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Abstract.  

 

Inter-annual variations in the tropical land carbon (C) balance are a dominant component of the global atmospheric CO2 growth 

rate. Currently, the lack of quantitative knowledge on processes controlling net tropical ecosystems C balance on inter-annual 

timescales inhibits accurate understanding and projections of land-atmosphere C exchanges. In particular, uncertainty on the 20 

relative contribution of ecosystem C fluxes attributable to concurrent forcing anomalies (concurrent effects) and those 

attributable to the continuing influence of past phenomena (lagged effects) stifles efforts to explicitly understand the integrated 

sensitivity of tropical ecosystem to climatic variability. Here we present a conceptual framework—applicable in principle to 

any land biosphere model—to explicitly quantify net biospheric exchange (NBE) as the sum of anomaly-induced concurrent 

changes and climatology-induced lagged changes to terrestrial ecosystem C states (NBE = NBECON + NBELAG).  We apply this 25 

framework to an observation-constrained analysis of the 2001-2015 tropical C balance: we use a data-model integration 

approach (CARDAMOM) to merge satellite-retrieved land-surface C observations (leaf area, biomass, solar-induced 

fluorescence), soil C inventory data and satellite-based atmospheric inversion estimates of CO2 and CO fluxes to produce a 

data-constrained analysis of the 2001-2015 tropical C cycle. We find that the inter-annual variability of both concurrent and  

lagged effects substantially contribute to the 2001-2015 NBE inter-annual variability throughout 2001-2015 across the tropics 30 

(NBECON IAV = 80% of total NBE IAV, r = 0.76; NBELAG  IAV = 64% of NBE IAV, r = 0.61) and the prominence of NBELAG 

IAV persists across both wet and dry tropical ecosystems. The magnitude of lagged effect variations on NBE across the tropics 

is largely attributable to lagged effects on net primary productivity (NPP; NPPLAG IAV 113% of NBELAG IAV, r = -0.93, p-

value<0.05), which emerge due to the dependence of NPP on inter-annual variations in foliar C and plant-available H2O states. 
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We conclude that concurrent and lagged effects need to be explicitly and jointly resolved to retrieve an accurate understanding 

the processes regulating the present-day and future trajectory of the terrestrial land C sink. 

1 Introduction 

 

Immediate ecosystem responses to external forcings are invariably followed by time-lagged ecosystem responses, attributable 5 

to a continuum of lagged biotic and physical processes. For example, contemporaneous ecosystem state changes attributable 

to disturbances, climatic variability and increasing atmospheric CO2 levels all induce a temporal spectrum of lagged processes, 

such as diurnal to seasonal dynamics in canopy and groundwater storage, multi-annual changes in mortality rates, and induce 

ecosystem dynamics relating to species distributions, nutrient availability and soil properties on timescales spanning from 

decades to millennia  (Schimel et al. 1997; Smith et al., 2009; Reichstein et al., 2013). Conversely, for a given timespan, the 10 

sum of these “lagged effects” on ecosystem states ultimately represent the ecosystems dynamics attributable to a unique 

integrated legacy of past phenomena, spanning from diurnal to geologic timescales, making lagged effects a ubiquitous 

dynamical property of any terrestrial ecosystem. As a consequence, ecosystem function at any given time (such as 

photosynthetic uptake, respiration and evapotranspiration rates) is an emergent consequence of an ecosystem’s initial physical 

and biotic states and the contemporaneous impact of meteorological and disturbance forcings on these states.  15 

 

Disentangling the cumulative lagged consequences of past phenomena from contemporaneous impacts of external forcings is 

a critical priority for understanding and quantifying the contemporary terrestrial carbon (C) cycle responses to climatic 

variability. Global-scale efforts to resolve the state of the C cycle (Le Quéré et al., 2015) identify tropical C cycle as a dominant 

contributor to the inter-annual variability (IAV) of the terrestrial C sink. Recent efforts to characterize the tropical C sink IAV 20 

have been largely focused on quantifying the role of concurrent responses to climatic variability, including the contribution of 

semi-arid ecosystems (Poulter et al., 2014; Ahlstrom et al., 2015), ecosystem responses to drought (Gatti et al., 2014), and 

more generally continental-scale sensitivities of photosynthesis, respiration and fire fluxes to concurrent temperature and 

precipitation anomalies (Cox et al., 2013; Andela and van der Werf, 2014; Alden et al., 2016; Jung et al., 2017; Liu et al, 2017; 

Piao et al., 2019). However, on comparable timescales, time-lagged manifestations of climatic variability on the state of the 25 

terrestrial biosphere have been extensively theorized and observed (Thomson et al., 1996; Schimel et al., 1996, 2005; 

Richardson et al., 2007; Arnone et al., 2008; Sherry et al., 2008; Saatchi et al., 2013; Frank et al., 2015; Doughty et al., 2015; 

Baldocchi et al., 2017; Schwalm et al. 2017; amongst many others). Specifically, lagged relationships between climate 

variability and the terrestrial C fluxes—namely mediated through lagged impacts on photosynthetic uptake and respiration 

fluxes, groundwater storage, mortality and subsequent shifts of ecosystem function—indicate that lagged effects may be a 30 

fundamental component in the inter-annual evolution of the terrestrial C balance. Observational constraints on terrestrial 

ecosystem responses to climatic variability further suggest that time-lagged phenomena are a non-negligible component of 
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terrestrial ecosystem C dynamics on continental-to-global scales (Braswell et al., 1997; Saatchi et al., 2013; Anderegg et al., 

2015; Detmers et al., 2015; Fang et al. 2017; Yang et al., 2018; Yin et al., 2020). Therefore, while recent efforts to diagnose 

inter-annual variations of the tropical C balance overwhelmingly emphasize the roles of concurrent forcings, observed 

ecosystems responses to climatic variability on multi-annual timescales indicate that the tropical C balance may be 

substantially affected—if not governed—by lagged responses to inter-annual variations in meteorological and disturbance 5 

forcings across tropical ecosystems. 

 

Accurate knowledge of both instantaneous sensitivities and time-lagged processes of terrestrial C cycling to climate is critical 

for constraining model representations of the terrestrial C cycle. Uncertainty in the long-term terrestrial C flux imbalance and 

the associated carbon-climate feedbacks is a prevailing source of uncertainty in Earth System projections (Friedlingstein et al., 10 

2014, Friend et al., 2014), and these are likely underestimated due to a range of under-represented and/or poorly constrained 

C cycle responses to a changing climate (Luo 2007; Lovenduski & Bonan, 2017). Furthermore, assessments of Earth System 

projections based on present-day constraints (Cox et al., 2013; Mystakidis et al., 2016) provide little insight on the integrated 

roles of largely uncertain process controls, including C flux responses to drought (Powell et al., 2013); under-determined C 

pool dynamics (Bloom et al., 2016), nutrients dynamics and limitations (Wieder et al., 2015), and higher-order dead organic 15 

C dynamics (Schimel et al., 1994, Hopkins et al., 2014). In tropical ecosystems, rapid turnover rates of live and dead organic 

matter pools, relative to extra-tropical ecosystems (Carvalhais et al., 2014; Bloom et al., 2016) imply interactions between 

uptake, respiration, and fires (Randerson et al., 2005; Chen et al., 2013, Bloom et al., 2015) on comparable timescales: 

specifically, given that (a) the mean C residence time in tropical biomass and soil organic matter pools typically spans ~5-50 

years, and (b) multi-year observational constraints reveal rapid ecosystem vegetation/C responses to climatic extremes (Saatchi 20 

et al., 2013; Alden et al., 2016), sub-decadal timescales are likely critical for disentangling concurrent and lagged effect impacts 

on the evolution of tropical C balance. However, despite numerous studies on the roles of productivity (Doughty et al., 2015), 

water stress (Kurc & Small, 2007; Williams & Albertson, 2004), respiration (Trumbore 2006, Exbrayat et al 2013a,b, Guenet 

et al., 2018) and mortality (Saatchi et al., 2013, Anderegg et al., 2015; Rowland et al., 2015), there is currently a major gap 

between knowledge of individual processes controlling the tropical C balance on inter-annual timescales, and the integrated 25 

impact  process interactions leading to complex net C exchanges represented in terrestrial biosphere models (Huntzinger et al., 

2013, 2017). As a result, while models provide critical mechanistic insight into complex process interactions, model 

representations of the net effect of competing and interacting C flux responses to climate variability and disturbance remain 

highly uncertain on regional and pan-tropical scales. Ultimately, given tropical ecosystems account for 850 Pg of C and the 

majority of the Earth’s photosynthetic uptake, plant respiration and fire C emissions (Saatchi et al., 2011; Hiederer & Köchy, 30 

2011; Beer et al., 2010; van der Werf et al., 2010), quantitatively understanding the concurrent and long-lived impacts of 

climatic variability, drought and anthropogenic disturbance is critical for predicting their function in Earth system projections. 
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Recent inverse estimates of tropical C fluxes from satellite CO2 measurements provide much-needed spatial and temporal 

constraints on continental-scale Net Biospheric Exchange (NBE; e.g. Takagi et al., 2014, Liu et al., 2014, 2017; Feng et al., 

2017., Detmers et al., 2015; amongst others). Satellite-based NBE estimates—combined with land-surface observations of 

solar-induced fluorescence (SIF, Frankenberg et al. 2011), leaf-to-soil constraints on total C stocks (Saatchi et al., 2011) and 

disturbance (Giglio et al., 2013)—provide a unique opportunity for quantitatively informing terrestrial biosphere model 5 

representations of the tropical C balance; recent continental-to-global scale model-data fusion efforts have demonstrated the 

synergistic potential of the present-day “carbon observing system” for resolving the dynamics of the terrestrial C balance (Liu 

et al., 2017; Bloom et al. 2016; MacBean et al., 2018; Exbrayat et al. 2018; Quetin et al., 2020; Yin et al., 2020). Ultimately, 

model-data fusion representations of terrestrial ecosystem C cycling allow for an explicitly mechanistic representation of the 

terrestrial C balance with in-built states and process parametrizations optimized to represent the observed C cycle variability 10 

in the observations; contingent on their mechanistic accuracy of the C cycle to external forcings, these terrestrial C balance 

models can be used to quantitatively diagnose the concurrent and lagged sensitivities of terrestrial ecosystems to external 

forcings.  

 

In this study we present a framework for expressing the ecosystem state changes in a given year as the sum of (a) “concurrent 15 

effects”, attributable to concurrent forcing anomalies, and (b) “lagged effects”, attributable to the cumulative impacts of past 

forcings. We apply this framework on a data-constrained ecosystem C balance modelling framework to quantitatively diagnose 

the role of concurrent and lagged effects on the 2001-2015 inter-annual tropical C balance. Our analysis is motivated by some 

key unanswered questions on the large-scale tropical C cycle variability: for instance, are lagged effects significant contributors 

to inter-annual flux variability on pan-tropical scales? Which C fluxes (e.g. photosynthetic or respiratory) explain the majority 20 

of NBE variability attributable to lagged phenomena? Are lagged effects a ubiquitous property across both dry and wet tropical 

biomes? Here we hypothesize that on a pan-tropical scale, the integrated impact of lagged effects is a critical component of 

tropical NBE IAV. To test this hypothesis, we reconcile large-scale C cycle processes and satellite-based estimates of land-to-

atmosphere CO2 fluxes using the CARDAMOM diagnostic ecosystem C balance model-data fusion approach. We outline our 

method in section 2, where we present an analytical methodology for attributing inter-annual ecosystem state variability to 25 

concurrent and lagged effects; we present and discuss a quantification of the relative role of concurrent and lagged effects on 

continental-scale NBE, and the attribution of lagged effects to inter-annual variations in C stock and plant-available water 

states in section 3; we conclude our manuscript in section 4.  

