Oxygen isotope composition of waters recorded in carbonates in strong clumped and oxygen
 isotopic disequilibrium

3

4 Caroline Thaler^{1*}, Amandine Katz¹, Magali Bonifacie¹, Bénédicte Ménez¹, Magali Ader¹
5 ¹ Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris France
6 *corresponding author: Thaler.caroline@gmail.com

7

Abstract. Paleoenvironmental reconstructions, which are mainly retrieved from oxygen isotope (δ^{18} O) 8 9 and clumped isotope (Δ_{47}) compositions of carbonate minerals, are compromised when carbonate crystallization occurs in isotopic disequilibrium. To date, knowledge of these common isotopic 10 disequilibria, known as vital effects in biogenic carbonates, remains limited and the potential 11 information recorded by δ^{18} O and Δ_{47} offsets from isotopic equilibrium values is largely overlooked. 12 Additionally, in carbonates formed in isotopic equilibrium, the use of the carbonate δ^{18} O signature as a 13 paleothermometer relies on our knowledge of the paleowaters' δ^{18} O value, which is often assumed. 14 Here, we report the largest Δ_{47} offsets observed to date (as much as -0.270‰), measured on microbial 15 carbonates, that are strongly linked to carbonate δ^{18} O offsets (-25‰) from equilibrium. These offsets are 16 likely both related to the microorganism metabolic activity and yield identical erroneous temperature 17 reconstructions. Unexpectedly, we show that the δ^{18} O value of the water in which carbonates 18 precipitated, as well as the water-carbonate δ^{18} O fractionation dependence to temperature at equilibrium 19 can be retrieved from these paired δ^{18} O and Δ_{47} disequilibrium values measured in carbonates. The 20 possibility to retrieve the δ^{18} O value of paleowaters, sediments' interstitial waters or organisms' body 21 22 water at the carbonate precipitation loci, even from carbonates formed in isotopic disequilibrium, opens

long-awaited research avenues for both paleoenvironmental reconstructions and biomineralizationstudies.

25

26 **1** Introduction

Oxygen isotope composition (δ^{18} O) paired with clumped isotope composition (Δ_{47}) of carbonate 27 minerals is increasingly used for reconstructing paleoenvironmental or diagenetic conditions (Ghosh et 28 al., 2006; Henkes et al., 2018; Mangenot et al., 2018 a and b). The δ^{18} O of carbonates depends on both 29 the δ^{18} O value of the water in which the carbonate precipitated and the precipitation temperature (Urey 30 31 et al., 1951). Its use to reconstruct paleoenvironments can be combined with the new carbonate C-O "clumped isotopes" abundance (Δ_{47}) thermometer which depends only on the carbonate precipitation 32 temperature (Ghosh et al., 2006). By combining the Δ_{47} derived temperatures and the carbonate δ^{18} O 33 value ($\delta^{18}O_{carbonate}$), the $\delta^{18}O$ value of the water ($\delta^{18}O_{water}$) in which the carbonate precipitated can be 34 retrieved. However, this requires that solid carbonate and water reached isotopic equilibrium, which is 35 often hard to prove. Conversely, carbonate precipitation in isotopic disequilibrium is commonly 36 encountered (Affek et al., 2014; Loyd et al., 2016). Out of equilibrium δ^{18} O and Δ_{47} values are 37 particularly known to occur in biogenic carbonates (Thiagarajan et al., 2011, Bajnai et al., 2018)- the 38 39 most abundant carbonates in the sedimentary record. To date, the reasons for these isotopic disequilibria in carbonates remain largely under-constrained. While Δ_{47} compositions of carbonates seemed at first 40 free of any biologically-driven or mineral-specific fractionation known to affect $\delta^{18}O_{carbonate}$ 41 42 compositions (Eiler, 2011), recently identified disequilibrium Δ_{47} values (Saenger et al., 2012; Affek, 2013; Tang et al., 2014; Burgener et al., 2018) open new perspectives to unravel the mechanisms 43 44 responsible for oxygen isotopic disequilibrium in carbonate minerals. Even though these vital effect 45 identification do not prevent δ^{18} O and Δ_{47} tools to be powerful paleothermometer as empirical

calibrations taking vital effects into account allow temperature reconstructions, it has become crucial to determine if the δ^{18} O and Δ_{47} disequilibria observed in carbonates as diverse as those found in coral reefs (Saenger et al., 2012), brachiopods (Bajnai et al., 2018), microbialites and methane seep carbonates (Loyd et al., 2016), along with speleothems (Affek et al., 2014) could be explained by oxygen-isotope disequilibria occurring in dissolved inorganic carbon (DIC) involved in carbonate precipitation. In this case, δ^{18} O and Δ_{47} disequilibria in biogenic carbonates would record information, however unavailable yet, on the physiological characteristics of carbonate-forming organisms.

In previous experiments we produced microbial calcium carbonates (Millo et al., 2012; Thaler et 53 54 al., 2017) that recorded the strongest oxygen isotope disequilibrium ever identified between DIC and precipitation water (*i.e.* -25‰ offset from $\delta^{18}O_{carbonate}$ equilibrium values). We used carbonic anhydrase 55 (CA), an enzyme able to accelerate oxygen isotope equilibration between DIC and water via fast CO₂ 56 hydration and HCO₃⁻ dehydration. When CA was added to the precipitation water, the carbonate oxygen 57 isotope compositions reached equilibrium with the precipitation water (Thaler et al., 2017). Here, we 58 59 build up on these experiments as they offer a unique opportunity to assess experimentally whether carbonates precipitated from DIC in disequilibrium with water also record Δ_{47} disequilibrium values, and 60 the type of information that is actually carried by these paired disequilibria. We latter show how and to 61 62 what extent this can be applied to previously published cases of oxygen isotopic offsets from equilibrium values in both biogenic and abiotic carbonates. 63

64

65 2 Material and Methods

66 2.1 Precipitation of microbial carbonates

67 Carbonates were precipitated at 30 ± 0.1 °C using the procedure detailed in Millo et al., (2012) and Thaler 68 et al., (2017) and summarized hereafter. The precipitation solution (initial pH = 6.0) was composed of

ions added to Milli-Q[®] water (resistivity = 18 M Ω ·cm) by dissolving salts in the following order: 69 70 MgSO₄·7H₂O (16 mM), NaCl (80 mM), KCl (4 mM), urea (33.3 mM), CaCl₂ (40 mM). The aim was to mimic the ionic composition of a groundwater (Millo et al., 2012). In experiments with CA whose δ^{18} O 71 72 results (but not the Δ_{47} ones) were recently published in Thaler et al., (2017), the precipitation solution was supplemented with CA at a concentration of 2 mg/L. The precipitation solution (with or without 73 CA) was then mixed at a volumetric ratio of 1:1 with the ureolytic soil bacteria Sporosarcina pasteurii 74 (Fig.1) suspended in Milli-Q[®] water, at a final optical density at 600 nm of 0.100±0.010. For this study, 75 16 gastight Exetainer[®] vials were filled with the precipitation solution without CA in order to sacrifice 76 77 them at regular time intervals (*i.e.* 30, 60, 120, 180, 360 min and 24 h) and thus obtain information on the kinetics of the reaction, while reproducing the procedure followed for the experiment with CA 78 (Thaler et al., 2017) consisting of 27 vials sacrificed every 10 to 30 min and after 24 h. The vials capped 79 80 with rubber septa were filled up to the brim, *i.e.* without headspace, hence preventing any gaseous exchange with the atmosphere or headspace gases. 81 82 Ureolysis corresponds to two hydrolysis : (i) the hydrolysis of urea into ammonia (NH_3) and carbamate (H_2N_3) COOH) $(H_2N - CO - NH_2 + H_2O \rightarrow NH_3 + H_2N - COOH)$, which is catalyzed by urease and is the rate limiting 83 step, and (ii) the rapid and spontaneous hydrolysis of carbamate into ammonia and CO_{2(aq)} (H₂N - COOH + 84

85 $H_20 \rightarrow NH_3 + CO_{2(aq)} + H_20$ (Krebs and Roughton, 1948; Matsuzaki et al., 2013) or into H_2CO_3 ($H_2N - H_2O_3$) (H20) (Krebs and Roughton, 1948; Matsuzaki et al., 2013) or into H200 (H2N) (H2

86 $COOH + H_2O \rightarrow NH_3 + H_2CO_3$) (Mobley and Hausinger, 1989; Krajewska, 2009).

Ureolysis completion was followed by evaluating the production of dissolved inorganic nitrogen (DIN = $NH_3+NH_4^+$). Determination of pH, DIN concentration and amount of precipitated carbonates (Fig. 2), as well as isotopic measurements, were performed for each vial to monitor their evolution as the ureolysis reaction progresses. The pH initially increased from 6.0 to 9.0 due to NH_3 production by ureolysis and consecutive alkalinization of the precipitation solution (Fig. 2a). The subsequent carbonate precipitation (Fig. 2b) lowered pH to 8.6 (without CA) and 8.5 (with CA) and was followed by a second pH increase

93	to 8.8 (without CA) and 8.7 (with CA) when carbonate precipitation stopped while ureolysis continued.
94	At ureolysis completion, all the calcium initially present in solution (<i>i.e.</i> the limiting reagent) has
95	precipitated whereas 35 to 45% of the DIC produced by ureolysis remained in solution. Carbonate
96	precipitates, formed at the bottom and on the wall of the vials, were immediately rinsed with a few drops
97	of pure ethanol in order to dehydrate bacteria and prevent further ureolysis, carbonate formation and/or
98	dissolution-reprecipitation processes. Ethanol was then removed, and prior to their collection,
99	carbonates were dried overnight at 40°C in the vials placed in a ventilated oven equipped with
100	desiccating beads. The major part of the carbonates precipitated in this study was composed of calcite
101	(Thaler et al., 2017) with minor amounts of aragonite (1 to 4%), vaterite (2 to 4%) and magnesian calcite
102	with low Mg content (Mg _{0.064} ,Ca _{0.936})CO ₃ (up to 8%) (Thaler et al., 2017).
103	All of the measured chemical parameters (pH, DIC, amount of solid carbonates, Ca ²⁺ concentration,
104	DIN) along with DIC and solid carbonate δ^{13} C behave similarly with or without active CA (Thaler et al.,
105	2017). It was not possible to measure Δ_{47} for all the precipitated carbonates due to their low amount,
106	particularly for the tubes sacrificed at the beginning of the experiments (Supplementary Table S1).
107	
108	2.2 δ^{18} O and Δ_{47} measurements and associated uncertainties
109	All the isotopic analyses were made at Institut de physique du globe de Paris (IPGP, France). δ^{18} O
110	analyses were performed on carbonate powders of ca. 2 mg with a continuous helium-flow isotope ratio

- 111 mass spectrometer AP 2003 (Analytical Precision 2003, GV Instruments) coupled to a gas
- 112 chromatograph column (GC-IRMS, Chrompac Column Type 99960), as described in Millo et al., (2012)
- and Thaler et al., (2017). External reproducibility on carbonate standards is $\pm 0.1\%$ (1SD) and represents
- 114 the uncertainty assigned to $\delta^{18}O_{carbonate}$ data.

