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Abstract.  

 

Inter-annual variations in the tropical land carbon (C) balance are a dominant component of the global atmospheric CO2 growth 

rate. Currently, the lack of quantitative knowledge on processes controlling net tropical ecosystems C balance on inter-annual 

timescales inhibits accurate understanding and projections of land-atmosphere C exchanges. In particular, uncertainty on the 20 

relative contribution of ecosystem C fluxes attributable to concurrent meteorological forcing anomalies (concurrent effects) 

and those attributable to the continuing influence of past phenomena (lagged effects) stifles efforts to explicitly understand the 

integrated sensitivity of tropical ecosystem to climatic variability. Here we present a conceptual framework—applicable in 

principle to any meteorology-forced land biosphere model—to explicitly quantify net biospheric exchange (NBE) as the sum 

of anomaly-induced concurrent changes and climatology-induced lagged changes to terrestrial ecosystem C states (NBE = 25 

NBECON + NBELAG).  We apply this framework to an observation-constrained analysis of the 2010-2015 tropical C balance: 

we use a data-model integration approach (CARDAMOM) to merge satellite-retrieved land-surface C observations (leaf area, 

biomass, solar-induced fluorescence), soil C inventory data and satellite-based atmospheric inversion estimates of CO2 and 

CO fluxes to produce a data-constrained analysis of the 2010-2015 tropical C cycle. We find that the inter-annual variability 

of lagged effects explains the majority of	NBE inter-annual variability (IAV) throughout 2010-2015 across the tropics (NBELAG  30 

IAV = 112% of NBE IAV, r = 0.87) relative to concurrent effects (NBECON IAV = 54% of total NBE IAV, r = 0.03) and the 

dominance of NBELAG IAV persists across both wet and dry tropical ecosystems. The magnitude of lagged effect variations on 

NBE across the tropics is largely attributable to lagged effects on net primary productivity (NPP; NPPLAG IAV 88% of NBELAG 

IAV, r = -0.99, p-value<0.05), which emerge due to the dependence of NPP on inter-annual variations in canopy C mass and 
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plant-available water states. We conclude that concurrent and lagged effects need to be explicitly and jointly resolved to 35 

retrieve an accurate understanding the processes regulating the present-day and future trajectory of the terrestrial land C sink. 

1 Introduction 

 

Immediate ecosystem responses to external forcings are invariably followed by time-lagged ecosystem responses, attributable 

to a continuum of lagged biotic and physical processes. For example, contemporaneous ecosystem state changes attributable 40 

to disturbances, climatic variability and increasing atmospheric CO2 levels all induce a temporal spectrum of lagged processes, 

such as diurnal to seasonal dynamics in canopy and groundwater storage, multi-annual changes in mortality rates, and induce 

ecosystem dynamics relating to species distributions, nutrient availability and soil properties on timescales spanning from 

decades to millennia  (Schimel et al. 1997; Smith et al., 2009; Reichstein et al., 2013). Conversely, for a given timespan, the 

sum of these “lagged effects” on ecosystem states ultimately represent the ecosystems dynamics attributable to a unique 45 

integrated legacy of past phenomena, spanning from diurnal to geologic timescales, making lagged effects a ubiquitous 

dynamical property of any terrestrial ecosystem. As a consequence, ecosystem function at any given time (such as 

photosynthetic uptake, respiration and evapotranspiration rates) is an emergent consequence of an ecosystem’s initial physical 

and biotic states and the contemporaneous impact of meteorological forcings on these states.  

 50 

Disentangling the lagged consequences of past phenomena from contemporaneous impacts of external forcings is a critical 

priority for understanding and quantifying the contemporary terrestrial carbon (C) cycle responses to climatic variability. 

Global-scale efforts to resolve the state of the C cycle (Le Quéré et al., 2015) identify tropical C cycle as a dominant contributor 

to the inter-annual variability (IAV) of the terrestrial C sink. Recent efforts to characterize the tropical C sink IAV have been 

largely focused on quantifying the role of concurrent responses to climatic variability, including the contribution of semi-arid 55 

ecosystems (Poulter et al., 2014; Ahlstrom et al., 2015), ecosystem responses to drought (Gatti et al., 2014), and more generally 

continental-scale sensitivities of photosynthesis, respiration and fire fluxes to concurrent temperature and precipitation 

anomalies (Cox et al., 2013; Andela and van der Werf, 2014; Alden et al., 2016; Jung et al., 2017; Liu et al, 2017; Piao et al., 

2019). However, on comparable timescales, time-lagged manifestations of climatic variability on the state of the terrestrial 

biosphere have been extensively theorized and observed (Thomson et al., 1996; Schimel et al., 1996, 2005; Richardson et al., 60 

2007; Arnone et al., 2008; Sherry et al., 2008; Saatchi et al., 2013; Frank et al., 2015; Doughty et al., 2015; Baldocchi et al., 

2017; Schwalm et al. 2017; amongst many others). Specifically, lagged relationships between climate variability and the 

terrestrial C fluxes—namely mediated through lagged impacts on photosynthetic uptake and respiration fluxes, groundwater 

storage, mortality and subsequent shifts of ecosystem function—indicate that lagged effects may be a fundamental component 

in the inter-annual evolution of the terrestrial C balance. Observational constraints on terrestrial ecosystem responses to 65 

climatic variability further suggest that time-lagged phenomena are a non-negligible component of terrestrial ecosystem C 
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dynamics on continental-to-global scales (Braswell et al., 1997; Saatchi et al., 2013; Anderegg et al., 2015; Detmers et al., 

2015; Fang et al. 2017; Yang et al., 2018). Therefore, while recent efforts to diagnose inter-annual variations of the tropical C 

balance overwhelmingly emphasize the roles of concurrent forcings, observed ecosystems responses to climatic variability on 

multi-annual timescales indicate that the tropical C balance may be substantially affected—if not governed—by lagged 70 

responses to inter-annual variations in meteorological and disturbance forcings across tropical ecosystems. 

 

Accurate knowledge of both instantaneous sensitivities and time-lagged processes of terrestrial C cycling to climate is critical 

for constraining model representations of the terrestrial C cycle. Uncertainty in the long-term terrestrial C flux imbalance and 

the associated carbon-climate feedbacks is a prevailing source of uncertainty in Earth System projections (Friedlingstein et al., 75 

2014, Friend et al., 2014), and these are likely underestimated due to a range of under-represented and/or poorly constrained 

C cycle responses to a changing climate (Luo 2007; Lovenduski & Bonan, 2017). Furthermore, assessments of Earth System 

projections based on present-day constraints (Cox et al., 2013; Mystakidis et al., 2016) provide little insight on the integrated 

roles of largely uncertain process controls, including C flux responses to drought (Powell et al., 2013); under-determined C 

pool dynamics (Bloom et al., 2016), nutrients dynamics and limitations (Wieder et al., 2015), and higher-order dead organic 80 

C dynamics (Schimel et al., 1994, Hopkins et al., 2014). In tropical ecosystems, rapid turnover rates of live and dead organic 

matter pools, relative to extra-tropical ecosystems (Carvalhais et al., 2014; Bloom et al., 2016) imply interactions between 

uptake, respiration, and fires (Randerson et al., 2005; Chen et al., 2013, Bloom et al., 2015) on comparable timescales: 

specifically, given that (a) the mean C residence time in tropical biomass and soil organic matter pools typically spans ~5-50 

years, and (b) multi-year observational constraints reveal rapid ecosystem vegetation/C responses to climatic extremes (Saatchi 85 

et al., 2013; Alden et al., 2016), sub-decadal timescales are likely a critical for disentangling concurrent and lagged effect 

impacts on the evolution of tropical C balance. However, despite numerous studies on the roles of productivity (Doughty et 

al., 2015), water stress (Kurc & Small, 2007; Williams & Albertson, 2004), respiration (Trumbore 2006, Exbrayat et al 2013a,b, 

Guenet et al., 2018) and mortality (Saatchi et al., 2013, Anderegg et al., 2015; Rowland et al., 2015), there is currently a major 

gap between knowledge of individual processes controlling the tropical C balance on inter-annual timescales, and the 90 

integrated impact  process interactions leading to complex net C exchanges represented in terrestrial biosphere models 

(Huntzinger et al., 2013, 2017). As a result, while models provide critical mechanistic insight into complex process interactions, 

model representations of the net effect of competing and interacting C flux responses to climate variability and disturbance 

remain highly uncertain on regional and pan-tropical scales. Ultimately, given tropical ecosystems account for 850 Pg of C 

and the majority of the Earth’s photosynthetic uptake, plant respiration and fire C emissions (Saatchi et al., 2011; Hiederer & 95 

Köchy, 2011; Beer et al., 2010; van der Werf et al., 2010), quantitatively understanding the concurrent and long-lived impacts 

of climatic variability, drought and anthropogenic disturbance is critical for predicting their function in Earth system 

projections. 
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Recent inverse estimates of tropical C fluxes from satellite CO2 measurements provide much-needed spatial and temporal 100 

constraints on continental-scale Net Biospheric Exchange (NBE; e.g. Takagi et al., 2014, Liu et al., 2014, 2017; Feng et al., 

2017., Detmers et al., 2015; amongst others), along with land-surface observations of solar-induced fluorescence (SIF, 

Frankenberg et al. 2011), leaf-to-soil constraints on total C stocks (Saatchi et al., 2011) and disturbance (Giglio et al., 2013) 

from land-surface datasets provide a unique opportunity for quantitatively informing terrestrial biosphere model 

representations of the tropical C balance. With numerous continental-to-global scale model-data fusion efforts demonstrating 105 

the synergistic potential of the present-day “carbon observing system” for resolving the dynamics of the terrestrial C balance 

(Bloom et al. 2016; MacBean et al., 2018; Exbrayat et al. 2018). Model-data fusion representations of terrestrial ecosystem C 

cycling ultimately allow for an explicitly mechanistic representation of the terrestrial C balance with in-built states and process 

parametrizations optimized to represent the observed C cycle variability in the observations; in turn, these terrestrial C balance 

models can be used to quantitatively diagnose the concurrent and lagged sensitivities of terrestrial ecosystems to external 110 

forcings.  

