

5

Particulate Rare Earth Element behavior in the North Atlantic (GEOVIDE cruise)

Marion Lagarde¹, Nolwenn Lemaitre², Hélène Planquette³, Mélanie Grenier¹, Moustafa Belhadj¹, Pascale Lherminier⁴, Catherine Jeandel¹

¹ LEGOS, University of Toulouse, CNRS, CNES, IRD, UPS, Toulouse, 31400, France

² ETH, Zurich, IGP, Zurich, Switzerland

³ LEMAR, University of Brest, CNRS, IRD, Ifremer, Plouzané, 29280, France

⁴ LOPS, Ifremer, CNRS, IRD, UBO, Ifremer, Plouzané, 29280, France

Correspondence to: Marion Lagarde (marion.lagarde@legos.obs-mip.fr)

- 10 Abstract. Particulate concentrations of the fourteen Rare Earth Elements (PREE), yttrium and 232-thorium have been measured in two hundred samples collected in the epipelagic (ca 0-200 m) and the mesopelagic (ca 200-1000 m) zones of the North Atlantic, during the GEOVIDE cruise (May/June 2014, R/V Pourquoi Pas ?, GEOTRACES GA01). Particulate cerium (PCe) concentrations vary from 0.2 pmol.L⁻¹ to 16 pmol.L⁻¹, particulate neodymium (PNd) ones from 0.09 pmol.L⁻¹ to 6.1 pmol.L-1 and particulate ytterbium (PYb) ones from 0.01 pmol.L⁻¹ to 0.5 pmol.L⁻¹. PREE eoncentrations are higher close to
- 15 the Iberian margin and on the Greenland shelf, where PREE concentrations normalized to Post Archean Australian Shale (PAAS) display a positive Ce anomaly between 0.3 and 3, and a light REE (LREE) enrichment compared to heavy REE (HREE) illustrated by high PNd_N/PYb_N ratios (normalized to PAAS). The lithogenic fraction of the particulate_REE concentration is closely related to the margin morphology and the hydrodynamic context: off the Iberian margin, up to 100% of the PREEs are lithogenic and this lithogenic input spreads westward along isopycnals as intermediate nepheloid layers (INL)
- 20 up to 1700 km away. Lithogenic inputs are also observed along the Greenland and Newfoundland margins, although the circulation stacks them along the coasts. PREE distributions are also controlled by the object of the surface layers remineralization processes deeper. Low surface concentrations and some normalized REE patterns displaying a negative Ce anomaly and HREE enrichment indicate freshly formed biogenic particles. A significant relationship between biogenic silica (BSi) and PHREE is also observed in the diatom blooms occurring in the Labrador and Irminger seas. PHo/PY ratio was

5

calculated in order to identify processes independent of the ionic radius. However, we could not firmly assess the role of the iron hydroxides in the scavenging prates of these elements.

1 Introduction

ine particles are the main way to transfer chemical species to the deep ocean together with the convection of water masses.
 Particles are abundant in the upper ocean, where dust inputs or massive blooms occur in to 1000 µg.L⁻¹), but their
 concentration decrease with depth (5 to 60 µg.L⁻¹) on average in the subsurface and deep ocean, (McCave and Hall, 2002; Stemmann et al., 2002), wever, particles are up to 1000 times more concentrated in elements than the dissolved phase (Lam

Biogeosciences

L, 2015), and especially in trace elements. For example, in the subpolar North Atlantic (GEOTRACES GA01 cruise, the section studied here), particulate Fe (PFe) concentration can reach 50 nmol.L⁻¹ when dissolved Fe (DFe) does not exceed 2.5 nmol.L⁻¹ (Gourain et al., 2019; Menzel Barraqueta et al., 2018; Tonnard et al., 2018). The size spectra between the particulate

35 and the dissolved phase is continuous and the separation between both pools is operational, depending on the porosity of the filters used to discriminate the two phases, usually 0.4 μm (Planquette and Sherrell, 2012). Concentrations then depend on the choice of this limit, even if the vertical flux is mostly due to the large, dense, sinking particles, in opposition to the smaller and less dense particles that are in suspension in the water column. However, these small suspended particles represent over 80%

of the total particle mass (Lam et al., 2015 and references therein). In addition, their higher surface to volume ratios make suspended particles the main drivers of dissolved-particulate exchanges.