115 The analytical procedure used for clumped isotope Δ_{47} measurements is only briefly presented 116 here and detailed in Bonifacie et al., (2017). About 5 mg of carbonates were digested at 90°C during 20 min with 104% phosphoric acid H₃PO₄ in a common acid bath. The produced gaseous CO₂ was purified 117 with a manual vacuum line before introduction into a Thermo Scientific MAT 253 dual-inlet mass 118 spectrometer. Each purified CO₂ gas was analyzed for their abundance in isotopologues with m/z from 119 44 to 49 versus a working gas provided by Oztech Trading Corporation with $\delta^{13}C = -3.71\%$ VPDB and 120 $\delta^{18}O = +24.67\%$ VSMOW, as determined with the international reference material NBS19. One single 121 Δ_{47} measurement corresponds to 70 cycles of 26 s integration time each (total integration time = 1820 s). 122 Conventional δ^{18} O and δ^{13} C data were also acquired simultaneously to Δ_{47} measurements with this 123 instrument (Supplementary Tables S1 and S2). They are in excellent consistency with data obtained with 124 125 the continuous-flow method on smaller samples (Supplementary Table S1).

126 The Δ_{47} is calculated as a function of the stochastic distribution of the CO₂ isotopologues, as 127 follows:

128
$$\Delta_{47} = \left[\left(\frac{R_{measured}^{47}}{R_{stochastic}^{47}} - 1 \right) - \left(\frac{R_{measured}^{46}}{R_{stochastic}^{46}} - 1 \right) - \left(\frac{R_{measured}^{45}}{R_{stochastic}^{45}} - 1 \right) \right] \times 1000$$
(1)

where Δ_{47} is expressed in per mil (‰), and R^{47} , R^{46} and R^{45} are the abundance ratios of the masses 47, 129 46, 45 respectively, relative to the mass 44 (${}^{12}C^{16}O^{16}O$). $R^{X}_{measured}$ are measured ratios of the CO₂ sample. 130 $R^{X}_{stochastic}$ are calculated from the measured 44, 45, 46 and 47 abundance ratios. The amount of 131 isotopologues of mass 47 (mainly ${}^{13}C^{18}O^{16}O$, but also ${}^{12}C^{17}O^{16}O$ and ${}^{13}C^{17}O^{17}O$) measured within the 132 CO_2 sample extracted from the acid digestion of the carbonates is linked to the amount of isotopologues 133 of mass 63 (mainly ¹³C¹⁸O¹⁶O¹⁶O) within the reacted carbonate mineral (Guo et al., 2009). For the 134 correction from ¹⁷O interferences we used the ¹⁷O correction parameters from Brand et al., (2010), as 135 recently recommended (Daëron et al., 2016, Schauer et al., 2016). In order to transfer the obtained raw 136

137 Δ_{47} data into the absolute Carbon Dioxide Equilibrium Scale "CDES" ($\Delta_{47 \text{ CDES90}}$ being the Δ_{47} values of 138 carbonates reacted within acid at 90°C), standards of CO₂ gases equilibrated at 25°C and 1000°C and with bulk isotopic compositions covering the range of measured carbonate samples (δ^{47} values between -139 50 and +24%) were analyzed interspaced with unknown samples (typically 15 equilibrated CO₂ gas 140 141 analyses by discrete session of analysis, 4 analytical sessions in total; Supplementary Table S5). For each analytical session, as recommended in Dennis et al., (2011), the Δ_{47} data were finally corrected 142 143 with a fixed Equilibrated Gas Line slope (only slightly varying from 0.0048 to 0.0062 over our 144 analytical sessions) and an Empirical Transfer Function (slopes varying from 1.0859 to 1.1344) based on the equilibrated CO₂ standards. Finally, the accuracy of our whole dataset and processing procedure was 145 146 validated on carbonate reference material (i.e. IPGP-Carrara and 102-GC-AZ01), typically analyzed every 2 unknown samples (Supplementary Table S5). The Δ_{47} values obtained at IPGP over the course 147 of this study are $\Delta_{47 \text{ CDES90}} = 0.316 \pm 0.020\%$ (1SD, n = 16) for IPGP-Carrara and $\Delta_{47 \text{ CDES90}} =$ 148 149 $0.620\pm0.010\%$ (1SD, n = 18) for 102-GC-AZ01. Those values are indistinguishable from the values 150 obtained at IPGP over four years of analyses on the same instrument (n > 300) or previously reported by

152

151

153 **2.3** Temperature estimates and associated uncertainties

other laboratories (Daëron et al., 2016).

Apparent temperatures issued from oxygen isotope compositions were calculated based on the measured $\delta^{18}O_{carbonate}$ values of both the precipitated carbonate and the precipitation water in each experimental vial (Supplementary Table S1) and using the equation of oxygen isotopes' fractionation between calcite and water from Kim and O'Neil, (1997). Apparent temperatures issued from clumped isotope compositions were calculated from $\Delta_{47 \text{ CDES90}}$ data using the composite universal Δ_{47} -T calibration (Eq. 3 from Bonifacie et al., (2017) with T, the temperature). It is noteworthy that our main observations and

conclusions do not change if other calibrations to temperature are used for δ^{18} O and/or Δ_{47} (Kelson et al., 160 161 2017) (see also Supplementary Table S3). For both proxies, the uncertainties on temperature estimates reported here correspond to the standard deviation of the mean of replicated isotopic measurements of 162 163 the same powder propagated in the calibration equation (but the actual errors on the calibration 164 themselves are not considered). Note that the long-term external reproducibility on homogeneous calcite reference materials found in this study (*i.e.* $\pm 0.020\%$, 1SD) is used for samples with only one 165 166 measurement or with 1SD lower than 0.020% (Supplementary Tables S1 and S5, Supplementary 167 Discussion).

For the temperature (T) derived from the Δ_{47} data, we chose the calibration determined by Bonifacie et 168 169 al., (2017) as it integrates a consequent number of data (n > 300), which statistical weight have been 170 properly considered, and covers a wide temperature range (from 1 to 350°C), three characteristics that 171 were recently shown by several teams as governing the precision on Δ_{47} -T calibration equations (Bonifacie et al., 2017; Kelson et al., 2017; Fernandez et al., 2017). Importantly, this calibration covers the high 172 173 apparent temperature ranges reported here (i.e., low Δ_{47} values) allowing to avoid loss of precision/accuracy when extrapolating to temperature ranges that have not been experimentally 174 investigated. Finally the Bonifacie et al. (2017) calibration has been checked independently with other 175 methods (Mangenot et al., 2017, Dassié et al., 2018) on the range of temperatures (~30 to 96°C) where 176 most of available calibrations are diverging and/or not well constrained. Indeed, these studies report 177 178 excellent consistencies: i/ between T Δ_{47} and homogenization temperatures from fluid inclusion microthermometry (Mangenot et al., 2017), and ii/ between the $\delta^{18}O_{water}$ values directly measured in fluid 179 inclusions by cavity ring down spectroscopy and those calculated from combined $T\Delta_{47}$ and $\delta^{18}O_{carbonate}$ of 180 181 the host-mineral (Dassié et al., 2018). Thought we recognize that the normalization to carbonate standards 182 presented in Bernasconi et al. (2018) might become commonly used by the community in the future (ie.

183 with the on-going inter-comparison Intercarb project), we preferred not to use this correction frame here 184 because not enough of the four carbonate standards proposed by Bernasconi et al., 2018 were run together with our samples (n= 14 run in total of ETH1, ETH2, ETH3, ETH4 standards; Supplementary Table S5), 185 186 and such normalization method will then introduce larger uncertainty than the normalization we performed with the large number of equilibrated gases ran daily together with our unknowns (n= 104 equilibrated 187 gas; Supplementary Table S5 - Note also 33 secondary carbonate standards 102-GC-AZ01 and IPGP-188 Cararra, also ran in other IPGP studies and some other laboratories). Also remarkably, Δ_{47} obtained here 189 190 on the four ETH carbonate standards are all systematically higher than values reported in Bernasconi et al., 2018 (Supplementary Table S4). Thought the reason of this positive offset is still unclear, it is 191 192 noteworthy that positive offsets are also observed when compiling other recent published values 193 (Supplementary Table S4; Daëron et al. 2016; Schauer et al., 2016; Fiebig et al., 2019).