 

In this study we bring together spatially resolved terrestrial C cycle observations into an ecosystem C balance modelling 

framework to quantitatively diagnose the role of concurrent and lagged effects on the 2010-2015 inter-annual tropical C 

balance. Our analysis is motivated by some key unanswered questions on the large-scale tropical C cycle variability: for 115 

instance, are lagged effects significant contributors to inter-annual flux variability on pan-tropical scales? Which C fluxes (e.g. 

photosynthetic or respiratory) explain the majority of NBE variability attributable to lagged phenomena? Are lagged effects a 

ubiquitous property across both dry and wet tropical biomes? Here we hypothesize that on a pan-tropical scale, the integrated 

impact of lagged effects is a critical component of tropical NBE IAV. To test this hypothesis, we reconcile large-scale C cycle 

processes and satellite-based estimates of land-to-atmosphere CO2 fluxes using the CARDAMOM diagnostic ecosystem C 120 

balance model-data fusion approach. We outline our method in section 2, where we present an analytical methodology for 

attributing inter-annual ecosystem state variability to concurrent and lagged effects; we present and discuss a quantification of 

the relative role of concurrent and lagged effects on continental-scale NBE, and the attribution of lagged effects to inter-annual 

variations in C stock and plant-available water states in section 3; we conclude our manuscript in section 4.  

 125 

2 Methods 

 

To quantitatively diagnose concurrent and lagged effects on the inter-annual tropical C balance, we implement the CARbon 

DAta-MOdel fraMework (CARDAMOM; Bloom et al., 2016) at a 4°×5° monthly resolution to constrain C cycle fluxes, states 

and process controls represented in the Data Assimilation Linked Ecosystem Carbon (DALEC, Williams et al., 2005) model, 130 

based on an ensemble of land-surface and atmospheric C cycle observations. The resolution was chosen for consistency with 

recent estimates of land-surface CO2 and CO fluxes produced at the GEOS-Chem atmospheric chemistry and transport model 

4°×5° grid (Bowman et al., 2017; Liu et al. 2017; Jiang et al., 2017). The following section describes the DALEC model (2.1), 
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satellite and inventory-based observations (2.2), the model-data fusion framework (2.3), and the attribution of the observation-

informed DALEC C cycle dynamics to concurrent and lagged effects (2.4). For the sake of brevity, the following sections 135 

solely provide a general description of the full model-data fusion implementation (Figure 1); for a complete description of 

individual models, datasets and methodologies ancillary to our approach, we refer the reader to relevant citations throughout 

the manuscript. The CARDAMOM analysis is performed across tropical and near-tropical latitudes (30°S - 30°N), and results 

are regionally evaluated across 6 sub-continental regions, as well as the dry tropics and the wet tropics (Figure A1).  

 140 

2.1 Model and drivers 

 

We use the data-assimilation linked ecosystem carbon model (DALEC; Williams et al., 2005) to represent the principal terms 

and major pathways of the terrestrial C cycle. The DALEC model family has been extensively used to diagnose terrestrial C 

cycle dynamics across a range of site level and spatially resolved approaches (Fox et al., 2009; Rowland et al., 2014; Bloom 145 

et al., 2016; Smallman et al., 2017; Exbrayat et al., 2018; amongst several others). Here we use DALEC version 2a (henceforth 

DALEC2a): a summary of the DALEC2a states and processes is depicted in Figure 1. For the sake of brevity, we solely report 

changes in reference to DALEC2 (previously described by Bloom et al., 2016), and refer the reader to the supplementary 

material (and references therein) for a complete description of the model. 

 150 

We extended the DALEC2 structure to include first-order plant-available water pool, where the hydrological balance is defined 

as the sum of precipitation inputs (P) and evapotranspiration (ET) and runoff (R) outputs. In turn, the plant-available water 

(W) limits gross primary productivity, through conservation of the inherent water-use efficiency (Beer et al., 2009), where ET 

is calculated as a function of gross primary production (GPP) and atmospheric vapor pressure deficit (Appendix B1). 

Effectively, the interaction between W, GPP and ET constitutes a first-order plant-soil carbon-water feedback. We further 155 

appended the DALEC2 structure by including a parameterization of soil moisture limitation on heterotrophic respiration 

(Appendix B2), given that heterotrophic respiration dependence on soil moisture remains highly uncertain (Moyano et al., 

2013; Sierra et al., 2015), as well as a dominant source of uncertainty amongst terrestrial C models (Falloon et al., 2011; 

Exbrayat et al., 2013a,b).  

 160 

Given a range of in-situ and continental-scale studies highlighting the uncertainties of fire combustion factors across a range 

of ecosystems, (Ward et al., 1996; Bloom et al., 2015), the errors involved in representing fine-scale fire type variability (Giglio 

et al., 2013), and spatial variability of fuel loads, we optimize fire C pool combustion factors (in contrast, combustion factors 

were prescribed as constants in Bloom et al., 2016): specifically, we optimize the combustion factors of foliar biomass (πfoliar), 

non-foliar biomass pools (πnfb), soil C (πSOM) and the fire resilience factor (we approximate the litter C combustion factor as 165 

the arithmetic mean of πfoliar and πSOM, given that the DALEC2a litter pool represents both above-ground and below-ground C 

reservoirs). Prior ranges for all π and the fire resilience are conservatively defined as spanning 0.01 to 1. We implement the 
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ecological and dynamic constraints (Bloom & Williams 2015) to ensure that foliar C combustion factors are greater than both 

non-foliar biomass and soil C combustion factors (πfoliar > πnfb and πfoliar > πSOM) which are comprehensively consistent with 

detailed measurements of C pool combustion factors across a range of ecosystem fire types (Shea et al., 1996; Araújo et al., 170 

1999, van Leeuwen et al., 2014 amongst others). Finally, we also represent the uncertainty in the longevity of plant labile C; 

specifically, we now optimize—rather than prescribe—the labile C lifespan used during leaf flushing in DALEC2a (previously 

all labile C was used during leaf flush, see Bloom & Williams, 2015). The updated model structure is depicted in Figure 1. We 

henceforth summarize the dynamical description of DALEC2a as 

 175 

𝒙#$% = 𝐷𝐴𝐿𝐸𝐶2𝑎(𝒙#,𝑴#, 𝒑)         (1), 

 

where 𝒙# represents the ecosystem state vector at time t, Mt represents the corresponding meteorological and fire forcings 

(namely monthly temperature, precipitation, global radiation, vapor pressure deficit, burned area), p represents a vector of 

time-invariant process parameters and DALEC2a() represents the DALEC2a operation on states xt throughout time t ® t+1. 180 

In summary, DALEC2a optimizable quantities consist of 26 process parameters, p, and seven initial ecosystem states (C and 

H2O pools; Figure 1) at timestep t=0, x0. For the sake of brevity, we include a complete description of DALEC2a state 

variables, process parameters and diagnostic C fluxes in the supplementary material, except where an explicit mention is 

necessary in the manuscript. 

 185 

2.2 Observations 

 

The observations assimilated into CARDAMOM are summarized in Table 1. Following Bloom et al., (2016) we assimilate 

Moderate Imaging Spectroradiometer (MODIS) leaf area index (LAI), soil organic matter (SOM) from the Harmonized world 

soil database (HWSD; Hiederer & Köchy, 2011) and above- and below-ground biomass (ABGB, Saatchi et al., 2011). Solar-190 

induced fluorescence (SIF)—retrieved from the Greenhouse Gases Observing Satellite (GOSAT)—is a robust proxy for 

photosynthetic activity: while non-linear inter-relationships at plant level and flux-tower level have been observed under 

certain conditions (Verma et al., 2017, Magney et al., 2017), GPP is observed to be linearly inter-related with SIF at ecosystem 

and regional scales (Frankenberg et al., 2011; Sun et al., 2017). Given that SIF:GPP linear relationships are known to vary 

substantially across individual species and entire ecosystems, here we solely assume that monthly SIF provides a constraint on 195 

the relative temporal variability of GPP (following MacBean et al., 2018). The averaged 4°×5° SIF values were derived with 

the polarizations and selection criteria described by Parazoo et al., (2014). The assimilation of relative SIF variability is 

described in section 2.3.  

 

We assimilate net biospheric C exchange (NBE > 0 for a net biosphere-to-atmosphere flux) estimated using the Carbon 200 

Monitoring System Flux atmospheric CO2 inversion framework (CMS-Flux; Liu et al., 2014). In summary, total monthly 
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4°×5° surface CO2 fluxes were scaled using a Bayesian 4D variational (4D-Var) inversion approach in order to minimize 

differences between GOSAT 2010-2013 observations and CMS-Flux representations of total column CO2 (we refer the reader 

to Liu et al., 2018 for additional details on the derivation of surface CO2 fluxes).  Following Liu et al., (2017) and Bowman et 

al. (2017), we subtract prior estimates of anthropogenic CO2 emissions from total CMS-Flux total CO2 flux estimates, and we 205 

assume that prior anthropogenic CO2 emissions errors are minimal compared to the biospheric CO2 fluxes, given that these are 

typically much smaller than natural CO2 fluxes at a 4°×5° resolution across the tropics. We use 2015 CMS-Flux NBE estimates 

constrained by Orbiting Carbon Observatory (OCO-2) total column CO2 observations (Liu et al., 2017) to validate 

CARDAMOM 2015 NBE estimates and their associated uncertainties (OCO-2 NBE estimates are therefore withheld from the 

CARDAMOM NBE assimilation step described in section 2.3). 210 

 

Finally, we assimilate mean 2010-2015 fire C emission estimates derived from monthly 4°×5° satellite-based estimates of fire 

CO emissions (Jiang et al., 2017; Worden et al., 2017; Bloom et al., 2019): the estimates of biomass burning CO emissions 

were derived based on an ensemble of atmospheric CO inversions of column CO measurements from the Measurements of 

Pollution in the Troposphere (MOPITT) instrument onboard the NASA EOS/TERRA satellite (Deeter et al., 2014). We refer 215 

the reader to Jiang et al., (2017) for the details of the atmospheric CO inversion using the GEOS-Chem adjoint model and to 

Worden et al., (2017) for the attribution of optimized CO fluxes to biomass burning. Biomass burning CO emission estimates 

by Worden et al., (2017) were then used to derive total biomass burning C emissions based on monthly estimates of CO2:CO; 

the approach is detailed in Bowman et al., (2017). We note that NBE estimates exhibit substantial spatial error covariance 

structures across individual 4°×5° grid-cells, and the effective information content of the NBE inversions is larger than the 220 

4°×5° resolution. To mitigate the spatial error correlation features identified in the NBE dataset (Bowman et al., 2017; Liu et 

al., 2017), we employed a 3×3 gridcell smoothing window for monthly NBE estimates, following the approach by Liu et al. 

