
Response to referee comment #3: 

This paper focused on estimating BVOC emissions in China for the year 2018 by using 

WRF-CLM-MEGAN. My main concern is about the ‘new’ knowledge brought up by this 

paper. The paper used the coupled version of model, but the current results are 

insufficient to present new knowledge from this simulation or the benefits of using WRF 

+ CLM set up for running MEGAN. From the spatial and temporal pat-terns, we cannot 

simply see where the improvements are in comparation with previous estimations. 

Response: The manuscript was revised much according to three referees’ comments. 

The novelty in this study is that the BVOCs emission is estimated by 

including some PFT-specific physiological parameters. These parameters 

are derived from CLM4, but never considered in the previous BVOC 

estimation algorithms coupled in the weather forecasting models. 

         We found the improvements are important (more details could be found in 

the section 3.2). Firstly, the estimations by using leaf temperature in our 

study were about 20 % higher than those estimated based on air temperature 

as in the previous methods. Secondly, the separate treatments of sunlit and 

shaded leaves in this study, which affect within canopy solar radiation, 

lowered the estimations by a factor of 2 compared with estimates made by 

methods neglecting shaded canopy. Thirdly, in this study, leaf temperature 

and solar radiation were averaged over the past running time at each time 

step to estimate emission response to weather history. However, in the 

original code, this response was estimated based on fixed parameters. The 

improved representation in our study resulted in 50 % higher estimations 

than those based on fixed values. 

         The results were within a factor of 2 of most canopy-scale flux 

measurements and top-down isoprene inventories, indicating an overall 

good performance of the coupled model (section 4). 

Furthermore, the evaluation with the observation data compared the modelled result 

from 2018 with literature values from any another year, which is not rigid at all. The 

differences in measured and modelled site conditions, such as environmental conditions 

and plant composition were not discussed or compared in the evaluation, instead, the 

authors concluded that we need more measurement data. 

Response: Accepted. The monthly average or total emissions were used for comparison 

to minimize the influence of short-term differences in meteorological 

conditions. The differences in measured and modelled site conditions were 

also included in the revised manuscript. 

Revisions: (Page 11, Line 329) “We evaluated the inventory against canopy-scale 

measurements conducted at different sites in China. Given that years of 

interest in the present study and observations are different, the average data 

or monthly total emissions were used for comparison. 

Using eddy covariance technique, Baker et al. (2005) measured isoprene 

fluxes in Xishuangbanna, Yunnan Province (21.92°N, 101.27°E). Daytime 



isoprene fluxes during the wet season (July 2002) was approximately 1 mg 

C m−2 h−1. Dry season (February and March) daytime fluxes averaged about 

0.15 mg C m−2 h−1 and maximum fluxes were over 0.6 mg C m−2 h−1. Our 

model predicted a similar daytime average isoprene flux in wet season as 

1.5 mg C m−2 h−1 at this site. The modeled flux for dry season was 1.19 mg 

m−2 h−1, higher than observed maximum value by a factor of 2. 

Based on Relaxed Eddy Accumulation (REA) technique, emissions of 

isoprene and monoterpenes of a temperate forest in Changbai Mountain 

(42.4°N, 128.1°E) were measured during the summer seasons (June, July, 

August, September) in 2010 and 2011 (Bai et al., 2015). The mean isoprene 

emission flux was 0.889 mg m−2 h−1 and the mean total monoterpene 

emission flux was 0.143 mg m−2 h−1, and our results estimated emission 

fluxes of 1.97 for isoprene and 0.37 mg C m−2 h−1 for monoterpene. The 

average PAR and temperature during experimental periods were 837.5 μmol 

m−2 s−1 and 22.6 ℃, respectively. The simulation resulted in an average PAR 

of 1160.1 μmol m−2 s−1 and temperature of 22.23 ℃. The average leaf 

temperature was 23.37 ℃. The slight overestimation could be attributed to 

higher PAR simulated in the model. 