194

195 3 Results and Discussion

196 **3.1** Δ_{47} and δ^{18} O compositions of microbial carbonates can present strongly correlated vital

197 effects

We performed Δ_{47} measurements on (i) microbial carbonates precipitated without CA by faithfully replicating the experiment detailed in Thaler et al., (2017) and (ii) microbial carbonates precipitated in the presence of CA remaining from these experiments. These calcium carbonates were precipitated as the result of microbially-driven hydrolysis of urea into DIC and ammonia (Millo et al., 2012). They constitute a reliable model for carbonate precipitation triggered by enzymatic production or transport of DIC, as it is the case for micro- and macro-skeletal carbonates common in the Phanerozoic, and for microbially-mediated carbonates since the Precambrian. 205 Without CA, the isotopic values of the very first carbonate precipitates present strong isotopic offsets 206 from equilibrium values. The Δ_{47} offset to equilibrium starts down to -0.270‰ (the largest Δ_{47} offset ever measured in solid carbonates) and the offset to equilibrium reaches -24.7% for $\delta^{18}O_{carbonate}$ (Fig. 3 207 and Supplementary Table S1). Both Δ_{47} and $\delta^{18}O_{carbonate}$ absolute values then increase as ureolysis 208 progresses, reducing offsets from equilibrium values to -0.179% for Δ_{47} and -15.7% for $\delta^{18}O_{carbonate}$. In 209 the presence of CA, the trends observed for the Δ_{47} and $\delta^{18}O_{carbonate}$ values are similar but the offsets 210 from equilibrium are drastically reduced (down to -0.027‰ for Δ_{47} and -1.4‰ for $\delta^{18}O_{carbonate}$ at the end 211 of the experiment; Fig. 3), hence attesting for on-going isotopic equilibration of DIC with water by CA 212 enzymatic activity prior to and during carbonate precipitation. The comparable behavior of Δ_{47} and 213 $\delta^{18}O_{carbonate}$ values with respect to CA suggests that both disequilibria are inherited from the $\delta^{18}O$ and Δ_{47} 214 signatures of the DIC generated by the biological activity. 215

216

217 **3.2** Δ_{47} and $\delta^{18}O_{carbonate}$ disequilibrium originate from the metabolic production of DIC

Here, we discuss the potential processes known to generate δ^{18} O and Δ_{47} isotope fractionations during 218 carbonate precipitation and we identify the main mechanism explaining our paired Δ_{47} and $\delta^{18}O_{carbonate}$ 219 disequilibria. The relatively high precipitation rate (R) in our experiments (log R = -3.95 mol· m^{-2} · s^{-1} ; 220 (Thaler et al., 2017)) can only account for an oxygen kinetic isotope fractionation (KIF) of about 1 to 221 2‰ for δ^{18} O values (Watkins et al., 2013), while the oxygen isotope disequilibrium recorded in our 222 carbonates reaches -24.7‰. Degassing of CO₂, known to fractionate DIC oxygen isotopes (Affek and 223 Zaarur, 2014), can be ruled out as there is no gas phase in our experiments (see Material and Methods). 224 225 Any potential kinetic fractionation due to DIC diffusion (Thiagarajan et al., 2011) is also unlikely as precipitation occurred on the bacterial DIC-producing cells, as highlighted by scanning electron 226 227 microscopy showing bacterial cells trapped within and at the surface of carbonate crystals (Fig. 1).

228	Accordingly, the large offsets from equilibrium values observed for both Δ_{47} and $\delta^{18}O$ in our microbial
229	carbonates can only result from (i) a KIF induced by CO_2 hydration/hydroxylation into HCO_3^- (but only
230	if ureolysis produces CO ₂ rather than H ₂ CO ₃ , which has not been established yet (Matsuzaki et al.,
231	2013)) or (ii) a metabolic isotopic signature of the DIC produced by the bacteria, inherited from the
232	initial isotopic composition of urea and/or due to a KIF introduced by the urease enzyme. CO2
233	hydration/hydroxylation leads to the formation of HCO_3^- , with two oxygen atoms coming from CO_2 and
234	the third one from H ₂ O (hydration) or OH ⁻ (hydroxylation). The $\delta^{18}O_{HCO3-}$ value can then be estimated
235	using a simple mass balance calculation (Létolle et al., 1990b; Usdowski et al., 1991). The newly formed
236	HCO_3^- is depleted in ¹⁸ O compared to the reacting CO_2 because of the incorporation of oxygen coming
237	from H ₂ O or OH ⁻ , both depleted in ¹⁸ O relative to ¹⁶ O in contrast with CO_2 (Green and Taube,
238	1963;Beck et al., 2005). Such a low $\delta^{18}O_{HCO3-}$ value, several per mil lower than the equilibrium one, can
239	then be preserved in the calcium carbonate if precipitation occurs shortly after CO ₂
240	hydration/hydroxylation and before the full equilibration with water (Rollion-Bard et al., 2003).
241	Regarding clumped isotopes, ab initio calculations predict that the fractionation associated with CO ₂
242	hydration/hydroxylation increases the relative abundance of ${}^{13}C{}^{-18}O$ bonds, and thus the Δ_{47} value (Guo,
243	Ms 2009). Even though this predicted fractionation trend has previously been used to explain several
244	datasets for which CO ₂ hydroxylation was assumed to occur prior to carbonate precipitation (Tripati et
245	al., 2015; Spooner et al., 2016), such a tendency can only be validated using data acquired on carbonates
246	for which CO ₂ hydration/hydroxylation is demonstrated. This is the case of (i) hyperalkaline travertines
247	(Falk et al., 2016) even though part of the reported kinetic isotope fractionation can be interpreted as
248	resulting from CO ₂ dissolution process (Clark et al., 1992) and (ii) two experimental samples (Tang et
249	al., 2014) precipitated at high pH where CO ₂ hydroxylation dominates. Both studies show, in agreement
250	with the ab initio calculations (Guo, Ms 2009), higher Δ_{47} and lower $\delta^{18}O_{carbonate}$ values compared to

251	equilibrium. Thus, in a case where ureolysis would produce CO_2 in isotopic equilibrium with water, the
252	Δ_{47} values affected by CO ₂ hydration/hydroxylation recorded in calcium carbonates should be higher
253	than the equilibrium value, while our microbial carbonates are showing Δ_{47} values lower than
254	equilibrium. Thus, we conclude that our low Δ_{47} values measured in carbonates can only be explained by
255	a metabolic source effect. In our case it corresponds to the ureolytic production of DIC, either directly as
256	H_2CO_3 or as CO_2 , with a Δ_{47} value low enough to compensate for any potentially succeeding increase
257	due to the KIF associated with CO ₂ hydration/hydroxylation. Nonetheless, the slow but continuous
258	increase observed in our experiment without CA for both Δ_{47} and $\delta^{18}O_{carbonate}$ values more likely reflects
259	ongoing equilibration of DIC oxygen isotopes with water at a slow rate.
260	Our results highlight that the isotope clumping proceeds continuously as C-O bonds are breaking
261	and re-forming in the DIC, allowing oxygen isotopes (¹⁶ O, ¹⁷ O and ¹⁸ O) to be redistributed between
262	H ₂ O, OH ⁻ , H ₂ CO ₃ , HCO ₃ ⁻ and CO ₃ ²⁻ species <i>via</i> H ₂ O/OH ⁻ -attachment to CO ₂ and -detachment from
263	HCO ₃ ⁻ . In the experiment with CA, both Δ_{47} and $\delta^{18}O_{carbonate}$ reach simultaneously values close to
264	equilibrium and without CA both Δ_{47} and $\delta^{18}O_{carbonate}$ values increase simultaneously. This coevolution
265	corroborates former observations of comparable kinetics for clumped isotopes and $\delta^{18}O$ equilibration
266	between DIC and water or CO ₂ and water once δ^{13} C is equilibrated (Affek, 2013; Clog et al., 2015). This
267	principle has been used to correct for disequilibrium fractionation factor in speleothems (Affek et al.,
268	2008).

270 **3.3** Erroneous yet comparable temperatures reconstructed from disequilibrium Δ_{47} and δ^{18} O 271 values in carbonates

Apparent temperatures were calculated from disequilibrium Δ_{47} values obtained in the experiment without CA using the calibration of Bonifacie et al., (2017). Ranging from 198±21°C to 115±8°C (Fig. 274 4), they are at odds with the actual precipitation temperature of $30\pm1^{\circ}C$ (see Methods). This shows that when carbonates precipitate from DIC in oxygen-isotope disequilibrium with water, the abundance of 275 $^{13}\text{C}^{-18}\text{O}$ bonds in carbonates does not correlate with precipitation water temperature. Conversely, the 276 277 temperatures reconstructed from the Δ_{47} values of carbonates precipitated in the presence of CA, ranging 278 from $47\pm6^{\circ}$ C to $39\pm2^{\circ}$ C, are much closer to the actual precipitation temperature. Interestingly, the apparent temperatures reconstructed using Kim and O'Neil et al., (1997) calibration from the $\delta^{18}O_{carbonate}$ 279 and $\delta^{18}O_{water}$ values of the same samples show comparable offsets from the actual temperature in both 280 experiments without CA (from 218±2°C to 139±1°C) and with CA (from 39±1°C to 37±1°C) (Fig. 4). 281 Practically, this implies that similar temperatures calculated from both carbonate Δ_{47} and $\delta^{18}O_{carbonate}$ 282 values (in a case where the precipitation water δ^{18} O can be determined) can neither constitute evidence 283 against O-isotope disequilibrium nor confirm that this is the true precipitation temperature. 284

285

286 **3.4** Δ_{47} and $\delta^{18}O_{carbonate}$ paired disequilibria record the $\delta^{18}O$ of the water in which the 287 carbonates precipitated