(2018). 

 

2.3 Model-data fusion 225 

 

Within each 4°×5° grid cell, the C cycle dynamics in DALEC are a function of meteorological drivers M, model parameters p 

and initial conditions x0 (as summarized in Eq. 1). We use a Bayesian inference formulation to independently retrieve the 

optimal distribution of x0 and p given observations O for each 4°×5° grid cell, where: 

 230 

𝑝(𝒚|𝑶) 	∝ 𝑝(𝒚)𝑝(𝑶|𝒚)         (2); 

 

y is the control vector {x0,p}, p(y) is the prior probability distribution of y, and p(O|y) is proportional to the likelihood of y 

given O, L(y|O). At any given grid cell, the observation vector O consists of corresponding to LAI, SOM, ABGB, SIF, NBE 
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and CO-derived fire CO2 emissions (henceforth OLAI, OSOM, OABGB, OSIF, ONBE and OCO respectively), and—assuming errors are 235 

uncorrelated— the overall likelihood of y given O can be expressed as 

 

L(y|O) = LLAI LSOM L ABGB LSIF LNBE LCO       (3) 

 

 For LAI, SOM, ABGB and CO, we derive the corresponding likelihood function 𝐿∗  (i.e.  LLAI, LSOM, L ABGB and LCO, 240 

respectively) as follows:  

 

𝐿∗ = e:
;
<∑ >

?@	(𝒚)ABC
DC

E
<

C          (4) 

 

where oi and mi(y) correspond to the ith observation and corresponding modeled quantity derived from control vector y, 245 

respectively; σi accounts for the combined effects of DALEC model structural error, model drivers and observation errors. In 

contrast to Bloom et al., 2016, given that MODIS LAI retrievals have exhibited systematic seasonal biases across the wet 

tropics (Bi et al., 2015), we solely use mean LAI as a constraint on the mean DALEC2a LAI values (therefore, for the derivation 

of LLAI, m and o in equation 3 correspond to the 2010-2015 mean modeled and observed LAI).  

 250 

To constrain the relative variability of GPP based on SIF without imposing constraints on the absolute GPP magnitude, we 

derive LSIF—based on Eq.4—by formulating m and o as follows: 

 

𝑚G(𝒚) = 	
HIIC
𝑮𝑷𝑷LLLLLL            (5), 

𝑜G = 	
NOPC
𝑺𝑰𝑭LLLLL           (6), 255 

 

where 𝑆𝐼𝐹G  and 𝐺𝑃𝑃G  are SIF and corresponding DALEC2a GPP values at time index i and  𝑺𝑰𝑭LLLLL  and 𝑮𝑷𝑷LLLLLL  are the 

corresponding means during the 2010-2015 time period.  

 

We constrain CARDAMOM NBE using 4°×5° monthly CMS-Flux NBE estimates, derived from GOSAT atmospheric total 260 

column CO2 retrievals (Liu et al., 2018) spanning 2010-2013. At each 4°×5° location, we define the LNBE as the product of 

mean annual NBE and seasonal NBE anomalies using the following equation: 

 

𝐿YZ[ = 	 e
:;<∑ >\]̂(𝒚)AB_̂

D^ E
<

_ e
:;<∑ `

?C,_
^^ (𝒚)ABC,_

^^

D^^
a
<

C,_         (7), 

 265 
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where 𝑚b
c  denotes annual mean DALEC2a NBE value for year a and 𝑚G,b

cc  denote DALEC2a NBE seasonal deviations from 

their annual means; specifically, for a given month i with corresponding year a: 

 

𝑚b
c (𝒚) = %

%d
∑ 𝑁𝐵𝐸G,b%d
Gg%          (8) 

𝑚G,b
cc (𝒚) = 𝑁𝐵𝐸G,b − 𝑚b

c 									        (9) 270 

 

where 𝑁𝐵𝐸G,b  is the DALEC2a NBE; observations 𝑜bc  and 𝑜G,bcc   were derived identically to 𝑚b
c  and 𝑚G,b

cc . The approach 

outlined in Eq. 7 is employed in order to capture both the seasonal and inter-annual modes of NBE variability: we found that 

solely minimizing the monthly NBE residuals following the formulation based on Eq. 4 led to disparate inter-annual variations 

between the model and observation-constrained NBE. Effectively the formulation in Eq. 7—in comparison to Eq. 4— increases 275 

the relative weight of mean annual CMS-Flux NBE constraints on DALEC2a NBE.  

 

The uncertainty for each observational constraint (i.e. σ values in Eq. 4 and 7) implicitly represent the combined impacts of 

observational random errors, systematic errors, and model structural error. In the absence of knowledge on the relative roles 

of observation errors in the monthly 4°×5° observation uncertainties and explicit knowledge of model structural error, we 280 

prescribed σ values through trial and error, in order to (a) ensure that model states and diagnostic variables capture the 

predominant variability of the observational constraints O, while (b) ensuring that σ values are comparable to the observational 

uncertainty. The uncertainties assumed for each observational constraint are listed in Table 1. For all land surface variables 

(namely LAI, ABGB, SOM and SIF), m and o were log-transformed (following Bloom et al., 2016). For the mean 2010-2015 

LAI constraint, we assumed log-normal uncertainty of σ=±log(1.2); we prescribed σ = ±log(2) log-normal uncertainty structure 285 

for each SIF observation. We approximated the uncertainty of the CO-derived mean 2010-2015 fire C values as σ = ± 20%, 

which is broadly consistent with the monthly 4°×5° CO uncertainty estimates and the corresponding CO2:CO uncertainty 

estimates reported by Bowman et al., (2017) and Worden et al., (2017). For NBE we prescribed σ’= 0.02 gC/m2/day and σ’’ 

= 2 gC/m2/day; we found that these were suitable to capture the first-order 2010-2013 seasonal and inter-annual components 

of continental scale NBE variability. We discuss the potential impacts of observation uncertainty assumptions and make 290 

recommendation for future efforts in section 3.4. 

 

To retrieve the distribution of p(y|O), we employed an adaptive metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) 

approach following Bloom et al., (2016).  We generally found that the computational costs required to meet MHMCMC 

convergence criterion reported by Bloom & Williams (2015) for each 4°×5° grid-cell were prohibitively expensive. We 295 

updated the adaptive MHMCMC to the Haario et al., (2001) MHMCMC approach, where the MHMCMC proposal distribution 

is adapted as a function of previously accepted samples (see Haario et al., 2001 for algorithm details). We ran 4 adaptive 

MHMCMC chains for 108 iterations in each 4°×5° grid-cell. We found that the latter half of the chains converged within a 
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Gelman-Rubin convergence criterion value of <1.2 in 75% of the grid cells. For the subsequent analysis, we a subset of 500 

samples of y from the of latter half of each MHMCMC chain, totaling 4×500 samples of y per 4°×5° grid-cell. 300 

 

2.4 Concurrent and lagged effects 

 

Ecosystem function—such as photosynthesis, respiration and evapotranspiration rates—at all stages of ecological succession 

is both a consequence of an ecosystem’s initial physical and biotic states and the contemporaneous impact of meteorological 305 

forcings on these states. For example, ecosystem water and nutrient availability along with species demography and species 

composition—effectively amounting to the time-integrated ecosystem legacy—will govern an ecosystem’s function under a 

nominal forcing. The cumulative impact of both episodic or prolonged variability in external forcings will be “remembered” 

in ecosystem states, thus shaping ecosystem function as an emergent property of external forcing history. Ecosystem states 

under a constant and perpetual environmental forcing will follow a trajectory towards an equilibrium state (as has been largely 310 

hypothesized as the typical outcome for ecosystem C stocks; Luo and Weng 2011, Luo et al. 2015) or more generally a transient 

trajectory about a domain of attraction (Holling, 1973), with stable equilibria, stable limit cycles, stable nodes and/or neutrally 

stable orbits as potential trajectories. Here, we define lagged effects as the sum of ecosystem state changes induced by a 

reference climatological mean forcing (Figure 2); these include the functional responses of ecosystem under climatological 

conditions (e.g. joint photosynthesis, respiration and evapotranspiration responses to non-equilibrium plant-available water, 315 

leaf area, biomass and dead organic C states), as well as functional shifts (e.g. succession-induced changes in demography and 

species composition, and consequently changes in ecosystem-scale photosynthetic capacity). In addition to an attraction 

towards a fixed equilibrium or domain, ecosystem states are perpetually disturbed by exogenous forces, such as meteorological 

forcing anomalies relative to a climatological mean forcing. Here we define these concurrent effects as all anomaly-concurrent 

changes to ecosystem states unaccounted for by climatology-induced state changes (i.e. lagged effects); these include 320 

functional responses to anomalous forcings (e.g. drought impact on photosynthetic uptake and respiration in responses to 

meteorological phenomena), as well as functional shifts on demographics and species composition induced by concurrent 

mortality and disturbance events.  On an annual basis, the total state changes resulting from both concurrent and lagged effects 

will in turn propagate into future ecosystem states. In this manner, forcing anomalies are perpetually propagated into ecosystem 

states, and lagged effects in subsequent years represent an integrated legacy of all prior phenomena. The choices of (a) 325 

“concurrent effects” to describe effects contemporaneous to a meteorological event and (b) “lagged effects” to describe all 

time-lagged processes are consistent with Frank et al., (2015) definitions associated with effects occurring during or after a 

climatic anomaly. While in this study we confine our analysis to concurrent and lagged effects on inter-annual timescales, we 

note that this conceptual framework can in be principle be adapted to diagnose physical and biological ecosystem state changes 

on any timescale of relevance. 330 
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Here we present a dynamical formulation for the derivation of concurrent and lagged effects on the inter-annual ecosystem 

state changes. To explicitly quantify the concurrent effects and lagged effects, we define the trajectory of the modeled dynamic 

state variables x at year a+1 as 

 335 

𝒙b$% = 	𝐷(𝒙b,𝑴b, 𝒑)          (10), 

 

where the state vector xa+1—which is comprised of DALEC2a states at the beginning of year a+1—is computed from the 

DALEC2a model operator D(), which is a function of the previous state xa at beginning of year a, the meteorological forcing 

history of the previous year Ma, and time-invariant ecosystem parameters p. We note that Eq. 10 is resolved on an annual time-340 

step; however, the DALEC2a operator time-step is monthly, hence the operator in Eq. 10 is a composite of monthly operators 

as denoted in equation 1. To  isolate the role of concurrent meteorological and disturbance anomalies in Ma, we define the C 

trajectory under a reference climatological mean forcing 𝑴c as 

 

𝒙′b$% = 	𝐷(𝒙b,𝑴′, 𝒑)	         (11). 345 

 

Here we define 𝑴c as the monthly climatological mean of the 2010-2015 meteorological drivers, where 

 

𝑴b =	𝑴c + 𝜹𝑴𝒂.          (12). 

