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Abstract. Arid and sem-iarid ecosystems contain relatively high species diversity and are subject to intense use, in particular 

extensive cattle grazing which has favoured the expansion and encroachment of perennial thorny shrubs into the grasslands, 10 

thus decreasing the value of the rangeland. However, these environments have been shown to positively impact global carbon 

dynamics. The Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity (GPP) product provides 

a rapid and broad-scale means for monitoring rangelands, but few studies have validated the performance of MODIS estimates 

in arid and semi-arid ecosystems. We measured the net ecosystem exchange of C (NEE) with the Eddy Covariance (EC) 

method and estimated GPP in a thorny scrub at Bernal in Mexico. The hypothesis was that this site might behave as carbon 15 

sink. We also tested the agreement with remote sensed GPP estimates from MODIS model. The agreement with EC estimates 

of two alternative modeling methods were tested: ordinary least squares multiple regression (OLS) or ensembles of machine 

learning algorithms (EML); the variables used as predictors were MODIS spectral bands, vegetation indices and environmental 

variables. The Bernal site was a carbon sink despite it is being in an overgrazed condition, the average NEE during fifteen 

months of 2017 and 2018 was -0.78 g C m-2 d-1 and the flux was negative or neutral during the measured months. The 20 

probability of agreement was higher for the EML (0.6) followed the OLS (0.5) and then MODIS (0.24). We used an EML 

from a site with similar vegetation and climate to predict GPP at Bernal but the probability of agreement was poor (0.16), 

indicating the local specificity of this model. Although cacti were an important component of the vegetation the nighttime flux 

was characterized by positive NEE suggesting that the photosynthetic dark-cycle flux of cacti was lower than ecosystem 

respiration. The discrepancy between MODIS and EC GPP estimates stresses the need to understand the limitations of both 25 

methods. 

1 Introduction 

Deserts and semi deserts occupy more than 30% of terrestrial ecosystems. Mexico expands almost 2 million km2 with 50% 

corresponding to arid and semi-arid ecosystems, mainly the Sonoran and the Chihuahuan deserts (Medrano, 2012). The 

Spanish-Criollo intrusion (1540-1640) brought new land-use methods, but there is no evidence of additional landscape 30 



 

2 

 

degradation from the central highlands to the north-eastern frontier of New Spain until well into the 18th century (Butzer and 

Butzer, 1997). At the country scale, the extent of grasslands declined and the area of croplands and woody areas increased; 

being rural-urban migration an important driver of the transition from grasslands to woody vegetation (Bonilla-Moheno and 

Aide, 2020). The transition from grasslands to shrublands or scrub is linked to the extremely heavy grazing by domestic 

livestock (Wilcox et al., 2018). The impact of overgrazing is not always fully understood because the many interactions of 5 

climate-induced stress with those tied to land use may reduce the resiliency of natural communities (Lightfoot, 2018). To 

change the environmental degradation trends that Mexico continues to experience, we need to improve the connection at many 

scales between what scientists know about the functioning of ecosystems and the operation of the economy; engaging 

policymakers and the support of society at large (Sarukhán et al., 2015). Many other countries are embracing similar efforts. 

Vegetation in the arid to semi-arid ecosystems are mostly classified as rangelands. These are one of the most widely distributed 10 

landscapes on earth, incorporating a wide range of communities including grasslands, shrublands, and savannah. As rainfall 

increases in the rangeland the carbon pools and fluxes may be less variable and more responsive to management practices that 

enhance carbon sequestration (Booker et al., 2013). On the other hand, scrub is a xeric category of shrublands characterized 

by plants with small leaves, very thorny and its biomass is distributed mainly to roots and leaves rather than the stems 

(Rzedowski, 1978; Wheeler et al., 2007; Zhang et al., 2017). Commercial value of scrub is low, and because of this under-15 

appreciation, is susceptible to human-caused fire or land use change. Soil erosion and desertification are common consequences 

of land use change expanding the agricultural frontier, particularly in marginal areas (Mirzabaev et al., 2019). However, the 

social and institutional constraints to proper range use appear to be greater than the technical ones, including land tenure (Gilles 

and Jamtgaard, 1982). Therefore, studies based on multiple sources of evidence, considering the driving processes of the land 

C in Mexico, are needed to aid in policy formulation and to identify regions that may provide important ecosystem services 20 

(Murray-Tortarolo et al., 2016). 

Substantial biosphere–precipitation feedback is often found in regions that are transitional between energy and water limitation, 

such as semi-arid or monsoonal regions (Green et al., 2017). A perennial deep rooted woody vegetation, through enhanced 

evaporation, can increase moist convection and rainfall elsewhere, particularly in the case of a growing season expanding 

beyond the rainy season (Spracklen et al., 2018). However, global temperature increases may be responsible for changes in 25 

plant composition and consequently in the ecosystem hydrology, structure and function in regions such as the Chihuahuan 

Desert (Lightfoot, 2018). More energy available in the system and consequently changes in the carbon and water cycles are 

key elements of global warming and oceanic oscillations (Hansen et al., 2015; Piao et al., 2019). This is important for semi-

arid ecosystems because vegetation photosynthesis is linked to water availability and, at the same time, most plant species in 

this environment have evolutionary adaptations to resist prolonged dry spells and also to take advantage of the effects of 30 

oceanic oscillations and monsoon rains (Piao et al., 2019; Tang et al., 2012; Zhang et al., 2017). Furthermore, an increase of 

temperature during the early morning, would decrease relative humidity and consequently condensation or fog; these water 

inputs are important for many species in arid and semi-arid ecosystems (Bickford, 2016; Males, 2016). 
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Photosynthesis contributes to carbon sequestration by moving carbon stock from the atmosphere to other pools or sinks, as 

above ground biomass, roots and soil organic matter (Booker et al., 2013). The role of vegetation in carbon sequestration on 

arid and semi-arid ecosystems is less evident because the growth rate is low and biomass partition above and below ground is 

different from that of temperate and tropical forests. The competitive interactions of arid plants at the community level are 

strongly influenced by rooting architecture and phenological growth (Zeng et al., 2008). Many plants in semi-arid systems 5 

support a deep and wide root system as a drought adaptation but also for nutrient uptake (McCulley et al., 2004). Recent time-

trends indicate that semi-arid ecosystems regulate the terrestrial carbon sink and dominate its inter-annual variability (Piao et 

al., 2019; Scott et al., 2015; Zhang et al., 2020). This variability mainly results from the imbalance between two larger biogenic 

fluxes that constitute the net ecosystem exchange (NEE): the photosynthetic uptake of CO2 (gross primary production, GPP) 

and the respiratory release of CO2 (total ecosystem respiration, Reco). Radiation and water availability are important 10 

environmental drivers of NEE and thus, GPP and Reco (Marcolla et al., 2017). However, other carbon fluxes contribute to the 

imbalance, such as fire and anthropogenic CO2 emissions (Järvi et al., 2019; Piao et al., 2019) and the atmospheric CO2 that is 

inter-converted into soil inorganic carbon in arid and semi-arid ecosystems (Soper et al., 2017); calcium carbonates form at a 

relatively low rate of 5 to 150 kg C ha-1 y-1, but are a carbon sink when they are leached into the groundwater (Lal et al., 2004). 

The methods used to explore the ecosystems and the understanding of their functioning is changing rapidly, particularly for 15 

arid and semi-arid ecosystems (Goldstein et al., 2020; Ma et al., 2020; Xiao et al., 2019; Yao et al., 2020). There are many 

instruments and techniques for estimating carbon and water fluxes but two stand out in the literature: Eddy Covariance (EC) 

and remote sensing techniques. EC is a micro-meteorological method that measures the ecosystem community NEE at short 

time intervals representing a land surface smaller than 1 km2. The orbital remote sensing measures radiation emitted or reflected 

by earth surfaces and; using different algorithms, represents different traits of vegetation activity from large scale areas. Both 20 

techniques are complementary, but an agreement between their estimates is important for regional, countrywide or global 

spatiotemporal monitoring of greenhouse gas inventories (Yona et al., 2020), ecological modeling, quantifying the interaction 

among the vegetation component and the hydrological, energy and nutrient cycles; among others applications (Pasetto et al., 

2018). Particularly, products from the moderate resolution spectroradiometer (MODIS) have ample availability and are 

extensively used to study land surface since 2000. 25 

Gross primary production can be represented by a wide range of models, ranging in complexity from simple regression based 

on climatic forcing variables to complex models that simulate biophysical and ecophysiological processes (Anav et al., 2015). 