288	The fact that both Δ_{47} and $\delta^{18}O_{carbonate}$ values permit to calculate similarly evolving apparent
289	temperatures along the (dis)equilibration profile recorded in carbonates as the experiment proceeds,
290	indicates that the $\delta^{18}O_{carbonate}$, $\delta^{18}O_{water}$, Δ_{47} , and apparent temperature values are all together linked. In a
291	Δ_{47} versus $\delta^{18}O_{carbonate}$ diagram, all of our data align, irrespectively of the fact that they are in strong
292	isotopic disequilibrium or close to equilibrium (Fig. 5). Their alignment is fitted with what would be
293	expected for equilibrium Δ_{47} and $\delta^{18}O_{carbonate}$ values of calcite precipitated at various temperatures from a
294	water at a given $\delta^{18}O_{water}$ value. This $\delta^{18}O_{water}$ value can be calculated by combining for the same
295	temperature, the equations of Δ_{47} and $\delta^{18}O_{carbonate}$ temperature calibrations from Kim and O'Neil, (1997)
296	and Bonifacie et al., (2017), respectively (Eq. 2):

297
$$\delta^{18}O_{\text{water}} = \exp\left[-\frac{18.03}{\sqrt{\frac{0.0422 \times 10^6}{\Delta_{47} \text{ CDES90}^{-0.1126}}}} + 32.42 \times 10^{-3} + \ln(\delta^{18}O_{\text{carbonate}} + 1000)\right] - 1000$$
 (2),

with $\delta^{18}O_{water}$ and $\delta^{18}O_{carbonate}$ values in the same isotopic referential (here VSMOW), and Δ_{47} values 298 299 reported into the absolute Carbon Dioxide Equilibrated Scale ($\Delta_{47 \text{ CDES90}}$). The calibration of Kim and O'Neil, (1997) was preferred over more recent calibration equations (e.g. Watkins et al., 2013) because 300 it provides the best consistency for temperatures reconstructed from both the carbonate δ^{18} O and Δ_{47} 301 values at temperatures above 100°C. Note that Kim and O'Neil, (1997) and Bonifacie et al., (2017) 302 calibrations were developed independently, which prevents circular reasoning. Finally, as Kim and 303 O'Neil, (1997) is the most used calcite calibration to date, it also allows for a broader comparison with 304 previously published results. 305

Despite the fact that the data present a large range of offsets from equilibrium (Fig. 5), the mean 306 $\delta^{18}O_{water}$ value calculated using Eq. 2 for each combination of Δ_{47} and $\delta^{18}O_{carbonate}$ values measured for 307 our carbonates is -8.0±2.8‰ (1SD), indistinguishable (*i.e.* within errors) from the δ^{18} O_{water} values 308 measured in our experiments ($-6.4\pm0.2\%$ with CA and $-6.8\pm0.2\%$ without CA; Fig. 5). Note that such 309 precision in $\delta^{18}O_{water}$ values found in disequilibrium carbonates is remarkable considering that even for 310 equilibrium carbonates at isotopic equilibrium for both δ^{13} C and δ^{18} O, δ^{18} O_{water} can only be retrieved 311 from paired Δ_{47} and δ^{18} O_{carbonate} values with a precision of $\pm 1\%$ at best (see Supplementary information). 312 This opens the promising opportunity to retrieve the δ^{18} O value of the water in which carbonates 313 precipitated out of equilibrium for both $\delta^{18}O_{carbonate}$ and Δ_{47} . 314

In order to evaluate the applicability of such an approach to other types of carbonates, Fig. 6 compiles disequilibrium paired $\delta^{18}O_{carbonate}$ and Δ_{47} data from two previously published experimental studies (Tang et al., 2014; Staudigel et al., 2018). These studies were chosen to further evaluate the relevancy of our $\delta^{18}O_{carbonate}$ - Δ_{47} correlation because they are the only published dataset reporting full sets of *measured (rather than calculated)* $\delta^{18}O_{water}$, $\delta^{18}O_{carbonate}$ and Δ_{47} values, with *one or both proxies* 320 *showing disequilibrium*, together with precipitation temperatures. A perfect knowledge (*i.e.*

321 measurements and not estimates) of these four parameters is mandatory here to adequately test whether the use of our new $\delta^{18}O_{water}$ proxy could be generalized to a large diversity of carbonates. This thus 322 precludes plotting in Fig. 6 most published Δ_{47} studies on both natural and experimental samples, in 323 which $\delta^{18}O_{water}$ and/or temperature were not directly measured. These two datasets are also recent 324 325 enough to allow the conversion of their Δ_{47} values to the currently used normalization method (*i.e.* the CDES absolute reference frame). It will then allow comparison with future studies, if measuring and 326 reporting all these four parameters together become the rule rather than the exception in Δ_{47} studies. Fig. 327 6a shows paired δ^{18} O_{carbonate} and Δ_{47} values of abiotic carbonates produced at 5, 25 and 40°C that are 328 known to be affected by KIF due to fast precipitation and for at least two of them by KIF due to CO_2 329 hydration/hydroxylation prior to precipitation (Tang et al., 2004). Except for these two carbonate 330 samples, the data align on a Δ_{47} versus $\delta^{18}O_{carbonate}$ covariation curve that cannot be explained solely by 331 temperature variation. As for our microbial carbonates obtained with or without CA, the average 332 calculated $\delta^{18}O_{water}$ (Eq. 2; -11.2±1.5‰) matches within error with the measured $\delta^{18}O_{water}$ (-9.6±0.2‰) 333 (Dietzel et al., 2009). 334

Fig. 6b shows paired $\delta^{18}O_{carbonate}$ and Δ_{47} values of abiotic carbonates that were precipitated during an initial CO₂ degassing + equilibration phase followed by solely equilibration with water at 5, 15 and 25°C (Staudigel et al., 2018). During the latter equilibration phase, even though the carbonates precipitated out of isotopic equilibrium, the paired $\delta^{18}O_{carbonate}$ and Δ_{47} values align on a covariation curve of average calculated $\delta^{18}O_{water}$ value (Eq. 2; -3.0±1.1‰) close to the measured $\delta^{18}O_{water}$ (-0.65‰). As a major outcome of this study, we thus anticipate that reliable $\delta^{18}O_{water}$ values of precipitation water can be retrieved from carbonates presenting Δ_{47} and $\delta^{18}O_{carbonate}$ values in strong disequilibrium. 342 Some data presented in Fig. 6 also permit to evaluate the conditions of applicability of our approach. In Fig. 6a, the two data points deviating from the Δ_{47} versus $\delta^{18}O_{carbonate}$ covariation curve 343 correspond to carbonates precipitated at pH ~10 and 5°C (while the others formed at pH and 344 temperatures ranging from 8.3 to 9 and 5 to 40°C, respectively) that have recorded a KIF due to CO₂ 345 hydration/hydroxylation prior to precipitation (Tang et al., 2014). At pH=10, CO₂ reacts at 95% with 346 OH⁻ and at 5°C, DIC isotopic equilibration with water takes days. To a lesser extent, the KIF induced by 347 CO_2 hydroxylation seems also visible at pH= 9 (and 40°C) where CO_2 reacts at 82% with OH⁻ but DIC 348 isotopic equilibration with water at 40°C only takes about 15 hours. As previously detailed, the direction 349 350 of these isotopic offsets from equilibrium is compatible with ab initio calculations (Guo, Ms, 2009) and can be intuitively understood as follows: in carbonates derived from CO₂ hydroxylation, the $R^{X}_{stochastic}$ 351 term used for the Δ_{47} calculation (Eq. 1) should be strongly modified as the ¹⁸O concentration in OH⁻ and 352 H_2O is lower than in CO_2 and the reaction does not add more ¹³C than what is present in CO_2 . This 353 might explain why in the case of disequilibria acquired through CO₂ hydroxylation, the correlation 354 between paired δ^{18} O and Δ_{47} disequilibria and the precipitation water δ^{18} O is not preserved and δ^{18} O_{water} 355 cannot be reconstructed by the approach proposed here. The negative slope associated with this KIF on 356 the Δ_{47} and $\delta^{18}O_{carbonate}$ diagram (Fig. 6a) is nevertheless a good tool to identify CO₂ hydroxylation 357 reactions. 358

In Fig. 6b, during the CO₂ degassing phase of the precipitation experiment (Staudigel et al., 2018), the data also deviate from the δ^{18} O versus Δ_{47} covariation curve. This behavior was interpreted by the authors as a decoupling between Δ_{47} and δ^{18} O_{carbonate} values due to variable kinetics of ¹²C-O and ¹³C-O bounding. A known difference in equilibration kinetics takes place between C and O isotopes in the carbonate system as carbon isotopes equilibrate in seconds, while oxygen isotopes necessitate minutes to hour to equilibrate among the different oxygen-bearing species (*i.e.* CO₂, HCO₃⁻, CO₃²⁻, H₂O, OH⁻), depending on the pH, temperature and salinity of the solution (Zeebe and Wolf-Gladrow, 2001). However, note that in that experiment, the carbon isotope compositions evolved for several hours as a result of CO₂ degassing (Staudigel et al., 2018). We propose here that CO₂ degassing, because it affects both C and O isotopes, modifies the $R^{X}_{stochastic}$ term (in Eq. 1), thus preventing Δ_{47} and δ^{18} O to vary with the proportionality that allows to retrieve the $\delta^{18}O_{water}$ value on a Δ_{47} versus $\delta^{18}O$ covariation plot. Hence, as for CO₂ hydroxylation, in case of a KIF induced by CO₂ degassing, $\delta^{18}O_{water}$ cannot be reconstructed exclusively from disequilibrium $\delta^{18}O_{carbonate}$ and Δ_{47} values.