 350 

With Eq. 10 and 11, we can define the change in the state x in year a, 𝛿𝒙b, as  

 

𝛿𝒙b = 𝒙b$%	– 𝒙b = 	 (𝒙b$%	– 𝒙cb$%)+(𝒙cb$%	– 𝒙b)      (13). 

 

This formulation allows us to define the lagged effect on ecosystem states in year a as  355 

 

𝛿𝒙bpqH = 	𝒙′b$%	– 𝒙b  

           (14), 

and the concurrent effect on ecosystem states in year a as  

 360 

𝛿𝒙brsY = 	𝒙b$%	– 𝒙′b$%         (15); 

 

and the sum of concurrent and lagged effects in Eq. 14 and 15 as 
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𝛿𝒙b = 𝛿𝒙bpqH + 	𝛿𝒙brsY          (16). 365 

 

We conceptually illustrate the derivation of annual concurrent and lagged effects on a given ecosystem state x in Figure 3. 

Under a climatological mean forcing (blue line), the ecosystem state trajectory—solely induced by lagged processes—would 

diverge from meteorology-forced ecosystem state trajectory (black line), and would eventually converge to an equilibrium 

state or oscillate about a domain of attraction (Figure 3a). For a one-year timespan, the change in ecosystem state x throughout 370 

year a, 𝛿𝒙b can be decomposed into a climatology-induced lagged effect change 𝛿𝒙bpqH, and an anomaly-induced concurrent 

effect change 𝛿𝒙brsY (Figure 3a, inset).  

 

From a mechanistic standpoint, the variability of 𝛿𝒙bpqH is independent of meteorological forcing anomalies and is therefore 

solely dependent on all ecosystem states xa.  For example, in a hypothetical scenario where a climatological mean forcing 375 

induces no net ecosystem state changes, then 𝛿𝒙bpqH = 	𝒙𝒂 − 𝒙c𝒂$𝟏 = 𝟎 , and 𝛿𝒙 = 	𝛿𝒙rsY . In a more general scenario,  

𝛿𝒙bpqH = 	𝒙𝒂 − 𝒙cb$%	~	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for all a: in this instance 𝒙bpqH is non-zero but largely insensitive to variations in 	𝒙b within 

a typical range of ecosystem states 𝒙, therefore (i) the year-to-year variability of 𝛿𝒙, is largely dependent on  the variability of 

𝛿𝒙rsY, and (ii) 𝛿𝒙pqH amounts to an approximately constant offset term (Figure 3b).  Alternatively, if 𝛿𝒙pqH is sufficiently 

sensitive to the variability of 𝒙, the variability of 𝛿𝒙 will be a function of both  𝛿𝒙pqH and 𝛿𝒙rsY: in this instance, year-to-year 380 

variations in 𝒙 are influencing both the sign and magnitude of lagged effects (Figure 3c).  

 

Here we investigate the possible contributions of the annual variability of 𝛿𝒙rsY and 𝛿𝒙pqH on 𝛿𝒙 for the 2010-2015 time 

period across tropical ecosystems. Specifically, we test the two following hypotheses: 

 385 

- Hypothesis 1:  𝑣𝑎𝑟(𝛿𝒙pqH) ≪ 	𝑣𝑎𝑟(𝛿𝒙rsY). In this instance, the impact of 𝑴′ on 𝒙 is largely independent on 

the variability of 𝒙; consequently the year-to-year variability of the lagged effects force 𝛿𝒙pqH is relatively small, 

and the year-to-year changes in ecosystem states, 𝛿𝒙, are dominated by 𝛿𝒙rsY (Figure 3b). 

- Hypothesis 2:	𝑣𝑎𝑟(𝛿𝒙pqH)	~	𝑣𝑎𝑟(𝛿𝒙rsY). In this instance, the impact of 𝑴′ on 𝒙 is dependent on the variability 

of 𝒙; consequently, the year-to-year variability of the lagged effects 𝛿𝒙pqH is substantial, and the year-to-year 390 

changes in ecosystem states, 𝛿𝒙, are substantially attributable to both 𝛿𝒙rsY and 𝛿𝒙pqH (Figure 3c). 

 

The mechanistic nature of the DALEC2a model within CARDAMOM (namely the representation of allocation fractions, 

residence times, meteorological sensitivities and explicit representation of dynamical states) allows for a data-constrained 

probabilistic assessment of the relative role lagged and concurrent effects on net ecosystem state changes. In principle, the 395 

disaggregation of 	𝛿𝒙b into 𝛿𝒙brsY and 𝛿𝒙bpqH (and the associated hypotheses 1 and 2) can in principle be projected onto any 

subset of net ecosystem fluxes or additive combination of gross fluxes. For example, the NBE in year a (𝑁𝐵𝐸b)	corresponds 
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to the net C loss between 𝒙𝒂 and 𝒙𝒂$𝟏; in turn, 𝑁𝐵𝐸b can be decomposed into its lagged effect component (𝑁𝐵𝐸bpqH) and the 

concurrent effect component (𝑁𝐵𝐸b~O�), where 

 400 

𝑁𝐵𝐸b = 𝑁𝐵𝐸brsY + 𝑁𝐵𝐸bpqH         (17); 

 

𝑁𝐵𝐸b and 𝑁𝐵𝐸bpqH can be directly calculated from 𝐷(𝒙b,𝑴b, 𝒑) and 𝐷(𝒙b,𝑴c, 𝒑) respectively, and 𝑁𝐵𝐸brsY is calculated as 

𝑁𝐵𝐸b  – 𝑁𝐵𝐸bpqH . By definition in the DALEC2a model, NBE is the sum of primary productivity (NPP), heterotrophic 

respiration (RHE) and fire (FIR) fluxes, where: 405 

 

𝑁𝐵𝐸b = 𝑅𝐻𝐸b + 𝐹𝐼𝑅b − 𝑁𝑃𝑃b        (18). 

 

In turn, disaggregation RHE, FIR and NPP into their respective concurrent and lagged components gives: 

 410 

𝑁𝐵𝐸brsY = 𝑅𝐻𝐸brsY + 𝐹𝐼𝑅brsY − 𝑁𝑃𝑃brsY       (19). 

𝑁𝐵𝐸bpqH = 𝑅𝐻𝐸bpqH + 𝐹𝐼𝑅bpqH − 𝑁𝑃𝑃bpqH       (20). 

 

To diagnose relative inter-annual variations of a given flux F (namely the 2010-2015 timeseries of NBE, RHE, FIR and NPP), 

we derive annual anomalies Δ𝑭 relative to the mean 2010-2015 flux 𝑭�, where for a given year a: 415 

 

Δ𝐹b = 	𝐹b − 𝑭�          (21). 

 

The Δ operation in Eq. 21 can be implemented onto each term in Eq. 18-20 without loss of equivalence between left-hand and 

right-hand sides (for example, Δ𝑁𝐵𝐸bpqH = Δ𝑅𝐻𝐸bpqH + Δ𝐹𝐼𝑅bpqH − Δ𝑁𝑃𝑃bpqH).  420 

 

Finally, we diagnose the 2010-2015 Δ𝑁𝐵𝐸bpqH variability as a function of the inter-annual anomalies in individual ecosystem 

states, Δ𝒙b(∗) = {	Δ𝑥b(%), Δ𝑥b(d), … , Δ𝑥b(Y)}, relative to the mean ecosystem state 𝒙�. For DALEC2, these consist of annual 

anomalies in initial C and H2O states (see Figure 1). For a given year, the total NBE lagged effect anomaly, Δ𝑁𝐵𝐸bpqH can be 

decomposed into  425 

 

Δ𝑁𝐵𝐸bpqH = ∑ Δ𝑁𝐵𝐸b(�)
pqH 	+Y

�g% Δ𝐼b       (22); 

 

Δ𝑁𝐵𝐸b(�)
pqH  represents the NBE lagged effect component solely attributable to an anomaly in ecosystem state n (Δ𝑥b(�)), and 

Δ𝐼b collectively accounts for the contribution of higher-order interactions between individual ecosystem states. In other words, 430 
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given that Δ𝑁𝐵𝐸bpqH  is solely attributable to variability of annual initial conditions xa, the decomposition of Δ𝑁𝐵𝐸bpqH  to 

individual pool contributions provides a first-order attribution of lagged effect IAV to underlying C and H2O pool dynamics. 

The derivation of Eq. 22 is explicitly described in Appendix C. 

 

To derive uncertainty estimates for each annual flux 𝐹b, or corresponding anomaly Δ𝐹b, we calculate each term based on the 435 

2000 samples of y at each gridcell (see section 2.3), and we calculate the corresponding median and inter-quartile range (25th-

75th percentiles) for each term. Inter-annual variations in 2010-2015 𝑭 and Δ𝑭 timeseries are reported as standard deviations. 

We conservatively assume that these errors are fully correlated when propagating these uncertainties across each region. 