The MODIS MOD17 product uses a photosynthetic radiation conversion efficiency model (Running and Zhao, 2015), but a 

better relationship is reported with EC derived GPP when the model uses vegetation indices calculated from the same MODIS 

platform (Ma et al., 2014; Wu et al., 2010). Although they are black box models in principle, recent modeling efforts report 30 

good agreement of GPP estimates obtained from machine learning algorithms or ensembles of models (Eshel et al., 2019; Jung 

et al., 2019). Different machine learning algorithms are powerful because they can identify trends and patterns in big data sets 

and solve regression or classification problems. 
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To generate models of GPP we measured EC fluxes during 2017-2018 in a thorny scrub with semi-arid climate in the highlands 

of Mexico (Bernal site). Competing models were data-driven machine learning regression ensembles (EML) and ordinary least 

squares regression (OLS), both using Daymet (Thornton et al., 2017) and MODIS data sets as explanatory variables. The 

MODIS GPP product was used as a baseline comparison. The second step was to use a EML model based on local data 

(Daymet and MODIS) from a site with EC instrumentation and similar vegetation to that of Bernal's site and then use that 5 

model to predict GPP at the Bernal site. The site we used was Santa Rita from the Ameriflux network. While Santa Rita is in 

the Sonoran Desert and Bernal is in the southern border of the Chihuahuan desert, both have a similar climate and mesquite 

vegetation (Figure 1). A good agreement between Bernal EC data and the predictions from Santa Rita model, would support 

the use of machine learning algorithms as a scale up mechanism. This would be useful to the understanding of rangelands and 

also improve current earth system models (Piao et al., 2019).  10 

We hypothesized whether or not the semi-arid vegetation at Bernal site was a carbon sink during the wet season or a carbon 

source during the dry season, since some of the site species reproduce during winter and spring, particularly cacti, Acacia and 

Prosopis (Mesquite). Furthermore, the Bernal site had a history of disturbance by overgrazing, this could decrease the GPP 

and even result in a positive carbon balance; thus being a carbon source. On the contrary, confirming the hypothesis that the 

shrub vegetation in this semi-arid environment is a carbon sink would contribute to reinforce the reported importance of semi-15 

arid environments in the global carbon balance (Zhang et al., 2020). The measurement campaign presented here was short 

(March 30 2017 to August 22 2018) but it was not biased by wet winters, since both years were characterized by a less than 

weak Niño-Niña. 

2 Materials & Methods 

2.1 Site description 20 

The study site (Bernal) is located at N 20,717, W 99,941 and 2 050 m a.s.l. in the municipality of Ezequiel Montes in Querétaro 

where real estate development, feedlot beef production, cheese and wine production associated with tourism and, automotive 

industry development are very attractive options for landowners in the region. Bernal is located in a shallow valley oriented 

from north to south, approximately 15 to 20 km wide and opening to the south to the Río Lerma basin and then draining into 

the Pacific Ocean. The northern limit of the valley is surrounded by hill country and its characteristic 433 m in height dacitic 25 

dome (Aguirre-Díaz et al., 2013). Moisture-laden winds blow westward from the Gulf of Mexico but the Sierra Gorda, located 

60 km east of Bernal, casts a rain shadow over the area (Segerstrom, 1961). 
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Figure 1. Localization and land use maps for the study site: a) Biogeographic zones of southern North America relevant for the 

Bernal and Santa Rita sites, the black outline is the state limit for Queretaro b) Heterogeneity of the normalized difference vegetation 

index (NDVI) surrounding the EC tower at Bernal during the peak of the growing season 2017 (DOY 257), c) Land cover in the 

region of Bernal site, according to the Annual University of Maryland (UMD) classification (MCD12 MODIS product). 

 25 

The Bernal site is a private property, with grazing dairy cattle receiving additional concentrated foodstuffs under stall-feeding. 

We assumed that the footprint of the EC was measuring only the patchy scrub vegetation and the upwind fetch was sufficient; 

since other vegetation types and surrounding buildings (dairy, yards and poultry housings and ponds) were far away. Grazing 

was continuous, water for livestock was only available in the feeding and milking area; there were no pasture divisions and 

the perimeter fence was made of stone. These characteristics of the animal production model and the state of vegetation are 30 

representative of land management practices and the scrub vegetation in this region. However, the Bernal site suffered 

important changes in land use during 2019 and the scrub was suddenly cleared. 

The climate is arid with summer rains (BSk), mean annual rainfall is 476 mm and mean annual temperature is 17.1 °C 

(CICESE, 2015). Prevailing wind is from the east and north-east. The terrain is mostly flat; most grades are below 2%. The 

soil has a clay loam texture are Vertisols with abundant sub rounded basaltic stones, without rocky outcrops, soil depth is 35 
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greater than 0.6 m. The vegetation is less than 3 m in height with an overgrazed herbaceous stratum. The vegetation 

corresponded to secondary scrub with the dominant genera Acacia, Prosopis and different Cacti (Figure 2). This site was 

classified as grassland by MODIS landcover. 

For the scrub and tree species, the vegetation importance index (IVI) was determined following Curtis and McIntosh (1950) 

to assess the vegetation homogeneity. The IVI is the sum of relative dominance, relative density and relative frequency of the 5 

species present. For each plant, two stem diameters, the number of individuals (abundance) and identity of each species were 

measured, as well as the coverage, which is the horizontal projection of the aerial parts of the individuals on the ground, 

expressed as a percentage of the total area (Wilson, 2011). 

 

 10 

Figure 2. Thorny scrub at Bernal, Queretaro during the rainy season 2017. In the foreground Cylindropuntia imbricata, a very thorny 

cactus, shrubs in the background are Prosopis laevigata mesquites.  

2.2 Eddy covariance measurements 

The micro-meteorological EC technique, measures at the plant community level NEE in a non-destructively way, and 

continuously over time (Baldocchi, 2014). The negative CO2 fluxes corresponded to NEE, which is equivalent to NEP (net 15 

ecosystem production) but with opposite sign. The EC has advantages compared to other techniques that need to scale up 

measurements from the leaf, plant or soil levels up to ecosystems, especially when the vegetation is heterogeneous (Yepez et 
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al., 2003). However, EC is an expensive technique, data analysis and processing are complicated, also specific assumptions 

must be met regarding the terrain, vegetation and micro-meteorological conditions, among other aspects (Richardson et al., 

2019). 

The fluxes were measured with the EC technique at a height of 6 m with the following instruments: A Biomet system (Licor 

Biosciences, USA) to measure H2O and CO2 fluxes using an IRGASON-EC-150 open circuit analyzer, and a CSAT3 sonic 5 

anemometer, KH20 krypton hygrometer, these were connected to a CR3000 datalogger (Campbell Scientific Inc., Logan, UT, 

USA). The relative humidity and air temperature were measured with an HMP155A probe (Vaisala Corporation, Helsinki, 

Finland); net radiation was measured with a NR-Lite2 radiometer (Kipp & Zonen BV Delft, The Netherlands); and the 

photosynthetic active radiation (PAR) was measured with a quantum sensor SKP215 (Skye Instruments, Llandrindod Wells, 

UK). Measurements of the soils heat flux was implemented with four self-calibrating HFP01SC plates at 80 mm depth and in 10 

four representative positions of the landscape (Hukseflux Thermal Sensors BV, Delft, The Netherlands). Three time domain 

reflectometry probes (TDR) CS616 measured volumetric water content in the ground installed vertically, and two sets of 

TCAV thermocouples measured the temperature at 60 and 40 mm depths and above the HFP01SC plates (Campbell Scientific 

Inc., Logan, UT, USA). The TE525 (Texas Electronics, Dallas, TX, USA) tipping bucket rain gauge was installed at 1.2 m 

high and three meters away from the tower. All these meteorological variables were measured every 5 seconds and average 15 

values were stored every 30 minutes; rainfall was accumulated for the same time interval. Sensible (H) and latent (λE) heat 

fluxes were calculated using the EddyPro package (Licor Biosciences, USA). 

2.3 Flux data processing 

All EC data were collected at 10 Mhz in the datalogger and reported as μmol CO2 m
−2 s−1 and processed with the Eddypro 

package to convert values into average fluxes of 30-minute intervals. Only quality flagged records were used to account for 20 

the CO2 flux (qc_co2_flux = 0) according to the Mauder and Foken (2011) policy in the Eddypro program (Licor, 2019). 