 

2 Methods 30 

 

To quantitatively diagnose concurrent and lagged effects on the inter-annual variability of the tropical C balance, we (i) present 

a conceptual framework for attributing annual ecosystem state changes to concurrent and lagged components, (ii) implement  

CARDAMOM model-data fusion framework at a 4°×5° monthly resolution to observationally constrain 2001-2015  C cycle 
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states, fluxes and process controls, and (iii) attribute ecosystem state changes to concurrent and lagged effects based on the 

CARDAMOM 2001-2015 representation of the tropical C balance. In summary, the CARDAMOM model-data fusion 

framework (Bloom et al., 2016) employs a Bayesian inference approach to constrain model parameters and initial states within 

the prognostic Data Assimilation Linked Ecosystem Carbon model (DALEC, Williams et al., 2005), based on observation 

constraints—where and when these are available. Since DALEC parameters are independently estimated at each location, the  5 

4°×5°  resolution was chosen to accommodate recent estimates of land-surface CO2 and CO fluxes produced at the GEOS-

Chem atmospheric chemistry and transport model 4°×5° grid (Bowman et al., 2017; Liu et al. 2017; Jiang et al., 2017). We 

implement the CARDAMOM analysis across tropical and near-tropical latitudes (30°S - 30°N), and evaluate the tropical C 

balance across 6 sub-continental regions, as well as the dry tropics and the wet tropics (Figure A1); we chose to focus the 

evaluation of our results at sub-continental and pan-tropical scales to conform with the fundamental spatial resolution 10 

limitations of satellite-based surface CO2 flux estimates (Liu et al., 2014, Bowman et al., 2017). The following subsections 

describe a conceptual framework for concurrent and lagged effect attribution (2.1), the DALEC ecosystem carbon balance 

model (2.2), satellite and inventory-based observations (2.3), the estimation of DALEC parameters and states within the 

CARDAMOM model-data fusion framework (2.4), and the attribution of the observation-informed DALEC C cycle dynamics 

to their concurrent and lagged effect components (2.5).  15 

 

2.1 Concurrent and lagged effects 

 

Ecosystem function—such as photosynthesis, respiration and evapotranspiration rates—at all stages of ecological succession 

is both a consequence of an ecosystem’s initial physical and biotic states and the contemporaneous impact of meteorological 20 

and disturbance forcings on these states. For example, ecosystem water and nutrient availability along with species 

demography and species composition—effectively amounting to the time-integrated ecosystem legacy—will govern an 

ecosystem’s function under a nominal forcing. The cumulative impact of both episodic or prolonged variability in external 

forcings will be “remembered” in ecosystem states, thus shaping ecosystem function as an emergent property of external 

forcing history. Ecosystem states under a constant and perpetual environmental forcing will follow a trajectory towards an 25 

equilibrium state (as has been largely hypothesized as the typical outcome for ecosystem C stocks; Luo and Weng 2011, Luo 

et al. 2015) or more generally a transient trajectory about a domain of attraction (Holling, 1973), with stable equilibria, stable 

limit cycles, stable nodes and/or neutrally stable orbits as potential trajectories. Here, we define lagged effects as the sum of 

ecosystem state changes induced by a reference climatological mean forcing (Figure 1); these include the functional responses 

of ecosystem under climatological conditions (e.g. joint photosynthesis, respiration and evapotranspiration responses to non-30 

equilibrium plant-available water, leaf area, biomass and dead organic C states), as well as functional shifts (e.g. succession-

induced changes in demography and species composition, and consequently changes in ecosystem-scale photosynthetic 

capacity). In addition to an attraction towards a fixed equilibrium or domain, ecosystem states are perpetually disturbed by 

exogenous forces, such as meteorological and disturbance forcing anomalies relative to a climatological mean forcing. Here 
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we define these concurrent effects as all anomaly-concurrent changes to ecosystem states unaccounted for by climatology-

induced state changes (i.e. lagged effects); these include functional responses to anomalous forcings (e.g. drought impact on 

photosynthetic uptake and respiration in responses to meteorological phenomena), as well as functional shifts on demographics 

and species composition induced by concurrent mortality and disturbance events. The combined state changes resulting from 

both concurrent and lagged effects throughout a one-year time period will in turn propagate into future ecosystem states. In 5 

this manner, forcing anomalies are perpetually propagated into ecosystem states, and lagged effects in subsequent years 

represent an aggregate legacy of all prior phenomena. The choices of (a) “concurrent effects” to describe effects 

contemporaneous to a meteorological event and (b) “lagged effects” to describe all time-lagged processes are consistent with 

Frank et al., (2015) definitions associated with effects occurring during or after a climatic anomaly. We note a distinction 

between (i) single-event lagged effects, which represent ecosystem state changes attributable to a single past forcing event (ii) 10 

aggregate lagged effects, which represent the sum and interactions between past single-event lagged effects. For example, 

single-event lagged effects might include the ecosystem state changes attributable to a single drought or disturbance event, 

while aggregate lagged effects can include the effects of cumulative droughts impacts, the interactions in between dry and wet 

year events, and the longer-term succession processes (as described in Figure 1); we henceforth use “lagged effects” to refer 

to aggregate lagged effects throughout the manuscript. Finally, while in this study we confine our analysis to the estimation of 15 

concurrent and lagged effects on annual timescales, we note that the conceptual framework presented in Figure 1 can be 

adapted to diagnose concurrent and lagged ecosystem state changes on any timescale of relevance. 

 

2.2 Model and drivers 

 20 

We use the data-assimilation linked ecosystem carbon model (DALEC; Williams et al., 2005) to represent the principal terms 

and major pathways of the terrestrial C cycle. The DALEC model family has been extensively used to diagnose terrestrial C 

cycle dynamics across a range of site level and spatially resolved approaches (Fox et al., 2009; Rowland et al., 2014; Bloom 

et al., 2016; Smallman et al., 2017; Exbrayat et al., 2018; amongst several others). Here we use DALEC version 2a (henceforth 

DALEC2a): a summary of the DALEC2a states and processes is depicted in Figure 2. For the sake of brevity, we solely report 25 

changes in reference to DALEC2 (previously described by Bloom et al., 2016), and refer the reader to the supplementary 

material (and references therein) for a complete description of the model. 

 

We extended the DALEC2 structure to include first-order plant-available water (H2O) pool, where the hydrological balance is 

defined as the sum of precipitation inputs (P) and evapotranspiration (ET) and runoff (R) outputs. In turn, the plant-available 30 

H2O limits gross primary productivity, through conservation of the inherent water-use efficiency (Beer et al., 2009), where ET 

is calculated as a function of gross primary production (GPP) and atmospheric vapor pressure deficit (Appendix B1). 

Effectively, the interaction between plant-available H2O, GPP and ET constitutes a first-order plant-soil carbon-water 

feedback. We further appended the DALEC2 structure by including a parameterization of soil moisture limitation on 
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heterotrophic respiration (Appendix B2), given that heterotrophic respiration dependence on soil moisture remains highly 

uncertain (Moyano et al., 2013; Sierra et al., 2015), as well as a dominant source of uncertainty amongst terrestrial C models 

(Falloon et al., 2011; Exbrayat et al., 2013a,b).  

 

Given a range of in-situ and continental-scale studies highlighting the uncertainties of fire combustion factors across a range 5 

of ecosystems, (Ward et al., 1996; Bloom et al., 2015), the errors involved in representing fine-scale fire type variability (Giglio 

et al., 2013), and spatial variability of fuel loads, we optimize fire C pool combustion factors (in contrast, combustion factors 

were prescribed as constants in Bloom et al., 2016): specifically, we optimize the combustion factors of foliar biomass (πfoliar), 

non-foliar biomass pools (πnfb), soil C (πSOM) and the fire resilience factor (we approximate the litter C combustion factor as 

the arithmetic mean of πfoliar and πSOM, given that the DALEC2a litter pool represents both above-ground and below-ground C 10 

reservoirs). Prior ranges for all π and the fire resilience are conservatively defined as spanning 0.01 to 1. We implement the 

ecological and dynamic constraints (Bloom & Williams 2015) to ensure that foliar C combustion factors are greater than both 

non-foliar biomass and soil C combustion factors (πfoliar > πnfb and πfoliar > πSOM) which are comprehensively consistent with 

detailed measurements of C pool combustion factors across a range of ecosystem fire types (Shea et al., 1996; Araújo et al., 

1999, van Leeuwen et al., 2014 amongst others). Finally, we also represent the uncertainty in the longevity of plant labile C; 15 

specifically, we now optimize—rather than prescribe—the labile C lifespan used during leaf flushing in DALEC2a (previously 

all labile C was used during leaf flush, see Bloom & Williams, 2015). The updated model structure is depicted in Figure 2. We 

henceforth summarize the dynamical description of DALEC2a as 

 

𝒙!"# = 𝐷𝐴𝐿𝐸𝐶2𝑎(𝒙! ,𝑴! , 𝒑)         (1), 20 

 

where 𝒙!  represents the ecosystem state vector at time t, Mt represents the corresponding meteorological and disturbance 

forcings (namely monthly temperature, precipitation, global radiation, vapor pressure deficit, burned area and atmospheric 

CO2), p represents a vector of time-invariant process parameters and 𝐷𝐴𝐿𝐸𝐶2𝑎()	represents the DALEC2a operation on states 

xt throughout time t ® t+1. In summary, DALEC2a optimizable quantities consist of 26 process parameters, p, and seven 25 

initial ecosystem states (C and H2O pools; Figure 2) at timestep t=0, x0. For the sake of brevity, we include a complete 

description of DALEC2a state variables, process parameters and diagnostic C fluxes in the supplementary material, except 

where an explicit mention is necessary in the manuscript. 

 

2.3 Observations 30 

 

The observations assimilated into CARDAMOM are summarized in Table 1. Following Bloom et al., (2016) we assimilate 

Moderate Imaging Spectroradiometer (MODIS) leaf area index (LAI), soil organic matter (SOM) from the Harmonized world 

soil database (HWSD; Hiederer & Köchy, 2011) and above- and below-ground biomass (ABGB, Saatchi et al., 2011). Solar-
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induced fluorescence (SIF)—retrieved from the Greenhouse Gases Observing Satellite (GOSAT)—is a robust proxy for 

photosynthetic activity: while non-linear inter-relationships at plant level and flux-tower level have been observed under 

certain conditions (Verma et al., 2017, Magney et al., 2017), GPP is observed to be linearly inter-related with SIF at ecosystem 

and regional scales (Frankenberg et al., 2011; Sun et al., 2017). Given that SIF:GPP linear relationships are known to vary 

substantially across individual species and entire ecosystems, here we solely assume that monthly SIF provides a constraint on 5 

the relative temporal variability of GPP (following MacBean et al., 2018). The monthly averaged 2010-2015 4°×5° SIF values 

were derived with the polarizations and selection criteria described by Parazoo et al., (2014). The assimilation of relative SIF 

variability is described in section 2.4.  

 

We assimilate the GOSAT-derived 2010-2013 net biospheric C exchange (NBE) dataset (NBE > 0 for a net biosphere-to-10 

atmosphere flux) estimated using the Carbon Monitoring System Flux atmospheric CO2 inversion framework (CMS-Flux; Liu 

et al., 2014, 2018). In summary, total monthly 4°×5° surface CO2 fluxes were scaled using a Bayesian 4D variational (4D-

Var) inversion approach in order to minimize differences between GOSAT 2010-2013 observations and CMS-Flux 

representations of total column CO2 (we refer the reader to Liu et al., 2018 for additional details on the derivation of surface 

CO2 fluxes).  Following Liu et al., (2017) and Bowman et al. (2017), we subtract prior estimates of anthropogenic CO2 15 

emissions from total CMS-Flux total CO2 flux estimates, and we assume that prior anthropogenic CO2 emissions errors are 

minimal compared to the biospheric CO2 fluxes, given that these are typically much smaller than natural CO2 fluxes at a 4°×5° 

resolution across the tropics. We withhold 2015 CMS-Flux NBE estimates—constrained by Orbiting Carbon Observatory 

(OCO-2) total column CO2 observations (Liu et al., 2017)—to validate CARDAMOM 2015 regional NBE estimates and their 

associated uncertainties in the absence of CO2 constraints (OCO-2 NBE estimates are therefore withheld from the 20 

CARDAMOM NBE assimilation step described in section 2.4); in effect, we employ the validation of CARDAMOM NBE 

predictions against withheld data effect as a means for evaluating the mechanistic representations of CARDAMOM’s time-

varying C cycle processes. 