- In the ocean, three main sources of particles are distinguishable. The first one is lithogenic, with inputs from the rivers, dust deposits, ice melting and resuspension of deposited sediments. The second one is biogenic, and related to the production of fresh organic matter by photosynthetic activity followed by zooplankton grazing, and the following life cycle. The last one consists in authigenic processes such as red clay, oxides and hydroxides precipitation and formation. All these sources and
- (45) processes lead to a very heterogeneous pool, in time, space and composition, evolving throughout their stay in the ocean and control the density of particles and consequently their fate in the water column. Then, exchanges between the particle and dissolved phases determine the chemistry of seawater and the residence time of the chemical species. They also determine the transfer rate of elements such as carbon and micro-nutrients between the upper layers and the deep ocean, where they are stored for times going from the global circulation scale (500 1000 years) to geological ones.
- 50 Oceanic tracers such as rare earth elements (REE) are truly adapted to the study of these exchanges (Jeandel et al., 1995; Kuss et al., 2001; Tachikawa et al., 1999). Physical and geochemical processes such as aggregation-disaggregation, dissolution, plexation, sorption, mineralization and scavenging lead to a fractionation along the REE series, depending on their origin intensity. Thus, measuring the distribution of REEs between the solid and dissolved phases can help tracing and quantifying these processes.
- 55 The North Atlantic is a key region of the global ocean, as it is the highest oceanic sink of anthropogenic CO₂ (Khatiwala et al., 2013). Indeed, it is together i) a major place of deep water formation, mainly by convection, which drives the Atlantic meridional overturning circulation (AMOC), and ii) a productive area, representing up to 18% of the global oceanic primary production (Sanders et al., 2014).

In this context, we present the first basin scale section of PREE concentrations and fractionation patterns obtained for suspended particles collected in the North Atlantic NA), along the GEOVIDE section (GA01 GEOTRACES cruise), from the surface to 1500 m. We will specifically discuss processes affecting the PREE distribution such as lithogenic inputs from the margins, influence of biological activity and the role of ionic radius on their fate in the water column.

2 Methods

2.1 Study area: hydrographical and biogeochemical context

Samples have been collected in the epipelagic and mesopelagic zones (0 m - 1500 m) during the GEOVIDE cruise (16th of May 2014 to 30th of June 2014, R/V Pourquoi Pas ?) along the transect presented in Fig. 1. This figure also presents the main

- 70 surface currents, as described teails (Zunino et al., 2017) and (García-Ibáñez et al., 2018), together with the three main reochemical provinces identified by Longhurst (1995) and described in details by Lemaitre et al. (2018). The position of stations where PREEs were sampled (Fig. 1) were chosen to be representative of the diversity of biogeochemical provinces and water masses (Fig. 2).
- Warm and salty waters coming from the tropical Atlantic are advected toward the Arctic by the North Atlantic Current (NAC, see Table 1 for abbreviations list). In response to air-sea exchanges and mixing with polar waters, surface waters become colder and fresher, but more importantly, denser. They tend thus to mix with underlying waters, particularly during convecting events triggered by storms. In the Nordic Seas (between 65°N and 80°N), the water column can be ventilated down to the bottom, while convection never exceeds 2000 m in the subpolar gyre. The freshly formed deep water then returns southward mainly via western boundary currents.
- 80 North Atlantic Subtropical (NAST) province is characterized by warm and salty waters (García-Ibáñez et al., 2018; Longhurst, 1995; Reygondeau et al., 2018; Zunino et al., 2017). This province is depleted in nutrients, yet under influence of margin inputs, displayed a declining bloom of cyanobacteria during the cruise (Lemaitre et al., 2018). Stations #1 and #13 were sampled in the NAST. The North Atlantic Drift region (NADR) is located between the NAST and the Reykjanes ridge, with higher nutrient concentrations than in the NAST (Longhurst, 1995). A strong bloom of coccolithophorids, with a
- 85 maximum intensity in the Icelandic basin, occurred during the cruise, generating the highest primary production rate observed on GEOVIDE (1740 molC.m⁻².d⁻¹, station #26, Fonseca-Batista et al., 2019) and high carbon export (up to 80 molC.m⁻².d⁻¹, station #32, Lemaitre et al., 2018). Four open ocean stations were sampled in this province: in the northern branch of the NAC (station #21), at the Subpolar front (station #26), in the northern branch of the NAC (station #32) and on the Reykjanes Ridge (station #38).
- 90 West of the Reykjanes Ridge, the Irminger and Labrador Seas (Fig. 1) are rich in nutrients, and belong to the Arctic region CT). Large blooms of diatoms occurred in this area, which a maximum intensity at the end of May, in other words three weeks before GEOVIDE sampling in the Labrador Sea and one month before the sampling in the Irminger Sea. The western part of the ARCT region is under the influence of the Newfoundland margin. In this province, station #44 was sampled in the middle of the gyre of the Irminger Sea, station #51 in the EGCC and station #53 on the Greenland shelf. In the Labrador Sea,
- 95 station #64 is in the West Greenland Current (the continuity of the EGCC after it passed Cape Farewell) and station #69 is in the area of formation of LSW, where strong convection events occurred the winter before GEOVIDE (García-Ibáñez et al., 2018; de Jong and de Steur, 2016). Westward, the station #77 is close to the Newfoundland margin (ca 300 km).