However, this quality-checking is not sufficient especially in the case of CO2; therefore, data was post processed using the 

Reddyproc package of R (R Development Core Team, 2009), to estimate the friction speed thresholds (u*), gap-fill data, and 

partition the NEE flux into its GPP and Reco components (Wutzler et al., 2018). The filled-in estimates of NEE (NEE_uStar_f), 

GPP (GPP_uStar_f), and Reco (Reco_uStar) were used from the u* annual base scenario because the difference between the 25 

base u* scenario and the 95% u* uncertainty threshold was 0.033 m s-1; only 8.5% of half hour records had a u* below the 

95% u* threshold. Only data with a flag equal to 0 was used for the variable NEE_uStar_fqc, as defined by Reddyproc. Carbon 

dioxide flux data were time integrated and converted to g C m-2 d-1 using the molar ratio of C. We only reported the continuous 

measurements of the exchange of CO2 for the period of April 2017 (DOY 89) to August 2018 (DOY 234) using the EC 

technique. Due to equipment malfunction and incomplete datasets some periods of time were not considered. 30 
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2.4 Remote sensed data 

Data was requested via the land processes DAAC AppEEARS to obtain spatial and temporal subsets for the Bernal and Santa 

Rita sites including: daily surface reflectance (MOD09GA.006 and MODOCGA.006), daily day and night time land surface 

temperature (LST) (MOD11A1.006 and MYD11A1.006), eight day leaf area index (LAI) and fraction of photosynthetically 

active radiation (FPAR) (MOD15A2H.006, MCD15A2H.006), sixteen day enhanced vegetation index (EVI) (MOD13Q1.006, 5 

MYD13Q1.006), sixteen day gross primary production (GPP) and net photosynthesis (PsnNet) (MOD17A2H.006). Appendix 

A presents the details of each spectral band of MODIS. Data with less than good quality flags were deleted. Missing data was 

filled with splines and a database with one day time step was generated, this would smooth linear temporal phenological 

evolution between any two successive remotely sensed data points (Eshel et al., 2019). Daily accumulated rainfall was 

requested using the Giovanni GSFC platform (GPM 3IMERGDF.006 and TRMM 3B42.007). Gridded weather parameters 10 

from de ORNL DAAC Daymet dataset were: precipitation, shortwave radiation, maximum and minimum air temperature and 

water vapor pressure. Daymet is a data product derived from a collection of algorithms interpolating and extrapolating daily 

meteorological observations (Thornton et al., 2017). Following Henrich et al. (2012) and Hill et al. (2006), daily reflectance 

bands of MODIS were used to compute several vegetation indices: Red Green Ratio Index (RGRI), Simple Ratio (SimpleR), 

Moisture Stress (MoistS), Disease Stress Index (DSI), Normalized Difference Vegetation Index (NDVI), Normalized 15 

Difference Water Index (NDVI_w) and Enhanced Vegetation Index (EVI); the corresponding equations are presented in  

Appendix A. 

2.5 MODIS algorithm for GPP 

Estimates of GPP are derived from data recorded by the MODIS sensor aboard the Terra and Aqua satellites. The efficiency 

(ε, g C MJ-1) with which vegetation produces dry matter is defined as the amount of solar energy stored by photosynthesis in 20 

a given period, divided by the solar constant integrated over the same period (Monteith, 1972). Not all incident solar radiation 

is available for biomass conversion, only about 48% is photosynthetically active (PAR, MJ m-2) and not all PAR is absorbed 

(Zhu et al., 2008). Thus, carbon exchange is mainly controlled by the amount of PAR absorbed by green vegetation (APAR) 

and modified by ε (Gitelson et al., 2015). The fraction of absorbed PAR (FPAR) is equal to APAR/PAR, but can be represented 

by the NDVI spectral vegetation index produced by MODIS (Running 2004). The efficiency term ε is described as the product 25 

of different factors as a whole or part of the system (Monteith, 1972), but mostly those related to the efficiencies with which 

the vegetation intercepts the radiation and the efficiency to convert the intercepted radiation into biomass (Long et al., 2015). 

The MODIS algorithm that estimates GPP in the MOD17 product is (Running et al., 2004): 

𝐺𝑃𝑃 = 𝜀 ∗ 𝐹𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅,                                                               Eq. (1) 

𝐺𝑃𝑃 = 𝜀 ∗ 𝑁𝐷𝑉𝐼 ∗ 𝑃𝐴𝑅                                                                Eq. (2) 30 
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The ε term in the MODIS algorithm is represented by a maximum radiation conversion efficiency (εmax, kg C MJ-1) that is 

attenuated by sub optimal climatic conditions, mainly minimum air temperature (Tmin) and vapor pressure deficit (VPD). Two 

parameters for each, Tmin and VPD, are used to define attenuation scalars for general biome types. These parameters form 

linear functions between the scalars (Running and Zhao, 2015; Wang et al., 2013): daily minimum temperature at which ε = 

εmax and at which ε=0 and; the daylight average VPD at which ε = εmax and at which ε=0. GPP is truncated on days when air 5 

temperature is below 0°C or VPD is higher than 2000 Pa (Running and Zhao, 2015). Stress and nutrient constraints on 

vegetation growth are quantified by the limiting relation of leaf area in NDVI x PAR, rather than constrained through ε 

(Running et al., 2004). 

𝜀 = 𝜀𝑚𝑎𝑥 ∗ 𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑉𝑃𝐷_𝑠𝑐𝑎𝑙𝑎𝑟                                                            Eq. (3) 

 10 

The MOD17 user's guide presents a Biome-Property-Look-Up-Table (BPLUT) with the parameters for each biome type and 

assumes that they do not vary with space or time (Running and Zhao, 2015). This aspect is important because εmax has the 

strongest impact on the predicted GPP of the MOD17 algorithm (Wang et al., 2013). The assumption also is important because 

the overstory and understory could be decoupled from each other and would intercept different amounts of light and have 

different water sources during the growing season (Scott et al., 2003). Light quantity and quality as diffuse light or sunflecks 15 

determine differences among understorey species in their temporal response to gaps,  involving acclimation and avoidance of 

photoinhibition (Pearcy, 2007). Another shortcoming is that few land cover classifications are incorporated into the MYD17 

algorithm. 

2.5 Santa Rita site dataset 

Santa Rita Experimental Range (SRER) is located in the western range of the Santa Rita Mountains in Arizona, USA (31.8214 20 

latitude, -110.8661 longitude, 1120 m asl.). Climate is BSk with mean annual precipitation of 380 mm, temperature of 17.9°C 

and Ustic Torri fluvents soils. Established in 1903, SRER has a long history of experimental manipulations to enhance grazing 

potential for cattle (Glenn et al., 2015). Two Ameriflux sites are located in the SRER: Santa Rita Grassland (US-SRG) and 

Santa Rita Mezquite (US-SRM). We used EC data for the years 2013-2019 from US-SRM which is a mesquite grass savanna 

(35% mesquite canopy cover and mean canopy height above 2m, 22% grasses and 43% bare soil), although MODIS describes 25 

this site as open shrublands (Glenn et al., 2015; Scott et al., 2004). The US-SRM site is dominated by velvet mesquite (Prosopis 

velutina), has a diversity of shrubs, cacti, succulents and bunch grasses (McClaran, 2003). This site was chosen because the 

vegetation and climate are similar to the Bernal site and it was the closest EC instrumentation with data availability (Figure 3). 
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Figure 3. Semidesert grassland encroached by mesquite (Prosopis velutina) at Santa Rita, Arizona (US-SRM). Image Credit: Russell 

Scott, 09/12/2016.  

2.6 Modeling 

Gross primary production estimated by EC at Bernal site was modeled using OLS and EML. The explanatory variables were 5 

the remote sensed data, the weather parameters and the vegetation indices (Appendix A). The OLS was fitted with the stepwise 

procedure, the final model included variables with a variance inflation factor (VIF) lower than 10 and a significance level of 

0.05. Predictions of the EC GPP were obtained with the final model. Analysis and diagnostics were made with Minitab v 17 

(Minitab LLC).  

A stack of EML was obtained with the H2O package of R (H2O.ai 2017). This package provides several algorithms that can 10 

contribute to a stack of ensembles using the automl function: feedforward artificial neural network (DL), general linear models 
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(GLM), gradient boosting machine (GMB), extreme gradient boosting (XGBoost), default distributed random forest (DRF) 

and extremely randomized trees (XRT) and general linear models (GLM). Automl trains two stacked ensemble models, one 

ensemble contains all the models, and the second ensemble contains just the best performing model from each algorithm 

class/family; both of the ensembles should produce better models than any individual model from the automl run. The term 

automl (Automatic Machine Learning) implies data preprocessing, normalization, feature engineering, model selection, 5 

hyperparameter optimization, and prediction analysis; including procedures to identify and deal with non-independent and 

identically distributed observations and overfitting (Michailidis, 2018; Truong et al., 2019).  