Using REA method, Bai et al. (2016) measured emissions from a bamboo 

(Phyllostachys violascenes) plantation in Zhejiang Province (30.3°N, 

119.57°E) and the average isoprene emission fluxes were 2.8, 1.1, 0.2, 0.1 

mg m−2 h−1 for the experimental periods in July, August, September and 

October. The predicted monthly average fluxes of these four months were 

2.4, 2.3, 3.2, 0.46 mg m−2 h−1, respectively. Estimations for July and August 

were within a factor of 2 of observed values. Large discrepancies were 

found in September and November. The comparisons indicated an overall 

good performance of the WRF-CLM4-MEGAN in forest areas during wet 

seasons. However, the large difference associated with estimations for dry 

areas and seasons clearly suggested that additional investigation and 

improvements are needed.” 

The structure of this paper is not well organized. For example, the data information 

L151 – 154 were placed in the results section; large amount of model description was 

placed in the introduction part. The aim or hypothesis of this study is not clear. 

Response: Accepted. We rewrote the Introduction and Method and Data sections. 

Revisions: (Page 2, Line 51) “The MEGAN algorithms have been incorporated into 

Community Land Model (CLM), the terrestrial component of the earth 

climate system model, as one step toward integrating biogeochemical 

processes in the model. In the coupling of MEGAN and CLM, all the 

physical and biological variables required by BVOC estimation are 

determined by comprehensive ecological and physiological processes 

parameterized in CLM at each time step (Levis et al., 2003; Oleson et al., 

2010; Lawrence et al., 2011). Process-based models are typically coupled 

within dynamic vegetation models that have a mechanistic model for leaf 



photosynthesis at their core (Arneth et al., 2007; Pacifico et al., 2011; Yue 

and Unger, 2015). In general, these coupled models are employed to 

investigate the long-term interactions and feedbacks between terrestrial 

vegetation and climate change with spin-up and simulation time from tens 

to thousands of years. 

Instead of coupling detailed algorithms within the land surface 

parameterizations, a simplified version of MEGAN algorithm, the 

parameterized canopy emission activity (PCEEA) algorithm, has been 

coupled with weather and climate forecasting models as an independent 

module to generate online biogenic emission inventory for atmospheric 

chemistry simulation (Guenther et al., 2006; Sakulyanontvittaya et al., 2008; 

Fu and Liao, 2012; Henrot et al., 2017). Instead of using a detailed canopy 

model to calculate leaf temperature and leaf-level photosynthetic photo flux 

density (PPFD), the PCEEA algorithm parameterizes the modification of 

these plant physiological variables on emission rates based on ambient 

temperature and canopy above solar radiation. Although leaf temperature is 

strongly related to ambient temperature, it is also affected by other 

ecological conditions such as irradiation and evapotranspiration. Subin et al. 

(2011) indicated that the strong advection and boundary layer mixing during 

the day decoupled the air temperature from the vegetation temperature to a 

great extent, making daytime surface energy budget the primary controlling 

factors of vegetation temperature changes. Furthermore, due to the different 

morphological and physiological properties, relationships between air 

temperature and leaf temperature, and between canopy above PPFD and 

leaf-level PPFD, vary significantly among tree species. Since the PCEEA 

algorithm was based on standard MEGAN canopy model simulations for 

warm broadleaf forests, using the same equations for representations of 

other plant types leads to unpredictable uncertainties. Leaf temperature and 

PPFD averaged over the past 24 and 240 h are used in MEGAN algorithm 

to account for effects of medium-term weather history. However, the 

PCEEA algorithm obtains the past conditions from a prescribed 

climatological monthly mean dataset, which could be much different from 

the real meteorology (Zhao et al., 2016). Therefore, reasonable plant-

specific physiological variables are needed to improve the BVOC 

estimation in weather models. 

CLM version 4 (CLM4) was coupled and released with the Weather 

Research and Forecasting model (WRF), a mesoscale numerical model 

designed to simulate regional weather and climate, since version 3.5 as one 

of the land surface scheme options to better characterize land surface 

processes (Jin and Wen, 2012; Jin et al., 2010; Subin et al., 2011). Because 

MEGAN has been embedded within CLM as mentioned above, the coupling 

of WRF-CLM4-MEGAN allowed regional weather forecasting models to 

estimate BVOC emissions within a comprehensive ecological climatology 

framework. Besides improvements result from real-time plant physiological 



variables derived from land surface parameterizations, sub-grid vegetation 

compositions represented in CLM4 are also expected to provide a more 

reasonable estimation in view of the significant variability in basal emission 

ability among tree species. However, few studies employed the coupled 

mode to estimate regional BVOC emissions (Zhao et al., 2016).” 