In summary, we conclude that mechanisms that can drastically change the $R^{X}_{stochastic}$ term in Δ_{47} 372 calculation (such as CO₂ hydroxylation and degassing) prevent δ^{18} O_{water} reconstructions from paired 373 disequilibrium Δ_{47} and δ^{18} O_{carbonate} values. Nevertheless, these mechanisms lead to peculiar types of 374 carbonates (i.e. speleothems that form in caves from CO₂ degassing, and travertine that form on lands 375 376 where fluids and gas escape from subsurface reservoirs for CO₂ hydroxylation) that represent only a small fraction of all the carbonates existing on Earth. We hypothesize that ureolysis, which consists in 377 two successive steps of urea hydrolysis, an exchange reaction with the H₂O molecule from the aqueous 378 medium, might give a DIC whose $R^{X}_{stochastic}$ term in Δ_{47} calculation is already close to that of a DIC 379 under equilibration with the δ^{18} O_{water}. This would explain why even our most extreme out of equilibrium 380 carbonates still fall close to the Δ_{47} versus $\delta^{18}O_{carbonate}$ covariation line corresponding to the real $\delta^{18}O_{water}$ 381 382 value.

383

384 **3.5** Toward a better understanding of body water δ^{18} O in biomineralizing organisms

The ability to reconstruct precipitation water $\delta^{18}O_{water}$ from disequilibrium Δ_{47} and $\delta^{18}O_{carbonate}$ values further allows to examine the origin of the vital effect observed in organisms for which (i) CO₂ degassing and hydration/hydroxylation KIF can be ruled out, and (ii) only small $\delta^{13}C$ variations are

388	observed, thus preserving the $R^{X}_{stochastic}$ term in Δ_{47} calculation. We hypothesize that such an approach
389	could open perspectives to understand how Δ_{47} and $\delta^{18}O$ signals are affected by kinetic effects in most of
390	the biogenic carbonates, provided that CO ₂ hydroxylation or degassing do not occur prior to carbonate
391	precipitation. This approach could thus be applied to the vast majority of sedimentary carbonates
392	(Milliman et al., 1993) and since deep time (<i>i.e.</i> microbialites, brachiopods, bryozoans, bivalves,
393	for a minifera, coccoliths), even when $\delta^{18}O_{carbonate}$ variations occur in the shell of the organism.
394	Additionally, the data presented here stand as an experimental demonstration that the mechanisms
395	controlling carbonate δ^{18} O equilibration with water (<i>i.e.</i> DIC equilibration with water) also control solid
396	carbonate Δ_{47} equilibrium (Watkins et al., 2015). This result can be used to recover information on
397	biomineralization mechanisms. For example, in recent coccolithophorid Emiliana huxleyi culture
398	experiments, the calcitic shell produced by the organism systematically yields a 2‰ positive δ^{18} O offset
399	from equilibrium values while their Δ_{47} values seem to faithfully record precipitation temperature (Katz
400	et al., 2017). These coccolithophorids were grown in waters with different $\delta^{18}O_{water}$ compositions (<i>i.e.</i>
401	measured at -6.14, -5.82 and 0.65‰ VSMOW, that are respectively seawater A, B and C in Fig. 6c).
402	Based on our results, which demonstrate that no δ^{18} O disequilibrium should be recorded in solid
403	carbonates if the associated Δ_{47} is at equilibrium, we can assume that the coccoliths precipitated at
404	oxygen-isotope equilibrium and calculate from Eq. 2 the actual δ^{18} O value of the water in which
405	precipitation took place (respectively shifted by $1.0\pm0.2\%$, $2.1\pm0.4\%$ and $1.1\pm0.7\%$ towards more
406	positive values compared to the $\delta^{18}O_{water}$ value measured for the culture medium water; Fig. 6c). This
407	could reflect a biologically-driven difference between the $\delta^{18}O$ of body water at the precipitation site
408	inside <i>E. huxleyi</i> and the δ^{18} O of ambient water (<i>i.e.</i> the culture medium water). This hypothesis is
409	supported by what is known about intracellular precipitation of coccolith performed by
410	coccolithophorids: each coccolith forms from the accumulation of coccolithosomes, which are vesicles

411 containing up to a dozen of 7 nm spherical calcium-rich granular units (Outka and Williams, 1971).

412 Water in these ~100 nm vesicles can be considered as a finite reservoir whose isotopic composition

413 could be modified through isotopic exchange with a DIC affected by metabolic isotope fractionation.

Another mechanism that could increase the δ^{18} O value of a finite water reservoir by equilibrating it with a comparable reservoir of DIC would be the introduction of DIC systematically as CO₂. As HCO₃⁻ and CO₃²⁻ are enriched in ¹⁶O in comparison to CO₂, the CO₂ conversion to HCO₃⁻ and CO₃²⁻ at equilibrium before precipitation would pump ¹⁶O from water.

In both case scenarios, a local change in water isotopic composition requires that the water 418 419 molecules turnover (*i.e.* external inputs) in these cellular organites is slow enough. Coccolithosomes are subunits of the Golgi complex, which is a system of flat stacked vesicles concentrating a lot of 420 membranes in a small location (Outka and Williams, 1971). It is thus plausible that in a single celled 421 422 organism, living in seawater and performing intracellular biomineralization, specific osmolarity and water circulation regulation mechanism are occurring. It is particularly plausible in the Golgi complex, 423 whose water content is isolated from seawater by several membranes. We thus suggest that inside 424 coccolithosomes, coccoliths precursors precipitate in equilibrium with the body water for oxygen 425 isotopes, but that the body water has a different δ^{18} O value than the seawater, which explains the 426 observed δ^{18} O apparent fractionation while their Δ_{47} composition reflects culture temperature (Katz et 427 al., 2017). It has already been highlighted through geochemical analysis of coccoliths, that 428 coccolithosomes water has altered pH (Liu et al., 2018) and ion concentrations (Hermoso et al., 2017) in 429 comparison to seawater. We hypothesize that the internal δ^{18} O water would thus be another parameter 430 431 controlled by the coccolithophore algae.

433 **3.6** Ubiquity of the observed $\delta^{18}O_{carbonate}$ - $\delta^{18}O_{water}$ - Δ_{47} -temperature covariations in both 434 equilibrium *and* disequilibrium carbonates

As shown above, in a Δ_{47} versus $\delta^{18}O_{carbonate}$ diagram, disequilibrium carbonates precipitated at fixed 435 temperature plot on the theoretical line of equilibrium carbonates precipitated with a similar δ^{18} O_{water} but 436 at a different temperature. This is illustrated in Fig. 7 where the three disequilibrium data series studied 437 438 in this paper (Fig. 5 for this study and Figs. 6a and b for datasets from Tang et al., (2014) and Staudigel et al., (2018)) align with equilibrium data series. In other words, the values of the disequilibrium 439 1000ln $\alpha_{carbonate-water}$ for oxygen isotopes (with $\alpha = \frac{\delta^{18}O_{carbonate} + 1000}{\delta^{18}O_{water} + 1000}$) are similar to the equilibrium 440 1000ln $\alpha_{carbonate-water}$ for any given, and independently determined, apparent Δ_{47} temperature (Fig. 7). In 441 details, our closest to equilibrium data recording low apparent temperatures match better the predicted 442 443 equations from Coplen, (2007) and Watkins et al., (2013), recently updated (Daëron et al., 2019). This latter calibration is based on carbonates from two caves where calcite precipitate extremely slowly and is 444 thus assumed to have precipitated at equilibrium. Note that the use of these two cave samples for 445 determining the dependence to temperature of the equilibrium $1000 \ln \alpha_{carbonate-water}$ relies on the 446 447 assumption that constant environmental conditions, including temperature in the two caves (7.9 and 33.7°C) and the $\delta^{18}O_{water}$ value of the precipitation water, prevailed over the whole period of carbonate 448 precipitation (Coplen, 2007; Kluge et al., 2014). In Fig. 7, the disequilibrium data recording high 449 450 apparent temperatures (above 100°C) match better the predicted equation of Kim and O'Neil, (1997). This $1000 \ln \alpha_{carbonate-water}$ dependence to temperature was established on carbonates precipitated in the 451 laboratory at well-known $\delta^{18}O_{water}$ and temperatures (from 10 to 40°C), but suspected to present a small 452 453 KIF due to a high precipitation rate that lowers the value of the $1000 \ln \alpha_{carbonate-water}$ (Watkins et al., 2013). Despite this, we used this equation to retrieve the $\delta^{18}O_{water}$ from our experimental carbonates, 454 455 because most of them are associated with high apparent Δ_{47} temperatures. Coplen, (2007) or Watkins et

456 al., (2013) equations would have return 2‰ lower values (ca. -10±2‰ compared to -8±3‰ calculated 457 with Kim and O'Neil (1997) equation). From our results, due to our experimental condition and the 458 associated error in our dataset, it is not possible and not our intention to argue in favor of one of these 459 calibrations. This however shows how crucial it is to improve knowledge on the equilibrium 460 1000ln $\alpha_{carbonate-water}$ at both high and low temperatures in order to improve the accuracy and precision of 461 our new proxy for reconstructing the $\delta^{18}O_{water}$ from which carbonates, even disequilibrium ones, 462 precipitated.

Importantly, we here establish a new method to determine the equilibrium $1000 \ln \alpha_{carbonate-water}$, 463 which consists in using the kinetics of Δ_{47} and δ^{18} O covariations during (dis)equilibration. Notably, 464 because of the very large range of apparent temperatures recorded by disequilibrium carbonates 465 (between ~40 and 200°C; Fig. 7) this method could be particularly adapted to calibrate 1000ln $\alpha_{carbonate}$ -466 water at high temperatures for which the differences between the two most popular $1000 \ln \alpha_{carbonate-water}$ 467 468 dependence to temperature equations (Kim and O'Neil, 1997; Coplen, 2007) appear larger (Fig. 7). 469 Unfortunately, none of the three experimental setups having produced these disequilibrium carbonates 470 (this study, as well as Tang et al., 2014 and Staudigel et al., 2018) were designed for the purpose of calibrating the equilibrium $1000 \ln \alpha_{carbonate-water}$. It is thus not possible using these datasets to propose a 471 472 meaningful calibration. At least in our experiment, too many phenomena including the relatively high precipitation rate, variations in δ^{13} C values (~3‰) (Thaler et al., 2017), and the presence of traces of 473 474 aragonite and vaterite in our carbonates (Supplementary Information) lower the accuracy of the reconstructed equilibrium $1000 \ln \alpha_{carbonate-water}$ values. 475

As a broader perspective, we anticipate that such an approach will help in determining critical equilibrium fractionation factors for other gaseous isotopic systems (such as isotopologues of molecules containing S-O bounds) or minerals of prime interest in biology and geology if clumped isotopes

479 measurements expand further beyond gaseous mass spectrometry (*e.g.* bounding between Fe-O, Fe-S,
480 Ca-C).