Machine learning has two elements for supervised learning: training loss and regularization. The task of training tries to find 

the best parameters for the model while minimizing the training loss function; the mean squared error for example. The 

regularization term controls the complexity of the model helping to reduce overfitting. Overfitting becomes apparent when the 10 

model performs accurately during the training but the accuracy is low during the testing. A good model needs extensive 

parameter tuning by running many times the algorithm to explore the effect on regularization and cross validation accuracy 

(Mitchell and Frank, 2017). In this investigation the function of training loss was the deviance, which is a generalization of the 

residual sum of squares driven by the likelihood. Deviance is a measure of model fit, lower or negative values indicate better 

model performance (McElreath, 2020).   15 

A stack of EML solutions was based on a random sample of the dataset for training the model. For the Bernal site 85% was 

used for training and 80% in the case of US-SRM. The automl function was run 20 times, each run added approximately 48 

models to the leaderboard and ranked the best performing models by their deviance. Each run splitted the training data ten 

times for k-fold cross-validation. The seed, for EML that is dependent on randomization, was changed in every run. The 

stopping rule for each run was set at 100 s and the maximum memory allocation pool for H2O was 100 Gb, in a single 20 

workstation with dual Xeon 2680 v4 processors and 128 Gb of RAM. The H2O package was installed in a rocker/geospatial 

docker container, which is a portable, scalable and reproducible environment (Boettiger and Eddelbuettel, 2017). 

Two sets of predictions for the GPP at the Bernal site were obtained from the stacked ensemble. The first set of predictions 

was based on the 15% of the Bernal site data reserved for testing. The second set of predictions was obtained by re-feeding the 

US-SRM site model with the Bernal site explanatory variables. The first set of predictions would show the importance of local 25 

data to predict EC based GPP. The second set of predictions would represent the suitability of off-site data to predict EC based 

GPP. If the second scenario has good agreement, then an EML model could be used to represent wider areas of the ecosystem. 

2.7 Model agreement 

Stevens et al. (2017) proposes the probability of agreement (θs) as a plot-metric to represent the agreement between two 

measurement systems across a range of plausible values. Besides the agreement plot, agreement is based on maximum 30 

likelihood bias parameters: α and β quantifying the fixed bias and the proportional bias. If α=0, β=1 and σ1 = σ2 then the two 

measurements are identical; where σj are the measurement variation. The probability of agreement analysis was performed  

using the ProbAgreeAnalysis (https://uwaterloo.ca/business-and-industrial-statistics-research-group/software) in Matlab 9.4 

https://uwaterloo.ca/business-and-industrial-statistics-research-group/software
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(MathWorks, Inc.). An arbitrary 1 g C m-2 d-1 was considered as a tolerable magnitude to conclude that agreement is sufficient 

as to use either estimate GPP interchangeably. The reference measurement was the GPP obtained from EC data at Bernal site 

and tested against the MODIS MOD17 model, the OLS predictions or each of the two sets of EML predictions. If the 

probability of agreement plot suggested disagreement between two measurement systems, then the predictions can be adjusted 

using: 5 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 − 𝛼)/𝛽                                                      Eq. (4) 

 

2.8 Variable importance 

The variable importance within individual models was used to answer the question of which environmental variables were 

important for GPP prediction. For the "all models ensemble" and "best of family ensemble" generated by automl is not possible 10 

to examine the variable importance nor the contribution of the individual models to the stack (H2O.ai 2017). Therefore, a 

weight (wi) was calculated using equation (5), which is adequate for other information criterion besides the Akaike weights; 

this weight is an estimate of the conditional probability that the model will make best predictions on new data considering the 

set of models (McElreath, 2020). Then, the importance of each variable (%) was multiplied by the model's weight (wi) and 

then added by variable to build the variable importance index. This index would measure how often a given variable was used 15 

in the leaderboard. 
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                                                                  Eq. (5) 

 
𝑑𝑊𝐴𝐼𝐶 = 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑖 − 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑝 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙                                    Eq. (6) 20 

3 Results 

Deserts and semi deserts comprise big areas and we need a way to represent their ecosystem functioning. If remote sensed data 

can be used to obtain similar results as those provided by instrumentations with eddy covariance (EC), then their relationship 

would be an initial step to upscaled representations. In this study, MODIS GPP had an acceptable agreement with GPP from 

EC data at the Bernal site, but an EML was better. However, the agreement of predictions made for Bernal using the best EML 25 

from Santa Rita and the environmental and remote sensed data from Bernal was not better than the MODIS estimates. Section 

3.1 and 3.2 would present the details of model agreement for EML and MODIS respectively. In section 3.4 we present the EC 

flux time series and analysis indicating that the thorny scrub at Bernal was a carbon sink during the dry and the rainy seasons. 

3.1 Machine learning ensembles as predictors of eddy covariance GPP 

In this section we describe the modeling with EML using local remote sensed data from Bernal site to predict GPP at the same 30 

site, and then the agreement between EML GPP predictions and EC derived GPP. The automl function generated 1031 models 
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with an average deviance of 1.35 while the deviance of the leader model was 0.63 in the training data set (Table 1). Eleven 

models of type GBM and five models XGBoost were in the top 30 models, along with nine best of family ensembles and five 

all models ensembles. The weighted variable importance in the leaderboard was higher for the LAI from MOD13 and MCD13 

products (17% and 14%). The PsnNet, EVI (MYD13), FPAR (MCD15), the green atmospherically resistance vegetation index 

(GARI) and MODIS reflectance band 13 had an importance higher than 3% (5.9, 5.4, 4.2, 3.6 and 3.0%). LAI (MCD13 and 5 

MOD13), PsnNet and the FPAR (MOD15) were the more important variables (20, 17, 13 and 10%) in the top non-staked 

model, a GBM model which was ranked in fourth place.  

Predictions of GPP in the testing dataset showed dispersion in the lower range of the scale of measurement and the correlation 

was 0.94 (Figure 4A). The final prediction of GPP for the whole dataset had a probability of agreement (θs) of 0.58 ± 0.01 

(parameter estimate and standard error), α = -0.0616 ± 0.11 and β = 1.0133 ± 0.02, suggesting a good fit with low fixed and 10 

proportional bias (Figure 4B). The probability of agreement decreased slightly at the lower and upper range of the scale of 

measurement (Figure 4C), indicating that the EML model would predict GPP without increasing the bias, particularly in the 

range from 0 to 4 g C m-2 d-1. However, the value of θs should be higher than 0.95 as to consider EC measurements and EML 

as interchangeable. The correlation of 0.99 (r2 = 0.98) for the data in Fig. 4B could be misleading as it would suggest a very 

good fit. 15 

Using only the five of the more important variables named above, to generate an EML, resulted in a XBoost leader model with 

2.73 deviance and a total of 1094 models. Top 30 models were 16 XBoost and GBM models, and the best of family ensembles 

started to show up at the 12th place. Although the number of runs was the same (20), the automl function increased the number 

produced models; but the smaller set of explanatory variables constrained the ability to identify features contributing to better 

models. Using another set of five randomly selected explanatory variables (one vegetation index and four MODIS bands) 20 

resulted in a leader model with 2.52 deviance out of 1024 models, but this time the leader was the best of the family ensemble. 

Using only a few variables was considered to increase the deviance compared with the average deviance of 1.35 obtained 

during the training phase and using all available variables. 

 

Table 1. Leaderboard of EML models for the Bernal training dataset consisting of 85% of day observations. NA denotes the 25 

outcome where the type of model was not present in the 30 top performing models, according to deviance.  

                     

            

Type of Model 

Number 

of 

models 

 Average deviance 

 All 

models 

Top 

models 

Leader 

model 

Stacked Ensemble      

All models 20  0.852 0.834  

Best of family 20  0.812 0.703 0.633 
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GBM 453  1.366 0.796  

DRF 20  1.108   

XGBoost 277  1.385 0.778  

XRT 20  1.077   

Deep Learning 201  2.072   

GLM 20  1.474   

Total 1031  1.356   

 

  

 

Figure 4. Agreement between predictions of GPP obtained with machine learning algorithms or derived from eddy covariance 

measurements at Bernal site. A) Example of one run predictions of GPP in the test dataset from Bernal site using the leader model 5 
of an ensemble of machine learning algorithms (EML), the test dataset was 15% of data, r= 0.94. B) Predictions for the complete 

dataset, r= 0.99, the diagonal line is the 1:1 agreement. C) Function of probability of agreement using a 1 g C m-2 d-1 as tolerable 

agreement between methods of estimation of GPP corresponding to plot B). The horizontal axis (s) represents the magnitude of the 

measurement, the vertical axis is the probability of agreement for the measurement, the red line is the confidence interval, p < 0.05. 