 

Finally, we assimilate mean 2001-2015 fire C emission estimates derived from monthly 4°×5° satellite-based estimates of fire 25 

CO emissions (Jiang et al., 2017; Worden et al., 2017; Bloom et al., 2019): the estimates of biomass burning CO emissions 

were derived based on an ensemble of atmospheric CO inversions of column CO measurements from the Measurements of 

Pollution in the Troposphere (MOPITT) instrument onboard the NASA EOS/TERRA satellite (Deeter et al., 2014). We refer 

the reader to Jiang et al., (2017) for the details of the atmospheric CO inversion using the GEOS-Chem adjoint model and to 

Worden et al., (2017) for the attribution of optimized CO fluxes to biomass burning. Biomass burning CO emission estimates 30 

by Worden et al., (2017) were then used to derive total biomass burning C emissions based on monthly estimates of CO2:CO; 

the approach is detailed in Bowman et al., (2017). We note that NBE estimates exhibit substantial spatial error covariance 

structures across individual 4°×5° grid-cells, and the effective information content of the NBE inversions is larger than the 

4°×5° resolution. To mitigate the spatial error correlation features identified in the NBE dataset (Bowman et al., 2017; Liu et 
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al., 2017), we employed a 3×3 gridcell smoothing window for monthly NBE estimates, following the approach by Liu et al. 

(2018). 

 

2.4 Model-data fusion 

 5 

Within each 4°×5° grid cell, the C cycle dynamics in DALEC are a function of meteorological and disturbance drivers M, 

model parameters p and initial conditions x0 (as summarized in Eq. 1). We use a Bayesian inference formulation to 

independently retrieve the optimal distribution of x0 and p given observations O for each 4°×5° grid cell, where: 

 

𝑝(𝒚|𝑶) 	∝ 𝑝(𝒚)𝑝(𝑶|𝒚)         (2); 10 

 

y is the control vector {x0,p}, p(y) is the prior probability distribution of y, and p(O|y) is proportional to the likelihood of y 

given O, L(y|O). At any given grid cell, the observation vector O consists of LAI, SOM, ABGB, SIF, NBE and CO-derived 

fire CO2 emissions (henceforth OLAI, OSOM, OABGB, OSIF, ONBE and OCO respectively), and—assuming errors are uncorrelated— 

the overall likelihood of y given O can be expressed as 15 

 

L(y|O) = LLAI LSOM L ABGB LSIF LNBE LCO       (3) 

 

 For LAI, SOM, ABGB and CO, we derive the corresponding likelihood function 𝐿∗  (i.e.  LLAI, LSOM, L ABGB and LCO, 

respectively) as follows:  20 

 

𝐿∗ = e%
!
"∑ '

#$	(𝒚))*+
,+

(
"

+          (4) 

 

where oi and mi(y) correspond to the ith observation and corresponding modeled quantity derived from control vector y, 

respectively; σi represents the combined errors of model and data, namely the combined effects of DALEC model structural 25 

error, model driver errors and observation errors. In contrast to Bloom et al., 2016, given that MODIS LAI retrievals have 

exhibited systematic seasonal biases across the wet tropics (Bi et al., 2015), we solely use mean LAI as a constraint on the 

mean DALEC2a LAI values (therefore, for the derivation of LLAI, m and o in equation 3 correspond to the 2001-2015 mean 

modeled and observed LAI).  

 30 

To constrain the relative variability of GPP based on SIF without imposing constraints on the absolute GPP magnitude, we 

derive LSIF—based on Eq.4—by formulating m and o as follows: 
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𝑚)(𝒚) = 	
*+++
𝑮𝑷𝑷......            (5), 

𝑜) =	
/01+
𝑺𝑰𝑭.....           (6), 

 

where 𝑆𝐼𝐹)  and 𝐺𝑃𝑃)  are SIF and corresponding DALEC2a GPP values at time index i and  𝑺𝑰𝑭@@@@@  and 𝑮𝑷𝑷@@@@@@  are the 

corresponding means during the 2010-2015 time period.  5 

 

We constrain CARDAMOM NBE using 4°×5° monthly CMS-Flux NBE estimates, derived from GOSAT atmospheric total 

column CO2 retrievals (Liu et al., 2018) spanning 2010-2013. At each 4°×5° location, we define the LNBE as the product of 

mean annual NBE and seasonal NBE anomalies using the following equation: 

 10 

𝐿567 =	e
%!"∑ '-./ (𝒚))*0/

,/ (
"

0 e
%!"∑ 8

#+,0
// (𝒚))*+,0

//

,//
9
"

+,0         (7), 

 

where 𝑚:
;  denotes annual mean DALEC2a NBE value for year a and 𝑚),:

;;  denote DALEC2a NBE seasonal deviations from 

their annual means; specifically, for a given month i with corresponding year a: 

 15 

𝑚:
; (𝒚) = #

#=
∑ 𝑁𝐵𝐸),:#=
)>#          (8) 

𝑚),:
;; (𝒚) = 𝑁𝐵𝐸),: −𝑚:

; 									        (9) 

 

where 𝑁𝐵𝐸),: is the DALEC2a NBE; observations 𝑜:;  and 𝑜),:;;   were derived identically to 𝑚:
;  and 𝑚),:

;; . Similarly to Desai 

(2010), we implement the likelihood function outlined in Eq. 7 in order to capture both the seasonal and inter-annual modes 20 

of NBE variability; we found that solely minimizing the monthly NBE residuals following the formulation based on Eq. 4 led 

to disparate inter-annual variations between the model and observation-constrained NBE. Effectively the formulation in Eq. 

7—in comparison to Eq. 4— increases the relative weight of mean annual CMS-Flux NBE constraints on DALEC2a NBE.  

 

The uncertainty for each observational constraint (i.e. σ values in Eq. 4 and 7) implicitly represent the combined impacts of 25 

observational random errors, systematic errors, and model structural error. In the absence of knowledge on the relative roles 

of observation errors in the monthly 4°×5° observation uncertainties and explicit knowledge of model structural error, we 

prescribed σ values through trial and error, in order to (a) ensure that model states and diagnostic variables capture the 

predominant variability of the observational constraints O, while (b) ensuring that σ values are comparable to the observational 

uncertainty. For all land surface variables (namely LAI, ABGB, SOM and SIF), m and o were log-transformed (following 30 

Bloom et al., 2016). For the mean 2001-2015 LAI constraint, we assumed log-normal uncertainty of σ=±log(1.2); we 

prescribed σ = ±log(2) log-normal uncertainty structure for each SIF observation. We approximated the uncertainty of the CO-
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derived mean 2001-2015 fire C values as σ = ± 20%, which is broadly consistent with the monthly 4°×5° CO uncertainty 

estimates and the corresponding CO2:CO uncertainty estimates reported by Bowman et al., (2017) and Worden et al., (2017). 

For NBE we prescribed σ’= 0.02 gC/m2/day and σ’’ = 2 gC/m2/day; we found that these were suitable to capture the first-

order 2010-2013 seasonal and inter-annual components of continental scale NBE variability. The uncertainties assumed for 

each observational constraint are summarized in Table 1; we note that these implicitly include the combined assumption on 5 

observational random errors, systematic errors, and model structural error.  We discuss the potential impacts of observation 

uncertainty assumptions and make recommendation for future efforts in section 3.3. 

 

To retrieve the distribution of p(y|O), we employed an adaptive metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) 

approach following Bloom et al., (2016) to sample the objective function, namely the product of p(y) and p(O|y); for reference, 10 

we list the individual components of the objective function in the manuscript supplement (section S3).  We generally found 

that the computational costs required to meet MHMCMC convergence criterion reported by Bloom & Williams (2015) for 

each 4°×5° grid-cell were prohibitively expensive. We updated the adaptive MHMCMC to the Haario et al., (2001) MHMCMC 

approach, where the MHMCMC proposal distribution is adapted as a function of previously accepted samples (see Haario et 

al., 2001 for algorithm details). We ran 4 adaptive MHMCMC chains for 108 iterations in each 4°×5° grid-cell. We found that 15 

the latter half of the chains converged within a Gelman-Rubin convergence criterion value of <1.2 in 75% of the grid cells. 

For the subsequent analysis, we use a subset of 500 samples of y from the of latter half of each MHMCMC chain, totaling 

4×500 samples of y per 4°×5° grid-cell. 

 

2.5 Dynamical formulation of concurrent and lagged effects 20 

 

Here we present a dynamical formulation for the derivation of concurrent and lagged effects on the inter-annual ecosystem 

state changes. To explicitly quantify the concurrent effects and lagged effects, we define the trajectory of the modeled dynamic 

state variables x at year a+1 as 

 25 

𝒙:"# = 	𝐷(𝒙:,𝑴:, 𝒑)          (10), 

 

where the state vector xa+1—which is comprised of DALEC2a states at the beginning of year a+1—is computed from the 

DALEC2a model operator D(), which is a function of the previous state xa at beginning of year a, the meteorological and 

disturbance forcing history of the previous year Ma, and time-invariant ecosystem parameters p. We note that Eq. 10 is resolved 30 

on an annual time-step; however, the DALEC2a operator time-step is monthly, hence the operator in Eq. 10 is a composite of 

monthly operators as denoted in equation 1. To isolate the role of concurrent meteorological and disturbance anomalies in Ma, 

we define the C trajectory under a reference climatological mean forcing 𝑴; as 

 



12 
 

𝒙′:"# = 	𝐷(𝒙:,𝑴′, 𝒑)	         (11). 

 

Here we define 𝑴; as the monthly climatological mean of the 2001-2015 meteorological and disturbance drivers and 𝜹𝑴𝒂 as 

the corresponding anomaly in year a,  where 

 5 

𝑴: =	𝑴; + 𝜹𝑴𝒂.          (12). 

 

With Eq. 10 and 11, we can define the change in the state x in year a, 𝛿𝒙:, as  

 

𝛿𝒙: = 𝒙:"#	–𝒙: =	 (𝒙:"#	–𝒙;:"#)+(𝒙;:"#	–𝒙:)      (13). 10 

 

This formulation allows us to define the lagged effect on ecosystem states in year a as  

 

𝛿𝒙:AB* =	𝒙′:"#	–𝒙:  

           (14), 15 

and the concurrent effect on ecosystem states in year a as  

 

𝛿𝒙:CD5 =	𝒙:"#	–𝒙′:"#         (15); 

 

and the sum of concurrent and lagged effects in Eq. 14 and 15 as 20 

 

𝛿𝒙: = 𝛿𝒙:AB* + 	𝛿𝒙:CD5          (16). 

 

We conceptually illustrate the derivation of annual concurrent and lagged effects on a given ecosystem state x in Figure 3. 

Under a climatological mean forcing (blue line), the ecosystem state trajectory—solely induced by lagged processes—would 25 

diverge from externally forced ecosystem state trajectory (black line), and would eventually converge to an equilibrium state 

or oscillate about a domain of attraction (Figure 3a). For a one-year timespan, the change in ecosystem state x throughout year 

a, 𝛿𝒙: can be decomposed into a climatology-induced lagged effect change 𝛿𝒙:AB*, and an anomaly-induced concurrent effect 

change 𝛿𝒙:CD5 (Figure 3a, inset).  