481

482 **4.** Conclusions

Our experimental results show that the information held in disequilibrium (and apparent disequilibrium) 483 carbonates is diverse and promising. First, a paired Δ_{47} and $\delta^{18}O_{carbonate}$ disequilibrium indicates that 484 carbonates have precipitated in a dynamic environment where DIC and water did not reach isotopic 485 equilibrium. In our microbial carbonate experiments, all the DIC is produced in isotopic disequilibrium 486 487 with water and precipitates rapidly. Accordingly, the disequilibrium O isotope compositions recorded in those carbonates are maximized compared to what can be expected in nature where newly produced DIC 488 is expected to be mixed with at least partly equilibrated ambient DIC before carbonates precipitate. 489 Second, the combined use of clumped and traditional oxygen isotopic compositions allows retrieving the 490 δ^{18} O of the precipitation water, *i.e.* organism body water or environmental water, even for carbonates 491 presenting δ^{18} O and/or Δ_{47} disequilibria or apparent disequilibria. Hence, except in the case of processes 492 such as CO₂ degassing and CO₂ hydration/hydroxylation, which likely modify the $R^{X}_{stochastic}$ term in Δ_{47} 493 calculation, paired Δ_{47} and $\delta^{18}O_{carbonates}$ disequilibria in carbonates can be used to reconstruct the 494 495 oxygen-isotope composition of both DIC and water at the precipitation loci even when precipitation occurred under disequilibrium conditions. Third, the (dis)equilibration trend in a Δ_{47} versus $\delta^{18}O_{carbonates}$ 496 covariation diagram can be used as a new method to determine the equilibrium fractionation factor 497 498 between carbonate and water for a wide range of temperatures. Altogether, this open up new avenues to better constrain not only past climate changes through improved paleoenvironmental reconstructions but 499 also the physiology and habitat of sea-life sensitive to ocean acidification. 500

502	Data availability. All the data generated and analyzed in this study are available within the paper and in
503	its Supplementary Information.
504	
505	Author contributions
506	C.T. and A.K. conceived the research. C.T. performed the microbial precipitation experiment and the
507	δ^{13} C and δ^{18} O analyses during her PhD thesis under M.A. and B.M. supervision. A.K. performed the Δ_{47}
508	analyses during her PhD thesis under M.B. supervision. C.T. took the lead in the interpretation of the
509	results and the writing of the original draft. All authors provided critical feedback and helped shaping
510	the research, analyses and manuscript.
511	
512	Competing interests The authors declare no competing financial interests.
513	
514	Acknowledgements
515	This research was supported by French MRT PhD fellowships to C T and A K the Centre de Recherches
	This resource was supported by Trenen Witt This renowships to C.T. and T.R., the Contro de Recherches
516	sur le Stockage Géologique du CO ₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an
516 517	sur le Stockage Géologique du CO ₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an Emergence grant from the Paris council to M.B. This study contributes to the IdEx Université de Paris
516 517 518	sur le Stockage Géologique du CO ₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an Emergence grant from the Paris council to M.B. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.
516 517 518 519	sur le Stockage Géologique du CO ₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an Emergence grant from the Paris council to M.B. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.
516 517 518 519 520	sur le Stockage Géologique du CO ₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an Emergence grant from the Paris council to M.B. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. References
516 517 518 519 520 521	 sur le Stockage Géologique du CO₂ (IPGP-TOTAL-Schlumberger-ADEME) (B.M. and M.A.) and an Emergence grant from the Paris council to M.B. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. References Affek, P. A., Bar-Matthews, M., Ayalon, A., Matthews, A. & Eiler, J. M.: Glacial/interglacial

Geochim. Cosmochim. Acta 72, 5351–5360, https://doi.org/10.1016/j.gca.2008.06.031, 2008. 523

- 524 Affek, H. P.: Clumped isotopic equilibrium and the rate of isotope exchange between CO₂ and
- 525 water. Am. J. Sci. **313**, 309–325, doi: 10.2475/04.2013.02, 2013.
- 526 Affek, H. P. Matthews, A., Ayalon, A., Bar-Matthews, M., Burstyn, Y., Zaarur, S., & Zilberman, T.:
- 527 Accounting for kinetic isotope effects in Soreq Cave (Israel) speleothems. *Geochim. Cosmochim.*
- 528 *Acta* **143**, 303–318, https://doi.org/10.1016/j.gca.2014.08.008, 2014.
- Affek, H. P. & Zaarur, S.: Kinetic isotope effect in CO₂ degassing: Insight from clumped and oxygen
 isotopes in laboratory precipitation experiments. *Geochim. Cosmochim. Acta* 143, 319–330,
- 531 https://doi.org/10.1016/j.gca.2014.08.005, 2014.
- 532 Bajnai, D., Fiebig, J., Tomašových, A., Garcia, S. M., Rollion-Bard, C., Raddatz, J., Löffler, N., Primo-
- Ramos, C. & Brand, U.: Assessing kinetic fractionation in brachiopod calcite using clumped
 isotopes. *Sci. Rep.* 8, 533, https://doi.org/10.1038/s41598-017-17353-7, 2018.
- Beck, W. C., Grossman, E. L. & Morse, J. W.: Experimental studies of oxygen isotope fractionation in
 the carbonic acid system at 15, 25, and 40 °C. *Geochim. Cosmochim. Acta* 69, 3493–3503,
- 537 https://doi.org/10.1016/j.gca.2005.02.003, 2005.
- 538 Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A.,
- Jaggi, M., Meckler, A. N., Millan, I., & Ziegler, M. Reducing uncertainties in carbonate clumped
- 540 isotope analysis through consistent carbonate-based standardization. *Geochem. Geophy. Geosy.* **19**,
- 541 2895-2914, https://doi.org/10.1029/2017GC007385, 2018.
- 542 Bonifacie, M. Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., Agrinier, P., Katz,
- 543 A., Passey, B. H., Ferry, J. M., & Bourrand, J. J.:: Calibration of the dolomite clumped isotope
- thermometer from 25 to 350° C, and implications for a universal calibration for all (Ca, Mg, Fe)CO₃
- 545 carbonates. *Geochim. Cosmochim. Acta* **200**, 255–279, https://doi.org/10.1016/j.gca.2016.11.028,
- 546 2017.

- 547 Brand, W. A., Assonov, S. S. & Coplen, T. B.: Correction for the ¹⁷O interference in δ^{13} C measurements
- 548 when analyzing CO₂ with stable isotope mass spectrometry (IUPAC Technical Report). *Pure Appl.*

549 *Chem.* **82**, 1719–1733, https://doi.org/10.1351/PAC-REP-09-01-05, 2010.

- 550 Burgener, L. K., Huntington, K. W., Sletten, R., Watkins, J. M., Quade, J., & Hallet, B.: Clumped
- isotope constraints on equilibrium carbonate formation and kinetic isotope effects in freezing
- soils. *Geochim. Cosmochim. Acta* **235**, 402–430, https://doi.org/10.1016/j.gca.2018.06.006, 2018.
- 553 Clark, I. D., Fontes, J. C. & Fritz, P.: Stable isotope disequilibria in travertine from high pH waters:
- laboratory investigations and field observations from Oman. *Geochim. Cosmochim. Acta* 56, 2041-
- 555 2050, https://doi.org/10.1016/0016-7037(92)90328-G, 1992.
- Clog, M., Stolper, D. & Eiler, J. M.: Kinetics of CO₂ (g)–H₂O (1) isotopic exchange, including mass 47
 isotopologues. *Chem. Geol.* 395, 1–10, https://doi.org/10.1016/j.chemgeo.2014.11.023, 2015.
- 558 Coplen, T. B.: Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada,
- a natural laboratory. *Geochim. Cosmochim. Acta* **71**, 3948–3957,
- 560 https://doi.org/10.1016/j.gca.2007.05.028, 2007.
- 561 Daëron, M., Blamart, D., Peral, M. & Affek, H. P.: Absolute isotopic abundance ratios and the accuracy
- of Δ₄₇ measurements. *Chem. Geol.* 442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014,
 2016.
- 564 Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F. &
- Zanchetta, G.: Most Earth-surface calcites precipitate out of isotopic equilibrium. *Nat. Commun.* 10,
 429, https://doi.org/10.1038/s41467-019-08336-5, 2019.
- 567 Dassié E. Genty, D., Noret, A., Mangenot, X., Massault, M., Lebas, N., Duhamel, M., Bonifacie, M.,
- 568 Gasparrini, M., Minster B., and Michelot, J.L.: A newly designed analytical line to examine the

- 569 reproducibility of fluid inclusion isotopic compositions in small carbonate samples. *Geochem.*
- 570 *Geophy. Geosy.* **19**, 1107-1122. https://doi.org/10.1002/2017GC007289, 2018.
- 571 Dennis, K. J., Affek, H. P. & Schrag, D.: Defining an absolute reference frame for 'clumped' isotope
- 572 studies of CO₂. *Geochim. Cosmochim. Acta* **75**, 7117–7131,
- 573 https://doi.org/10.1016/j.gca.2011.09.025, 2011.
- 574 Dietzel, M., Tang, J., Leis, A. & Köhler, S. J.: Oxygen isotopic fractionation during inorganic calcite
- precipitation—Effects of temperature, precipitation rate and pH. Chem. Geol. 268, 107–115,
- 576 https://doi.org/10.1016/j.chemgeo.2009.07.015, 2009.
- 577 Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry. *Quat. Sci.*
- 578 *Rev.* **30**, 3575–3588, https://doi.org/10.1016/j.quascirev.2011.09.001, 2011.
- 579 Falk, E. S., Guo, W., Paukert, A. N., Matter, J. M., Mervine, E. M. & Kelemen, P. B.: Controls on the
- stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from
- clumped isotope measurements. *Geochim. Cosmochim. Acta* **192**, 1-28,
- 582 https://doi.org/10.1016/j.gca.2016.06.026, 2016.
- 583 Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J., Looser, N., & Bernasconi, S. M. A
- reassessment of the precision of carbonate clumped isotope measurements: Implications for
- calibrations and paleoclimate reconstructions. *Geochem.*, *Geophy.*, *Geosystems* **18**, 4375–4386,
- 586 https://doi.org/10.1002/2017GC007106, 2017.
- 587 Fiebig, J., Bajnai, D., Löffler, N., Methner, K., Krsnik, E., Mulch, A., & Hofmann, S. Combined high-
- precision $\triangle 48$ and $\triangle 47$ analysis of carbonates. *Chem. Geol.*, **522**, 186-191,
- 589 https://doi.org/10.1016/j.chemgeo.2019.05.019, 2019.

