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A B S T R A C T

Massive cyanobacteria blooms occur almost every summer in the Baltic Sea but the capability to quantitatively
predict their extent and intensity is poorly developed. Here we analyse statistical relationships between multi-
decadal satellite-derived time series of the frequency of cyanobacteria surface accumulations (FCA) in the central
Baltic Sea Proper and a suite of environmental variables. Over the decadal scale (∼5-20 years) FCA was highly
correlated (R2 ∼ 0.69) with a set of biogeochemical variables related to the amount of phosphorus and hypoxia
in bottom layers. Water temperature in the surface layer was also positively correlated with FCA at the decadal
scale. In contrast, the inter-annual variations in FCA had no correlation with the biogeochemical variables.
Instead, significant correlations were found with the solar shortwave direct flux in July and the sea-surface
temperature, also in July. It thus appears that it is not possible to predict inter-annual fluctuations in cyano-
bacteria blooms from water chemistry. Moreover, environmental variables could only explain about 45% of the
inter-annual variability in FCA, probably because year-to-year variations in FCA are significantly influenced by
biological interactions.

1. Introduction

Nitrogen-fixing cyanobacteria have been an important component
of the Baltic Sea ecosystem for millennia (Bianchi et al., 2000; Funkey
et al., 2014) and contribute substantially to ecosystem productivity
when inorganic nitrogen is in short supply (Larsson et al., 2001; Karlson
et al., 2015). As many cyanobacteria are toxic and form harmful algal
blooms, there has been a lot of effort to identify environmental factors
that favour such blooms. Numerous publications (Niemi, 1979; Kahru
et al., 1994; Wasmund, 1997; Paerl and Huisman, 2008, 2009; Paerl
et al., 2011) have pointed out environmental conditions that enhance
the competitive advantage and growth of cyanobacteria such as high
inorganic phosphorus to nitrogen ratio, high water temperature, high
solar irradiance and low winds. However, these conditions are not
sufficient to quantitatively predict the concentration and the extent of
cyanobacterial blooms. As a first step towards such predictions, we here
analyse statistical relationships between a unique multi-decadal sa-
tellite-detected time series of near-surface cyanobacteria concentrations
in the Baltic Sea (Kahru and Elmgren, 2014, extended to 2018) and
various environmental variables.

The spatial patterns of cyanobacteria accumulations are extremely
patchy with the characteristic multi-scale stripes and swirls (e.g. Kahru
et al., 1994; Kutser, 2004) that makes their sampling with conventional
water samplers highly unreliable. We used a satellite-derived time
series of over three decades that is made possible by the tendency by
one of the co-dominant cyanobacteria species in the open Baltic Sea,
Nodularia spumigena, to form dense surface accumulations. The other
co-dominant species, Aphanizomenon sp., is typically distributed deeper
in the water column (Hajdu et al., 2007; Rolff et al., 2007) and there-
fore not specifically detected in this time series. Since Aphanizomenon in
the Baltic Sea is non-toxic and contributes little to the surface blooms,
the blooms registered by satellites provide valid measurements of the
frequency and extent of cyanobacterial blooms of main societal con-
cern. The satellite data used here are based on a pixel size of ∼1 km2,
which is above the scale of typical stripes and swirls seen from ships.
However, the sub-pixel structures are integrated into the pixel values
that are well correlated with higher resolution measurements, e.g. from
continuous in-water measurements along ship tracks (Kahru and
Elmgren, 2014).

While statistical relationships do not prove causation, they provide
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clues to finding the environmental conditions that regulate cyano-
bacterial blooms in the Baltic Sea, and could help in modelling efforts to
predict the likelihood of extensive blooms in the future. We use a sta-
tistical method called partial least squares (PLS) regression, a technique
that combines the features of principal component analysis and mul-
tiple linear regression (CenterSpace, 2016). In the terminology of PLS
we try to predict one or more variables from combinations of a set of
variables, some of which may be highly correlated. Whereas the prin-
cipal components regression computes the factor scores using the cov-
ariance structure between predictor variables, PLS regression computes
factor scores from the covariance structure between the predictor and
the response variables. The term prediction is used here not as a fore-
cast into the future but as a way to statistically fit the measured time
series with a modelled time series using a suite of input variables.

