Response to referee comment #3:

This paper focused on estimating BVOC emissions in China for the year 2018 by using
WRF-CLM-MEGAN. My main concern is about the ‘new’knowledge brought up by this
paper. The paper used the coupled version of model, but the current results are
insufficient to present new knowledge from this simulation or the benefits of using WRF
+ CLM set up for running MEGAN. From the spatial and temporal pat-terns, we cannot
simply see where the improvements are in comparation with previous estimations.
Response: The manuscript was revised much according to three referees’ comments.
The novelty in this study is that the BVOCs emission is estimated by
including some PFT-specific physiological parameters. These parameters
are derived from CLM4, but never considered in the previous BVOC
estimation algorithms coupled in the weather forecasting models.
We found the improvements are important (more details could be found in
the section 3.2). Firstly, the estimations by using leaf temperature in our
study were about 20 % higher than those estimated based on air temperature
as in the previous methods. Secondly, the separate treatments of sunlit and
shaded leaves in this study, which affect within canopy solar radiation,
lowered the estimations by a factor of 2 compared with estimates made by
methods neglecting shaded canopy. Thirdly, in this study, leaf temperature
and solar radiation were averaged over the past running time at each time
step to estimate emission response to weather history. However, in the
original code, this response was estimated based on fixed parameters. The
improved representation in our study resulted in 50 % higher estimations
than those based on fixed values.
The results were within a factor of 2 of most canopy-scale flux
measurements and top-down isoprene inventories, indicating an overall
good performance of the coupled model (section 4).

Furthermore, the evaluation with the observation data compared the modelled result

from 2018 with literature values from any another year, which is not rigid at all. The

differences in measured and modelled site conditions, such as environmental conditions
and plant composition were not discussed or compared in the evaluation, instead, the
authors concluded that we need more measurement data.

Response: Accepted. The monthly average or total emissions were used for comparison
to minimize the influence of short-term differences in meteorological
conditions. The differences in measured and modelled site conditions were
also included in the revised manuscript.

Revisions: (Page 11, Line 329) “We evaluated the inventory against canopy-scale
measurements conducted at different sites in China. Given that years of
interest in the present study and observations are different, the average data
or monthly total emissions were used for comparison.

Using eddy covariance technique, Baker et al. (2005) measured isoprene
fluxes in Xishuangbanna, Yunnan Province (21.92°N, 101.27°E). Daytime



isoprene fluxes during the wet season (July 2002) was approximately 1 mg
Cm2h™". Dry season (February and March) daytime fluxes averaged about
0.15 mg C m2 h™! and maximum fluxes were over 0.6 mg C m> h™'. Our
model predicted a similar daytime average isoprene flux in wet season as
1.5 mg C m2h™! at this site. The modeled flux for dry season was 1.19 mg
m 2 h™!, higher than observed maximum value by a factor of 2.

Based on Relaxed Eddy Accumulation (REA) technique, emissions of
isoprene and monoterpenes of a temperate forest in Changbai Mountain
(42.4°N, 128.1°E) were measured during the summer seasons (June, July,
August, September) in 2010 and 2011 (Bai et al., 2015). The mean isoprene
emission flux was 0.889 mg m™> h™' and the mean total monoterpene
emission flux was 0.143 mg m2 h™!, and our results estimated emission
fluxes of 1.97 for isoprene and 0.37 mg C m2 h™! for monoterpene. The
average PAR and temperature during experimental periods were 837.5 umol
m 2 s ' and 22.6 °C, respectively. The simulation resulted in an average PAR
of 1160.1 pmol m2 s! and temperature of 22.23 °C. The average leaf
temperature was 23.37 °C. The slight overestimation could be attributed to
higher PAR simulated in the model.