- 590 Ghosh, P., Adkins, J., Affek H., Balta B., Guo W., Schauble E., Schrag D., & Eiler J.: ¹³C–¹⁸O bonds in
- carbonate minerals: a new kind of paleothermometer. *Geochim. Cosmochim. Acta* 70, 1439–1456,
 https://doi.org/10.1016/j.gca.2005.11.014, 2006.
- 593 Green, M. & Taube, H.: Isotopic fractionation in the OH–H₂O exchange reaction. J. Phys. Chem. 67,
- 594 1565–1566, https://doi.org/10.1021/j100801a507, 1963.
- Guo, W. Carbonate clumped isotope thermometry: application to carbonaceous chondrites and effects of
 kinetic isotope fractionation. Ph. D. thesis, California Institute of Technology, 261 p. (2009).
- 597 Guo, W., Mosenfelder, J. L., Goddard, W. A. III & Eiler, J. M.: Isotopic fractionations associated with
- 598 phosphoric acid digestion of carbonate minerals: insights from first principles theoretical modeling
- and clumped isotope measurements. *Geochim. Cosmichim. Acta* **73**, 7203–7225,
- 600 https://doi.org/10.1016/j.gca.2009.05.071, 2009.
- 601 Henkes, G. A. Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T. E., & Pérez-Huerta, A.:
- 602 Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate
- 603 clumped isotope thermometry. *Earth Planet. Sci. Lett.* **490**, 40–50,
- 604 https://doi.org/10.1016/j.epsl.2018.02.001, 2018.
- 605 Hermoso, M., Lefeuvre, B., Minoletti, F., de Rafélis, M.: Extreme strontium concentrations reveal
- specific biomineralization pathways in certain coccolithophores with implications for the Sr/Ca
- paleoproductivity proxy. *PLoS ONE* 12, e0185655, https://doi.org/10.1371/journal.pone.0185655,
 2017.
- 609 Katz, A., Bonifacie, M., Hermoso, M., Cartigny, P. & Calmels, D.: Laboratory-grown coccoliths exhibit
- 610 no vital effect in clumped isotope (Δ_{47}) composition on a range of geologically relevant
- 611 temperatures. *Geochim. Cosmochim. Acta* **208**, 335–353, https://doi.org/10.1016/j.gca.2017.02.025,
- 612 2017.

- 613 Kelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C. & Lechler, A. R.: Toward a universal
- 614 carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single
- 615 temperature relationship. *Geochim. Cosmochim. Acta* **197**, 104–131,
- 616 https://doi.org/10.1016/j.gca.2016.10.010, 2017.
- 617 Kim, S. T. & O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic
- 618 carbonates. *Geochim. Cosmochim. Acta* **61**, 3461–3475, https://doi.org/10.1016/S0016-
- 619 7037(97)00169-5, 1997.
- 620 Kluge, T., Affek, H. P., Dublyansky, Y. & Spötl, C.: Devils Hole paleotemperatures and implications for
- 621 oxygen isotope equilibrium fractionation. *Earth Planet. Sci. Lett.* **400**, 251-260,
- 622 https://doi.org/10.1016/j.epsl.2014.05.047, 2014.
- Krajewska, B. Ureases I. Functional, catalytic and kinetic properties: A review. *J. Mol. Catal.kel B: Enzymatic*, **59**, 9-21, https://doi.org/10.1016/j.molcatb.2009.01.003, 2009.
- Krebs, H. A., & Roughton, F. J. W. Carbonic anhydrase as a tool in studying the mechanism of reactions
 involving H₂CO₃, CO₂ or HCO₃⁻. *Biochem. J.*, 43, 550, https://doi.org/10.1042/bj0430550, 1948.
- Létolle, R., Gegout, P., Gaveau, B. & Moranville-Regourd, M.: Isotope fractionation of 18O during
 precipitation of carbonates at very high pH. *C. R. Acad. Sci. II* **310**, 547–552, 1990b.
- 629 Liu, Y. W., Eagle, R. A., Aciego, S. M., Gilmore, R. E. & Ries, J. B.: A coastal coccolithophore
- 630 maintains pH homeostasis and switches carbon sources in response to ocean acidification. *Nat.*
- 631 *Commun.* **9**, 2857, https://doi.org/10.1038/s41467-018-04463-7, 2018.
- 632 Loyd, S. J. Sample, J., Tripati, R. E., Defliese, W. F., Brooks, K., Hovland, Torres M., Marlow, J.,
- 633 Hancock, L.G., Martin, R. & Lyons, T.: Methane seep carbonates yield clumped isotope signatures
- out of equilibrium with formation temperatures. *Nat. Commun.* **7**, 12274,
- 635 https://doi.org/10.1038/ncomms12274, 2016.

- 636 Mangenot, X., Bonifacie, M., Gasparrini, M., Götz, A., Chaduteau, C., Ader, M., & Rouchon, V.:
- 637 Coupling Δ_{47} and fluid inclusion thermometry on carbonate cements to precisely reconstruct the
- temperature, salinity and δ^{18} O of paleo-groundwater in sedimentary basins. *Chem. Geol.* **472**, 44–
- 639 57, https://doi.org/10.1016/j.chemgeo.2017.10.011, 2017.
- 640 Mangenot X., Gasparrini M., Rouchon V., Bonifacie M. Basin-scale thermal and fluid-flow histories
- revealed by clumped isotope (D47) Middle Jurassic reservoirs of the Paris Basin. *Sedimentology*65, 123-150. DOI: 10.1111/sed.12427, (2018a).
- 643 Mangenot X., Gerdes A., Gasparrini M., Bonifacie M., Rouchon V. An emerging thermo-chronometer
- 644 for carbonate-bearing rocks : $\Delta 47/(U-Pb)$. *Geology* **46**, 1067-1070. Doi:10.1130/G45196.1, (2018b).
- 645 Matsuzaki, Y. Yamada, H., Chowdhury, F. A., Higashii, T., Kazama, S., & Onoda, M.: Ab initio study
- of CO₂ capture mechanisms in monoethanolamine aqueous solution: reaction pathways from
- 647 carbamate to bicarbonate. *Energy Procedia* **37**, 400–406,
- 648 https://doi.org/10.1016/j.egypro.2013.05.124, 2013.
- 649 Milliman, J. D.: Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady
- 650 state. *Global Biogeochemical Cycles*, **7**, 927-957, https://doi.org/10.1029/93GB02524, 1993.
- Millo, C. Dupraz, S., Ader, M., Guyot, F., Thaler, C., Foy, E., & Ménez, B.: Carbon isotope
- 652 fractionation during calcium carbonate precipitation induced by ureolytic bacteria. *Geochim*.
- 653 *Cosmochim. Acta* **98**, 107–124, https://doi.org/10.1016/j.gca.2012.08.029, 2012.
- Mobley, H. L., & Hausinger, R. P.. Microbial ureases: significance, regulation, and molecular
 characterization. *Microbiol. Mol. Biol. R.*, 53, 85-108, 1989.
- 656 Outka, D. E., & Williams, D. C.: Sequential coccolith morphogenesis in *Hymenomonas carterae*. J.
- 657 *Protozool.* **18**, 285–297, https://doi.org/10.1111/j.1550-7408.1971.tb03319.x, 1971.

- Rollion-Bard, C., Chaussidon, M. & France-Lanord, C.: pH control on oxygen isotopic composition of
 symbiotic corals. *Earth Planet. Sci. Lett.* 215, 275–288, https://doi.org/10.1016/S0012821X(03)00391-1, 2003.
- 661 Saenger, C. Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., & Holcomb, M.: Carbonate clumped
- isotope variability in shallow water corals: Temperature dependence and growth-related vital
- 663 effects. *Geochim. Cosmochim. Acta* **99**, 224–242, https://doi.org/10.1016/j.gca.2012.09.035, 2012.
- Schauer A. J., Kelson J. R., Saenger C. and Huntington K. W. Choice of 17O correction affects clumped
 isotope (D47) values of CO2 measured with mass spectrometry. *Rapid Commun. Mass Spectrom.*
- 666 **30**, 2607–2616, doi: 10.1002/rcm.7743, 2016.
- 667 Spooner, P. T. Guo, W., Robinson, L. F., Thiagarajan, N., Hendry, K. R., Rosenheim, B. E., & Leng, M.
- 568 J.: Clumped isotope composition of cold-water corals: A role for vital effects?. *Geochim*.
- 669 *Cosmochim. Acta* **179**, 123–141, https://doi.org/10.1016/j.gca.2016.01.023, 2016.
- 670 Staudigel, P. T., & Swart, P. K.: A kinetic difference between ¹²C-and ¹³C-bound oxygen exchange rates
- 671 results in decoupled δ^{18} O and Δ_{47} values of equilibrating DIC solutions. *Geochem. Geophys.*
- 672 *Geosystems* **19**, 2371–2383, https://doi.org/10.1029/2018GC007500, 2018.
- Tang, J., Dietzel, M., Fernandez, A., Tripati, A. K. & Rosenheim, B. E.: Evaluation of kinetic effects on
- 674 clumped isotope fractionation (Δ_{47}) during inorganic calcite precipitation. *Geochim. Cosmochim.*
- 675 *Acta* **134**, 120–136, https://doi.org/10.1016/j.gca.2014.03.005, 2014.
- 676 Thaler, C. Millo, C., Ader, M., Chaduteau, C., Guyot, F., & Ménez, B.: Disequilibrium δ^{18} O values in
- 677 microbial carbonates as a tracer of metabolic production of dissolved inorganic carbon. *Geochim*.
- 678 *Cosmochim. Acta* **199**, 112–129, https://doi.org/10.1016/j.gca.2016.10.051, 2017.