 30 

From a mechanistic standpoint, the variability of 𝛿𝒙:AB* is independent of meteorological forcing anomalies and is therefore 

solely dependent on all ecosystem states xa.  For example, in a hypothetical scenario where a climatological mean forcing 

induces no net ecosystem state changes, then 𝛿𝒙:AB* = 	𝒙𝒂 − 𝒙;𝒂"𝟏 = 𝟎 , and 𝛿𝒙 = 	𝛿𝒙CD5 . In a more general scenario,  
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𝛿𝒙:AB* = 	𝒙𝒂 − 𝒙;:"#	~	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for all a: in this instance 𝒙:AB* is non-zero but largely insensitive to variations in 	𝒙: within 

a typical range of ecosystem states 𝒙, therefore (i) the year-to-year variability of 𝛿𝒙, is largely dependent on  the variability of 

𝛿𝒙CD5, and (ii) 𝛿𝒙AB* amounts to an approximately constant offset term (Figure 3b).  Alternatively, if 𝛿𝒙AB* is sufficiently 

sensitive to the variability of 𝒙, the variability of 𝛿𝒙 will be a function of both  𝛿𝒙AB* and 𝛿𝒙CD5: in this instance, year-to-year 

variations in 𝒙 are influencing both the sign and magnitude of lagged effects (Figure 3c).  5 

 

Here we investigate the possible contributions of the annual variability of 𝛿𝒙CD5 and 𝛿𝒙AB* on 𝛿𝒙 for the 2001-2015 time 

period across tropical ecosystems. Specifically, we test the two following hypotheses: 

 

- Hypothesis 1:  𝑣𝑎𝑟(𝛿𝒙AB*) ≪ 	𝑣𝑎𝑟(𝛿𝒙CD5). In this instance, the impact of 𝑴′ on 𝒙 is largely independent on 10 

the variability of 𝒙; consequently the year-to-year variability of the lagged effects force 𝛿𝒙AB* is relatively small, 

and the year-to-year changes in ecosystem states, 𝛿𝒙, are dominated by 𝛿𝒙CD5 (Figure 3b). 

- Hypothesis 2:	𝑣𝑎𝑟(𝛿𝒙AB*)	~	𝑣𝑎𝑟(𝛿𝒙CD5). In this instance, the impact of 𝑴′ on 𝒙 is dependent on the variability 

of 𝒙; consequently, the year-to-year variability of the lagged effects 𝛿𝒙AB* is substantial, and the year-to-year 

changes in ecosystem states, 𝛿𝒙, are substantially attributable to both 𝛿𝒙CD5 and 𝛿𝒙AB* (Figure 3c). 15 

 

The mechanistic nature of the DALEC2a model within CARDAMOM (namely the representation of allocation fractions, 

residence times, meteorological sensitivities and explicit representation of dynamical states) allows for a data-constrained 

probabilistic assessment of the relative role lagged and concurrent effects on net ecosystem state changes. The disaggregation 

of 	𝛿𝒙: into 𝛿𝒙:CD5 and 𝛿𝒙:AB* (and the associated hypotheses 1 and 2) can be projected onto any subset of net ecosystem 20 

fluxes or additive combination of gross fluxes. For example, the NBE in year a (𝑁𝐵𝐸:)	corresponds to the net C loss between 

𝒙𝒂  and 𝒙𝒂"𝟏 ; in turn, 𝑁𝐵𝐸:  can be decomposed into its lagged effect component (𝑁𝐵𝐸:AB* ) and the concurrent effect 

component (𝑁𝐵𝐸:CD5), where 

 

𝑁𝐵𝐸: = 𝑁𝐵𝐸:CD5 +𝑁𝐵𝐸:AB*         (17); 25 

 

𝑁𝐵𝐸: and 𝑁𝐵𝐸:AB* can be directly calculated from 𝐷(𝒙:,𝑴:, 𝒑) and 𝐷(𝒙:,𝑴;, 𝒑) respectively, and 𝑁𝐵𝐸:CD5 is calculated as 

𝑁𝐵𝐸:  – 𝑁𝐵𝐸:AB* . By definition in the DALEC2a model, NBE is the sum of primary productivity (NPP), heterotrophic 

respiration (RHE) and fire (FIR) fluxes, where: 

 30 

𝑁𝐵𝐸: = 𝑅𝐻𝐸: + 𝐹𝐼𝑅: −𝑁𝑃𝑃:        (18). 

 

In turn, disaggregation RHE, FIR and NPP into their respective concurrent and lagged components gives: 
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𝑁𝐵𝐸:CD5 = 𝑅𝐻𝐸:CD5 + 𝐹𝐼𝑅:CD5 −𝑁𝑃𝑃:CD5       (19). 

𝑁𝐵𝐸:AB* = 𝑅𝐻𝐸:AB* + 𝐹𝐼𝑅:AB* −𝑁𝑃𝑃:AB*       (20). 

 

To diagnose relative inter-annual variations of a given flux F (namely the 2001-2015 timeseries of NBE, RHE, FIR and NPP), 5 

we derive annual anomalies Δ𝑭 relative to the mean 2001-2015 flux 𝑭Y, where for a given year a: 

 

Δ𝐹: =	𝐹: − 𝑭Y          (21). 

 

The Δ operation in Eq. 21 can be implemented onto each term in Eq. 18-20 without loss of equivalence between left-hand and 10 

right-hand sides (for example, Δ𝑁𝐵𝐸:AB* = Δ𝑅𝐻𝐸:AB* + Δ𝐹𝐼𝑅:AB* − Δ𝑁𝑃𝑃:AB*).  

 

Finally, we diagnose the 2001-2015 Δ𝑁𝐵𝐸:AB* variability as a function of the inter-annual anomalies in individual ecosystem 

states, Δ𝒙:(∗) = {	Δ𝑥:(#), Δ𝑥:(=), … , Δ𝑥:(5)}, relative to the mean ecosystem state 𝒙Y. For DALEC2, these consist of annual 

anomalies in initial C and H2O states (see Figure 2). For a given year, the total NBE lagged effect anomaly, Δ𝑁𝐵𝐸:AB* can be 15 

decomposed into  

 

Δ𝑁𝐵𝐸:AB* = ∑ Δ𝑁𝐵𝐸:(H)
AB* 	+5

H># Δ𝐼:       (22); 

 

Δ𝑁𝐵𝐸:(H)
AB*  represents the NBE lagged effect component solely attributable to an anomaly in ecosystem state n (Δ𝑥:(H)), and 20 

Δ𝐼: collectively accounts for the contribution of higher-order interactions between individual ecosystem states. In other words, 

given that Δ𝑁𝐵𝐸:AB*  is solely attributable to variability of annual initial conditions xa, the decomposition of Δ𝑁𝐵𝐸:AB*  to 

individual pool contributions provides a first-order attribution of lagged effect IAV to underlying C and H2O pool dynamics. 

The derivation of Eq. 22 is explicitly described in Appendix C. 

 25 

To derive uncertainty estimates for each annual flux 𝐹:, or corresponding anomaly Δ𝐹:, we calculate each term based on the 

2000 samples of y at each gridcell (see section 2.4), and we calculate the corresponding median and inter-quartile range (25th-

75th percentiles) for each term. Inter-annual variations in 2001-2015 𝑭 and Δ𝑭 timeseries are reported as standard deviations 

of median values. We conservatively assume that 𝑭 and Δ𝑭 errors are fully correlated when propagating these uncertainties 

across each region. 30 

 

3. Results and Discussion  
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3.1. Evaluation of observation-constrained tropical C balance 

 

Ultimately inferences about the concurrent and lagged effects on NBE can only be drawn if the CARDAMOM analysis is able 

to both (i) accurately represent observed NBE, and (ii) accurately represent underlying states and processes controlling IAV. 

To assess the CARDAMOM 2001-2015 re-analysis, here we present an evaluation of CARDAMOM against (a) the assimilated 5 

2010-2013 GOSAT-derived NBE dataset, and (b) the  withheld OCO-2 derived 2015 NBE dataset, and (c) assimilated and 

independent datasets of tropical terrestrial ecosystem states and fluxes. 

 

Optimized CARDAMOM NBE (a function of the optimized DALEC2a parameters and initial 2001 ecosystem states) broadly 

represents the monthly variability of the 2010-2013 regional-scale assimilated GOSAT-retrieved NBE (Figure 4; Table 2). In 10 

individual regions, monthly CARDAMOM versus CMS-Flux NBE r	  ≥ 0.69, with the exception of South-East Asia and 

Indonesia region (r = 0.57) where the CARDAMOM and GOSAT-retrieved NBE exhibits a relatively small seasonality 

compared to other regions. Evaluation of CARDAMOM NBE against withheld NBE estimates from OCO-2 exhibit a 

degradation in the correlation and RMSE values, but agree favorably on the amplitude and timing of the NBE variability (Table 

2).	We find that the CARDAMOM analysis is able to robustly capture the 2010-2013 GOSAT-derived annual NBE estimates 15 

at regional scales (see Figure 5 and Table 2; regional CARDAMOM versus CMS-Flux NBE r ≥ 0.9). On an annual basis, all 

regional OCO-2 NBE estimates 2015 except northern hemisphere South America are within the 90% CARDAMOM prediction 

confidence intervals (Figure 5); furthermore, all OCO-2 annual NBE estimates are within CARDAMOM 2015 prediction 

confidence intervals for the wet tropics, dry tropics and the entire tropical study region. We also note that regions the 

confidence intervals outside the 2010-2013 period predictions exhibit substantially larger than uncertainty, mainly due to 20 

under-constrained modes of long-term terrestrial C cycle variability. We found generally lower seasonal correlations between 

CARDAMOM NBE and GOSAT-retrieved across 4°×5° gridcells (Figure S2; 25th – 75th percentile = 0.19 - 0.63), and 

corresponding annual mean correlations (25th – 75th percentile = 0.31 - 0.89) relative to the sub-continental and pantropical 

regions (Table 2); the lower correlative agreement is likely due to the limited 4°×5° information content of satellite-based NBE 

flux estimates (Liu et al., 2014, Bowman et al., 2017). 25 

 

 We also evaluate the 2001-2015 CARDAMOM NBE against the inter-annual variability of the NOAA ESRL surface-based 

global atmospheric CO2 growth rate observations (www.esrl.noaa.gov/gmd/ccgg/trends/; see supplementary information for 

dataset details). We assume that the atmospheric CO2 growth rate variability—once detrended to remove decadal trends in 

fossil fuel emissions and ocean CO2 uptake and biogenic CO2 uptake—predominantly exhibit inter-annual variations of the 30 

tropical C balance (Baker et al., 2006; Cox et al., 2013; Sellers et al., 2018).  We find that 2001-2015 detrended CARDAMOM 

NBE (Figure 5, bottom-right panel), exhibits broad consistency with atmospheric CO2 growth rate; the detrended datasets 

exhibit comparable levels of inter-annual variability (atmospheric CO2 growth rate IAV = ± 0.62  PgC/yr, CARDAMOM 
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tropical NBE IAV = ± 0.80 PgC/yr) as well as a significant correlations between annual NBE growth rate anomalies (r = 0.62, 

pval=0.01). 