Using REA method, Bai et al. (2016) measured emissions from a bamboo
(Phyllostachys violascenes) plantation in Zhejiang Province (30.3°N,
119.57°E) and the average isoprene emission fluxes were 2.8, 1.1, 0.2, 0.1
mg m 2 h™! for the experimental periods in July, August, September and
October. The predicted monthly average fluxes of these four months were
2.4,2.3,3.2,0.46 mgm 2h!, respectively. Estimations for July and August
were within a factor of 2 of observed values. Large discrepancies were
found in September and November. The comparisons indicated an overall
good performance of the WRF-CLM4-MEGAN in forest areas during wet
seasons. However, the large difference associated with estimations for dry
areas and seasons clearly suggested that additional investigation and
improvements are needed.”

The structure of this paper is not well organized. For example, the data information
L151 — 154 were placed in the results section, large amount of model description was
placed in the introduction part. The aim or hypothesis of this study is not clear.
Response: Accepted. We rewrote the Introduction and Method and Data sections.
Revisions: (Page 2, Line 51) “The MEGAN algorithms have been incorporated into
Community Land Model (CLM), the terrestrial component of the earth
climate system model, as one step toward integrating biogeochemical
processes in the model. In the coupling of MEGAN and CLM, all the
physical and biological variables required by BVOC estimation are
determined by comprehensive ecological and physiological processes
parameterized in CLM at each time step (Levis et al., 2003; Oleson et al.,
2010; Lawrence et al., 2011). Process-based models are typically coupled
within dynamic vegetation models that have a mechanistic model for leaf



photosynthesis at their core (Arneth et al., 2007; Pacifico et al., 2011; Yue
and Unger, 2015). In general, these coupled models are employed to
investigate the long-term interactions and feedbacks between terrestrial
vegetation and climate change with spin-up and simulation time from tens
to thousands of years.

Instead of coupling detailed algorithms within the land surface
parameterizations, a simplified version of MEGAN algorithm, the
parameterized canopy emission activity (PCEEA) algorithm, has been
coupled with weather and climate forecasting models as an independent
module to generate online biogenic emission inventory for atmospheric
chemistry simulation (Guenther et al., 2006; Sakulyanontvittaya et al., 2008;
Fu and Liao, 2012; Henrot et al., 2017). Instead of using a detailed canopy
model to calculate leaf temperature and leaf-level photosynthetic photo flux
density (PPFD), the PCEEA algorithm parameterizes the modification of
these plant physiological variables on emission rates based on ambient
temperature and canopy above solar radiation. Although leaf temperature is
strongly related to ambient temperature, it is also affected by other
ecological conditions such as irradiation and evapotranspiration. Subin et al.
(2011) indicated that the strong advection and boundary layer mixing during
the day decoupled the air temperature from the vegetation temperature to a
great extent, making daytime surface energy budget the primary controlling
factors of vegetation temperature changes. Furthermore, due to the different
morphological and physiological properties, relationships between air
temperature and leaf temperature, and between canopy above PPFD and
leaf-level PPFD, vary significantly among tree species. Since the PCEEA
algorithm was based on standard MEGAN canopy model simulations for
warm broadleaf forests, using the same equations for representations of
other plant types leads to unpredictable uncertainties. Leaf temperature and
PPFD averaged over the past 24 and 240 h are used in MEGAN algorithm
to account for effects of medium-term weather history. However, the
PCEEA algorithm obtains the past conditions from a prescribed
climatological monthly mean dataset, which could be much different from
the real meteorology (Zhao et al., 2016). Therefore, reasonable plant-
specific physiological variables are needed to improve the BVOC
estimation in weather models.

CLM version 4 (CLM4) was coupled and released with the Weather
Research and Forecasting model (WRF), a mesoscale numerical model
designed to simulate regional weather and climate, since version 3.5 as one
of the land surface scheme options to better characterize land surface
processes (Jin and Wen, 2012; Jin et al., 2010; Subin et al., 2011). Because
MEGAN has been embedded within CLM as mentioned above, the coupling
of WRF-CLM4-MEGAN allowed regional weather forecasting models to
estimate BVOC emissions within a comprehensive ecological climatology
framework. Besides improvements result from real-time plant physiological



variables derived from land surface parameterizations, sub-grid vegetation
compositions represented in CLM4 are also expected to provide a more
reasonable estimation in view of the significant variability in basal emission
ability among tree species. However, few studies employed the coupled
mode to estimate regional BVOC emissions (Zhao et al., 2016).”