Thiagarajan, N., Adkins, J. & Eiler, J.: Carbonate clumped isotope thermometry of deep-sea corals and
implications for vital effects. *Geochim. Cosmochim. Acta* 75, 4416-4425,

681 https://doi.org/10.1016/j.gca.2011.05.004, 2011.

- Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J., Schauble, E. A., Eiler, J. M.,
- Zeebee, R. E., Uchikawa, J., Coplen, T. B., Ries, J. B. & Drew, H.: Beyond temperature: Clumped
- isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on
- 685 carbonate mineral composition. *Geochim. Cosmochim. Acta* **166**, 344–371,
- 686 https://doi.org/10.1016/j.gca.2015.06.021, 2015.
- 687 Urey, H. C., Lowenstam, H. A., Epstein, S. & McKinney, C.R. Measurement of paleotemperatures and
- temperatures of the Upper Cretaceous of England, Denmark, and the south-eastern United States.

689 *Geol. Soc. Am. Bull.* 62, 399–416, https://doi.org/10.1130/0016-

- 690 7606(1951)62[399:MOPATO]2.0.CO;2, 1951.
- 691 Usdowski, E., Michaelis, J., Bottcher, M. E. & Hoefs, J.: Factors for the oxygen isotope equilibrium
- fractionation between aqueous and gaseous CO₂, carbonic-acid, bicarbonate, carbonate, and water
- 693 (19 °C). Z. Phys. Chem. **170**, 237–249, 1991.
- Watkins, J. M., Nielsen, L. C., Ryerson, F. J. & DePaolo, D. J.: The influence of kinetics on the oxygen
 isotope composition of calcium carbonate. *Earth Planet. Sci. Lett.* 375, 349–360,
- 696 https://doi.org/10.1016/j.epsl.2013.05.054, 2013.
- 697 Watkins, J. M. & Hunt, J. D.: A process-based model for non-equilibrium clumped isotope effects in
- 698 carbonates. *Earth Planet. Sci. Lett.* **432**, 152–165, https://doi.org/10.1016/j.epsl.2015.09.042, 2015.
- 699 Zeebe, R. E. & Wolf-Gladrow, D.: CO₂ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier
- 700 Oceanography Book Series, v. 65. 346 pp. 2001
- 701
- 702 Figures & Figure Legends

Figure 1 | Scanning electron microscopy images of the bio-induced carbonates formed with CA (almost
pure calcite and traces of vaterite and aragonite as determined using X-ray diffraction (Thaler et al.,
2017). The fingerprintings of *Sporosarcina pasteurii* cells are visible as black holes (on the left picture
showing a cross-section of carbonate) or as rods and indicated by white arrows.

Figure 2 | Evolution of pH (a) and amount of precipitated calcium carbonate C_{CaCO3} (b) as a function of the production of dissolved inorganic nitrogen DIN (DIN = NH₃+NH₄⁺) by bacteria during ureolysis,

Figure 3 | Strong δ^{18} O and Δ_{47} disequilibria recorded in microbial carbonates as shown by δ^{18} O_{carbonate} 720 (a) and Δ_{47} (b) values of calcium carbonates (CaCO₃) precipitated during bacterial ureolysis at 30°C (with 721 722 and without carbonic anhydrase, CA; open and solid symbols, respectively) as a function of carbonate accumulation (C_{CaCO3}). Black symbols correspond to samples for which both Δ_{47} and δ^{18} O measurements 723 were performed. The grey horizontal lines are equilibrium $\delta^{18}O_{carbonate}$ and Δ_{47} values at 30°C for calcite 724 following Bonifacie et al., (2017) and Kim and O'Neil, (1997) calibrations, respectively. Uncertainties 725 (one standard deviation, 1SD) are smaller than symbol for δ^{18} O and C_{CaCO3} values (Supplementary Table 726 S1). Reported Δ_{47} uncertainties are detailed in Methods and Supplementary Discussion. 727

Figure 4 | $\delta^{18}O_{carbonate}$ and Δ_{47} disequilibria in microbial carbonates induce comparable biased 730 estimates of precipitation temperature as illustrated by apparent temperatures calculated from the 731 carbonate $\delta^{18}O_{carbonate}$ and Δ_{47} signatures as a function of CaCO₃ accumulation. Open and solid symbols 732 733 refer to the experiments with and without CA, respectively. The dashed grey line corresponds to the actual precipitation temperature. Apparent temperatures are respectively calculated from the $\delta^{18}O_{carbonate}$ and Δ_{47} 734 calibrations to temperature of Bonifacie et al., (2017) and Kim and O'Neil, (1997). Reported uncertainties 735 736 were calculated as the propagation of the one standard deviation (1SD) error of the isotopic data in the 737 calibration equations (Supplementary Information).

Figure 5 | Combined $\delta^{18}O_{carbonate}$ and Δ_{47} disequilibria of microbial carbonates precipitated at 30°C 740 allow reconstruction of the δ^{18} O of the water (δ^{18} O_{water}) in which they precipitate. Solid grey curves 741 represent the calculated Δ_{47} and $\delta^{18}O_{carbonate}$ compositions of carbonates precipitated at oxygen isotope 742 equilibrium from water with fixed $\delta^{18}O_{water}$ values (indicated on each curve) and variable temperatures. 743 Horizontal dashed grey lines are calculated for fixed temperatures and variable $\delta^{18}O_{water}$. The average 744 $\delta^{18}O_{water}$ value of -6.6±0.4‰ measured in our experiments is reported using the thick solid grey curve. 745 The solid black curve was obtained using the $\delta^{18}O_{water}$ calculated with Eq. 1 (-8.0±2.8‰) with its 746 747 associated errors (dashed black curves).

- 748
- 749

Figure 6 | Δ_{47} and $\delta^{18}O_{carbonate}$ relationship to precipitation water $\delta^{18}O_{water}$ for other solid carbonates 751 presenting oxygen isotope disequilibria. In (a) to (c) black data series (this study, performed at 30°C) 752 753 shows how kinetic oxygen isotope fractionation in the DIC prior to carbonate precipitation can be mistaking for high temperature isotopic equilibrium. Similarly to Fig. 3, the solid curves were obtained 754 using the $\delta^{18}O_{water}$ calculated with Eq. 1. (a) Abiotic carbonates from Tang et al., (2014) illustrating the 755 effect of CO₂ hydroxylation on Δ_{47} and $\delta^{18}O_{carbonate}$ values (various pH plotted with different colors, 756 various temperatures plotted with different symbols). (b) Abiotic carbonates from Staudigel and Swart, 757 758 (2019) illustrating the effect of CO₂ degassing and DIC oxygen isotope equilibration with water on Δ_{47} and $\delta^{18}O_{carbonate}$ values. $\Delta\delta^{13}C_{carbonate}$ stands for the difference between the $\delta^{13}C$ value measured in 759 carbonates and the final δ^{13} C of the data series at the end of equilibration (various $\Delta\delta^{13}$ C ranges plotted 760 with different colors, various temperatures plotted with different symbols). (c) Coccolithophorid E. 761 huxleyi grown at 7, 10, 15, 20 and 25°C from Katz et al., (2017) showing how coccoliths with equilibrium 762 Δ_{47} values record the equilibrium $\delta^{18}O_{water}$ of their body water, which differs from that of the culture 763 medium (*i.e.* artificial seawaters A, B, and C plotted with different colors). 764

Figure 7 | The relation to temperature of equilibrium oxygen isotope fractionation factor between 768 769 calcium carbonate and water (1000ln $\alpha_{calcite-water}$) appears to be retrievable from solid carbonates (mainly calcites) in strong clumped and oxygen isotope disequilibrium such as our microbial 770 carbonates (black dots, precipitated at 30°C) and two additional data series of laboratory grown carbonates 771 showing disequilibrium fractionation (Tang et al., 2014; Staudigel and Swart, 2019) (green and yellow 772 dots, respectively). The data points affected by CO₂ hydroxylation (Tang et al., 2014) or CO₂ degassing 773 774 (Staudigel and Swart, 2019) (see Fig.6) are not included. Grey symbols correspond to cave carbonates precipitated at or near equilibrium (Coplen, 2007; Daëron et al., 2019) or laboratory experiments (Kim and 775 776 O'Neil, 1997; Watkins et al., 2013). Those grey data series are usually considered as representative of the equilibrium fractionation factor between calcium carbonate and water whose relations to temperature, extrapolated at high temperature, are illustrated by the different dashed curves. Plotted temperatures corresponds to precipitation temperatures except for disequilibrium carbonates for which apparent temperatures have been calculated based on Δ_{47} values. X-axis errors for this study are included in the symbol size. The Y-axis error for all the reconstructed temperature is given on the figure.