English needs to improve in this paper. 

Response: Accepted. 

L35-37, please use more recent global estimations. 

Response: Accepted. 

Revisions: (Page 2, Line 37) “Globally speaking, biogenic volatile organic compounds 

(BVOCs) emitted by terrestrial vegetation are estimated to be 500 ~ 1100 Tg 

C yr−1, corresponding to about 90 % of the emission total (Guenther et al., 

1995; Arneth et al., 2011; Henrot et al., 2017).” 

L45-46, What do you mean with ‘. . .as an insolated step outside the whole terrestrial 

ecosystem processes’? Do you actually mean that BVOC processes are not linked to 

photosynthesis? Another issue here is that the references the authors listed here were 

just based on one model. It is not a good idea to conclude this is a general problem for 

modelling BVOCs only based on one model. 

Response: Accepted. We reworded the sentence and added other references. 

Revisions: (Page 2, Line 51) “The MEGAN algorithms have been incorporated into 

Community Land Model (CLM), the terrestrial component of the earth 

climate system model, as one step toward integrating biogeochemical 

processes in the model. In the coupling of MEGAN and CLM, all the 

physical and biological variables required by BVOC estimation are 

determined by comprehensive ecological and physiological processes 

parameterized in CLM at each time step (Levis et al., 2003; Oleson et al., 

2010; Lawrence et al., 2011). Process-based models are typically coupled 

within dynamic vegetation models that have a mechanistic model for leaf 

photosynthesis at their core (Arneth et al., 2007; Pacifico et al., 2011; Yue 

and Unger, 2015). In general, these coupled models are employed to 

investigate the long-term interactions and feedbacks between terrestrial 

vegetation and climate change with spin-up and simulation time from tens 

to thousands of years. 

Instead of coupling detailed algorithms within the land surface 

parameterizations, a simplified version of MEGAN algorithm, the 

parameterized canopy emission activity (PCEEA) algorithm, has been 

coupled with weather and climate forecasting models as an independent 

module to generate online biogenic emission inventory for atmospheric 

chemistry simulation (Guenther et al., 2006; Sakulyanontvittaya et al., 2008; 

Fu and Liao, 2012; Henrot et al., 2017). Instead of using a detailed canopy 

model to calculate leaf temperature and leaf-level photosynthetic photo flux 



density (PPFD), the PCEEA algorithm parameterizes the modification of 

these plant physiological variables on emission rates based on ambient 

temperature and canopy above solar radiation. Although leaf temperature is 

strongly related to ambient temperature, it is also affected by other 

ecological conditions such as irradiation and evapotranspiration. Subin et al. 

(2011) indicated that the strong advection and boundary layer mixing during 

the day decoupled the air temperature from the vegetation temperature to a 

great extent, making daytime surface energy budget the primary controlling 

factors of vegetation temperature changes. Furthermore, due to the different 

morphological and physiological properties, relationships between air 

temperature and leaf temperature, and between canopy above PPFD and 

leaf-level PPFD, vary significantly among tree species. Since the PCEEA 

algorithm was based on standard MEGAN canopy model simulations for 

warm broadleaf forests, using the same equations for representations of 

other plant types leads to unpredictable uncertainties. Leaf temperature and 

PPFD averaged over the past 24 and 240 h are used in MEGAN algorithm 

to account for effects of medium-term weather history. However, the 

PCEEA algorithm obtains the past conditions from a prescribed 

climatological monthly mean dataset, which could be much different from 

the real meteorology (Zhao et al., 2016). Therefore, reasonable plant-

specific physiological variables are needed to improve the BVOC 

estimation in weather models.” 

L113-115, it is not clear for me why the authors decided to use MODIS LAI, instead of 

the modelled LAI and dynamic vegetation, and also why not consider CO2 impacts on 

emissions? Please clarify. MODIS LAI is 8 days intervals, how the author deal with the 

days between 2 LAI images. Another issue is that: did the authors consider quality flag 

for the LAI product? 