2. Methods

2.1. Frequency of Cyanobacteria accumulations (FCA)

To characterize the frequency and extent of cyanobacteria blooms
we have developed an index (Kahru et al., 2007; Kahru and Elmgren,
2014) called the frequency of cyanobacteria accumulations (FCA). FCA
is the ratio of the number of days when cyanobacteria accumulations
were detected to the number of days with unobstructed (cloud-free)
satellite views of the sea surface, calculated for each pixel, and is not
directly dependent on the number of available images. As satellite de-
tection of cyanobacteria accumulations is limited to periods of clear
skies and availability of near-noon satellite overpasses, FCA normalizes
the number of detections to the number of observations. Even though
normalized, FCA values are less reliable if the number of available
images is small. As most environmental datasets used here (see below)
start in 1987, we use FCA time series from 1987 to 2018.

Cyanobacteria blooms in the Baltic Sea often start already in June
but the bulk of the accumulations occurs during the months of July and
August. We therefore use FCA calculated over the 2-month period of
July-August as the annual estimate of the strength of the blooms.

In past publications (Kahru et al., 2007; Kahru and Elmgren, 2014),
we used FCA calculated over an area that covered most of the Baltic Sea
including the gulfs of Bothnia, Finland and Riga. As near-coast turbidity
and resuspended sediments in shallow areas can interfere with our
method of cyanobacteria detection, we restrict our analysis here to the
central Baltic Proper deeper than 15m (Fig. 1). In other aspects the FCA
time series follows the methods of Kahru and Elmgren (2014) and was
extended to 2018 by using satellite data from MODIS-Aqua, MODIS-
Terra, VIIRS-SNPP and VIIRS-JPSS1 satellite sensors (Fig. 2).

Visual inspection of the FCA time series showed variations at mul-
tiple scales which may have different associations with relevant en-
vironmental variables, as discussed in Kahru et al. (2018). We therefore
separated the time series into the longer term (called decadal) and the
year-to-year or inter-annual changes. The low-frequency part of the
time series (FCAdec) was created by using a 3-year running mean on
FCA. The respective high-frequency part (FCAinter) was created by
subtracting the 3-year running mean, i.e. FCAinter = FCA – FCAdec. The
numerical values of the time series of FCA and its components are
provided in the Supplement.

2.2. Environmental variables

A total of 35 time series of various environmental variables
(Table 1) were compiled from both satellite-derived and in situ datasets
for evaluation for relationships with estimates of cyanobacteria abun-
dance. Details on those variables are given in the Supplement.

2.2.1. Partial least squares (PLS) regressions
Statistical relationships between time-series of FCA and 35 en-

vironmental variables (Table 1) were evaluated using PLS regressions as

implemented in the NMath numerical libraries (http://www.
centerspace.net/nmath). The analysis was started with correlations
between FCA and each of the environmental variables. Combinations of
an increasing number of variables were then used in PLS and the
combination with the highest coefficient of determination (R2) and the
lowest root mean square error of prediction (RMSEP) were determined.
The number of variables in a combination was increased (up to four)
until no significant improvement was achieved by adding more input
variables.