 

The spatial variability of CARDAMOM state variables and fluxes constrained by static datasets, namely LAI, biomass, soil C 

and mean fire C emissions (Table 1), are broadly correlated with the observational constraints by the CARDAMOM analysis 5 

(r = 0.7 – 0.98; p<0.05; Figure S2); for the above-mentioned quantities total median errors amounted to <10%, with the 

exception of soil C (median error CARDAMOM soil C = 25%).  The correlation between CARDAMOM GPP and GOSAT 

SIF is positive & significant (p-value <0.05) in 67% of 4°×5°  pixels, with higher correlations in the dry tropics (25th – 75th 

percentile = 0.41 – 0.78) relative to the wet tropics (25th – 75th percentile = 0.13 – 0.63); the lower correlations in the wet 

tropics are generally expected, given that wet tropical ecosystems fundamentally exhibit a weaker GPP seasonal cycle.  10 

  

We also evaluate the mean and inter-annual variability of CARDAMOM GPP, ET  and LAI outputs against (i) two independent 

measurement-based GPP estimates for 2007-2015 (FLUXCOM GPP, Jung et al., 2020; and FLUXSAT GPP, Joiner et al., 

2018), (ii) two independent measurement-based ET estimates (FLUXCOM ET, Jung et al., 2019; MODIS ET, Mu et al., 2011) 

for 2001-2013, and (iii) 2001-2015 MODIS LAI (we note that only mean 2001-2015 MODIS LAI was assimilated into 15 

CARDAMOM; see section 2.3). Datasets details and regional evaluations are included section S2 and Tables S2-S3 in the 

supplementary material. In summary, we find that mean CARDAMOM pantropical GPP is within 20% of both independent 

estimates and regional estimates are within 40% of both independent estimates; regional GPP IAV in CARDAMOM (0.8 – 

7.4%) is broadly consistent with FLUXSAT GPP (1.3-10.7%) and FLUXCOM GPP (0.3 – 4.2%). Pan-tropical GPP 

correlations are positive and significant (p-value < 0.05) among all three estimates (r = 0.69 – 0.74); regional correlations are 20 

by and large positive but not significant. CARDAMOM mean ET values are lower but withing 25% of independent ET 

estimates, and differences in regional mean ET are within 50% of independent estimates; regional ET IAV in CARDAMOM 

(2.3 % - 5.5%) is broadly consistent with FLUXCOM ET (0.3 – 5.9%) and MODIS ET (1.3 – 13.4%). Correlations between 

three datasets span positive and negative values but are mostly not significant; regional CARDAMOM ET correlations against 

MODIS and FLUXCOM (r = -0.64 – 0.41) are generally lower than inter-agreement between the two datasets (r = -0.27 – 25 

0.94). Mean CARDAMOM LAI is within 15% of MODIS LAI across all regions. Regional CARDAMOM LAI values (1.6 - 

4.8%) are broadly consistent with the range of MODIS LAI values (0.7 – 5.2%); none of the regional correlation values were 

significant. The notable lack of correlative agreement between CARDAMOM and independent LAI and ET estimates is 

potentially due to (a) the lack of direct observational constraints on the temporal variability of ET and LAI in CARDAMOM, 

and/or (b) systematic errors or limitations of independent LAI and ET estimation approaches on inter-annual timescales (Bi et 30 

al., 2015; Pan et al., 2020), and/or (c) fundamental limitations of CARDAMOM ET and LAI estimates (further discussed in 

section 3.3). 
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Overall, we argue that (i) CARDAMOM NBE and associated uncertainties compare favorably against withheld and 

independent data on seasonal and inter-annual timescales, and (ii) the spatial variability and the IAV magnitude of 

CARDAMOM ancillary states and fluxes are in general agreement with a range of assimilated and independently estimated 

quantities. We discuss noteworthy caveats and limitations of retrieved CARDAMOM ecosystem dynamics—and the 

implications on inferred variability of concurrent and lagged effects—in section 3.3. We anticipate that the ever-growing 5 

satellite CO2 record, along with increasing volume and quality of terrestrial ecosystem observations, will ultimately lead to 

improved seasonal and inter-annual process representations in future model-data fusion analyses of the terrestrial C balance. 

 

3.2 Concurrent and lagged effects on the tropical C balance 

 10 

The attribution of annual ΔNBE into its concurrent and lagged components (ΔNBECON and ΔNBELAG) reveals that both are 

prominent contributors to regional and pan-tropical ΔNBE (Figure 6). On a regional scale, ΔNBECON IAV and ΔNBELAG IAV 

during 2001-2015 amount to 61-107% and 41-122%, respectively, relative to ΔNBE IAV (Table 3). Notable ΔNBECON 

anomalies include (i) the positive ΔNBECON values in both South America regions during drier conditions in 2005, 2007 and 

2010, in contrast negative ΔNBECON responses during wetter conditions in 2009 and 2011, and (ii) negative ΔNBECON values 15 

during the relatively wet 2010-2011 conditions in Australia; both continental-scale responses corroborate the generally 

hypothesized responses of tropical ecosystems to wet and dry extreme events (Lewis et al., 2011; Bastos et al., 2013). For the 

most part, both ΔNBECON and ΔNBELAG contribute substantially to the year-to-year ΔNBE anomaly changes on a regional scale.  

Across the wet tropics, the sign of the largest ΔNBE  anomalies are predominantly explained by ΔNBECON; in contrast, dry 

tropics ΔNBELAG  IAV and  ΔNBECON  IAV both substantially contribute to annual ΔNBE anomalies. Instances where ΔNBELAG 20 

or ΔNBECON IAV values amount to >100% of ΔNBE IAV are attributable to regional and pan-tropical anti-correlations between 

ΔNBELAG and ΔNBECON: specifically, ΔNBELAG and ΔNBECON are  anticorrelated across the tropics (r = -0.05), and all regions 

except SE Asia & Indonesia (r = -0.56–0.14); the consistent anticorrelation across five out of six regions suggests that lagged 

effects may significantly and systematically dampen the impact of ΔNBECON. On a pan-tropical scale, we found that ΔNBECON 

IAV  and ΔNBELAG IAV are both substantial contributors to NBE IAV (80% and 64%); the relative importance of ΔNBELAG 25 

IAV relative to ΔNBECON is largest in the  dry tropics (83% and 99%, respectively), and remains substantial albeit smaller in 

wet tropics (79% and 45%, respectively). Uncertainties in ΔNBE, ΔNBECON and ΔNBELAG (Figure 6) are generally linked to 

confounding NBE trend uncertainties throughout 2001-2015 (Figure 4), particularly on a pantropical scale where NBE 

uncertainties are considerably larger than median NBE IAV. To directly assess the uncertainty of ΔNBELAG IAV contributions 

to NBE IAV irrespective of annual NBE uncertainties, we (a) rank all 4°×5° grid-cell CARDAMOM samples by their 30 

corresponding 2001-2015 ΔNBELAG IAV, and (b) combine CARDAMOM samples by ranking to generate a corresponding 

ensemble of regional and pan-tropical ΔNBELAG IAV estimates (summarized in Table S5). We find that the regional 95% 

confidence ranges are all within 50% of the median ΔNBELAG IAV values reported in Table 3. Notably, the ensemble of pan-

tropical ΔNBELAG IAV estimates span 42% - 97% of NBE IAV (2.5th – 97.5th percentile range), indicating that—even under 
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overwhelmingly conservative assumptions on grid-cell ΔNBELAG IAV—lagged effects are invariably a prominent component 

of tropical NBE IAV. 

 

Variations in ΔNBELAG  throughout 2001-2015 include a range of lagged processes spanning between (a) ΔNBELAG changes 

induced by recent forcing events (b) the gradual changes in ΔNBELAG attributable to an ecosystem’s approach or oscillation 5 

around a domain of attraction (see section 2.1). Notably, even in the absence of a recent forcing event, ΔNBELAG will potentially 

continue to change in magnitude from year to year as ecosystem states approach or oscillate around a domain of attraction. We 

conducted a sensitivity test for southern hemisphere South America region (top-left panel of Figure 6) to disentangle the range 

of contributions to 2001-2015 ΔNBELAG values: specifically, we (a) resolve ΔNBELAG in the absence of 2001-2015 forcing 

anomalies, and (b) sequentially add 2001-2015 forcing anomalies to resolve ΔNBELAG attributable to annual forcing events 10 

(Figure S6). In the absence of 2001-2015 forcing anomalies, lagged effects account for a ±0.11 PgC/yr variability in total NBE, 

explained by an approximately linear +0.02 PgC/yr increase throughout the 2001-2015 time period. The sequential addition of 

2001-2015 forcing anomalies indicates the sign and magnitude of lagged effects are substantially influenced by annual forcing 

events; while the inter-annual variability modestly increased to ±0.13 PgC/yr, year-to-year changes exceed 0.3 PgC/yr (Figure 

6). Furthermore, while most years induced relatively short-lived (1-2 years) contributions to subsequent ΔNBELAG values, 2007 15 

and 2010—both notably dry years—induced more long-lasting impacts on 2010-2015 ΔNBELAG (Figure S6). Given the 

combined importance of short and long-lived impacts of forcing anomalies on lagged effects, we highlight the need to further 

investigate the relative contributions and potential interactions between single-event lagged effects (e.g. lagged effects 

attributable to a single forcing anomaly), their longevity, and their net contribution to ΔNBELAG and ΔNBE IAV. 

 20 

The decomposition of ΔNBECON into constituent fluxes—namely net primary productivity (ΔNPPCON), heterotrophic 

respiration (ΔRHECON) and fires (ΔFIRCON) —reveals that ΔNPPCON is the largest contributor to ΔNBECON IAV (Figure 7; 

Table 4), while ΔFIRCON and ΔNPPCON  are comparable contributors to ΔNBECON in Australia. In northern hemisphere South 

America and southeast Asia and Indonesia, ΔRHECON variability is a smaller but substantial contributor to ΔNBECON, indicating 

that the integrated impacts of meteorological and disturbance forcing IAV on respiration are comparable to those on 25 

photosynthetic uptake. In Australia, the concurrent impact of fires on ΔNBECON is comparable to ΔNPPCON (Table 4). Similarly, 

the decomposition of ΔNBELAG into constituent fluxes (ΔNPPLAG, ΔRHELAG and ΔFIRLAG), reveals that ΔNBELAG is 

ubiquitously dominated by ΔNPPLAG variability, followed by modest contributions from ΔRHELAG variability and minimal 

contributions by ΔFIRLAG variability (see Table 4). The prominence of ΔNPPLAG is attributable to faster continental-scale 

response of C uptake following year-to-year variations in initial C and H2O states (relative to ΔRHELAG), indicating that live 30 

biomass dynamics (rather than dead organic C states) dominate initial ecosystem responses to external forcing anomalies. The 

relatively small contribution of ΔFIRLAG values to ΔNBELAG indicate that the magnitude of fires is, to first order, dominated by 

variability in the forcing, rather than variability in of fuel load within fire-prone ecosystems. 
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We find that variability in foliar C, plant-available H2O and soil C contribute to the majority of regional and pan-tropical 

ΔNBELAG variability (Figure 8). For example, both the enhanced foliar C and plant-available H2O in 2011 over the Australian 

continent (relative to 2010)—attributable to a combination of reduced fires and increased productivity due to anomalously wet 

2010 conditions over the Australian continent (Figure S3)—each contributed to a 0.1PgC/yr net uptake increase (i.e. NBE 

reduction) relative to 2010. Similarly, we found that reduced foliar C in southern hemisphere South America following dry 5 

conditions in 2005, 2007 and 2010 induced a 0.1PgC/yr NBE response in 2006, 2008 and 2011, respectively. We find that the 

sum of all the pool-specific ΔNBELAG anomalies approximately add up to ΔNBELAG (Figure S3), indicating that—insofar  as 

these are represented in DALEC2a—ΔNBELAG is (a) to first order equivalent to the sum of NBELAG sensitivities to individual 

initial states, and (b) cross-pool interactions (“I” in Eq. 22) are a secondary component of ΔNBELAG.  In aggregate, we find that 

foliar C variability contributes to 41-120% of ΔNBELAG variability across all regions, and 58% of the pan-tropical ΔNBELAG. 10 