2.2 Sampling at sea

Two sampling systems have been deployed during GEOVIDE to collect suspended particles: a standard CTD rosette equipped 100 with 12 L Niskin bottles and a clean CTD rosette equipped with 12 L GO-FLO bottles. The standard rosette was used to collect samples dedicated to the concentration analyses of dissolved and particulate barium in excess (Baxs) olved and particulate REEs (including Nd isotopic composition) as well as ancillary parameter analyses. Baxs and PREE chemical treatment and analyses were conducted on the same samples: Baxs was first measured at the Royal Museum for Central Africa (Tervuren, Belgium), then PREEs were later analyzed at LEGOS (Toulouse, France; this work). Ba and Ch concentrations were

Biogeosciences

- measured at both places, allowing us to compare our procedures. Regarding the samples collected with the clean rosette, Ba, 105 ²³²Th and ⁽¹⁾with the latter belonging to REEs, named YREEs when Y is included) were also measured. Ba and ²³²Th were used to compare the data obtained with the standard and clean rosette procedures (as done for Baxs by Lemaitre et al., 2018, with comparable results: $r^2 = 0.61$, p < 0.01, r = 0.01, r =method, chemistry performed on filters and analysis. The comparison of Y concentrations from the two procedures validated
- the use of our standard rosette to sample YREEs, less prone to contamination trace metals, as shown by van de Flierdt et 110 al. (2012).

Sampling method and sample preparation for water collection with the standard rosette for Baxs and PYREE analyses described here follow those of Lemaitre et al. (2018). Sampling was focused on the epipelagic and mesopelagic zones $\sqrt{0}h - 1500 \text{ m}$, On board, four to eight liters were filtered using constitution and a state of the state of the

recommended in the DTRACES cookbook, to avoid the loss of particles by sticking to the walls or settling at the bottom 115 of the bottle. Seawater was then poured in the Perspex containers at the base of which polycarbonate filters of 0.4 µm porosity (Nuclepore \mathbb{R} , 47 mm or 90 mm of diameter) were mounted. After sample filtration, the container was rinsed with \leq 5 mL of \square -pure water (Milli-Q; 18.2 M Ω .cm) to remove the maximum of sea salt deposited on the membranes. Finally, filters were removed using plastic tweezers and were dried under a laminar flow hood at ambient temperature before being stored in clean

120 petri dishes.

> regarding samples collected with the clean rosette, sampling method and samples preparation are described in Gourain et al. (2019).