3. Results

At the decadal time scale, i.e. after smoothing with the 3-year
running mean filter, the FCA time series is most strongly correlated
with a group of biogeochemical variables (Fig. 3). In particular, vari-
ables related to basin-scale phosphorus availability such as DIP, P_ex-
cess, HA and N/P (see Table 1 for definitions) have the highest corre-
lations (0.42<R2< 0.60). The next group in the influence hierarchy
on decadal scale variations in FCA is a group of in situ (0−15m) water
temperature variables (e.g. TNBP_0702-0904) with correlations ex-
ceeding the correlations with satellite-derived sea-surface tempera-
tures. Correlations with in-water temperatures are strongest with water
temperature in the Northern Baltic Proper and with water temperature
at station BY15 in Eastern Gotland basin, and weaker with the water
temperature averaged over the whole Baltic Proper. Variables related to
solar irradiance (SDU, SID, SIS), wind speed components and phosphate
concentrations in the surface layer in summer have correlation below
the 95% significance at the decadal time scale.

Correlations with the inter-annual component of FCA time series,
i.e. after subtracting the smoothed time series, are very different from
those with the low-frequency component of FCA (Fig. 3). In general,
correlations are lower than the correlations with biogeochemical vari-
ables at the decadal scale and are statistically significant only for a few
variables. The strongest correlations at the inter-annual time scale are
with the direct solar shortwave flux in July (two closely related vari-
ables SidAnomJul and SIDmmJul), followed by satellite-derived sea-
surface temperature (SST), also in July (SSTjul). Correlations between
FCAinter and wind components are low (near 90 % significance level)
and correlations with biogeochemical variables are all practically zero.

Table 2 lists the environmental variables and combinations of
variables that have the highest R2 and lowest RMSEP for both FCAdec

and FCAinter. As environmental variables within groups are highly
correlated, the next most significant variable in a combination of
variables is typically from another group. It appears that the first
variable provides most of the predictive power and the effect of adding
additional variables is quite limited. This is particularly true for FCAdec

for which R2 increased only from 0.60 to 0.69 when increasing the
number of predictor variables from one to four. For FCAinter the effect of
adding variables was stronger, with R2 increased from 0.31 to 0.45 from
one variable to a combination of four variables. While the strongest
correlations with individual variables at the decadal time scale are all
with the biogeochemical variables (DIP, P_excess, HA and N/P), those
variables are all closely correlated with each other and therefore only
DIP is present in the best multi-variable combinations (Table 2). DIP
alone explains 60 % of FCAdec. The sets of variables with the highest
correlations are completely different at the decadal and at the inter-
annual time scales. While the in situ water temperature variables in
Northern Baltic Proper (e.g. TNBP_0702-0904)) are significantly cor-
related with FCAdec, they don’t show up in the two-variable combina-
tions with the highest R2. For FCAinter the second most important
variable in a combination is the July sea-surface temperature (SSTjul).
The best multi-variable combinations for predicting FCAdec include also
anomalies of the direct shortwave solar flux in August and May (Si-
dAnomAug and SidAnomMay) but their effect is small. The respective
best multi-variable combination for predicting FCAinter includes (in that
order) the anomaly of direct solar flux in July (SidAnomJul), SST in
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July, the surface layer phosphate concentration in June-July
(PO4_15m_0609-0709) and the sum of temperatures with SST over
17 °C. No variable from the in situ temperature variable group or from
the basin-scale biogeochemical group is included in the best combina-
tions for predicting FCAinter. However, even the best 4-variable com-
bination explains only 45 % of the variance of FCAinter compared to 69
% of the variance in FCAdec (Table 2, Fig. 4). Surprisingly, the corre-
lations of sunshine duration averaged over July and August (SDUjul-
aug) and those of the wind components are not significant (p=0.05)
when evaluated individually against FCAinter and are not in the best
multi-variable combination for predicting FCAinter (Fig. 2 and Table 2).
Phosphate concentrations in the surface layer in summer have no sig-
nificant correlations with either FCAdec or FCAinter when taken in-
dividually but PO4_0-15m_0609-0709 is included in the best 3- and 4-
variable combinations predicting FCAinter.