Response: The effects of variations in CO2 concentration was neglected in this study 

because the simulation was performed for only one year and studies 

indicated that accounting for CO2 inhibition has litter impact on predictions 

of present-day isoprene emission (Heald et al., 2009). The main purpose is 

to improve BVOC estimations in weather forecasting models by using plant-

specific physiological parameters. Modeling dynamic vegetation was 

beyond the scope of this study and required more computing resources and 

more time for spin up. Compared with the prescribed monthly LAI in the 

default CLM4, MODIS data provide LAI data for a specific year with high 

spatiotemporal resolution. We used one LAI image for 8 days. Because the 

MODIS LAI Collection 6 product shows higher than 90 % main algorithm 

retrieval rates for most biome types (Yan et al., 2016) and relatively small 

influence of LAI as described in the Uncertainty section, the quality flag 

was not considered in our study. 

L121, “. . . and each run covered 31 days . . . ” where these runs refer to? Please clarify. 



Response: Accepted. We reworded the sentences. 

Revisions: (Page 6, Line 172) “The meteorological fields were initialized at the start of 

each model run, which covered one month in order to account for the effects 

of past canopy climate.” 

L148, not clear for me what modification/process have been implemented. 

Response: Accepted. We reworded this section. 

Revisions: (Page 4, Line 117) “The coupling of CLM4-MEGAN improves the BVOC 

estimations through reasonable driving factors and detailed sub-grid 

representation, as briefly introduced below. We refer the reader to the 

description of Oleson et al. (2010) for the details of computations. 

1. leaf temperature 

Variations in leaf temperature are influenced by net radiation 

absorbed/emitted by the vegetation and sensible and latent heat fluxes from 

vegetation. The two-stream approximation is applied to vegetation when 

calculating solar radiation reflected and absorbed by the canopy. Leaf 

temperatures are determined by the canopy energy balance equations. Due 

to the dependence of heat fluxes on vegetation temperature, the Newton-

Raphson iteration is used to solve for folia temperature and the vegetation 

fluxes simultaneously. 

2. sunlit and shaded fractions of canopy 

The canopy in CLM4 is treated as sunlit and shaded leaves. The leaf 

fractions of different plant types are determined according to leaf and stem 

area index and the solar zenith angle at each time step. CLM4 assumed that 

sunlit leaves receive the absorbed direct beam radiation and the absorbed 

diffuse radiation apportioned by fsun (the sunlit fraction of the canopy), and 

that shaded leaves receive the absorbed diffuse radiation apportioned by fsha 

(the shaded fraction). This division into sunlit and shaded leaves is 

important in modeling canopy processes, since the sunlit leaves will receive 

a much higher light flux density than shaded leaves under sunny conditions 

(Dai et al., 2004).  

3. the medium-term weather history 

Current MEGAN algorisms use average leaf temperature, solar radiation 

and leaf fractions over the past 24 and 240 h to account for the influence of 

past canopy climate. CLM4 contains an accumulation module used to 

calculate the average of user-specified variables over user-defined time 

intervals. However, the accumulation of past time leaf temperature and 

PPFD are commented out in the default CLM4 code and fixed values are 

assigned to those coefficients based on conditions during previous days. 

After activating this module, we found a decrease in average temperature 

and PPFD with increasing simulation time. That was because these two 

variables were not being accumulated but still being averaged over the total 

running time. We corrected the accumulation code so that the average leaf 

temperature, PPFD and leaf fraction are calculated at each time step. 

4. sub-gird heterogeneity 

In CLM4, the surface heterogeneity is represented using a sub-grid tile 

approach in which grid cells are composed of multiple landunits (glacier, 

wetland, lake, urban and vegetated area), snow/soil columns and plant 

functional types (PFTs). Vegetated surfaces are comprised of up to 4 plant 



functional types (PFTs). An explicit canopy layer represents the PFTs with 

specific leaf and stem optical properties, root distribution parameters, 

aerodynamic parameters and photosynthetic parameters. The detailed 

representations of sub-grid improve the accuracy of land surface 

parameterizations and lower the uncertainty from plant distribution in 

BVOC estimation (Zhao et al., 2016; Schultz et al., 2016).” 
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