2.3 Sample preparation and analysis

Filters were first cut in two parts using a ceramic blade. One half was archived, while the other half was placed in a clean Teflon vial (Savillex®). The filter was then digested with a strong acid solution made of 1.5 mL HCl, 1 mL HNO3 and 0.5 125 mL HF, all concentrated (Merck® Suprapur Grades). were subsequently left on hot plates at 90°C overnight. The PREE concentrations were measured on 2 mL of the archived solutions, which were placed in clean 5 mL polypropylene tubes and doped with a solution containing In and Re (ca 100 ppt of both tracers) in order to correct matrix effects and sensitivity shifts during analysis. In addition to REEs, Y, Ba and ²³²Th concentrations were measured in the same leaching

130

solution. Analyses were performed at the Observatoire Midi Pyrénées (Toulouse, France) using a high-resolution inductively coupled plasma mass spectrometer (SF-ICPMS, Element XR, Thermo Fischer Scientific®) coupled to a desolvating nebulizer (Aridus II, CETAC Technologies®) to minimize oxides and hydroxides production rates and thus (hydr)oxides interferences (Aries et al., 2000). Oxide production rates were determined at the beginning and the end of every session using a mono-elementary Ce solution (CeO<0.03%). Other REE (hydr)oxides rates were then determined using the constant proportionality

Biogeosciences

factor between them (Aries et al., 2000), previously determined with the same analytical configuration. Interferences represent 0.001% to 1% of the signal except for Eu (0.3% to 10%).A five points calibration curve was established with a multi elemental standard at the beginning, the middle and the end of the

analysis, while a standard solution concentrated with 20.10⁻¹² g.g⁻¹ of REE was measured every 5 samples. The certified reference material SLRS-5 (NRC Canada) was systematically analyzed with the samples and their concentrations are within

140 the error bar of the consensual values published by Yeghisheyan et al. 2013, with a smaller error (see Figure S1 in plementary). Reproducibility was assessed by measuring two or three times several samples from the same leaching solution, and varied from 0% to 20%, like the error.

Procedural blanks have been estimated by conducting the chemistry on clean, unused filters. The average chemical blank (n= 8) represents 0.01% to 5% of the sample concentrations, except for Y and Lu for which the contribution of the blank was generally higher (between 1% and 30%).

Uncertainty of each concentration, estimated from error propagation was between 20% and 30% (and can be up to 40% for Eu) of the concentration. In addition to the mass spectrometry standard deviation the other sources contributing to the final error bar of the concentrations are: the proportion of filter analyzed, the volume of leachate and the volume taken in the archive for the analysis. Conductable deviation of the supplementary.

- 150 Thus the hypothesis of homogeneity is assumed the light of the apparent consistency of suspended particles on filters. The same digest solutions were also analysed at the Royal Museum for Central Africa (Tervuren, Belgium) mainly for determining Ba and some other element concentrations, including ²³²Th. It was conducted using an inductively coupled plasma quadrupole mass spectrometer (ICP-QMS; X Series 2 Thermo Fischer®). Ba, Y and ²³²Th were also measured in clean rosette samples digestion procedure and analytical method are detailed in Gourain et al. (2019). Concentrations of Ba and ²³²Th
- are consistent between the analysis conducted in Brest and the PREE analysis in Toulouse. "Toulouse" Ba concentrations vs. "Tervuren" Ba concentrations give a regression slope of 0.87 ($r^2=0.90$, n=198). For ²³²Th, "Toulouse" concentrations vs. "Tervuren" concentrations give a slope of 1.05 ($r^2=0.98$, n=198), which is also very comparable. Ba and Y analyses were used pompare the clean rosette and standard rosette procedures. Consistent Ba concentrations were found when compared to the results of Lemaitre et al. (2018; $r^2=0.61$, n=66). Y₄ concentrations measured in Toulouse on samples collected with the standard
- 160 rosette match the concentrations obtained in Brest on the clean samples, with a regression slope of 0.93 (r²=0.82, n=78 points at same depths). Thus both procedures are suitable for PREE analysis. In addition, these validations allow us to discuss the PREE concentrations with the trace metal ones from Gourain et al. (2019).

3 Results

- The data set of PYREE, PBa and Th concentrations is compiled in Table 2. For sake of clarity, we only displayed PCe, PNd and PYb concentrations (Fig. 2 and 3), these three REEs representing the light REEs (Nd), heavy REEs (Yb) and a specific avior (Ce). LREEs and HREEs are supposed to react to different processes during dissolved-particulate exchanges. a IV oxidation state in addition to the III oxidation state common to all REEs and its oxidation onto particles prevent desorption. The Ce (III)/Ce(IV) distribution is therefore a proxy of redox and desorption processes.
- PCe (Fig. 2) concentrations are higher than PNd (Fig. 3 and B) concentrations, which are higher than PYb concentrations (Fig. 3 C and D), greement with their respective natural abundance and reactivity.