4. Discussion and conclusions

Our analysis of the FCA time series in the central Baltic Proper
(Fig. 2) showed that the environmental variables with significant cor-
relations with FCA were almost completely different for the decadal
scale and for the inter-annual scale variability in FCA. On the decadal
scale, the highest correlations were clearly with basin-scale

biogeochemical variables related to pools of phosphorus and the extent
of hypoxic areas. Increase of hypoxia in the Baltic Sea has been linked
to increased inputs of nutrients from land (Carstensen et al., 2014).
Hypoxia in bottom waters is also affected by the inflows of high-salinity
North Sea waters that trigger changes in the whole water column and
may lead to surface cyanobacteria blooms (Kahru et al., 2000). While
the linkage between decadal scale changes in FCA and the selected
biogeochemical variables makes sense as phosphorus and not nitrogen
is the main limiting nutrient for N2-fixing cyanobacteria, correlations
do not mean causation and these correlations may be caused by similar
long-term dynamics due to different reasons. However, these positive
correlations support the “vicious circle” hypothesis coupling cyano-
bacteria blooms to anoxic conditions (Vahtera et al., 2007; Funkey
et al., 2014; Savchuk, 2018). Therefore, quantitative estimation of the
intensity of cyanobacteria blooms in the coming summer based on
monitoring and/or modelling of the bottom water anoxic conditions
during the previous winter (Janssen et al., 2004; Vahtera et al., 2007)
seemed to be a promising lead towards quantitative prediction of the
Baltic Sea environment. However, our results show that at the inter-
annual scale, the biogeochemical variables have no influence on the
variations of FCA and that makes this prospect rather dubious. Either
we can hypothesize that the accuracy of the annual estimates of these
biogeochemical variables is not sufficient (i.e. the inter-annual

Fig. 1. Map of the study area. Central Baltic Proper (CBP, blue
area) is the area excluding shallow coastal areas (< 15m) and
the gulfs. The sub-basins of Northern Baltic Proper (NBP),
Western Gotland basin (WGB) and Eastern Gotland Basin
(EGB) are shown. The small circle shows the location of the
Baltic monitoring station BY15. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to
the web version of this article).

Fig. 2. Time series (1979–2018) of the 2 components of the
frequency of cyanobacteria accumulations: the low-frequency
(decadal) part FCAdec (black filled circles, thick line, left axis)
and the high-frequency (interannual) part FCAinter (thin line,
right axis) averaged over the Central Baltic Proper (blue area
in Fig. 1). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article).

M. Kahru, et al. Harmful Algae 92 (2020) 101739

3



variations of these biogeochemical variables are mainly “noise”) or that
they truly do not matter once certain levels are reached.

Correlations with the year-to-year fluctuations are more likely to
reveal causal relationships as they are less likely to be caused by co-
incidental changes. However, they too are affected by random fluc-
tuations and measurement errors in all variables. It makes sense that at
the inter-annual scale (i.e. shorter scale) the variables with the highest
correlations are the monthly shortwave solar flux in July and SST in
July. It appears also that July is the critical month and the correlations
with a number of variables in the months of May, June and August are
much lower than those for July because the growth maximum occurs
before the biomass peak as described by Wasmund et al. (2005). On the
other hand, it is also clear that as the decadal scale changes in solar flux
are minor compared to the respective changes in other variables, the

solar variables cannot be expected to be the primary variables affecting
FCA at the decadal scale.

While the decadal scale changes in FCA are positively related to
both in-water temperatures and satellite-detected SST, correlations with
in-water temperatures are higher. This can be explained by the satellite-
derived SST being affected by surface microlayer effects, making it less
representative of the bulk water temperature that matters most to the
cyanobacteria, even though satellite SST has superior coverage and
sampling frequency. The in-water temperature at station BY15 has a
particularly strong effect on indices of cyanobacteria blooms, probably
due to its relatively high temporal sampling frequency. Satellite SST
estimates can be affected by the surface microlayer effects at low-wind
conditions in the summer (the so-called “hot spots”) and near-surface
blooms may actually enhance the surface water temperature (Kahru

Table 1
Environmental variables used in PLS to predict the low-frquency component FCAdec and the inter-annual component FCAinter. R2 values that are significant at
p < 0.01 are in bold.