 10 

An important question for modeling upscaling is the capacity to extrapolate results temporally and spatially; here we explored 

the latter posing the following question: predictions of GPP from EML for a EC site would agree with EC observations from 

another site with “similar” environmental conditions? First an EML solution was found training 80% of the Santa Rita dataset 

obtaining a best of family ensemble with 0.23 deviance out of 634 trained models. Then the environmental and remote sensed 

data from the Bernal site was fed into the model, this would be an external validation dataset. However, agreement was not 15 

good, the mean value of θs was 0.15 ± 0.01, α = -1.0822 ± 0.09 and β = 0.58127 ± 0.02. The value of θs was not constant 

across the range of measurement and decreased rapidly after 2 g C m-2 d-1 (Figure 5B). Because the bias was important the 

predictions were adjusted using equation (4), showing some improvement with r = 0.78 (Figure 5A). Comparing Fig. 4B and 
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5A it is evident that an EML model extrapolation to other conditions is noisier, ie. Santa Rita model trying to represent the 

ecosystem function at Bernal. Notwithstanding, some of the most important variables were shared by both EML ensembles: 

Bernal and Santa Rita; in the case of Santa Rita LAI from MOD15, MYD15 and MCD15 had 35.0, 4.8 and 3.1% of variable 

importance and for the FPAR from MOD15 was 12%.  

 5 

 

 

Figure 5. A) Adjusted predictions of GPP for the complete dataset from Bernal site using the leader model of the final ensemble of 

machine learning algorithms (EML) derived from Santa Rita site compared to estimates of GPP from EC data, r= 0.78. B) Respective 

function of probability of agreement using a 1 g C m-2 d-1 as tolerable agreement between methods of estimation of GPP: EC data 10 
from the Bernal site and EML model for the Santa Rita site. The horizontal axis (s) represents the magnitude of the measurement, 

the vertical axis is the probability of agreement for the measurement, the red line is the confidence interval, p < 0.05. 

 

3.2 MODIS as predictor of eddy covariance GPP 

MODIS is important because it overpases every point of the earth every one or two days and it implements a GPP product 15 

(MOD17) that has helped track the response of the biosphere to the environment since 2000. The product MOD17 has been 

validated against many EC sites, but few validation sites correspond to deserts and semi-deserts (Running et al., 2004). The 

GPP MOD17 underestimated the GPP derived from EC data at Bernal (Figure 6A). In a similar bell shaped distribution of θs, 

as in the case of the extrapolation of the Santa Rita site (Figure 5B), here the θs was not constant across the range of 

measurement; mean θs was 0.24 ± 0.13, α = 0.00047 ± 0.087 and β = 0.48749 ± 0.02 (Figure 6C). Adjusting MOD17 estimates 20 

with equation (4) improved the relationship, but note that the value of r (0.76) was the same for original MOD17 and the 

adjusted MOD17 (Figure 6B). 
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Figure 6. A) MODIS17 estimates of GPP from Bernal site versus estimates of GPP from EC data using the complete dataset at a 

daily time step derived from spline for MOD17 GPP (○), r= 0.76 or, eight-day composite estimates obtained by eight-day averages 15 
of EC GPP (●), r= 0.76. B) Adjusted predictions of GPP from MODIS. C) Respective function of probability of agreement using a 1 

g C m-2 d-1 as tolerable agreement between methods of estimation of GPP: EC data from the Bernal site and MODIS MOD17. The 

horizontal axis (s) represents the magnitude of the measurement. The vertical axis is the probability of agreement for the 

measurement. 

3.3 Prediction eddy covariance GPP with ordinary least squares multiple regression 20 

OLS is a common estimation method for linear models and here this model appeared as adequate, judging by the general 

distribution of predictions (Figure 7A) and the probability of agreement plot (Figure 7B). Fourteen variables were included in 

the model, all of them with VIF values lower than 7.0 (Appendix B); the VIF statistic quantifies the severity of multicollinearity 

and an acceptable threshold is 10. The most significant variables were the EVI from MYD13 and Daymet variables 

precipitation, short wave radiation, and minimum and maximum temperatures (see Appendix A for variable details). Variables 25 

with high coefficient values were MODIS reflectance band 14 (9.17) the EVI from MYD13 (8.53), and the NDVI (3.9), while 

Daymet temperatures had small coefficients: -0.23 for maximum temperature and 0.17 for minimum temperature. The θs 

decreased slightly at the ends of the measurement range; mean θs was 0.5 ± 0.014, α = 0.18845 ± 0.137 and β = 0.94966 ± 

0.031. No correction for this model was calculated since α was close to 0, β to 1 and the EML model had a higher θs. 

 30 
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Figure 7. A) Ordinary least squares multiple regression estimates of GPP for the complete dataset from Bernal site versus estimates 

of GPP from EC data, r= 0.82. B) Respective function of probability of agreement using a 1 g C m-2 d-1 as tolerable agreement 

between methods of estimation of GPP: EC data from the Bernal site and OLS multiple regression. The horizontal axis (s) represents 15 
the magnitude of the measurement. The vertical axis is the probability of agreement for the measurement. 

3.4 Eddy covariance fluxes at Bernal 

Figure 8 shows energy balance closure for Bernal with a slope of 0.72 and r2 = 0.92. Homogeneous sites of the Fluxnet network 

obtain higher percentages of closure than 72%, and for Bernal the site, the vegetation heterogeneity was important (see below). 

Average H was always negative during nighttime, but during some months of the dry and rainy season λE was positive, 20 

particularly after down (Figure 9), as to gurant nighttime evaporation from the soil or vegetation. However, during some 

months of the dry season rainfall was small (Figure 10), then the positive λE suggested that cacti could have an active gas 

exchange at that time. 
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Figure 8. Closure of the surface energy balance from eddy covariance measurements averaged at 30 min between the turbulent 

fluxes (H+λE) and available fluxes (Rn-G). Data is from march 30, 2017 to august 22, 2018 at Bernal site. The regression was y = 

23.02 + 0.72 x, adjusted r2 = 0.92. Diagonal line represents the 1:1 relation. 

 5 

 

Figure 9. Latent heat flux daily trend at Bernal during different months emphasizing nighttime λE. A) shows months with low 

rainfall in the previous month and predominantly negative λE during nighttime (these months had low rainfall: 0.17, 11.3, 0.33 mm 

rainfall for January, March and December). B) shows months with low rainfall in the previous month and positive λE after sunset 

(6.7, 7.3, 20.7 mm rainfall for February, April and May). C) shows months during the rainy season with λE positive mainly due to 10 
soil wetness and antecedent rainfall of 43, 202, 9, 190, 34 mm for June, July, August, October and November. Plot C) is out of scale 

in the y axis for compatibility with the other plots. 
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Figure 10. Monthly rainfall and land surface temperature (LST) during years, a) 2017 and b) 2018 at Bernal site. The LST values 

correspond to the 1:30 PM (LST day) and 1:30 AM (LST night) MODIS Aqua satellite overpasses. 

 5 

Carbon dioxide absorptions had a diurnal behaviour beginning at dawn and ending before sunset (Figure 11). Nighttime flux 

was positive, indicating respiration, notwithstanding the presence of cacti. Although summer rains are characteristic of the 

climate at Bernal site (Figure 10), a negative NEE flux occurred at all measured months. The lowest CO2 flux was recorded in 

January and February 2017 and in May 2018 (Table 2), this behaviour resulted from the phenology of the vegetation, since 

most species lost their leaves in the dry season, and also due to the effect of low temperature. Within the rainy season, the flux 10 

of CO2 increased, compared to the months of January to June. The correlation between NEE and precipitation was -0.45. When 

the sum of the precipitation of the current month and that of the previous month was considered, the correlation with NEE was 

-0.7, suggesting that continuous availability of soil moisture is important for the absorption of CO2 in this environment. 

 

 15 
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Figure 11. Net ecosystem exchange (NEE) and photosynthetic active radiation (PAR) at Bernal site in A) 2017 and B) 2018. Negative 

values in the CO2 flux indicate photosynthesis. The grey shadow is the standard error of mean for each month at any given hour. 

 

Table 2. Daily average values of the net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration 5 

(Reco) in a scrub at Bernal site. Negative values of NEE indicate photosynthetic absorption. 