 

3. Results and Discussion  440 

 

3.1. Evaluation of observation-constrained tropical C balance 

 

Ultimately inferences about the concurrent and lagged effects on NBE can only be drawn if CARDAMOM is able to both (i) 

accurately represent observed NBE, and (ii) accurately predict the underlying processes controlling IAV. Here we evaluate the 445 

ability of CARDAMOM to (a) capture the assimilated NBE dataset (2010-2013), and (b) predict the observed OCO-2 derived 

2015 NBE. Optimized CARDAMOM NBE (a function of the optimized DALEC2a parameters and initial 2010 ecosystem 

states) broadly represents the monthly variability of the 2010-2013 regional-scale assimilated GOSAT-retrieved NBE (Figure 

4; Table 2). In individual regions, monthly CARDAMOM versus CMS-Flux NBE r	 ≥ 0.75, with the exception of South-East 

Asia and Indonesia region (r = 0.57) where the CARDAMOM and GOSAT-retrieved NBE exhibits a relatively small 450 

seasonality compared to other regions. Evaluation of CARDAMOM NBE against withheld NBE estimates from OCO-2 exhibit 

a degradation in the correlation and RMSE values, but agree favorably on the amplitude and timing of the NBE variability 

(Table 2).	We find that the CARDAMOM analysis is able to robustly capture the 2010-2013 GOSAT-derived NBE IAV at 

regional scales (see Figure 5 & Table 2; regional NBE r ≥ 0.95). On an annual basis, the 3 out of 6 regional OCO-2 annual 

NBE estimates 2015 are within 90% CARDAMOM prediction confidence intervals; all OCO-2 annual NBE estimates are 455 

within CARDAMOM 2015 prediction confidence intervals for the wet tropics, dry tropics and the entire tropical study region 

(Figure 5). We also note that regions the confidence intervals of the 2014-2015 predictions are substantially larger than 

uncertainty intervals within the 2010-2013 analysis period, likely due to under-constrained modes of long-term terrestrial C 

cycle variability.  

 460 

The spatial variability of CARDAMOM state variables and fluxes constrained by static datasets, namely LAI, biomass, soil C 

and mean fire C emissions (Table 1), are broadly correlated with the observational constraints by the CARDAMOM analysis 

(r = 0.67 – 0.99; p<0.05; Figure S1); for the above-mentioned quantities total biases amounted to <10%.  The correlation 

between CARDAMOM GPP and GOSAT SIF is positive & significant (p-value <0.05) in 74% of 4x5 pixels, with higher 
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correlations in the dry tropics (25th – 75th percentile = 0.41 – 0.78) relative to the wet tropics (25th – 75th percentile = 0.16 – 465 

0.66); the lower correlations in the wet tropics are to be expected, given that wet tropical ecosystems fundamentally exhibit a 

weaker GPP seasonal cycle. In general, we argue that (i) CARDAMOM terrestrial C cycle dynamics broadly represent the 

variability of assimilated C cycle datasets, and (ii) CARDAMOM NBE and associated uncertainties compare favorably against 

withheld data on seasonal and inter-annual timescales (albeit with limited annual NBE skill at regional scales). We anticipate 

that the ever-growing satellite CO2 record—along with increasing volume and quality of terrestrial C cycle observations—will 470 

ultimately lead to improved seasonal and inter-annual process representations in future model-data fusion analyses of the 

terrestrial C balance. 

 

3.2 Concurrent and lagged effects on the tropical C balance 

 475 

The attribution of annual ΔNBE into its concurrent and lagged components (ΔNBECON and ΔNBELAG) reveal that both are 

substantial contributors to regional and pan-tropical ΔNBE (Figure 6). On a regional scale, ΔNBECON IAV and ΔNBELAG IAV 

during 2010-15 amount to 35-108% and 43-159%, relative to ΔNBE IAV (Table 3). Notable ΔNBECON anomalies include the 

positive ΔNBECON values in both South America regions during the 2010 South America drought, and negative ΔNBECON 

values during the relatively wet 2010-2011 conditions in Australia, which corroborates the generally hypothesized responses 480 

of tropical ecosystems to wet and dry extreme events (Lewis et al., 2011; Bastos et al., 2013). In the large majority of cases—

both on a regional and pan-tropical scale—the sign of the year-to-year ΔNBE changes and the ΔNBECON changes are consistent: 

for example, the sign of 2010-to-2011 ΔNBE and ΔNBECON changes are consistent in all 6 regions, and in aggregate across the 

whole tropics (Figure 6). In contrast, while magnitude of the year-to-year ΔNBELAG changes is comparable to ΔNBECON, the 

year-to-year ΔNBELAG and ΔNBE changes are generally uncorrelated. In contrast, the prominent role of ΔNBELAG on a regional 485 

and pan-tropical ΔNBE is manifested through the long-term trends in ΔNBELAG, resulting in a positive correlation across all 

regions between 2010-2015 ΔNBE and ΔNBELAG. ΔNBELAG IAV exceeded ΔNBECON  IAV across all regions except South-

East Asia and Indonesian archipelago (Table 3). ΔNBELAG IAV values amounting to >100% of ΔNBE IAV are attributable to 

regional and pan-tropical anti-correlations between ΔNBELAG and ΔNBECON: specifically, ΔNBELAG and ΔNBECON are 

anticorrelated across the tropics (r = -0.46), and all regions except Australia and SE Asia & Indonesia (r = -0.75–0.58); while 490 

none of the correlations are significant within a p-value<0.05, the consistent anticorrelation across all regions suggests that 

lagged effects may significantly and systematically dampen the impact of ΔNBECON on longer timescales. On a pan-tropical 

scale, we found that the ΔNBELAG IAV exceeded ΔNBECON IAV, and the relative prominence of ΔNBELAG IAV persisted across 

both the dry tropics and the wet tropics (Table 3, regions denoted in Figure A1), suggesting that ΔNBELAG is a ubiquitous 

component of inter-annual tropical C cycle dynamics.  495 

 

The decomposition of ΔNBECON into constituent fluxes (ΔNPPCON, ΔRHECON and ΔFIRCON) reveals that a diverse set of 

processes drive the concurrent NBE response to meteorological forcing (Figure 7, middle column). For four out of six regions, 
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ΔNPPCON variability accounts for the largest contribution to ΔNBECON variability (Table 4), however ΔRHECON and ΔFIRCON 

contributions area magnitudes are comparably substantial. In northern hemisphere South America, ΔRHECON variability 500 

accounts for the largest contribution to ΔNPPCON suggesting that to first order the integrated impacts of meteorological forcing 

IAV on respiration outweigh the year-to-year impacts on photosynthetic uptake. In Australia, the concurrent impact of fires 

on ΔNBECON is largest but comparable to ΔNPPCON (Table 4). In contrast, the decomposition of ΔNBELAG into constituent 

fluxes (ΔNPPLAG, ΔRHELAG and ΔFIRLAG), reveals that ΔNBELAG is ubiquitously dominated by ΔNPPLAG variability (55-127%), 

followed by modest contributions from ΔRHELAG variability (12-46%) and minimal contributions by ΔFIRLAG variability (0-505 

3%, see Table 4). The prominence of ΔNPPLAG is attributable to faster continental-scale response of C uptake following year-

to-year variations in initial C and H2O states (relative to ΔRHELAG), indicating that biomass pool dynamics (rather than dead 

organic C states) dominate initial ecosystem responses to external forcing anomalies. The relatively small contribution of 

ΔFIRLAG values to ΔNBELAG indicate that the magnitude of fires is, to first order, dominated by variability in the forcing, rather 

than variability in the states within fire-prone ecosystems. 510 

 

We find that variability in foliar C, plant-available H2O and soil C contribute to the majority of regional and pan-tropical 

ΔNBELAG variability (Figure 8). For example, the enhanced foliar C in 2011 over the Australian continent (relative to 2010)—

attributable to a combination of reduced fires and increase productivity due to anomalous 2010 conditions over the Australian 

continent (Figure S2)—alone contributed to a 0.1PgC/yr net uptake increase (i.e. NBE reduction) relative to 2010. We find 515 

that the sum of all the pool-specific ΔNBELAG anomalies approximately add up to ΔNBELAG (Figure S3), indicating that—

insofar  as these are represented in DALEC2a—ΔNBELAG is (a) to first order equivalent to the sum of NBELAG sensitivities to 

individual initial states, and (b) cross-pool interactions (“I” in Eq. 22) are a secondary component of ΔNBELAG.  In aggregate, 

we find that foliar C variability contributes to 31-82% of ΔNBELAG variability across all regions, and 47% of the pan-tropical 

ΔNBELAG. Southern Africa and Australia are the only regions where inter-annual variations in soil C and plant-available water 520 

(respectively) contribute to more variability than foliar C (Table 5). In other words, our results indicate that under a 

climatological mean forcing, (a) year-to-year changes in foliar C and soil water initial conditions are sufficient to induce 

substantial year-to-year changes in C uptake, and (b) year-to-year changes in soil C are sufficient to substantially influence 

total heterotrophic respiration rates. We find that the remaining states (labile C, wood C, fine root C and litter C) explain < 0.2 

PgC/yr variability of ΔNBELAG across all regions. The gradual increase of ΔNBELAG across all tropical regions (Figure 6) is 525 

jointly attributable to changes in soil C and foliar C, while plant-available water exhibits no substantial trend: these results 

suggest that tracking the long-term evolution of tropical ecosystem canopy cover (Saatchi et al., 2013; Shi et al., 2017) and 

reducing the process-level uncertainties associated with foliar C dynamics relationships to meteorological forcings (discussed 

in 3.4) are potentially critical for advancing quantitative understanding of tropical NBE IAV. We also note that, while our 

analysis focused on the ΔNBELAG sensitivity to year-to-year ecosystem states changes, the magnitude of ΔNBECON is also in 530 

principle dependent on time-varying ecosystem states (Figure 2). We therefore highlight that further efforts to quantitatively 

establish the sensitivity of ΔNBECON on year-to-year ecosystem state changes would amount to a critical step towards (a) better 
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resolving the present and evolving function of the terrestrial C balance, and (b) quantitatively characterizing the cumulative 

impact of climate anomalies (e.g. larger and/or more frequent droughts) on the net accumulation of C in terrestrial ecosystems. 