Northern hemisphere sub-Saharan Africa and south-east Asia and Indonesia are the only regions where inter-annual variations 

in soil C and plant-available H2O (respectively) contribute to more variability than foliar C (Table 5). Notably, our results 

indicate that under a climatological mean forcing, (a) year-to-year changes in foliar C and plant-available H2O initial conditions 

are sufficient to induce substantial year-to-year changes in C uptake, and (b) year-to-year changes in soil C are sufficient to 

substantially influence total heterotrophic respiration rates; we find that the remaining states (labile C, wood C, fine root C and 15 

litter C) explain < 0.2 PgC/yr variability of ΔNBELAG across all regions. We also find that the sum of regional foliar C and 

plant-available H2O impacts on ΔNBELAG (Figure 8) are approximately equivalent to ΔNPPLAG (Figure 7); in turn, the 

considerable contributions of both ΔNPPLAG and ΔNPPCON across tropical ecosystems indicates that both climatic variability 

and initial ecosystem states are substantial contributors to tropical ΔNPP IAV. Inter-annual variations of foliar C, soil C and 

plant-available H2O states exhibit substantial correlations to their corresponding ΔNBELAG components (Figure S5): regional 20 

correlations are negative for foliar C (r = -0.6 – -1.0) and plant-available H2O (r = -0.7 – -0.2), and positive for soil C (r = 0.6 

– 1.0). We note that the general agreement between regional 2001-2015 foliar C IAV (1.1 – 4.0%), CARDAMOM LAI IAV 

(1.6 – 4.8%) and MODIS LAI IAV(0.7– 5.2%) corroborates the estimated impact of CARDAMOM C foliar dynamics on 

ΔNBELAG. In contrast to foliar C and plant-available H2O, soil C impacts on ΔNBELAG are predominantly induced by long-term 

soil C trends, rather than year-to-tear variability. Soil C regional trend signs (Figure 7) are generally opposite to mean 2001-25 

2015 NBE signs within each region (Figure 5), indicating that the observed regional C imbalances are substantially mediated 

by 2001-2015 soil C trends.   

 

Overall, our results indicate that (i) ΔNBELAG IAV is a prominent component of NBE IAV across tropical ecosystems; (ii) 

ΔNBELAG IAV is largely mediated by changes in ecosystem NPP capacity (ΔNPPLAG IAV); and (iii) ΔNPPLAG variability is 30 

regulated by inter-annual variations in ecosystem canopy and plant-available H2O states. In other words, our results highlight 

that inter-annual changes in ΔNBE—regardless of external forcing anomalies—are substantially determined by inter-annual 

anomalies in ecosystem H2O and canopy states. Lagged heterotrophic respiration responses (ΔRHELAG) are mediated by soil 

C states changes and are secondary component of NBE IAV; the dampened role of ΔRHELAG (relative to ΔNPPLAG ) is likely 
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due to the inherent lags between biomass growth and subsequent mortality inputs to soil C states, combined with ~5-50yrs 

mean dead organic C residence times across tropical ecosystems (Bloom et al., 2016). The relative importance of NPP-

mediated lagged effects in responses to climatic anomalies has also been inferred on from in-situ and continental-scale 

measurements (Sherry et al., 2008, Detmers et al., 2015; Wolf et al., 2016). Our findings also suggest that tracking the long-

term evolution of tropical ecosystem canopy cover (Saatchi et al., 2013; Shi et al., 2017) and reducing the process-level 5 

uncertainties associated with foliar C dynamics relationships to meteorological and disturbance forcings (discussed in 3.3) are 

potentially critical for advancing process-level understanding of tropical NBE IAV. We anticipate that continued monitoring 

of NBE (e.g. following the 2015-2016 ENSO event), and subsequent attribution to concurrent and lagged effects, will also be 

critical to better quantify the longevity NPP recovery (e.g. Schwalm et al., 2017) and to improve confidence in characterizing 

concurrent and lagged NPP impacts on the tropical C balance. Finally, while our analysis is focused on the ΔNBELAG sensitivity 10 

to year-to-year ecosystem states changes, we note that the magnitude of ΔNBECON is also in principle dependent on time-

varying ecosystem states (Figure 1); we recognize that further investigation on whether ΔNBECON IAV is (a) predominantly 

sensitive to forcing anomalies, or (b) sensitive to year-to-year ecosystem state changes, could amount to a critical step towards 

accurately characterizing the climate sensitivity of ΔNBE.  

 15 

3.3 Observation and model uncertainty caveats 

 

The prescribed observation uncertainty characteristics (Table 1) are potentially a critical source of error in the data-informed 

representation of terrestrial C cycle dynamics and its subsequent partitioning into concurrent and lagged effects. For example, 

relative differences in the mean NBE values retrieved from aircraft and satellite CO2 measurements over the Amazon Basin 20 

(Alden et al., 2016; Bowman et al. 2017) highlight the need to determine the sensitivity of our results to top-down estimates 

of NBE. While the uncertainty structures of top-down CO2 inversion estimates is beyond the scope of our paper, we recognize 

the need to robustly assess and characterize uncertainties in seasonal and inter-annual variations in NBE. Potential limitations 

in the linear SIF:GPP assumption include (i) systematic underestimations of afternoon GPP stress, given that the GOSAT 

overpass time is ~1pm, and (ii) uncharacterized biases emerging from non-linear SIF:GPP under extreme conditions (Verma 25 

et al., 2017). We highlight that recent efforts to merge multiple SIF datasets (Zhang et al., 2018), and process-based 

representations of SIF:GPP (Bacour et al., 2019) can together be used to improve the accuracy of SIF:GPP representation in 

CARDAMOM. We also note that the CARDAMOM likelihood function (eq. 3) fundamentally assumes all errors are 

independent; however, commonalities in the derived datasets—such as systematic representation errors across all datasets and 

transport errors in the GEOS-Chem derived CO2 and CO emissions—may lead to unrepresented error correlations in the 30 

likelihood functions. 

 

We generally acknowledge that more elaborate approaches and a more comprehensive treatment of model and data error 

characteristics are necessary to understand the contribution of individual data streams error (Keenan et al., 2011; Heald et al., 
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2004; MacBean et al., 2016, 2018). Specifically, the explicit and accurate representation of model structural error is critical 

for both accurate retrievals of physical parameters and accurate model predictions (Brynjarsdottir & O’Hagan, 2014) and 

solving for error model parameters (Schoups & Vrugt 2010, Xu et al., 2017) is potentially advantageous for physical parameter 

retrievals and prediction purposes. For example, we note that without an error model structure we cannot explicitly account 

for cross correlations in the errors between observations or the impacts of heteroscedasticity (Schoups  & Vrugt, 2010). While 5 

the identification and optimization of an appropriate structural error model is beyond the scope of this manuscript, we highlight 

this as an important priority for future CARDAMOM analyses. 

 

Unrepresented processes DALEC2a model structure—particularly processes that are potentially substantial contributors to 

ΔNBECON and ΔNBELAG—amount to an additional source of uncertainty in our analysis. Potentially critical processes include 10 

time-varying autotrophic respiration (Rowland et al., 2014), plant C allocation and plant mortality, as well as explicit 

representation of coarse woody debris (Smallman et al., 2017). In particular, given that our results suggest that foliar C is a 

major contributor to ΔNBE, unrepresented processes relating to tropical leaf phenology may substantially impact the accuracy 

of lagged effect attribution, including phenological processes regulating leaf onset, leaf lifespan and litterfall seasonality 

(Chave et al., 2010; Caldararu et al., 2013, Xu et al., 2016), as well as the time-varying allocation regimes (Doughty et al., 15 

2015). Furthermore, while the DALEC2a phenology assumes a time-invariant ratio between LAI and foliar C (i.e. a time-

invariant ecosystem-level leaf carbon mass per area), the joint roles of leaf demographics and species distribution on the 

temporal variability of leaf carbon mass per area could potentially amount to a significant impact on photosynthetic capacity, 

and subsequently on the variability of ΔNBECON and ΔNBELAG. We also highlight year-to-year changes in species composition 

(such as C3:C4 plants) and the temporal dynamics of vegetation and soil nutrients as potential contributors to ΔNBELAG (Sherry 20 

et al., 2008; Schimel et al., 1997) are potentially unrepresented but critical processes, particularly in fire-prone regions 

(Pellegrini et al., 2018) and nutrient-limited tropical forest ecosystems (Wieder et al. 2015). A potential limitation in 

CARDAMOM ET estimates is the assumed inherent water-use efficiency relationship between GPP, ET and VPD (eq. B4); 

recent efforts (Zhou et al., 2015, Boese et al., 2018) advocate for improved parameterizations for semi-empirical GPP:ET 

relationships, which could ultimately impact the sign and magnitude of inter-annual CARDAMOM ET variations—and the 25 

associated plant-available H2O balance—across tropical ecosystems. Finally, we highlight the need to investigate the 

sensitivity of our results to the 2001-2015 climatological mean forcing: while to first order the diagnosis of lagged effect 

anomalies from the mean (rather than absolute values) are insensitive to the reference forcing, further efforts are required to 

determine whether non-linear impacts of an alternative reference forcing (e.g. a climatological mean forcing based on a 30-

year climate normal) may amplify or dampen ΔNBELAG IAV estimates.  30 

 

Our continental-scale results indicate that DALEC2a model complexity is adequate to both represent NBE variability and 

accurately predict NBE outside the training window on a pan-tropical scale (2015), which provides a first-order assessment of 

the adequacy of the DALEC2a model structure. A notable exception is the substantial underestimation of CARDAMOM 2015 
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NBE within the northern hemisphere South America region (Figure 5); given the considerable impact of the 2015 ENSO event 

within the region (Liu et al., 2017), the biased CARDAMOM NBE prediction suggests that either (a) the DALEC2a model 

structure cannot adequately represent NBE responses to climatic extremes, or (b) the 2010-2013 NBE observational constrains 

are insufficient to accurately inform the regional DALEC2a states and process parameters. To determine the relative impact 

of model error, we anticipate that additional insights could be obtained by retrieving ΔNBECON and ΔNBELAG based on 5 

alternative DALEC model structures (Fox et al., 2009; Smallman et al., 2017). The implementation of DALEC2a assimilation 

and prediction evaluation across long-term records eddy covariance CO2 and H2O fluxes would amount to a useful evaluation 

of the model structure constrained by multiple data streams (e.g. following Richardson et al., 2010; Keenan et al., 2013; 

Smallman et al., 2017), and the potential sensitivities of ΔNBECON and ΔNBELAG to underlying model structures. While there 

are currently few tropical ecosystem sites where multi-year NBE constraints are available, we highlight that the analysis of 10 

ΔNBECON and ΔNBELAG at eddy covariance sites would also benefit from the relative wealth of ancillary site-level repeat 

measurements of C and H2O states and fluxes, and would ultimately allow more in-depth evaluation and hypothesis tests on 

lagged effect processes and their role on ΔNBE dynamics. Finally, to diagnose the potential role of higher-order process 

interactions on lagged and concurrent effects—such as nutrient limitations, ecosystem demography and explicit representations 

of carbon-water-energy interactions—we highlight that the ΔNBECON and ΔNBELAG attribution methodology introduced here 15 

can in principle be applied using higher complexity terrestrial biosphere models (e.g. Huntzinger et al., 2013, 2017; Macbean 

et al., 2018; Longo et al., 2019). 

