soil moisture threshold where transpiration begins to stress 422 

(REFSMC), maximum soil moisture content (MAXSMC) and soil moisture threshold where direct 423 

evaporation from the top layer ends (DRYSMC). Considering these parameters has also a potential 424 

to further improve of simulation results. 425 

 426 

The potential increase of the LCC fraction (driven by the high demand for biogas and forage 427 

production) leads to significant changes in the partitioning of the energy fluxes at the croplands. 428 

In recent years the total area under maize in Germany has more than doubled. This corresponds to 429 

an approximately 10% increase of the LCC fraction for the study region. In the early vegetation 430 

period, the altered ECC-LCC ratio leads to a decrease of evapotranspiration, an increase of H 431 

fluxes, and a warmer cropland surface because, during that period, a higher fraction of fields is 432 

bare or sparsely covered with vegetation. In mid-June, the situation reverses. The higher share of 433 

LCC boosts LE fluxes, decreases H fluxes and lowers surface temperatures. The increased 434 

evapotranspiration over the growing season, in turn, leads to a lower seasonal water balance. 435 

 436 

Comparing the generic crop simulation (Run 1) with the weighted mean of two separate 437 

simulations for ECC and LCC (Run 2) showed the largest difference over the second half of the 438 

growing season, particularly during late July/early August. In July, ECC become senescent: GVF 439 

drops sharply and green LAI equals zero. In early August, ECC are usually harvested. In contrast, 440 

LCC have a developed ground-covering canopy during July-August. Leaves of these crops are still 441 

green in September. This transition period is very smooth in the case of the generic crop, resulting 442 

on average in about 14 % higher LE and in about 46%, 10% and 4% lower H, G and surface 443 

temperature, respectively, compared with Run 2.  444 

 445 

The results presented above apply to the ECC-LCC ratio within our study area. What can we expect 446 

in agricultural landscapes with different ECC-LCC ratios? The ECC-LCC ratio has nearly no effect 447 

on energy partitioning in June, whereas in May, July and August its influence on the turbulent 448 

fluxes is pronounced (Figure 9). The weak effect in June is because, during this period, the LAI 449 

and GVF of ECC and LCC are similar (Figure 11). In the other months, however, the ECC-LCC 450 

ratio heavily affects the energy partitioning. For example, increasing the LCC share from 10% to 451 
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90% boosts daily evapotranspiration in August from 2.5 mm d-1 to 4.3 mm d-1, decreases the H 452 

flux by about 4.1 MJ m-2 d-1 and cools down the cropland surface by 2 °C. Over the growing season, 453 

the increase in the LCC share leads to a general increase in evapotranspiration, which in turn 454 

lowers the seasonal water balance (Table 7). Moreover, different ECC-LCC ratios will also affect 455 

the above-mentioned humid bias of the generic crop parameterization (Figure 10). The bias is 456 

largest if ECC and LCC shares are balanced (ECC 50% and LCC 50 %), whereas combinations 457 

with one predominant crop distinctly lower the bias. In August, for instance, the LE differences 458 

between the two runs with ECC 50%- LCC 50% equal 0.27 mm day-1, while ECC 10%- LCC 90 459 

% yields differences of 0.09 mm day-1.  460 

Table 7. Weather data and simulation results of Noah-MP LSM for cumulative evapotranspiration for the 461 

Kraichgau region. Simulations were performed considering different shares of early covering crops 462 

(ECC) and late covering crops (LCC). 463 

ECC and LCC shares 
Total  

rainfall (R), mm 

Cumulative 

evapotranspiration (ET), mm 

Seasonal water  

balance (R-ET), mm 

ECC 90% LCC 10% 388 496 -108 

ECC 70% LCC 30% 388 522 -134 

ECC 50% LCC 50% 388 544 -156 

ECC 30% LCC 70% 388 557 -169 

ECC 10% LCC 90% 388 563 -175 

 464 

 465 

Figure 9. Simulation results of Noah-MP LSM for latent (LE) and sensible (H) heat flux. Simulations 466 
were performed considering different shares of ECC and LCC. 467 
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 469 

Figure 10. Differences in latent (LE) and sensible heat (H) fluxes between Run 1 and Run 2 simulations 470 
(Run 1 - Run 2). Simulations were performed considering different shares of ECC and LCC. 471 
 472 

 473 

Figure 11. GVF and LAI dynamics of early covering crops (ECC), late covering crops (LCC) and 474 
Cropland. 475 
 476 