 535 

The predominant influence of ΔNPPLAG on ΔNBELAG is manifested itself as both (i) inter-annual variations in ΔNPPLAG, such 

as the 2011 response to 2010 wet conditions in Australia and dry conditions in South America, and (ii) secular declines in 

ΔNPPLAG across most tropical regions (Figure 7). The above-mentioned ΔNPPLAG anomalies in 2011, relative to 2010 

ΔNPPLAG, amount to lagged responses attributable to the 2010 meteorological impacts on ecosystem states. In contrast, the 

secular trends in ΔNPPLAG, as well as the contributions of foliar C and plant-available water to ΔNBELAG, suggest a progressive 540 

shift in ecosystem states may be gradually altering the magnitude of ΔNBELAG and consequently ΔNBE. The difference in 

ΔNPPLAG and ΔNBELAG between 2010 and 2015 (in both cases > 2PgC/yr) suggests either a prolonged response to 2010 

forcings and/or a longer-term decline in vegetation’s photosynthetic capacity. Together the above mechanisms suggest that 

lagged impacts of changes photosynthetic capacity (due to either changes in canopy or water availability) operate at multiple 

timescales but are nonetheless a fundamental component of tropical NBE IAV. In contrast, lagged heterotrophic respiration 545 

responses (ΔRHELAG) are a secondary component of ΔNBELAG, due to the inherent lags of biomass growth and subsequent 

mortality, combined with ~5-50yrs mean dead organic C residence times across tropical ecosystems (Bloom et al., 2016). 

Field-scale measurements and continental-scale inferences of NPP responses to past climatic anomalies highlight the potential 

importance of lagged NPP effects (Sherry et al., 2008, Detmers et al., 2015; Wolf et al., 2016), and prolonged impact of the 

2005 drought on canopy water content (Saatchi et al. 2013) suggests that post-disturbance NPP decline could persist for 550 

multiple years. Continued monitoring of NBE (e.g. following the 2015-2016 ENSO event), and subsequent attribution to 

concurrent and lagged effects, will be critical to better quantify the multi-year NPP recovery (e.g. Schwalm et al., 2017) and 

to improve confidence in secular NPP changes on the tropical C balance attributable to long-term shifts in ecosystem C states.  

 

3.4 Observation and model uncertainties and caveats 555 

 

The prescribed observation uncertainty characteristics (Table 1) are potentially a critical source of error in the data-informed 

representation of terrestrial C cycle dynamics and its subsequent partitioning into concurrent and lagged effects. For example, 

relative differences in the mean NBE values retrieved from aircraft and satellite CO2 measurements over the Amazon Basin 

(Alden et al., 2016; Bowman et al. 2017) highlight the need to determine the sensitivity of our results to top-down estimates 560 

of NBE. While the uncertainty structures of top-down CO2 inversion estimates is beyond the scope of our paper, we recognize 

the need to robustly assess and characterize uncertainties in seasonal and inter-annual variations in NBE. Potential limitations 

in the linear SIF:GPP assumption include (i) systematic underestimations of afternoon GPP stress, given that the GOSAT 

overpass time is ~1pm, and (ii) uncharacterized biases emerging from non-linear SIF:GPP under extreme conditions (Verma 

et al., 2017). We highlight that recent efforts to merge multiple SIF datasets (Zhang et al., 2018), and process-based 565 

representations of SIF:GPP (Bacour et al., 2019) can together be used to improve the accuracy of SIF:GPP representation in 
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CARDAMOM. We generally acknowledge that more elaborate approaches and a more comprehensive treatment of model and 

data error characteristics are necessary to understand the contribution of individual data streams error (Keenan et al., 2011; 

Heald et al., 2004; MacBean et al., 2016, 2018). Specifically, the explicit and accurate representation of model structural error 

is critical for both accurate retrievals of physical parameters and accurate model predictions (Brynjarsdottir & O’Hagan, 2014) 570 

and solving for error model parameters (Schoups & Vrugt 2010, Xu et al., 2017) is potentially advantageous for physical 

parameter retrievals and prediction purposes. For example, we note that without an error model structure we cannot explicitly 

account for cross correlations in the errors between observations or the impacts of heteroscedasticity (Schoups  & Vrugt, 2010). 

While the identification and optimization of an appropriate structural error model is beyond the scope of this manuscript, we 

highlight this as an important priority for future CARDAMOM analyses. 575 

 

Unrepresented processes DALEC2a model structure—particularly processes that are potentially substantial contributors to 

ΔNBECON and ΔNBELAG—amount to an additional source of uncertainty in our analysis. Potentially critical processes include 

time-varying autotrophic respiration (Rowland et al., 2014), plant C allocation and plant mortality, as well as explicit 

representation of coarse woody debris (Smallman et al., 2017). In particular, given that our results suggest that foliar C is a 580 

major contributor to ΔNBE, unrepresented processes relating to tropical leaf phenology may substantially impact the accuracy 

of lagged effect attribution, including phenological processes regulating leaf onset, leaf lifespan and litterfall seasonality 

(Chave et al., 2010; Caldararu et al., 2013, Xu et al., 2016), as well as the time-varying allocation regimes (Doughty et al., 

2015). Furthermore, while the DALEC2a phenology assumes a time-invariant ratio between LAI and foliar C (i.e. a time-

invariant ecosystem-level leaf carbon mass per area), the joint roles of leaf demographics and species distribution on the 585 

temporal variability of leaf carbon mass per area could potentially amount to a significant impact on photosynthetic capacity, 

and subsequently on the variability of ΔNBECON and ΔNBELAG. We also highlight year-to-year changes in species composition 

(such as C3:C4 plants) and the temporal dynamics of vegetation and soil nutrients as potential contributors to ΔNBELAG (Sherry 

et al., 2008; Schimel et al., 1997) as potentially unrepresented but critical processes, particularly in fire-prone regions 

(Pellegrini et al., 2018) and nutrient-limited tropical forest ecosystems (Wieder et al. 2015). Finally, we highlight the need to 590 

investigate the sensitivity of our results to the 2010-2015 climatological mean forcing: while to first order the diagnosis of 

lagged effect anomalies from the mean (rather than absolute values) are insensitive to the reference forcing, further efforts are 

required to determine whether non-linear impacts of an alternative reference forcing (e.g. a climatological mean forcing based 

on a 30-year climate normal) may amplify or dampen ΔNBELAG IAV estimates.  

 595 

Our continental-scale results indicate that DALEC2a model complexity is adequate to both represent NBE variability and 

accurately predict NBE outside the training window on a pan-tropical scale (2015), which provides a first-order assessment of 

the adequacy of the DALEC2a model structure. However, we note considerable biases in 2015 NBE estimates in individual 

regions (including Australia and Northern Hemisphere South America), which may suggest that either (a) the model structure 

is significantly biased or (b) the observational constrains are insufficient to make accurate predictions. To determine the relative 600 
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impact of model error, we anticipate that additional insights could be obtained by retrieving ΔNBECON and ΔNBELAG based on 

alternative DALEC model structures (Fox et al., 2009; Smallman et al., 2017). For example, the implementation of DALEC2a 

assimilation and prediction evaluation across long-term records eddy covariance CO2 and H2O fluxes would amount to a useful 

evaluation of the model structure constrained by multiple data streams (e.g. following Richardson et al., 2010; Keenan et al., 

2013; Smallman et al., 2017), though few tropical ecosystem sites where multi-year NBE constraints are available. 605 

Furthermore, to diagnose the potential role of higher-order process interactions on lagged and concurrent effects—such as 

nutrient limitations, ecosystem demography and explicit representations of carbon-water-energy interactions—we highlight 

that the ΔNBECON and ΔNBELAG attribution methodology introduced here can in principle be applied using higher complexity 

terrestrial biosphere models (e.g. Huntzinger et al., 2013, 2017; Macbean et al., 2018; Longo et al., 2019). 

 610 

4.  Conclusions 

 

The prominent role of ΔNBELAG across the tropics throughout 2010-2015 supports our second hypothesis (section 2.4), namely 

that concurrent and lagged effect variations are comparable on inter-annual timescales. By constraining a diagnostic ecosystem 

C balance model with an array of terrestrial C cycle observations (LAI, biomass, soil C, SIF, CO-derived fire C emissions and 615 

CO2-derived NBE), we show that even though 2010-2015 ΔNBECON account for a considerable variability of NBE during 

exceptionally dry and wet conditions, ΔNBELAG accounts for the majority of the 2010-2015 variability across the tropics. While 

2010-2015 ΔNBECON is accounted for by a relatively even mix of fires, heterotrophic respiration and NPP responses to climatic 

variability, ΔNBELAG variability is overwhelmingly dominated by the impact of inter-annual variations in lagged NPP effects, 

followed by a modest contribution from the state-dependence of heterotrophic respiration. In aggregate, anomalies in plant-620 

available water, foliar C and soil C were identified as the primary influences on ΔNBELAG variability. Our findings therefore 

highlight a critical need to explicitly account for lagged effects when investigating the process-level tropical NBE responses 

to climatic variability on inter-annual timescales. Furthermore, we highlight the need to accurately and continuously resolve 

NBE at sub-continental scales in order to advance our mechanistic and process-level understanding of terrestrial C cycling and 

its evolving sensitivity to climate.  625 

 

 

Appendix A: Regional definitions 

 

Appendix B: Model description 630 

 

The following sections provide a summary of the process parameterizations introduced in the DALEC version implemented 

in the Bloom et al., (2016) study. For completeness, a full description of DALEC2a is provided in the manuscript supplement. 
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B1. DALEC2a Water balance and GPP water stress 635 

 

The DALEC2a plant-available water balance at timestep t+1 in is derived as 

 

𝑊#$% = 	𝑊# + (𝑃# − 𝑅# − 𝐸𝑇#)	𝛥𝑡	        (B1), 

 640 

where W denotes total plant-available water [in mm water storage equivalent], and P, R and ET  precipitation, runoff and 

evapotranspiration fluxes [mm/day] over the time period 𝛥𝑡 [days]. We note that this equation represents a water balance in 

the dynamic, plant-available water pool and does not include deep groundwater, confined aquifers or other unconnected/static 

storages. Following a generalized non-linear reservoir formulation, we parameterize monthly runoff losses as a second-order 

decay function with respect to storage, 𝑊#, as:  645 

 

 𝑅# = 𝛼𝑊#
d          (B2), 

 

where 𝛼 is a second-order decay constant [mm-1 day-1]. The dependence of runoff on 𝑊d—instead of 𝑊—ensures that the 

fractional rate of plant-available water loss is proportional to 𝑊; relative to a first-order linear kinetics model, this provides a 650 

better representation of faster relative plant-available water depletion following high precipitation events, followed by slower 

losses during lower precipitation timespans (e.g. Matteucci et al., 2015) and serves a functional approximation of both storage-

excess and infiltration-excess runoff generation mechanisms in most cases. Following previous results from land surface model 

development experiments (e.g. Liang et al., 1994; Lawrence et al., 2011), we assume that net runoff inputs from adjacent pixels 

are a negligible term in the lumped grid-scale water budget at 4°×5° spatial resolution. By construction, 𝑅# values predicted at 655 

𝑊# >
%
b�#

 are unphysically high (𝑊# − 𝑅#𝛥𝑡 < 	0), while loss rates at 𝑊# >
%

db�#
 produce implausibly low residual storage 

(𝑊# − 𝑅#𝛥𝑡) values.  Therefore, in the eventuality of 𝑊# >
%

db�#
, we calculate runoff as 𝑅# = 𝑊# −

%
db�#

, effectively represent 

a storage-excess overflow mechanism by introducing a transition between a state-dependent regime to a direct runoff regime. 