 

4.  Conclusions 

 20 

The prominent role of ΔNBELAG across the tropics throughout 2001-2015 supports our second hypothesis (section 2.5), namely 

that concurrent and lagged effect variations are comparable on inter-annual timescales. By constraining a diagnostic ecosystem 

C balance model with an array of terrestrial C cycle observations (LAI, biomass, soil C, SIF, CO-derived fire C emissions and 

CO2-derived NBE), we show that on annual timescales both ΔNBECON and ΔNBELAG effects are substantial contributors to the 

2001-2015 tropical C balance. The IAV of ΔNBECON is largely accounted for by NPP, with sizeable fire contributions from 25 

Australia, southeast Asia and Indonesia and South America, and heterotrophic respiration contributions from wet tropical 

ecosystems. ΔNBELAG variability is overwhelmingly dominated by the impact of inter-annual variations in lagged NPP effects, 

followed by a modest contribution from the state-dependence of heterotrophic respiration. In aggregate, anomalies in foliar C, 

plant-available H2O, and soil C were identified as the primary influences on ΔNBELAG variability. Our findings therefore 

highlight a critical need to explicitly account for lagged effects when investigating the process-level tropical NBE responses 30 

to climatic variability on inter-annual timescales. Furthermore, our findings highlight the need to accurately and continuously 

resolve NBE at sub-continental scales in order to advance our mechanistic and process-level understanding of terrestrial C 

cycling and its evolving sensitivity to climate.  
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Appendix A: Regional definitions 

 

Appendix B: Model description 

 

The following sections provide a summary of the process parameterizations introduced in the DALEC version implemented 5 

in the Bloom et al., (2016) study. For completeness, a full description of DALEC2a is provided in the manuscript supplement. 

 

B1. DALEC2a Water balance and GPP water stress 

 

The DALEC2a plant-available water balance at timestep t+1 in is derived as 10 

 

𝑊!"# =	𝑊! + (𝑃! − 𝑅! − 𝐸𝑇!)	𝛥𝑡	        (B1), 

 

where W denotes total plant-available H2O [in mm H2O storage equivalent], and P, R and ET  precipitation, runoff and 

evapotranspiration fluxes [mm/day] over the time period 𝛥𝑡 [days]. We note that this equation represents a water balance in 15 

the dynamic plant-available H2O pool and does not include deep groundwater, confined aquifers or other unconnected/static 

storages. Following a generalized non-linear reservoir formulation, we parameterize monthly runoff losses as a second-order 

decay function with respect to storage, 𝑊!, as:  

 

 𝑅! = 𝛼𝑊!
=          (B2), 20 

 

where 𝛼 is a second-order decay constant [mm-1 day-1]. The dependence of runoff on 𝑊=—instead of 𝑊—ensures that the 

fractional rate of plant-available H2O loss is proportional to 𝑊; relative to a first-order linear kinetics model, this provides a 

better representation of faster relative plant-available H2O depletion following high precipitation events, followed by slower 

losses during lower precipitation timespans (e.g. Matteucci et al., 2015) and serves a functional approximation of both storage-25 

excess and infiltration-excess runoff generation mechanisms in most cases. Following previous results from land surface model 

development experiments (e.g. Liang et al., 1994; Lawrence et al., 2011), we assume that net runoff inputs from adjacent pixels 

are a negligible term in the lumped grid-scale H2O budget at 4°×5° spatial resolution. By construction, 𝑅! values predicted at 

𝑊! >
#
:I!

 are unphysically high (𝑊! − 𝑅!𝛥𝑡 < 	0), while loss rates at 𝑊! >
#

=:I!
 produce implausibly low residual storage 

(𝑊! − 𝑅!𝛥𝑡) values.  Therefore, in the eventuality of 𝑊! >
#

=:I!
, we calculate runoff as 𝑅! = 𝑊! −

#
=:I!

, effectively represent 30 

a storage-excess overflow mechanism by introducing a transition between a state-dependent regime to a direct runoff regime. 

 

We apply a linear scaling on GPP with respect to the plant-available H2O, where  
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𝐺𝑃𝑃! = 𝐺𝑃𝑃JKL	(M)maxh1,
N2
O
j                (B3), 

 

where 𝜔 represents the plant-available H2O stress threshold; Eq. B3 effectively imposes a stress factor on GPP spanning 

between 0 and 1, and offers a simplified representation of the integrated effects of leaf-soil H2O potential differences and their 5 

impact on canopy conductance; Evapotranspiration at time t is derived as 

 

𝐸𝑇! 	= 𝐺𝑃𝑃!
P+Q2
R3

          (B4), 

 

where υe is the inherent water-use efficiency (Beer et al., 2009) and VPD is the vapor pressure deficit derived from ERA-10 

interim monthly reanalysis datasets. Equations B1-B4 amount to a plant-water feedback parameterization, and together 

represent a reduced complexity version of the DALEC water module implemented by Spadavecchia et al., (2011). All 

parameters involved in the above-mentioned parameterization—namely 𝛼, 𝜐S , 𝜔 and 𝑊T—are optimized along with other 

DALEC2a parameters in CARDAMOM; the prior ranges are described in Table S1.  

 15 

B2. Heterotrophic respiration 

 

We parameterize the meteorological dependence of heterotrophic respiration, 𝜌 at time t as follows: 

 

𝜌! = 𝑒U(V2%𝑻X) 	oh+2
𝑷X	
− 1j 𝑠Y + 1		p        (B5), 20 

 

where T and P represent the monthly temperature and precipitation vectors. We chose to use P as a driver for heterotrophic 

respiration sensitivity to moisture, given that (a) the majority of heterotrophic respiration is expected to occur in the near-

surface soil layer, and (b) near-surface soil moisture strongly covaries with P—rather than water storage—at monthly 

timescales. Previous versions of DALEC solely parameterized 𝜌! as a function of temperature (e.g. Bloom et al., 2016 and 25 

references therein); effectively, the formulation in Eq. B5 induces a joint sensitivity to relative changes in both temperature 

and near-surface moisture.  The prior ranges for the respiration temperature and precipitation sensitivity parameters (𝛩 and sp) 

are reported in Table S1. 

 

Appendix C: Sensitivity of lagged effects to individual ecosystem states 30 
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In the DALEC2a representation of the ecosystem C balance, the state vector 𝒙: consists of the C and H2O pool values at the 

start of year a. To diagnose the sensitivity of 2010-2015 lagged effects on the variability of ecosystem states, we conduct a 

sensitivity analysis to explicitly quantify the impact of individual ecosystem state anomalies—relative to their 2010-2015 mean 

values—on the variability of 𝛿𝒙AB* throughout 2010-2015. To do this, we define the anomaly of the nth individual state in 

year a as the sum of finite differences relative to the mean state: 5 

 

𝒙: = 𝒙Y + ∑ [𝒙:(H) −	𝒙Y]5
H>#         (C1), 

 

where 𝒙Y is an N-element vector of the mean 2010-2015 states; N is the number of model state variables; 𝒙:(H) is an N-element 

vector of ecosystem states, where for the ith element  𝒙:(H)(𝑖) = 𝒙:(𝑖) for i = n, and 𝒙:(H)(𝑖) = 𝒙Y(𝑖) for i≠n. Based on Eq. 11 10 

and Eq.14,  we can derive the state change under a climatological mean forcing of each term in Eq. C1, and therefore 

 

𝛿𝒙:AB* = 		𝛿𝒙YAB* +	∑ [𝛿𝒙:(H)AB* 	− 		𝛿𝒙YAB*5
H># ] 	+ 𝐼:	       (C2); 

 

𝐼:  collectively accounts for the unaccounted contribution of higher-order interactions between individual pool anomalies 15 

[𝒙:(H) −	𝒙Y]	on 𝛿𝒙:AB*. As outlined in section 2.5, the “𝛿𝒙” terms in Equations C2 can be mapped onto any DALEC2a flux 

variable; specifically, 𝑁𝐵𝐸:AB* can be defined as the sum of lagged effect NBE components attributable to 𝛿𝒙:(H)
AB*  and 𝛿𝒙YAB*as 

follows: 

 

𝑁𝐵𝐸:AB* = 𝑁𝐵𝐸@@@@@@AB* +	∑ [𝑁𝐵𝐸:(H)AB* −	𝑁𝐵𝐸@@@@@@AB*] +5
H># 𝐼:     (C3); 20 

 

𝑁𝐵𝐸@@@@@@AB*  and 𝑁𝐵𝐸@@@@@@:(H)AB*  can be directly calculated from 𝐷(𝒙Y	,𝑴;, 𝒑) and 𝐷(𝒙:(H),𝑴:, 𝒑), respectively. More succinctly, we 

summarize Eq. B3 as: 

 

𝑁𝐵𝐸:AB* = 𝑁𝐵𝐸@@@@@@AB* +	∑ 𝛿𝑁𝐵𝐸:(H)
AB* 	+5

H># 𝐼:      (C4), 25 

 

where 𝛿𝑁𝐵𝐸:(H)AB*  represents the lagged effect anomaly attributable solely to the initial condition anomaly in ecosystem state n. 

By applying the “Δ” operator (Eq. 21) on Eq. C3, eq. C4 can alternatively be expressed as:  

 

Δ𝑁𝐵𝐸:AB* = ∑ Δ𝑁𝐵𝐸:(H)
AB* 	+5

H># Δ𝐼:       (C5). 30 
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Effectively, the lagged effect partitioning formulation outlined in Eq. C5 allows us to quantitatively diagnose the NBE lagged 

effect dependence on the inter-annual dynamics of individual C and H2O states depicted in Figure 2.  
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Figure 1. Conceptual figure denoting annual ecosystem states changes attributable to concurrent and lagged effects. 

Throughout a one-year cycle (circular arrows), lagged effects amount to the sum of ecosystem state changes induced by a 

reference climatological mean forcing, and concurrent effects amount ecosystem state changes solely attributable to a 5 

contemporaneous forcing anomaly. The total state changes resulting from both concurrent and lagged effects will in turn 

determine the next year’s initial ecosystem states.  
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Figure 2. Schematic of the CARbon DAta-MOdel fraMework (CARDAMOM) Bayesian model-data fusion approach: the 

DALEC2a model (described in section 2.2) represents the ecosystem C and plant-available H2O balance; the dashed blue boxes 

denote the observational constraints used in this study (see Table 1 for acronyms and details). The solid lines denote C and 5 

H2O fluxes between pools and/or external gains and losses. CARDAMOM is implemented at a 4°×5° resolution across the 

tropics (30°S – 30°N). Within each 4°×5° grid cell, DALEC2a model parameters and initial ecosystem states are optimized 

using an adaptive Metropolis-Hastings Markov Chain Monte Carlo algorithm. 
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Figure 3. (a) Schematic of meteorology-forced trajectory of ecosystem state x (solid black line), and trajectory of x under a 

climatological mean forcing (light blue solid line). Inset: state trajectory 𝑥: → 𝑥:"#  (δ𝑥: ), decomposed as the sum of 

climatology-induced lagged effect vector 𝑥: → 𝑥′:"# (δ𝑥:AB*) and anomaly-induced concurrent effect vector 𝑥′:"# → 𝑥:"#  5 

(δ𝑥:CD5). (b) Hypothetical scenario depicting approximately time-invariant annual lagged effects δ𝒙AB* (blue dashed arrows), 

in reference to changes transient states 𝑥T, 𝑥#, 𝑥=, etc.; the temporal changes in 𝑥 for each time interval, δ𝒙 and  δ𝒙AB* and 

δ𝒙CD5 are shown in the underlying bar chart. In this scenario, δ𝒙AB* is relatively constant and its variability (denoted as “var()” 

in schematic equation) is negligible relative to δ𝒙CD5. (c) Hypothetical scenario depicting time-varying annual lagged effects 

δ𝒙AB*, in reference to transient states 𝒙𝟎, 𝒙𝟏, 𝒙𝟐, etc.; in this scenario, the variability of δ𝒙CD5 is comparable to the variability 10 

of δ𝒙AB*. 
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Figure 4.  CARDAMOM monthly analyses of 2001-2015 median NBE (red line) and associated uncertainty intervals (25th-