Variable Explanation R2 with FCAdec R2 with FCAinter

SSTjun Average satellite SST for June 0.19 0.01
SSTjul Average satellite SST for July 0.07 0.28
SSTaug Average satellite SST for August 0.18 0.04
SSTjul-aug Average satellite SST for July-August 0.15 0.19
DaysAbove14 Number of days with SST above 14 °C 0.17 0.07
SumAbove14 Sum of daily SSTs above 14 °C 0.15 0.17
DaysAbove17 Number of days with SST above 17 °C 0.11 0.15
SumAbove17 Sum of daily SSTs above 17 °C 0.12 0.12
TBY15_Annual In situ annual mean temperature for 0−15m at BY-15 0.30 0.01
TBY15_0525-0908 Mean temperature for 0−15m for Jun 24 - Sep 8 at BY-15 0.24 0.06
TBY15_0709-0824 Mean temperature for 0−15m for Jul 9 - Aug 24 at BY-15 0.27 0.17
TNBP_Annual In situ annual mean temperature for NBP 0.29 0.01
TNBP_0531-0904 In situ mean temperature for May 31 - Sep 4 for NBP 0.33 0.03
TNBP_0702-0904 In situ mean temperature for Jul 2 - Sep 4 for NBP 0.20 0.03
TBP_Annual In situ annual mean temperature for Baltic Proper 0.21 0.02
TBP_0531-0904 In situ mean temperature for May 31 - Sep 4 for Baltic Proper 0.22 0.06
TBP_0702-0904 In situ mean temperature for Jul 2 - Sep 4 for Baltic Proper 0.17 0.10
SDUjul-aug Sunshine duration averaged for July-August 0.01 0.09
SIDmmJul Shortwave direct irradiance averaged for July 0.00 0.31
SIDmmJulAug Shortwave direct irradiance averaged for July-August 0.00 0.14
SidAnomMay Shortwave direct irradiance anomaly for May 0.08 0.02
SidAnomJun Shortwave direct irradiance anomaly for June 0.09 0.09
SidAnomJul Shortwave direct irradiance anomaly for July 0.00 0.31
SidAnomAug Shortwave direct irradiance anomaly for August 0.01 0.01
SidAnomJulAver3 Shortwave direct irradiance 3 month running mean for July 0.04 0.22
SISmmJulAug Shortwave irradiance averaged for July-August 0.00 0.12
uSeaWindsJulAug Average eastward wind for July-August (m s−1) 0.00 0.07
vSeaWindsJulAug Average northward wind for July-August (m s−1) 0.03 0.09
HA Hypoxic area, km2 0.53 0.00
DIN Dissolved inorganic nitrogen in Kt 0.19 0.01
DIP Dissolved inorganic phosphorus in Kt 0.60 0.01
N/P Ratio DIN/DIP 0.42 0.00
P_excess Phosphorus excess in Kt 0.55 0.00
PO4_0525-0609 Phosphate concentration 0−15m, May 25- June 9 at BY-15 0.00 0.00
PO4_0609-0709 Phosphate concentration 0−15m, June 9-July 9 at BY-15 0.00 0.00

Fig. 3. Influence of various environmental variables (coeffi-
cient of determination, R2) on the low-frequency („decadal“)
part of FCA (FCAdec, filled circles) and and the high-frequency
(„interannual“) part (FCAinter, open circles) for Central Baltic
Proper. The 90 % (red dotted line), 95 % (red dashed line) and
99 % (red solid line) confidence thresholds are shown.
Variables are grouped into satellite SST, In situ temperature,
Solar, and biogeochemical (BGC). (For interpretation of the
references to colour in this figure legend, the reader is referred
to the web version of this article).
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et al., 1993). The correlations of both FCAdec and FCAinter with satellite-
detected eastward and northward wind components are not significant
which suggests that temporal integration of these highly variable
measurements into monthly mean values may not be meaningful. It is a
common perception that surface accumulations of cyanobacteria are
dissipated by wind action. However, our algorithm for detecting cya-
nobacterial accumulations reflects not only the surface floating scum
but also the backscatter from the near-surface layer just below, redu-
cing the effect of winds on FCA.