English needs to improve in this paper.
Response: Accepted.

L35-37, please use more recent global estimations.

Response: Accepted.

Revisions: (Page 2, Line 37) “Globally speaking, biogenic volatile organic compounds
(BVOCs) emitted by terrestrial vegetation are estimated to be 500 ~ 1100 Tg
C yr' !, corresponding to about 90 % of the emission total (Guenther et al.,
1995; Arneth et al., 2011; Henrot et al., 2017).”

L45-46, What do you mean with °. . .as an insolated step outside the whole terrestrial
ecosystem processes’? Do you actually mean that BVOC processes are not linked to
photosynthesis? Another issue here is that the references the authors listed here were
Jjust based on one model. It is not a good idea to conclude this is a general problem for
modelling BVOCs only based on one model.
Response: Accepted. We reworded the sentence and added other references.
Revisions: (Page 2, Line 51) “The MEGAN algorithms have been incorporated into
Community Land Model (CLM), the terrestrial component of the earth
climate system model, as one step toward integrating biogeochemical
processes in the model. In the coupling of MEGAN and CLM, all the
physical and biological variables required by BVOC estimation are
determined by comprehensive ecological and physiological processes
parameterized in CLM at each time step (Levis et al., 2003; Oleson et al.,
2010; Lawrence et al., 2011). Process-based models are typically coupled
within dynamic vegetation models that have a mechanistic model for leaf
photosynthesis at their core (Arneth et al., 2007; Pacifico et al., 2011; Yue
and Unger, 2015). In general, these coupled models are employed to
investigate the long-term interactions and feedbacks between terrestrial
vegetation and climate change with spin-up and simulation time from tens
to thousands of years.
Instead of coupling detailed algorithms within the land surface
parameterizations, a simplified version of MEGAN algorithm, the
parameterized canopy emission activity (PCEEA) algorithm, has been
coupled with weather and climate forecasting models as an independent
module to generate online biogenic emission inventory for atmospheric
chemistry simulation (Guenther et al., 2006; Sakulyanontvittaya et al., 2008;
Fu and Liao, 2012; Henrot et al., 2017). Instead of using a detailed canopy
model to calculate leaf temperature and leaf-level photosynthetic photo flux



density (PPFD), the PCEEA algorithm parameterizes the modification of
these plant physiological variables on emission rates based on ambient
temperature and canopy above solar radiation. Although leaf temperature is
strongly related to ambient temperature, it is also affected by other
ecological conditions such as irradiation and evapotranspiration. Subin et al.
(2011) indicated that the strong advection and boundary layer mixing during
the day decoupled the air temperature from the vegetation temperature to a
great extent, making daytime surface energy budget the primary controlling
factors of vegetation temperature changes. Furthermore, due to the different
morphological and physiological properties, relationships between air
temperature and leaf temperature, and between canopy above PPFD and
leaf-level PPFD, vary significantly among tree species. Since the PCEEA
algorithm was based on standard MEGAN canopy model simulations for
warm broadleaf forests, using the same equations for representations of
other plant types leads to unpredictable uncertainties. Leaf temperature and
PPFD averaged over the past 24 and 240 h are used in MEGAN algorithm
to account for effects of medium-term weather history. However, the
PCEEA algorithm obtains the past conditions from a prescribed
climatological monthly mean dataset, which could be much different from
the real meteorology (Zhao et al., 2016). Therefore, reasonable plant-
specific physiological variables are needed to improve the BVOC
estimation in weather models.”

L113-115, it is not clear for me why the authors decided to use MODIS LAl instead of
the modelled LAI and dynamic vegetation, and also why not consider CO2 impacts on
emissions? Please clarify. MODIS LAl is 8 days intervals, how the author deal with the
days between 2 LAl images. Another issue is that: did the authors consider quality flag
for the LAI product?