75th percentiles in dark pink, and 5th – 95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-5 

derived top down fluxes (Liu et al., 2018) for the 2010-2013 period; CMS-Flux OCO-2 derived 2015 NBE fluxes were withheld 

for validation. The geographical definitions for each region are shown in Figure A1. 
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Figure 5. CARDAMOM yearly analyses of 2001-2015 NBE (red line) and associated uncertainty intervals (25th-75th 

percentiles in dark pink, and 5th – 95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-derived 5 

top down fluxes (Liu et al., 2018) for the 2010-2013 period. CMS-Flux OCO-2 derived 2015 NBE (blue squares) are withheld 

for regional and pan-tropical NBE validation. CARDAMOM NBE and NOAA ESRL atmospheric CO2 growth rates were 

detrended for inter-comparison (bottom-right panel). The geographical definitions for each region are shown in Figure A1. 
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Figure 6. Regional and pan-tropical median annual DNBE (blue bars) and its attribution to concurrent effects (DNBECON, green 

bars) and lagged effect (DNBELAG, orange bars) components. The geographical definitions for each region are shown in Figure 

A1. Error bars denote the 25th – 75th percentile uncertainty estimates for each flux anomaly. 5 
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Figure 7. Regional and pan-tropical median annual net primary productivity (left column), heterotrophic respiration (center 

column) and fires (right column) anomalies (DNPP, DRHE and DFIR respectively). Blue bars represent total anomalies, green 

and orange bars represent the corresponding annual concurrent and lagged effects. DNPP anomaly signs were reversed such 5 

that all anomalies are represented as positive for net land-to-atmosphere C flux. The sum of annual DNPP, DRHE and DFIR 

are equivalent to annual DNBE values presented in Figure 6. Error bars denote the 25th – 75th percentile uncertainty estimates 

for each flux anomaly.  
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Figure 8: Attribution of 2001-2015 annual regional and pan-tropical NBE lagged effect estimates (DNBELAG) to individual 

ecosystem state anomalies (i.e. the lagged effect in year a solely attributable to anomaly in ecosystem state n, Δ𝑁𝐵𝐸:(H)AB* , see 

Eq. 22). In addition to foliar C (green circles), soil C (dark pink triangles),  plant-available H2O (blue squares), the grey areas 5 

(labelled as “Other” in the figure legend) denote the collective range of DNBELAG anomalies attributable to labile, wood, root 

and litter C.  Percentage values indicate the inter-annual variability (reported as standard deviation) of median foliar C, soil C 

and plant-available H2O states throughout the 2001-2015 period, relative to mean 2001-2015 values within each region. The 

sum of annual state-specific DNBELAG values is approximately equal to the DNBELAG (see Figure S4). Error bars denote the 

25th – 75th percentile uncertainty estimates for each flux anomaly 10 
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Figure A1. Regional masks used in this study. The 1500mm/yr precipitation thresholds were based on the ERA-interim mean 

annual precipitation rates throughout the 2001-2015 study period. 
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Tables 

 

 

Table 1. Observational constraints assimilated into the 4°×5° CARDAMOM simulation. 5 
Observation (acroynm) Dataset description Uncertainty1 Number of observational  

Constraints6 

Leaf area index (LAI) MODIS LAI retrievals2.  ±log(1.2)  1  

Soil organic matter (SOM) Soil C inventory (Hiederer & Kochy, 2011)  ±log(1.5)  1 

Above- and below-ground biomass (ABGB)3 GLAS-informed biomass map (Saatchi et al., 2011) ≥ ±log(1.5)4   1 

Solar-induced Fluorescence (SIF) Monthly averaged 2010-2015 GOSAT retrievals of 

fluorescence (Frankenberg et al., 2011)5 

±log(2)   ≤72 

Fire C emissions (BB) Mean 2001-2015 4°×5° inverse estimates of fire C 

emissions (Worden et al., 2017, Bowman et al., 2017).  

±20% 1 

Net Biospheric Exchange (NBE) Monthly 2010-2013 GOSAT CO2 derived 4°×5° 
inverse estimates of terrestrial NBE (Liu et al., 2018). 

Seasonal = ±2gC/m2/d 

Annual= ±0.02gC/m2/d 

48 

1Uncertainties denoted as ±log() indicate log-transformed model and observed quantities (i.e. m and o in Eq. 4). 
2Only mean 2001-2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of seasonal LAI  

retrieval biases (Bi et al., 2015). 
3The ABGB estimate is applied as a constraint on the sum of all CARDAMOM live biomass pools (Figure 1). 
4see Bloom et al., 2016 for details on biomass uncertainties below. 10 
5Time-resoved SIF is assimilated as a relative constraint on the temporal variability of GPP (see section 2.4). 
6Figure S1 for observational constraint spatial coverage.  
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Table 2. CARDAMOM NBE evaluation against assimilated and predicted NBE 
 Monthly RMSEa (Pearson’s r) Annual RMSEa,b (Pearson’s r) 

 Assimilated NBE 

(2010-2013) 

Predicted NBE 

(2015) 

 

Assimilated NBE 

(2010-2013) 

Predicted NBE 

(2015) 

SH South America  0.08 (0.84*)  0.08 (0.87*)  0.03 (0.99*)  0.29 ( - )  

NH South America  0.06 (0.74*)  0.09 (-0.13)  0.04 (0.90)  0.37 ( - )  

Southern Africa  0.08 (0.94*)  0.13 (0.78*)  0.07 (0.92)  0.28 ( - )  

Northern SS Africa  0.08 (0.87*)  0.13 (0.96*)  0.08 (0.99*)  0.07 ( - )  

Australia  0.04 (0.69*)  0.05 (0.88*)  0.03 (0.98*)  0.21 ( - )  

SE Asia & Indonesia  0.03 (0.57*)  0.05 (0.55)  0.02 (0.99*)  0.21 ( - )  

Tropics  0.20 (0.51*)  0.27 (0.55)  0.19 (1.00*)  0.05 ( - )  

Wet Tropics  0.12 (0.58*)  0.14 (0.53)  0.12 (0.99*)  0.64 ( - )  

Dry Tropics  0.12 (0.80*)  0.20 (0.59*)  0.13 (0.99*)  0.58 ( - )  
aRMSE units are PgC/yr. 
bPrediction RMSE values are equivalent to absolute errors, since only one error value is considered. 
*Correlation p-value<0.05 
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Table 3. 2001-2015 regional DNBE IAV and corresponding contributions of concurrent effects (DNBECON) and lagged 

effects (DNBELAG); IAV values are represented here as standard deviations of annual 2001-2015 NBE values; 

bracketed values represent the Pearson’s correlation coefficients between total NBE and concurrent and lagged effect 

IAV. The regional masks are depicted in Figure A1. 
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DNBE IAV 

[Pg C/yr] 

 

DNBECON IAV  

[as % of DNBE IAV]  

(Pearson’s r) 

 

DNBELAG IAV 

[as % of DNBE IAV] (Pearson’s r) 

SH South America  0.21  107%(0.81*)  63%(0.18) 

NH South America  0.08  61%(0.16)  105%(0.83*) 

Southern Africa  0.14  83%(0.10)  122%(0.76*) 

Northern SS Africa  0.19  74%(0.70*)  71%(0.68*) 

Australia  0.12  63%(0.56*)  84%(0.78*) 

SE Asia & Indonesia  0.15  84%(0.91*)  41%(0.54*) 

Wet Tropics  0.42  79%(0.89*)  45%(0.63*) 

Dry Tropics  0.28  99%(0.65*)  83%(0.43) 

Tropics  0.62  80%(0.76*)  64%(0.61*) 
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Table 4. Concurrent and lagged effect NBE attributed to constituent fluxes (net primary production, heterotrophic 

respiration and fires, abbreviated as NPP, RHE and FIR respectively): IAV values are represented here as the ratio of 

constituent flux standard deviation to NBE standard deviations of annual 2001-2015 NBE values; bracketed values 

corresponds to Pearson’s correlation coefficients between constituent flux and NBE (“*” denotes p-values < 0.05). 10 

The values highlighted in red denote the largest % IAV contribution to DNBECON and DNBELAG.  
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 IAV as % of  DNBE CON (Pearson’s r) IAV as % of  DNBE LAG (Pearson’s r) 

 DNPP CON DRHECON DFIRCON DNPPLAG DRHELAG DFIRLAG 

SH South America  83%(-0.83*)  38%(-0.46)  42%(-0.26)  81%(-0.62*)     78%(0.68*)         1%(0.15) 

NH South America  159%(-0.69*)  115%(0.23)  11%(0.59*)  116%(-0.98*)     26%(-0.34)         1%(-0.91*) 

Southern Africa  66%(-0.74*)  48%(-0.66*)  31%(-0.73*)  61%(-0.79*)     60%(0.83*)         7%(0.68*) 

Northern SS Africa  64%(-0.82*)  43%(0.50)  38%(0.47)  196%(-0.68*)     136%(-0.24)        11%(-0.20) 

Australia  82%(-0.71*)  15%(0.05)  74%(0.05)  113%(-0.95*)     29%(-0.16)         3%(-0.36) 

SE Asia & Indonesia  79%(-0.60*)  67%(0.04)  49%(-0.09)  112%(-0.80*)     63%(0.15)         3%(0.32) 

Wet Tropics  87%(-0.64*)  68%(0.24)  30%(0.21)  147%(-0.93*)     52%(-0.54*)         4%(-0.75*) 

Dry Tropics  73%(-0.93*)  30%(-0.28)  33%(-0.39)  102%(-0.86*)     49%(0.25)         2%(0.18) 

Tropics  95%(-0.86*)  52%(0.18)  28%(0.43)  113%(-0.93*)     35%(-0.05)         2%(-0.49) 
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Table 5. IAV of 2001-2015 regional and pan-tropical NBE lagged effects attributable to annual anomalies in column-5 

denoted ecosystem states (Eq. 22), as % of total NBE lagged effects (DNBELAG) IAV; bracketed values correspond to 

Pearson’s correlation coefficients between single-state NBE lagged effects and total DNBELAG; “*” denotes p-values 

< 0.05. The values highlighted in red denote the maximum contribution in each region. 
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 Labile C Foliar C Fine Root C Wood C Litter C Soil C Plant-av. H2O 

SH South America    9%(0.88*)   48%(0.69*)   15%(0.12)    2%(-0.80*)   27%(0.43)   41%(0.85*)   30%(0.28) 

NH South America    3%(0.88*)   98%(0.94*)    6%(0.48)    6%(-0.91*)   12%(0.17)   34%(-0.17)   28%(0.45) 

 Southern Africa    6%(0.17)   41%(0.69*)    3%(0.66*)    1%(0.58*)   15%(0.85*)   40%(0.78*)   17%(0.85*) 

Northern SS Africa   35%(0.45)   120%(0.64*)    2%(-0.01)    4%(-0.16)   12%(-0.03)   125%(-0.22)   50%(0.58*) 

Australia    8%(0.71*)   58%(0.68*)    3%(-0.61*)    1%(-0.53*)   11%(-0.02)   10%(0.17)   54%(0.88*) 

SE Asia & Indonesia    7%(0.14)   43%(0.16)   18%(-0.63*)    5%(0.29)   35%(0.07)   62%(0.45)   64%(0.94*) 

Wet Tropics    8%(0.66*)   99%(0.84*)   14%(0.18)    8%(-0.73*)   27%(0.12)   56%(-0.55*)   37%(0.79*) 

Dry Tropics   16%(0.71*)   47%(0.70*)    6%(-0.09)    1%(0.37)   17%(0.38)   13%(0.58*)   43%(0.83*) 

Tropics   12%(0.82*)   58%(0.83*)   10%(0.03)    3%(-0.51)   21%(0.23)   20%(-0.26)   39%(0.82*) 