 

 

 

 

 

 

 

 

 

NEE GPP Reco 

µmol m-2 s-1 

2017 JAN  

 

 

 

 

  

 

FEB  

 

 

 

 

  

 

MAR    

 

 

APR -0.54 2.48 1.94 

 

 

MAY 0.05 2.86 2.91 

 

 

JUN 0.38 4.21 4.59 

 

 

JUL -1.00 1.78 0.77 

 

 

AGO  

 

 

 

 

  

 

SEP  

 

 

 

 

  

 

OCT -1.26 5.25 3.99 

 

 

NOV -0.13 2.65 2.52 

 

 

DEC 0.04 1.80 1.84 

2018 JAN -0.05 1.29 1.24 

 

 

FEB 0.06 1.88 1.94 

 

 

MAR -0.94 2.45 1.51 

 

 

APR -0.58 2.87 2.29 
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MAY -0.29 3.77 3.48 

 

 

JUN -2.52 4.33 1.81 

 

 

JUL -2.83 8.23 5.41 

 

 

AGO -1.93 9.21 7.28 

 

The scrub at Bernal was heterogeneous in botanical composition. Twenty-four species of cacti and shrub were identified; on 

average, each sampling plot had 10.3 species. The IVI was similar between all cacti (0.36 ± 0.04), shrub legumes (0.38 ± 0.04) 

and other shrubs (0.23 ± 0.06) sampled. Cylindropuntia imbricata had the largest IVI, followed by Acacia farnesiana, Acacia 

schaffneri and Prosopis laevigata (Table 3). The IVI of the herbaceous stratum represented by grasses was not characterized, 5 

due to the state of overgrazing and the absence of reproductive structures in plants, which made measurement difficult of their 

abundances, frequencies and dominances. The grass genera present were Melinis, Chloris, Cynodon and Cenchrus, 

corresponding all to invasive C4 tropical grasses. Scrub species of higher IVI had a similar LAI (1.2), although the magnitude 

of the LAI of P. laevigata stood out (Table 3). 

 10 

Table 3. Importance value index (IVI) and leaf area index (LAI) of the main species present at the Bernal, Querétaro study 

site. 
      

Species 
Plant 

type 
IVI SEM1 LAI SEM 

Coryphantha cornifera Cactus 0.07 0.27   

Bouvardia ternifolia Herb 0.07 0.27   

Karwinskia humboldtiana Shrub 0.07 0.27   

Forestiera phillyreoides Shrub 0.09 0.27   

Ferocactus latispinus Cactus 0.09 0.27   

Cylindropuntia leptocaulis Cactus 0.09 0.27   

Asphodelus fistulosus Shrub 0.09 0.19   

Brickellia veronicifolia Shrub 0.10 0.27   

Dalea lutea Shrub 0.11 0.15   

Eysenhardtia polystachya Legume 0.13 0.15   

Myrtillocactus geometrizans Cactus 0.14 0.27   

Schinus molle Shrub 0.14 0.19   

Jatropha dioica Herb 0.15 0.19   

Mammillaria uncinata Cactus 0.16 0.12   

Opuntia tomentosa Cactus 0.17 0.11   

Opuntia robusta Cactus 0.23 0.07   

Opuntia hyptiacantha Cactus 0.26 0.07   
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Mimosa monancistra Legume 0.28 0.12   

Mimosa depauperata Legume 0.31 0.12   

Zaluzania augusta Shrub 0.33 0.10   

Viguiera linearis Herb 0.36 0.11   

Acacia schaffneri Legume 0.41 0.07 1.13 0.15 

Prosopis laevigata Legume 0.41 0.07 1.48 0.12 

Acacia farnesiana Legume 0.56 0.09 1.12 0.37 

Cylindropuntia imbricata Cactus 0.74 0.07 1.13 0.11 

      

1 SEM: standard error of the mean. 

4 Discussion 

4.1 Model agreement 

Four approaches to estimate GPP were compared to predict GPP based on EC data. The probability of agreement (θs) was the 

statistic to determine if the mean responses were in agreement. Comparing the confidence intervals for θs the best modeling 5 

approach could be identified. The best result was the EML ensemble using environmental and remote sensed data 

corresponding to the same site, i.e. Bernal (Figure 4C). This EML would be useful for gap filling or the evaluation of GPP 

time series of the site that generated the model. 

The second option to estimate GPP, using the same datasets, was the multiple regression OLS model (Figure 7A). The multiple 

regression is straightforward and here multicollinearity was not a problem. The EML ensemble and the OLS regression have 10 

the highest values of θs (0.58 and 0.5, respectively). Higher values for θs are desirable (>0.95) and this could be achieved by 

increasing the sample size, relaxing the tolerable magnitude for agreement (here was set at 1 g C m-2 d-1), or perhaps using 

different forcing variables. 

The MODIS estimates were a third best alternative, since the mean θs was 0.24. In the present study we used a spline to fill 

the data to a daily time step since the MCD17 is an eighth day composite product; but a similar result was obtained if the EC 15 

GPP was rescaled and compared to the original MCD17 data (Figure 6A). The GPP from MODIS was an underestimate of EC 

GPP and when the estimates were adjusted using equation (4) (Figure 6B) the performance was not better than the OLS (model 

not shown). The MODIS land cover classification represented this site as grassland (MCD12). Agreement of MODIS GPP is 

crucial because MODIS products are frequently used in country wide assessments of the carbon cycle and can influence public 

policies. 20 

The model with least agreement resulted when the EML ensemble generated from the Santa Rita site used to predict GPP at 

Bernal. Machine learning models can make predictions but their usefulness decreases when they are used outside the context 

where they were built; while process based mechanistic models have this ability. The Santa Rita model was good at predicting 
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GPP at that site, with a deviance of the leader model of 0.23 while at Bernal the deviance of the leader model was 0.63 (Table 

1), indicating that the Santa Rita EML ensemble was at least as good model as the EML at Bernal (not shown). The GPP time 

series for Santa Rita was about four times the size of the Bernal dataset and therefore the deviance was lower. However, when 

the Santa Rita model was used with Bernal data the mean θs was 0.16, indicating that the agreement was insufficient. 

Eyeballing the predictions in Figures 5A, 6B and 7A and their corresponding correlation values (0.78, 0.76 and 0.82 for 5 

adjusted EML Santa Rita, adjusted MODIS and multiple regression OLS) it could be argued that these models were 

comparable. However, their θs plots present a different perspective. 

4.2 MODIS discrepancies 

Different authors have reported discrepancies between MCD17 and EC estimates of GPP in semi-arid regions; examining 

MODIS discrepancies in these ecosystems is important because the errors induced by cloud cover are expected to be minimal 10 

and other effects can be identified (Gebremichael and Barros, 2006). The GPP of MOD17 did not relate well (EC = 0.11 + 

0.17 MODIS, r2 = 0.67) with estimates of EC GPP in semi-desert vegetation of Sahel (Tagesson et al., 2017). With data from 

different types of vegetation in the Heihe basin in China, MODIS17 overestimated the GPP from EC (EC = 1.15 + 0.24 

MODIS, r2 = 0.68, Cui et al., 2016). For scrub sites in Mexico, the relation between GPP calculated from EC and MOD17 was 

not good (MODIS = 383.82 + 0.467 EC, r2 = 0.6, (Delgado-Balbuena et al., 2018). In arid and semi-arid ecosystems in China, 15 

optimizing parameters of the MODIS GPP model with site-specific data, improved the estimate to explain 91% of the variation 

in the GPP of the data observed by EC (Wang et al., 2019). These same authors propose improving the land use classification 

used by the MOD17 algorithm and recalibrating light use efficiency parameters to solve the GPP estimation problem. 

Gebremichael and Barros (2006) examined an open shrubland site in a semi-arid region of Sonora, Mexico and their analysis 

of the temporal evolution of the discrepancies with MODIS GPP suggested revisiting the light use efficiency parameterization, 20 

especially the functional dependence on VPD and PAR and water stress or soil moisture availability. 