Our results show that performing simulations based on single dynamics for each type of crop (ECC 477 

and LCC) improve simulations of surface fluxes during transition periods and at the end of the 478 

growing season. Lumping ECC and LCC into one land-use class (Croplands and Pasture), as done 479 

in Noah-MP, is an oversimplification. Several authors demonstrated the necessity to distinguish 480 

biophysical plant parameters between substantially different crops to obtain representative 481 

simulation results in the lower atmosphere (Sulis et al. 2015, Tsvetsinskaya et al. 2001b, Xue et 482 

al. 1996). They showed that high-resolution spatial information on various croplands and 483 

associated physiological characterizations can significantly improve the simulations of land 484 

surface energy fluxes, leading to better weather and climate predictions. 485 
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Changes of LAI and GVF with plant growth lead to changes in surface albedo, bulk canopy 487 

conductance and roughness length, which in turn alter the partitioning of surface energy fluxes 488 

(Chen and Xie 2011, Chen and Xie 2012, Crawford et al. 2001, Tsvetsinskaya et al. 2001a, Xue et 489 

al. 1996). Such altered energy partitioning at the land surface then changes the thermodynamic 490 

state of the atmospheric boundary layer withregard to air temperature, surface vapor pressure, 491 

relative humidity and finally rainfall (Chen and Xie 2012, McPherson and Stensrud 2005, Sulis et 492 

al. 2015, Tsvetsinskaya et al. 2001b). The observed differences between Run 1 and crop-type-493 

based runs will most probably influence the simulated processes in the ABL. For instance, Sulis 494 

et al. (2015) significantly improved the simulations of land surface energy fluxes by using the 495 

crop-specific physiological characteristics of the plant. They observed a difference of about 40% 496 

between simulated fluxes using the generic and crop-specific parameter sets. The differences in 497 

the land surface energy partitioning led to different heat and moisture budgets of the atmospheric 498 

boundary layer for the generic and specific (sugar beet and winter wheat) croplands. In the case of 499 

specific croplands, particularly sugar beet, those authors observed a larger contribution of the 500 

entrainment zone to the heat budget of the ABL as well as a shallower ABL.  501 

 502 

McPherson and Stensrud (2005) examined the impact of directly substituting the tallgrass prairie 503 

land use class with winter wheat on the formation of the ABL. These crops have different growing 504 

seasons. In the U.S. Great Plains, native prairie tallgrass mainly grows in summer, while winter 505 

wheat grows throughout winter and reaches maturity in late spring. Simulations showed a larger 506 

LE and lower H over the area with the winter wheat stand in comparison with tallgrass. By 2100 507 

UTC, LE ranged from 300 to 400 W m -2 for the wheat run and from 200 to 275 W m -2 for the 508 

tallgrass run. H ranged from 25 to 125 W m -2 for the former and from 100 to 200 W m -2 for the 509 

latter. Substituting tallgrass prairie with winter wheat boosted the atmospheric moisture near the 510 

surface above- and downstream of the study area, and resulted in a shallower ABL above- and 511 

downstream of this area. The shallower ABL reduced the entrainment of higher-momentum air 512 

into the ABL and therefore led to weaker winds within the ABL. 513 

 514 

Milovac et al. (2016) performed six simulations at 2 km resolution with two local and two nonlocal 515 

ABL schemes combined with two LSMs (Noah and Noah-MP) to study the influence of energy 516 

partitioning at the land surface on the ABL evolution on a diurnal scale. They observed that LE 517 
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simulated by Noah-MP was more than 50% lower than that simulated by Noah. As expected, a 518 

lower LE resulted in a drier ABL. The ABL evolution and its features strongly influence the 519 

initiation of convection and cloud formation as well as the location and strength of precipitation. 520 

For instance, drier and higher ABL would yield a higher lifting condensation level, leading to 521 

higher clouds and a higher probability of convective precipitation. 522 

 523 
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5 Conclusions 524 

GVF and LAI significantly affect the simulation of energy partitioning, yielding pronounced 525 

differences between simulated surface energy and water fluxes and temperatures of ECC and LCC. 526 

In our study area, the use of a generic crop parameterization (Croplands and Pasture in Noah-MP) 527 

resulted in a humid bias along with lower surface temperatures. This humid bias will be largest in 528 

landscapes with a balanced share of ECC and LCC, whereas in landscapes in which one of the two 529 

crop types predominate, the bias will be weaker. We observed the strongest effects on turbulent 530 

fluxes over the second part of the season, particularly in July-August. During this period, ECC are 531 

at senescence growth stage or already harvested, while LCC have a fully developed ground-532 

covering canopy. We therefore expect that the observed differences will impact the simulation of 533 

processes in the ABL. Our results show that splitting up croplands into ECC and LCC can improve 534 

LSMs, particularly during transition periods and late in the growing season. 535 

 536 

Increasing the LCC fraction by 10% reduces evapotranspiration and increases surface temperatures 537 

over the first part of the growing season. Later in the season, this land use change leads to the 538 

opposite situation: increased evapotranspiration accompanied by a slight cooling of the land 539 

surface. Over the growing season, an increase of the LCC share by 10% leads to higher cumulative 540 

evapotranspiration, which in turn lowers the seasonal water balance. 541 

 542 
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