Response: The effects of variations in CO2 concentration was neglected in this study

Li21, “. ..

because the simulation was performed for only one year and studies
indicated that accounting for CO: inhibition has litter impact on predictions
of present-day isoprene emission (Heald et al., 2009). The main purpose is
to improve BVOC estimations in weather forecasting models by using plant-
specific physiological parameters. Modeling dynamic vegetation was
beyond the scope of this study and required more computing resources and
more time for spin up. Compared with the prescribed monthly LAI in the
default CLM4, MODIS data provide LAI data for a specific year with high
spatiotemporal resolution. We used one LAI image for 8 days. Because the
MODIS LAI Collection 6 product shows higher than 90 % main algorithm
retrieval rates for most biome types (Yan et al., 2016) and relatively small
influence of LAI as described in the Uncertainty section, the quality flag
was not considered in our study.

and each run covered 31 days . .. ” where these runs refer to? Please clarify.



Response: Accepted. We reworded the sentences.

Revisions: (Page 6, Line 172) “The meteorological fields were initialized at the start of
each model run, which covered one month in order to account for the effects
of past canopy climate.”

L148, not clear for me what modification/process have been implemented.

Response: Accepted. We reworded this section.

Revisions: (Page 4, Line 117) “The coupling of CLM4-MEGAN improves the BVOC
estimations through reasonable driving factors and detailed sub-grid
representation, as briefly introduced below. We refer the reader to the
description of Oleson et al. (2010) for the details of computations.

1. leaf temperature

Variations in leaf temperature are influenced by net radiation
absorbed/emitted by the vegetation and sensible and latent heat fluxes from
vegetation. The two-stream approximation is applied to vegetation when
calculating solar radiation reflected and absorbed by the canopy. Leaf
temperatures are determined by the canopy energy balance equations. Due
to the dependence of heat fluxes on vegetation temperature, the Newton-
Raphson iteration is used to solve for folia temperature and the vegetation
fluxes simultaneously.

2. sunlit and shaded fractions of canopy

The canopy in CLM4 is treated as sunlit and shaded leaves. The leaf
fractions of different plant types are determined according to leaf and stem
area index and the solar zenith angle at each time step. CLM4 assumed that
sunlit leaves receive the absorbed direct beam radiation and the absorbed
diffuse radiation apportioned by fsun (the sunlit fraction of the canopy), and
that shaded leaves receive the absorbed diffuse radiation apportioned by fina
(the shaded fraction). This division into sunlit and shaded leaves is
important in modeling canopy processes, since the sunlit leaves will receive
a much higher light flux density than shaded leaves under sunny conditions
(Dai et al., 2004).

3. the medium-term weather history

Current MEGAN algorisms use average leaf temperature, solar radiation
and leaf fractions over the past 24 and 240 h to account for the influence of
past canopy climate. CLM4 contains an accumulation module used to
calculate the average of user-specified variables over user-defined time
intervals. However, the accumulation of past time leaf temperature and
PPFD are commented out in the default CLM4 code and fixed values are
assigned to those coefficients based on conditions during previous days.
After activating this module, we found a decrease in average temperature
and PPFD with increasing simulation time. That was because these two
variables were not being accumulated but still being averaged over the total
running time. We corrected the accumulation code so that the average leaf
temperature, PPFD and leaf fraction are calculated at each time step.

4. sub-gird heterogeneity

In CLM4, the surface heterogeneity is represented using a sub-grid tile
approach in which grid cells are composed of multiple landunits (glacier,
wetland, lake, urban and vegetated area), snow/soil columns and plant
functional types (PFTs). Vegetated surfaces are comprised of up to 4 plant



functional types (PFTs). An explicit canopy layer represents the PFTs with
specific leaf and stem optical properties, root distribution parameters,
aerodynamic parameters and photosynthetic parameters. The detailed
representations of sub-grid improve the accuracy of land surface
parameterizations and lower the uncertainty from plant distribution in
BVOC estimation (Zhao et al., 2016; Schultz et al., 2016).”
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