3.1 Cerium

- Particulate Ce concentrations (PCe, Fig. 2) vary between 0.2 pmol.L⁻¹ (station #64) and 16.3 pmol.L⁻¹ (station #32; Fig. 2). They are higher close to the Iberian margin (station #1: 1 pmol.L⁻¹ < PCe < 9.4 pmol.L⁻¹) and on the Greenland shelf (station #53: 5.7 pmol.L⁻¹ < PCe < 14.6 pmol.L⁻¹). In the NAST (for station #13) and the NADR regions, vertical profiles present a surface or subsurface maximum at all stations. Below 200 m depth, PCe concentrations decrease and reach a value of 2 pmol.L⁻¹ in the mesopelagic zone. PCe concentrations are higher to the east of the form front (stations #13 and #21) compared to the west (stations #26, #32 and #38). A second maximum is observed at greater depth at station #13 and in the NADR region (except close to the subarctic front, at station #26). In the ARCT region, surface PCe concentrations are lower and increase at the bottom of the pelagic zone for all open-sea stations (PCe > 1 pmol.L⁻¹). Maximum concentrations are observed at the
- 180 bottom of the epipelagic zone at stations #44, #64 and #69. PCe concentrations are more variable in the mesopelagic zone of the ARCT region than in the NADR region, and higher than the ones observed at the surface except at station #69 where they are about within the same range (1 pmol.L⁻¹ < PCe < 2 pmol.L⁻¹). PCe profiles differ from that of PNd and PYb at two stations only: station #38, where peaks of PCe are observed at 100 m and 800 m, that are not observed for the other PREE profiles; station #44, where PCe concentrations are more variable in the epipelagic zone than PNd and PYb, with maxima at 120 m and 160 m that are not observed for other PREEs.

3.2 Neodymium

As for PCe (and other PREEs, supplementary information), PNd concentrations are the highest close to the Portugal and Greenland margins with values up to 4.5 pmol.L⁻¹ in the upper 100 m (Fig. 3 a and B). Concentrations decrease as the distance to margins increases, as seen at stations #13 where PNd hardly reaches 1 pmol.L⁻¹. Low PNd values were also measured at

190 station #77, although this station is relatively close to the Newfoundland margin, but located out of the continental shelf.

3.3 Ytterbium

Distributions of PNd and PYb (Fig. 3) differ on several points: three stations (#13, #44 and #69) display a maximum in subsurface for PYb that is not observed for PNd, whereas a local maximum in PNd is identified at 160 m at stations #64 and #69, but not for PYb. In the open ocean, at stations #21, #26, #32 and #38, concentrations are higher in the surface layer (from

195 0 m to 200 m). The highest concentrations were determined in the NADR region, which was the most productive during the cruise (Fonseca-Batista, 2018). Concentrations then decrease with depth to become constant, except at station #38 where they increase again in the populagic zone. In the ARCT region, surface concentrations of PNd are lower at 100 m compared to 250 m, similar to station #1 while the contrary is observed in the NADR region.

3.4 PNd_N/PYb_N ratios

To highlight a possible fractionation between LREE and HREE, the PNd_N/PYb_N ratio is calculated from concentrations normalized to PNS_N in order to get rid of the natural abundance effect of the REEs. Results are presented in Fig. 4, interpolated along the section. This ratio presents a high variability, changing from 0.01 to 4.3. Higher ratios (> 1) are observed along the margins, decreasing as the distance to the coast increases. PNd_N/PYb_N is lower at the surface (< 0.7) except at stations #1, #38 and #53, and increases in the subsurface layers (0.7 < $PNd_N/PYb_N < 1$) in the open ocean. The strongest ratio value is observed in the core of the epipelagic zone at station #21 (Fig. 4C), where high concentrations of PLa, PCe, PPr and PNd are also

observed. However, for other stations with a similar enrichment, no high PNd_N/PYb_N ratio are observed.