In the northern Baltic Proper (areas NBP, WGB, EGB in Fig. 1), the
year-to-year fluctuations of FCA have a quasi-regular oscillation with a
period of ∼3 years (Kahru et al., 2018). This seems like an internal
oscillation of unknown origin and the causal links of the oscillation to
environmental variables are not known. The oscillations reduce the
correlations between FCA and the environmental variables included in
this study. The oscillations are most evident in the northern Baltic
Proper where none of the environmental variables had a R2 significant
at p < 0.05 level with year-to-year fluctuations in FCA (Kahru et al.,
2018). When the whole central Baltic is considered, the effect of the
oscillations is reduced and significant correlations are found with some

environmental variables (e.g. direct solar flux and SST in July). How-
ever, because of the variance introduced by the unexplained oscilla-
tions, environmental variables can explain only ∼45 % of the total
variations of FCA at inter-annual scale. The remaining ∼55 % is the
unexplained variance due to the internal oscillation and random errors.
Comparison of FCA estimates using different satellite sensors (Kahru
and Elmgren, 2014) shows that the measurement error in 2-month FCA
estimates is relatively low, less than 5 %. This suggests that about half
of the inter-annual variations in FCA in the central Baltic Sea cannot be
estimated from environmental conditions and is probably due to bio-
logical interactions.

We hope that this work will help to improve current models of cy-
anobacteria dynamics (e.g. Hense, 2007) and to provide better hind-
casts of the FCA time series using measured and modelled environ-
mental variables. According to our results, in order to predict the inter-
annual changes in FCA the forward models would need to predict the
weather variables in July which is not going to be easy.
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.hal.2019.101739.

Table 2
PLS predictions of FCA low-frequency (FCAdec) and inter-annual (FCAinter)
components for the Central Baltic Proper (CBP), 1987-2018. N is the number of
variables included in the prediction, R2 is the coefficient of determination and
RMSEP is the root mean square error of prediction.

Predicted variable N Input variables R2 RMSEP

FCAdec for Central
Baltic Proper

1 DIP 0.60 0.151
2 DIP, SidAnomMay 0.62 0.146
3 DIP, SidAnomMay, SidAnomAug 0.66 0.139
4 DIP, SidAnomMay, SidAnomAug,

TNBP_0702-0904
0.69 0.132

FCAinter for Central
Baltic Proper

1 SidAnomJul 0.31 0.194
2 SidAnomJul, SSTjul 0.39 0.182
3 SidAnomJul, SSTjul, PO4_0-

15m_0609-0709
0.43 0.177

4 SidAnomJul, SSTjul, PO4_0-
15m_0609-0709, SumAbove17

0.45 0.173

Fig. 4. Predicting the frequency of cyanobacteria accumulations (FCA) in the central Baltic Sea from time series of environmental variables with partial least squares
(PLS) regression. The time series have been normalized to a range [0, 1], the observed series is shown with a blue line and the predicted series with a red dashed line
with open diamonds. A, FCA low-frequency component (FCAdec) predicted from DIP, SidAnomMay, SidAnomAug, TNBP_0702-0904 (R2= 0.69); B, FCA inter-annual
component (FCAinter) predicted from SidAnomJul, SSTjul, PO4_0-15m_0609-0709, SumAbove17 (R2= 0.45). The variable names are listed in Table 1. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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