The relationship between the GPP MODIS and the GPP EC presented in section 3.2 is an approximation, because the 

uncertainty in the respiration component must be considered. The empirical relationship between nocturnal NEE and soil 

temperature has been used to represent ecosystem respiration (Reco) in order to separate the processes that contribute to daytime 

NEE(Richardson and Hollinger, 2005; Wofsy et al., 1993). Nighttime NEE should be equal to the rates of autotrophic and 25 

heterotrophic respiration, while during daytime, NEE should be equal to the combined rates of carboxylation and oxidation of 

RUBISCO, autotrophic respiration and heterotrophic respiration. Then the GPP can be calculated as the difference between 

daytime NEE and Reco, estimated through its relationship with temperature (Goulden et al., 1996). In the present study, Reco 

was calculated based on soil/air temperature following the procedure of Reichstein et al. (2005) implemented in Reddyproc 

(Wutzler et al., 2018). Although it is possible to measure or model the partition of respiration (Running et al., 2004; Wang et 30 

al., 2018), the presence of cacti complicates, assuming that all nighttime flux represents ecosystem respiration (Owen et al., 

2016; Richardson and Hollinger, 2005). While soil respiration tends to be temperature-limited when soil moisture is non-

limiting in temperate ecosystems, in rangeland ecosystems the controls of soil CO2 efflux were photosynthesis, soil temperature 
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and moisture (Roby et al., 2019). In our study, the instrumentation did not include measurements of plant or soil respiration 

partition to validate the Reco estimates. 

A problem regarding data comparison from remote orbital sensors and terrestrial observations is that different quantities are 

fundamentally measured. MODIS measures the radiation reflected by the earth's surface in two spectral bands at 250 m spatial 

resolution per pixel, five bands at 500 m and 29 bands at 1 000 m. The EC technique has a footprint to measure CO2 that varies 5 

dynamically in shape and size, but is generally considered to be 1 km². To solve the scaling, MODIS products related to the 

carbon cycle have been validated with the EC technique and biometric measurements on several spatial scales using process-

based ecosystem models and characterizing areas up to 47 km2 around the EC measuring tower (Cohen et al., 2003).  

At Bernal the vegetation was heterogeneous, this situation was represented by the heterogeneity in vegetation activity in the 

four pixels used; ranging about 0.2 units of NDVI at the peak of the season activity (Figure 1). The standard error of the IVI 10 

differed by one order of magnitude among species. Although more important species had a lower standard error; but their 

means were similar indicating that they were equally abundant at all sampling plots. The higher importance of some species 

(Table 3) was explained by selective grazing-browsing behaviour and the dispersion caused by cattle, either by ingesting or 

transporting seeds or plant parts (Belayneh and Tessema, 2017). Regarding landscape heterogeneity, the tower fetch was 

predominantly from the northeast, capturing the less heterogeneous area of the site but also the more active, according to the 15 

NDVI (Figure 1).  

The thorny scrub examined had two vegetation layers: the overstory layer mainly consisting of mesquite, acacia and cacti, and 

the understory layer that included grasses and herbs. Cattle preferentially graze the understory and because they eat using their 

tongue they will avoid browsing thorny species, unlike goats or deer that use their lips. Without grazing management, overtime, 

the competition balance will favour bush species resulting in encroaching and the understory will be stressed; only unpalatable 20 

species or those with their growing meristems very close to the ground would survive. Representing the structure and 

functioning of these two layers using MODIS is possible (Liu et al., 2017). Recently, Hill and Guerschman (2020) presented 

a MODIS product derived from MCD43A4 to estimate the fractions of photosynthetic and non-photosynthetic vegetation and 

the remaining fraction of bare soil. These developments could improve the MOD17 GPP estimates, since its model represents 

a homogeneous single vegetation layer. All these considerations help to understand the low θs between MOD17 estimates of 25 

GPP and EC derived GPP. 

4.3 Carbon flux 

Although the carbon balance in ecosystems is influenced by different factors such as soil type and amount of nutrients, the 

relationship with soil temperature and humidity is particularly strong (Anderson‐Teixeira et al., 2011; Hastings et al., 2005). 

How much of the rainwater the system can retain or lose has been described as the leakiness of the system (Guerschman et al., 30 

2009). More than immediate incident rainfall, the available soil moisture and its redistribution are important in semi-arid 

ecosystems, including steamflow, preferential flow paths, hydraulic lift and others (Barron‐Gafford et al., 2017). At Bernal, 

when the sum of the precipitation of the current month and that of the previous month was considered, the correlation with 
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NEE was -0.7, suggesting that continuous availability of soil moisture is important for the absorption of CO2 in this 

environment. This result is consistent with other studies in which the relationship between the net productivity of the ecosystem 

(NEP) and precipitation is initially positive, but is levelled from 1000 to 1500 mm annually (Xu et al., 2014). The hydraulic 

redistribution of water from moist (deeper) to drier soils through plant roots tended to increase modeled annual ecosystem 

uptake of CO2, this process was identified at US-SMR (Fu et al., 2018; Scott et al., 2003). 5 

The leakiness is highly dependent upon vegetation fractional cover, the proportion of the surface occupied by bare soil and 

vegetation: photosynthetically active vegetation and non-photosynthetically active vegetation such as litter, wood and dead 

biomass (Guerschman et al., 2009). It is possible that the canopy of the bushes completely intercepted the rainfall in some 

months, because the scrub can intercept up to 20% of the precipitation and its canopy storage capacity is 0.97 mm (Mastachi-

Loza et al., 2010). Considering only the daily rain events greater than 5 mm, the correlation between precipitation and NEE 10 

rose to -0.72. In the present study, the interception of rain by vegetation surfaces was not calculated, but the results suggest 

that it would be important to explore the relationship between net precipitation and NEE. 

The average NEE at a global level is -156 ± 284 g C m-2 y-1 (Baldocchi, 2014). The highest frequency among sites that measured 

NEE with EC occurs from 200 to 300 g C m-2 y-1, but in sites with biometric measurements, the peak occurs at 100 g C m-2 y-

1 (Xu et al., 2014). Using the daily averages of Table 2, the average NEE during the measurement period was -0.78 g C m-2 d-15 

1 and annually would be -283.5 g C m-2 y-1. This result was higher than the annual values of the induced grassland and scrubland 

vegetation characterizing the Sonora desert plains (138 and 130 g C m-2 y-1, Hinojo-Hinojo et al., 2019). In New Mexico, NEE 

values measured with EC are between 35-50 g C m-2 y-1 in desert grassland and 344-355 g C m-2 y-1 in mixed coniferous forest 

(Anderson‐Teixeira et al., 2011). In a dryer region, the sarcocaulescent scrubland of Baja California in Mexico, the NEE was 

-39 and -52 g C m-2 y-1 in 2002 and 2003, respectively (Hastings et al., 2005). The NEE measured here was within the range 20 

of NNE 0.3 ± 0.2 kg C m−2 yr−1 for grasslands/shrublands in Mexico (Murray-Tortarolo et al., 2016). Although the 

measurements of the present study had gaps and were compared with annual studies, we considered that the reported value of 

C was representative of the main season of growth of this type of scrub. 

4.4 Final remarks 

Overgrazing is an appreciation relative to the grazing productive system where the forage resource is overused; in a mixed 25 

shrub-grass ecosystem, such as Bernal, usually refers to the understory. Overgrazing means that the plant regrowth is readily 

grazed, tillers and root reserves are lost and eventually the plant may die. Although the Bernal site was overgrazed, the carbon 

fluxes indicated that the plant community was photosynthetically active in both the dry and rainy seasons. It is fair to assume 

that the water in the soil was not limiting for the deep rooted bush species and that was the reason why it was possible to 

maintain the photosynthetic function during rainless months. However, this primary production would not have tangible 30 

benefits for rancher’s production system, since no edible biomass would be produced for the cattle. From the point of view of 

carbon capture, the system accumulated non-labile biomass that would remain in the system for a longer time compared to a 
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grassland ecosystem (although it would be necessary to determine the partition of said shrub biomass). However, the 

overgrazing condition affects the biomass of the understory roots and consequently the carbon pool in the soil.  

In the short term, it can be thought that the estimated negative carbon flows are a favourable effect on the environmental 

agenda. As time passes, it is possible that the gaps between the individual shrubs of the overstory expand and this would have 

had an effect on soil erosion. It is also possible that the water stored in the soil profile used by the bushes gradually decreases, 5 

to the point of causing drought, changes in phenology and advancing the desertification process. There are many opportunities 

for ecology conservation and livestock-oriented management; this may include controlled grazing or propagating native 

thornless shrub species. If the ranchers do not identify a benefit in the vegetation, then they will be tempted to remove it,  as it 

occurred at the study site. Because of its wide coverage and readily availability the MODIS GPP product, accuracy is important 

in representing the carbon cycle, raising awareness and monitoring advancement of environmental decisions. 10 

Although we found that the EML was a good option for modeling the GPP of a site, what is really needed to evaluate the 

performance of semiarid ecosystems is a spatial representation of the carbon flux. This is a problem for an underrepresented 

area regarding instrumented EC towers. However, the EML could be designed to take into account the explanatory variables 

in a spatiotemporal continuity. As demonstrated here, extrapolating the EML model from one site to another had poor 

agreement. 15 

5 Conclusion 

The Bernal site was a carbon sink notwithstanding its overgrazed condition. This is due to the contribution to the carbon flux 

of the predominating shrub species in this area. The probability of agreement between EC derived GPP and remote sensed 

estimates of GPP for the study site was acceptable at 0.6 when using a machine learning ensemble; linear multiple regression 

had a 0.5 probability of agreement. For these two methods the probability of agreement was uniform across the range of 20 

measurement. Gross primary production estimates from MODIS had a probability of agreement of 0.24 and this probability 

decreased rapidly with increasing values of GPP. Although the importance value index of cacti was high in the study area, 

their metabolic activity did not outweigh the respiration component of the CO2 flux during nighttime; therefore, it is necessary 

to measure autotrophic and heterotrophic respiration components of the ecosystem. Precipitation was related to NEE but the 

soil water balance must be studied because the growing season of this vegetation type extends well beyond the predominant 25 

summer monsoon. 