 

We apply a linear scaling on GPP with respect to the plant-available water, where  660 

 

𝐺𝑃𝑃# = 𝐺𝑃𝑃���	(�) max �1,
��
�
�                (B3), 

 

where 𝜔 represents the plant-available water stress threshold; Eq. B3 effectively imposes a stress factor on GPP spanning 

between 0 and 1, and offers a simplified representation of the integrated effects of leaf-soil water potential differences and 665 

their impact on canopy conductance; Evapotranspiration at time t is derived as 
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𝐸𝑇# 	= 𝐺𝑃𝑃#
�I~�
 ¡

          (B4), 

 

where υe is the inherent water use efficiency (Beer et al., 2009) and VPD is the vapor pressure deficit derived from ERA-670 

interim monthly reanalysis datasets. Equations B1-B4 amount to a plant-water feedback parameterization, and together 

represent a reduced complexity version of the DALEC water module implemented by Spadavecchia et al., (2011). All 

parameters involved in the above-mentioned parameterization—namely 𝛼, 𝜐£ , 𝜔 and 𝑊¤—are optimized along with other 

DALEC2a parameters in CARDAMOM; the prior ranges are described in Table S1.  

 675 

B2. Heterotrophic respiration 

 

We parameterize the meteorological dependence of heterotrophic respiration, 𝜌 at time t as follows: 

 

𝜌# = 𝑒§( �̈:𝑻�) 	>�I�
𝑷�	
− 1� 𝑠ª + 1		E        (B5), 680 

 

where T and P represent the monthly temperature and precipitation vectors. We chose to use P as a driver for heterotrophic 

respiration sensitivity to moisture, given that (a) the majority of heterotrophic respiration is expected to occur in the near-

surface soil layer, and (b) near-surface soil moisture strongly covaries with P—rather than water storage—at monthly 

timescales. Previous versions of DALEC solely parameterized 𝜌# as a function of temperature (e.g. Bloom et al., 2016 and 685 

references therein); effectively, the formulation in Eq. B5 induces a joint sensitivity to relative changes in both temperature 

and near-surface moisture.  The prior ranges for the respiration temperature and precipitation sensitivity parameters (𝛩 and sp) 

are reported in Table S1. 

 

Appendix C: Sensitivity of lagged effects to individual ecosystem states 690 

 

In the DALEC2a representation of the ecosystem C balance, the state vector 𝒙b consists of the C and H2O pool values at the 

start of year a. To diagnose the sensitivity of 2010-2015 lagged effects on the variability of ecosystem states, we conduct a 

sensitivity analysis to explicitly quantify the impact of individual ecosystem state anomalies—relative to their 2010-2015 mean 

values—on the variability of 𝛿𝒙pqH throughout 2010-2015. To do this, we define the anomaly of the nth individual state in 695 

year a as the sum of finite differences relative to the mean state: 

 

𝒙b = 𝒙� + ∑ [𝒙b(�) −	𝒙�]Y
�g%         (C1), 
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where 𝒙� is an N-element vector of the mean 2010-2015 states; N is the number of model state variables; 𝒙b(�) is an N-element 700 

vector of ecosystem states, where for the ith element  𝒙b(�)(𝑖) = 𝒙b(𝑖) for i = n, and 𝒙b(�)(𝑖) = 𝒙�(𝑖) for i≠n. Based on Eq. 11 

and Eq.14,  we can derive the state change under a climatological mean forcing of each term in Eq. C1, and therefore 

 

𝛿𝒙bpqH = 		𝛿𝒙�pqH +	∑ [𝛿𝒙b(�)pqH 	− 		𝛿𝒙�pqHY
�g% ] 	+ 𝐼b	       (C2); 

 705 

𝐼b  collectively accounts for the unaccounted contribution of higher-order interactions between individual pool anomalies 

[𝒙b(�) −	𝒙�]	on 𝛿𝒙bpqH. As outlined in section 2.4, the “𝛿𝒙” terms in Equations C2 can be mapped onto any DALEC2a flux 

variable; specifically, 𝑁𝐵𝐸bpqH can be defined as the sum of lagged effect NBE components attributable to 𝛿𝒙b(�)
pqH  and 𝛿𝒙�pqHas 

follows: 

 710 

𝑁𝐵𝐸bpqH = 𝑁𝐵𝐸LLLLLLpqH +	∑ [𝑁𝐵𝐸b(�)pqH −	𝑁𝐵𝐸LLLLLLpqH] +Y
�g% 𝐼b     (C3); 

 

𝑁𝐵𝐸LLLLLLpqH  and 𝑁𝐵𝐸LLLLLLb(�)pqH  can be directly calculated from 𝐷(𝒙�	,𝑴c, 𝒑) and 𝐷(𝒙b(�),𝑴b, 𝒑), respectively. More succinctly, we 

summarize Eq. B3 as: 

 715 

𝑁𝐵𝐸bpqH = 𝑁𝐵𝐸LLLLLLpqH +	∑ 𝛿𝑁𝐵𝐸b(�)
pqH 	+Y

�g% 𝐼b      (C4), 

 

where 𝛿𝑁𝐵𝐸b(�)pqH  represents the lagged effect anomaly attributable solely to the initial condition anomaly in ecosystem state n. 

By applying the “Δ” operator (Eq. 21) on Eq. C3, eq. C4 can alternatively be expressed as:  

 720 

Δ𝑁𝐵𝐸bpqH = ∑ Δ𝑁𝐵𝐸b(�)
pqH 	+Y

�g% Δ𝐼b       (C5). 

 

Effectively, the lagged effect partitioning formulation outlined in Eq. C5 allows us to quantitatively diagnose the NBE lagged 

effect dependence on the inter-annual dynamics of individual C and H2O states depicted in Figure 1.  

 725 
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Figures 

 1180 

 

 
Figure 1. Schematic of the CARbon DAta-MOdel fraMework (CARDAMOM) Bayesian model-data fusion approach: the 

DALEC2a model (described in section 2.1) represents the ecosystem C and plant-available water balance; the dashed blue 

boxes denote the observational constraints used in this study (see Table 1 for details). CARDAMOM is implemented at a 4°×5° 1185 

resolution across the tropics (30°S – 30°N). Within each 4°×5° grid cell, DALEC2a model parameters and initial ecosystem 

states are optimized using an adaptive Metropolis-Hastings Markov Chain Monte Carlo algorithm. 
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 1190 

 
Figure 2. Conceptual figure denoting annual ecosystem states changes attributable to concurrent and lagged effects. 

Throughout a one-year cycle (circular arrows), lagged effects amount to the sum of ecosystem state changes induced by a 

reference climatological mean forcing, and concurrent effects amount ecosystem state changes solely attributable to a 

contemporaneous forcing anomaly. The total state changes resulting from both concurrent and lagged effects will in turn 1195 

determine the next year’s initial ecosystem states.  
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Figure 3. (a) Schematic of meteorology-forced trajectory of ecosystem state x (solid black line), and trajectory of x under a 1200 

climatological mean forcing (light blue solid line). Inset: state trajectory 𝑥b → 𝑥b$%  (δ𝑥b ), decomposed as the sum of 

climatology-induced lagged effect vector 𝑥b → 𝑥′b$% (δ𝑥bpqH) and anomaly-induced concurrent effect vector 𝑥′b$% → 𝑥b$%  

(δ𝑥brsY). (b) Hypothetical scenario depicting approximately time-invariant annual lagged effects δ𝒙pqH (blue dashed arrows), 

in reference to changes transient states 𝑥¤, 𝑥%, 𝑥d, etc.; the temporal changes in 𝑥 for each time interval, δ𝒙 and  δ𝒙pqH and 

δ𝒙rsY are shown in the underlying bar chart. In this scenario, δ𝒙pqH is relatively constant and its variability (denoted as “var()” 1205 

in schematic equation) is negligible relative to δ𝒙rsY. (c) Hypothetical scenario depicting time-varying annual lagged effects 

δ𝒙pqH, in reference to transient states 𝒙𝟎, 𝒙𝟏, 𝒙𝟐, etc.; in this scenario, the variability of δ𝒙rsY is comparable to the variability 

of δ𝒙pqH. 
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 1210 

 

 
Figure 4.  CARDAMOM monthly analyses of 2010-2015 median NBE (red line) and associated uncertainty intervals (25th-

75th percentiles in dark pink, and 5th – 95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-

derived top down fluxes (Liu et al., 2018) for the 2010-2013 period; CMS-Flux OCO-2 derived 2015 NBE fluxes were withheld 1215 

for validation. The geographical definitions for each region are shown in Figure A1. 
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Figure 5. CARDAMOM yearly analyses of 2010-2015 NBE (red line) and associated uncertainty intervals (25th-75th 1220 

percentiles in dark pink, and 5th – 95th percentiles in light pink). The analyses were constrained by CMS-Flux GOSAT-derived 

top down fluxes (Liu et al., 2018) for the 2010-2013 period. CMS-Flux OCO-2 derived 2015 NBE fluxes were withheld for 

validation. The geographical definitions for each region are shown in Figure A1. 

 

 1225 

CARDAMOM mean
CARDAMOM 25th – 75th %ile range
CARDAMOM 5th – 95th %ile range
CMS-FluxGOSAT (assimilated)
CMS-FluxOCO-2 (withheld for validation) 

https://doi.org/10.5194/bg-2019-459
Preprint. Discussion started: 8 January 2020
c© Author(s) 2020. CC BY 4.0 License.