4 Discussion

Comparison with other studies

PREE data in suspended particles are very scarce in the literature. To our knowledge, for the North Atlantic, only one other
set of concentrations was published by Kuss et al. (2001), who measured PREEs in samples centrifuged from several m³ of water at a depth of 7 m, collected along the 20°W meridian between 30°N and 60°N. These authors observed PCe concentrations ranging between 0.2 pmol.L⁻¹ and 4.9 pmol.L⁻¹ with higher concentrations close to the margins especially near the European one, consistent with our data. Their PNd concentrations of about 0.5 pmol.L⁻¹ to the of the NADR are also consistent with ours. PNd and PYb concentrations reported by Tachikawa et al. (1999) at a station located in a mesotrophic
zone of the north-east tropical Atlantic, directly influenced by Saharan dust (6 g.m⁻².yr⁻¹ to 15 g.m⁻².yr⁻¹, Rea, 1994), are higher than those reported here (PNd = 2.6 pmol.L⁻¹ and PYb= 0.94 pmol.L⁻¹ at 10 m). Contrastingly, these authors observed lower concentrations than ours at the oligotrophic site of their study, where the dust flux is lower than at the mesotrophic site (4-5 g.m⁻².yr⁻¹, Rea, 1994) but higher than that found during the GEOVIDE cruise (2 ng.m⁻³ to 500 ng.m⁻³, Shelley et al., 2017). However, these author's PCe concentrations are similar to those reported in this study, and that for both the mesotrophic and

220 oligotrophic sites. The difference of concentrations observed for the other PREEs can be explained by the high particle concentrations characterizing the compared to the tropical one, even if dust inputs are higher on the later (Gehlen et al., 2006). PREE are found both in the lithogenic and authigenic phases of the particles. Schematically, particles are often represented with a "lithogenic core" coated by authigenic material (Bayon et al., 2004; Sholkovitz et al., 1994). The lithogenic has an external origin, product of the continental weathering transported by the winds or discharged by the rivers on the margins. The

Biogeosciences

- authigenic phase is of internal origin, major phases being biogenic matter (particulate organic matter POM, biogenic silica BSi, calcium carbonate CaCO₃) and metal oxides and hydroxides such as MnO₂ and Fe(OH)₃. REEs in the authigenic phase scavenged by organic coatings and/or iron and manganese oxides and hydroxides that are known to be the main carrier of REEs, scavenged by adsorption during their precipitation (Bau, 1999; Bau and Koschinsky, 2009). REEs could also be absorbed in inorganic planktonic tests (CaCO₃, Palmer, 1985 and BSi,Akagi, 2013) or biogenic byproducts as barite
- 230 Solution coefficients are also varying with depth and the nature of the particle phases (Schijf et al., 2015). Thus, differentiating the distribution of the REEs in the nature of the set allows us to estimate the fraction implied in scavenging

processes by the authigenic phase, while the lithogenic one enables to picture continental inputs. The high PREE concentrations

- 235 observed in Fig. 3 close to the Portugal margin and on the Greenland shelf suggest that particulate material is released by the margins to the water column. Lithogenic REE fraction can be quantified using conservative lithogenic tracers such as Al, Th or Ti (Gourain et al., 2019; Tachikawa et al., 1997). These authors used Al as a lithogenic tracer, but here we chose to use h. Indeed, the lithogenic fractions calculated from particulate Al (PAI) concentrations were often higher than 100% in surface waters close to the margins, revealing that a fraction of the total Pal is likely in the authigenic phase (Lerner et al., 1997).
- 240 2018; Van Beueskom et al., 1997). In addition, Al being more prone to contamination was sampled with the clean rosette (Gourain et al., 2019), while ²³²Th used for calculation was measured in the same samples as PREEs, collected with the standard rosette. The concentration of the lithogenic PREE fraction in particles is calculated by multiplying the ²³²Th concentration in a given sample by the ratio of the considered REE on ²³²Th in the upper crust (Rudnick and Gao, 2014, Eq. (1)).

$$[\text{REE}_{\text{litho}}] = [^{232}\text{Th}] \times \left(\frac{[\text{REE}]}{[232Th]}\right)_{UCC}$$
(1)
$$\underbrace{\text{FEE}_{litho}}_{[\text{REE}]} = \frac{[\text{REE}_{litho}]}{[\text{REE}]}$$
(2)

$$\mathbb{E}_{authi} = REE_{total} - REE_{litho}$$
(3)

These PREE lithogenic concentrations are then divided by the total PREE concentrations to obtain the percentage of particulate 250 with a lithogenic origin (Eq. (2)). The authigenic concentrations are then obtained by subtraction of the lithogenic concentrations to the total concentrations (Eq. (3)).