Data availability 

Database and programming code are available at https://doi.org/10.5281/zenodo.3598595 
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Appendix A 

 

Table A1. MODIS reflectance bands and products database. 

 5 

Product 

name 
Satellite layer 

Spatial 

resolution 

Temporal 

resolution 

(days) 

Spectral 

coverage (nm) 

MOD09GA 

Band1 

500 m 

1 

620-670 

Band2 841-876 

Band3 459-479 

Band4 545-565 

Band5 1230-1250 

Band6 1628-1652 

Band7 2105-2155 

MODOCGA 

Band8 

1 km 

405-420 

Band9 438-448 

Band10 483-493 

Band11 526-536 

Band12 546-556 

Band13 662-672 

Band14 673-683 

MOD17A2H 

Gross Primary Production (GPP) 

8 

 

Net Photosynthesis (PsnNet)  

MOD15A2H 

Fraction of Photosynthetically Active Radiation (Fpar) N/A 

Leaf Area Index (LAI)  

MOD11A2 

Land Surface Temperature and Emissivity of day (LST day) 1 km  

Land Surface Temperature and Emissivity of night (LST night)   
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Table A1. MODIS reflectance bands and products database. (Continuation) 

 

Product 

name 
Satellite layer 

Spatial 

resolution 

Temporal 

resolution 

(days) 

Spectral 

coverage (nm) 

MYD13A1 Enhanced Vegetation Index (EVI) 500 m  16  

MYD15A2H 

Fraction of Photosynthetically Active Radiation (Fpar)  

8 

 

Leaf Area Index (LAI)   

MYD11A2 

Land Surface Temperature and Emissivity of day (LST day) 1 km N/A 

Land Surface Temperature and Emissivity of night (LST night)   

MCD15A2H 

Fraction of Photosynthetically Active Radiation (Fpar) 

500 m  

 

Leaf Area Index (LAI)  
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Table A2. Daily vegetation indexes computed using the MODIS reflectance bands described in Table 1. 

 

Index Formula Reference 

Simple Ratio (SimpleR) 𝑆𝑖𝑚𝑝𝑙𝑒𝑅 =
𝐵𝑎𝑛𝑑2

𝐵𝑎𝑛𝑑1
 

(Hill et al., 

2006) 

Moisture Stress (MoistS) 

 

𝑀𝑜𝑖𝑠𝑡𝑆 =
𝐵𝑎𝑛𝑑6

𝐵𝑎𝑛𝑑2
 

 

Disease Stress Index (DSI) 

 

𝐷𝑆𝐼 =
𝐵𝑎𝑛𝑑2 +  𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑1
 

  

Red Green Ratio Index (RGRI) 

 

 

𝑅𝐺𝑅𝐼 =
𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑4
 

 

Normalized Difference Vegetation Index 

(NDVI) 
𝑁𝐷𝑉𝐼 =

𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑2 + 𝐵𝑎𝑛𝑑1
 

Normalized Difference Water Index 

(NDVI_w) 
𝑁𝐷𝑉𝐼_𝑤 =

𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑2 + 𝐵𝑎𝑛𝑑5
 

Green Leaf Index (GLI) 

 

𝐺𝐿𝐼 =
2 ∗ 𝐵𝑎𝑛𝑑11 − 𝐵𝑎𝑛𝑑14 − 𝐵𝑎𝑛𝑑9

2 ∗ 𝐵𝑎𝑛𝑑11 + 𝐵𝑎𝑛𝑑14 + 𝐵𝑎𝑛𝑑
 

 

 (Henrich et 

al., 2012) 

Green Atmospherically Resistance 

Vegetation (GARI) 

 

𝐺𝐴𝑅𝐼 =
𝐵𝑎𝑛𝑑5 − (𝐵𝑎𝑛𝑑11 − (𝐵𝑎𝑛𝑑9 − 𝐵𝑎𝑛𝑑14))

𝐵𝑎𝑛𝑑5 − (𝐵𝑎𝑛𝑑11 + (𝐵𝑎𝑛𝑑9 − 𝐵𝑎𝑛𝑑14))
 

 

Enhanced Vegetation Index (EVI) 𝐸𝑉𝐼 = 2.5 ∗
𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑1

𝐵𝑎𝑛𝑑2 + (6 ∗ 𝐵𝑎𝑛𝑑1) − (7.5 ∗ 𝐵𝑎𝑛𝑑9) + 1
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Table A3. Daymet meteorological database. 

Variable 
Spatial 

resolution 

Temporal 

resolution 
Reference 

Precipitation (Dayprc) 

1 km Daily (Thornton et al., 2017) 

Shortwave radiation (Daysrad) 

Maximum air temperature (DayTmax) 

Minimum air temperature (DayTmin) 

Water vapor pressure (Dayvp) 

 

 

 5 

Table A4. Precipitation data. 

Satellite Product name Spatial resolution Temporal resolution 

Global Precipitation Measurement (GPM) 3IMERGDF v006 0.1 Degree 

Daily 

Tropical Rainfall Measuring Mission (TRMM) 3B42 v007 0.25 Degree 
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Appendix B 

 

Table B1. Analysis of variance for GGP derived from EC data at Bernal site. Variable details are described in Appendix A.

            5 

Model term Coefficient EE1 DF2 SC3 F p VIF4 

Regression   14 1780.48    

Constant -13.18 6.48   -2.03 0.043  

  R_08_405.4205 -2.119 0.602 1 26.8 -3.52 0 2.2 

  R_13_662.6725 -2.86 1.23 1 11.61 -2.32 0.021 1.55 

  R_14_673.6835 9.17 2.59 1 27.06 3.53 0 1.22 

  RGRI6 -0.832 0.369 1 11 -2.25 0.025 1.43 

  GARI6 2.01 1.08 1 7.55 1.87 0.063 2.37 

  EVIMYD7 8.53 2.01 1 39.03 4.25 0 2.94 

  NDVI_w6 3.9 1.55 1 13.67 2.51 0.012 2.71 

  PsnNet7 0.01312 0.00223 1 75.3 5.9 0 3.83 

  LstNgtMYD7 0.0462 0.0238 1 8.18 1.94 0.053 2.01 

  Dayprc8 0.1388 0.0341 1 35.9 4.07 0 1.92 

  Daysrad8 0.0106 0.00218 1 51.21 4.86 0 5.01 

  DayTmax8 -0.2386 0.0581 1 36.58 -4.11 0 6.89 

  DayTmin8 0.1752 0.0454 1 32.22 3.86 0 4.96 

  TRMM9 -0.0434 0.0194 1 10.87 -2.24 0.026 1.41 

Error   403 872.97    

Total   417 2653.45    

1 Standard error of coefficient.  

2 Degrees of freedom. 

3 Adjusted sum of squares. 

4 Variance inflation factor. 

5 Variable name denotes the band number and spectral bandwidth of MODIS (Moderate Resolution Imaging 10 

Spectroradiometer). 
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6 Vegetation indices RGRI is red green ratio index: and GARI is green atmospherically resistance vegetation index, details of 

formula are described in Appendix I.  

7 Layers from MODIS products. EVIMYD is enhanced vegetation index from MYD13 

PsnNet is photosynthesis product form MOD17, LstNgtMYD is nighttime land surface temperature emissivity from MYD11. 

8 Variables obtained from Daymet daily dataset: DayTmin is minimum temperature, DayTmax is maximum temperature, 5 

Daysrad is shortwave radiation, Dayprc is precipitation. 

4 Daily rainfall rate from 3B42 TRMM (Tropical Rainfall Measuring Mission).  
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