41 
 

 
 

 

Figure 6. Regional and pan-tropical median annual DNBE (blue line) and its attribution to concurrent effects (DNBECON, green 

line) and lagged effect (DNBELAG, orange line) components. The geographical definitions for each region are shown in Figure 1230 

A1. Error bars denote the 25th – 75th percentile uncertainty estimates for each flux anomaly. 
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 1235 
Figure 7. Attribution of total NBE anomaly (DNBE), concurrent effect DNBE (DNBECON middle column) and lagged effect 

DNBE (DNBELAG right column) to corresponding annual net primary productivity (NPP), heterotrophic respiration (RHE) and 

fire components. NPP anomaly signs were reversed such that all anomalies are represented as positive for net land-to-

atmosphere C flux. Error bars denote the 25th – 75th percentile uncertainty estimates for each flux anomaly. 
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 1240 
Figure 8: Attribution of 2010-2015 annual regional and pan-tropical NBE lagged effect estimates (DNBELAG) to individual 

ecosystem state anomalies (i.e. the lagged effect in year a solely attributable to anomaly in ecosystem state n, Δ𝑁𝐵𝐸b(�)pqH , see 

Eq. 22). In addition to soil C (dark pink triangles), foliar C (green circles), plant-available H2O (blue squares), the grey areas 

(labelled as “Other” in the figure legend) denote the collective range of DNBELAG anomalies attributable to labile, wood, root 

and litter C.  The sum of annual state-specific DNBELAG values is approximately equal to the DNBELAG (see Figure S3). Error 1245 

bars denote the 25th – 75th percentile uncertainty estimates for each flux anomaly 
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Figure A1. Regional masks used in this study. The 1500mm/yr precipitation thresholds were based on the ERA-interim mean 1250 

annual precipitation rates throughout the 2010-2015 study period. 
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Tables 1260 

 

 

Table 1. Observational constraints assimilated into the 4°×5° CARDAMOM simulation. 
Observation  Dataset description Uncertainty1 

Leaf area index (LAI) MODIS LAI retrievals2.  ±log(1.2)  

Soil organic matter (SOM) Soil C inventory (Hiederer & Kochy, 2011)  ±log(1.5)  

Above- and below-ground biomass (ABGB)5 GLAS-informed biomass map (Saatchi et al., 2011) ≥ ±log(1.5)4   

Solar-induced Fluorescence (SIF) 2010-15 GOSAT retrievals of fluorescence (Frankenberg et 

al., 2011)5 

±log(2)  

Fire C emissions (BB) 2010-15 4°×5° inverse estimates of fire C emissions 

(Worden et al., 2017, Bowman et al., 2017).  

±20% 

Net Biospheric exchange (NBE) GOSAT CO2 derived 4°×5° inverse estimates of terrestrial 

NBE (Liu et al., 2018). 

Seasonal = ±2gC/m2/d 

Annual= ±0.02gC/m2/d 
1Uncertainties denoted as ±log() indicate log-transformed model and observed quantities (i.e. m and o in Eq. 4). 
1Only mean 2010-2015 LAI is assimilated into CARDAMOM, in order to mitigate the influence of seasonal LAI  1265 
retrieval biases (Bi et al., 2015). 
3The ABGB estimate is applied as a constrain on the sum of all CARDAMOM live biomass pools (Figure 1). 
3see Bloom et al., 2016 for details. 
5Time-resoved SIF is assimilated as a relative constraint on the temporal variability of GPP (section 2.3) 
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Table 2. CARDAMOM NBE evaluation against assimilated and predicted NBE 
 Monthly RMSEa (Pearson’s r) Annual RMSEa,b (Pearson’s r) 

 Assimilated NBE 

(2010-2013) 

Predicted NBE 

(2015) 

 

Assimilated NBE 

(2010-2013) 

Predicted NBE 

(2015) 

SH South America  0.08 (0.86*)  0.10 (0.84*)  0.02 (1.00*)  0.53 ( - )  

NH South America  0.06 (0.75*)  0.09 (-0.11)  0.02 (0.99*)  0.31 ( - )  

Southern Africa  0.07 (0.94*)  0.14 (0.78*)  0.05 (0.96*)  0.29 ( - )  

Northern SS Africa  0.08 (0.88*)  0.11 (0.94*)  0.06 (1.00*)  0.11 ( - )  

Australia  0.04 (0.73*)  0.06 (0.87*)  0.03 (0.98*)  0.36 ( - )  

SE Asia & Indonesia  0.03 (0.57*)  0.05 (0.58)  0.01 (1.00*)  0.14 ( - )  

Wet Tropics  0.20 (0.51*)  0.28 (0.51)  0.14 (1.00*)  0.71 ( - )  

Dry Tropics  0.11 (0.65*)  0.13 (0.51)  0.07 (1.00*)  0.19 ( - )  

Tropics  0.12 (0.80*)  0.21 (0.55)  0.13 (0.98*)  0.90 ( - )  
aRMSE units are PgC/yr. 1290 
bPrediction RMSE values are equivalent to absolute errors, since only one error value is considered. 
*Correlation p-value<0.05 
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Table 3. 2010-2015 regional DNBE IAV and corresponding contributions of concurrent effects (DNBECON) and lagged 

effects (DNBELAG); IAV values are represented here as standard deviations of annual 2010-2015 NBE values; 

bracketed values represent the Pearson’s correlation coefficients between total NBE and concurrent and lagged effect 1315 

IAV. The regional masks are depicted in Figure A1. 
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DNBE IAV 

[Pg C/yr] 

 

DNBECON IAV  

[as % of DNBE IAV]  

(Pearson’s r) 

 

DNBELAG IAV 

[as % of DNBE IAV] 

(Pearson’s r) 

SH South America  0.23  108%(0.43)  111%(0.47) 

NH South America  0.09  93%(0.28)  118%(0.64) 

Southern Africa  0.19  60%(-0.42)  135%(0.91*) 

Northern SS Africa  0.26  44%(0.18)  102%(0.90*) 

Australia  0.19  35%(0.50)  88%(0.93*) 

SE Asia & Indonesia  0.21  68%(0.93*)  43%(0.84*) 

Wet Tropics  0.61  63%(0.35)  97%(0.80) 

Dry Tropics  0.37  61%(-0.30)  131%(0.89*) 

Tropics  0.96  54%(0.03)  112%(0.87*) 
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Table 4. Concurrent and lagged effect NBE attributed to constituent fluxes (net primary production, heterotrophic 

respiration and fires, abbreviated as NPP, RHE and FIR respectively): IAV values are represented here as the ratio of 

constituent flux standard deviation to NBE standard deviations of annual 2010-2015 NBE values; bracketed values 1355 

corresponds to Pearson’s correlation coefficients between constituent flux and NBE (“*” denotes p-values < 0.05). 

The values highlighted in red denote the largest % IAV contribution to DNBECON and DNBELAG.  
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 IAV as % of  DNBE CON (Pearson’s r) IAV as % of  DNBE LAG (Pearson’s r) 

 DNPP CON DRHECON DFIRCON DNPPLAG DRHELAG DFIRLAG 

  SH South America  63%(-0.81)  40%(-0.41)  34%(0.32)  66%(-0.98*)     39%(0.94*)         0%(0.45) 

NH South America  36%(-0.98*)  63%(-0.06)   4%(0.51)  127%(-0.94*)     45%(-0.38)         0%(-0.93*) 

Southern Africa  52%(-0.67)  44%(-0.71)  36%(-0.67)  55%(-0.98*)     46%(0.97*)         2%(0.99*) 

Northern SS Africa  74%(-0.76)  72%(0.61)  21%(0.56)  122%(-0.99*)     25%(-0.74)         3%(-0.88*) 

Australia  74%(-0.30)  20%(0.10)  95%(0.92*)  92%(-0.99*)     12%(0.70)         1%(0.40) 

SE Asia & 

Indonesia 

 50%(-0.86*)  44%(-0.11)  46%(-0.39)  107%(-0.99*)     17%(-0.16)         1%(-0.88*) 

Wet Tropics  45%(-0.66)  58%(-0.60)  21%(0.20)  86%(-0.98*)     25%(0.73)         1%(-0.90*) 

Dry Tropics  71%(-0.88*)  44%(-0.21)  51%(-0.46)  91%(-0.99*)     16%(0.71)         0%(0.84*) 

Tropics  59%(-0.76)  60%(-0.55)  20%(0.30)  88%(-0.99*)     20%(0.74)         0%(-0.72) 
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Table 5. IAV of 2010-2015 regional and pan-tropical NBE lagged effects attributable to annual anomalies in column-

denoted ecosystem states (Eq. 22), as % of total NBE lagged effects (DNBELAG) IAV; bracketed values correspond to 1390 

Pearson’s correlation coefficients between single-state NBE lagged effects and total DNBELAG; “*” denotes p-values 

< 0.05. The values highlighted in red denote the maximum contribution in each region. 
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 1400 

 

 

 

 

 1405 

 Labile C Foliar C Fine Root C Wood C Litter C Soil C Plant-av. H2O 

SH South America    2%(0.80)   46%(0.98*)    5%(0.08)    2%(-0.96*)    7%(0.15)   43%(0.97*)   13%(0.34) 

NH South America   11%(0.95*)   82%(0.95*)    5%(-0.33)   15%(-0.96*)    8%(-0.15)   25%(0.70)   16%(0.65) 

 Southern Africa   11%(0.99*)   31%(0.95*)    1%(0.13)    2%(-0.99*)    7%(0.77)   46%(0.99*)    8%(0.62) 

Northern SS Africa   39%(0.86*)   67%(0.91*)    2%(-0.29)    5%(-0.89*)    7%(-0.39)    9%(-0.36)   18%(0.75) 

Australia    7%(0.99*)   34%(0.94*)    2%(-0.91*)    0%(-0.29)    8%(0.34)   11%(0.94*)   47%(0.94*) 

SE Asia & Indonesia   10%(0.85*)   55%(0.95*)    4%(-0.45)    4%(-0.88*)    8%(-0.43)   17%(0.88*)   26%(0.84*) 

Wet Tropics   13%(0.98*)   53%(0.96*)    2%(0.29)    7%(-0.98*)    5%(0.01)   34%(0.96*)    8%(0.68) 

Dry Tropics   20%(0.98*)   40%(0.95*)    3%(-0.66)    0%(-0.94*)    6%(-0.60)   26%(0.96*)   23%(0.96*) 

Tropics   16%(0.98*)   47%(0.96*)    2%(-0.31)    4%(-0.98*)    4%(-0.35)   30%(0.96*)   14%(0.92*) 
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