(h) percentage of lithogenic PNd along the section is represented in Fig. 5. Then we chose to represent the average value of the lithogenic fractions of the remaining PREEs for the LREE, excepted for PCe on one hand and for HREE on the other hand. Profiles of five selected stations (#1, #26, #51, #53 and #77) are shown in Fig. 5. These stations are representative of the three different bis observed along the section. Error bars represent the standard deviation of the resulting averages, the contribution of the error on the concentrations being negligible pared to the laters. For some points at station #1 and at 160 m t stations #13 and #32, the calculated lithogenic proportion exceeds 100%, suggesting an excess of ²³²Th in the particles, likely authigenic, or a difference between the adsorption kinetics of ²³²Th and REE, as reported by Hayes et al. (2015). In these cases, we capped the lithogenic proportion to 100%.

- PREE concentrations are normalized to Post-Archean Australian shale, PAAS (Rudnick and Gao, 2014). This normalization 260 allows i) a better diagnostic of the fractionation between PREEs and ii) parison with patterns in the literature. As shown by the (1) PAAS-normalized patterns of the lithogenic fractions (Fig. S3 in supp. mat.), PAAS is a valuable reference to Desent the lithogenic material. In addition, it does not present any significant difference in REE composition with shales and loess from Europe, North America and China (Rudnick and Gao, 2014). Normalization to atmospheric depositions has 265 (resp) put aside as these inputs were low during the cruise (Shelley et al., 2017) and normalization to dusts led to patterns
- depleted in Eu and Gd, and enriched in Tb, Dy, Ho and Er (data from Patey et al., 2015, on dusts collected close to Cape Verde; Fig. S3), less representative of lithogenic inputs than PAAS. Patterns normalized to PAAS are presented in Fig.5 for selected stations. To facilitate readability, patterns of each sample are averaged by layers displaying similar values. Error bars represent the standard deviation of the concentration series, the errors on PAAS concentrations being negligible compared to it. A REE pattern obtained in the Atlantic seawater at 12°S (Zheng et al., 2016) is also represented together with station #26 patterns, for comparison.

255

4.2 Lithogenic supply by the margins

The high concentrations of PREEs (Fig. 3) at stations #1 and #53 reflect lithogenic inputs from the margins. At these stations, the lithogenic PREE fractions range between 50% and 100%, the highest ones being observed at station #1 (Fig. 5). The

- 275 relatively flat patterns displayed at these stations for total PREE indicate a weak fractionation of PREEs, with a little enrichment in Es due to their lower solubility compared to the HREEs e maxima can be seen beyond the Subpolar Front until station #32, spreading along the isopycnals 27.05 and 27.4 over 2500 km from the Iberian margin (Fig. 6). Similar makima have been reported by (Gourain et al., 2019, Fig. 6 B) for lithogenic PFe and PMn), lithogenic PMn being taken by these authors as tracer of sediment resuspension.
- Above the Greenland shelf, at station #53, the proportion of lithogenic PREE is also high, only slightly lower than at station 280 (T) median contributions of 59% for PLREE and 83% for PHREE; Fig. 5). Unlike what is observed to the eastern end of the section, these lithogenic particles remain on the shelf and do not spread offshore. Except at the surface for LREE, the lithogenic proportion are lower than 50% at stations #51 and #64 in the Irminger Sea and in the Labrador Sea respectively. This containment of particles along the shelf is explained by the circulation. Indeed, the East Greenland Irminger Current (EGIC)

- is a strong narrow current bypassing Greenland along it shelf (23.4 ± 1.9 Sv, Daniault et al., 2016), likely preventing exchanges between the Irminger Subpolar Mode Water (IrSBPMW) and waters of the Greenland shelf, transported by the EGCC current which flows parallel to the coast (green and orange arrows around the Greenland southeastern tip in Fig. 1). Our observations are consistent with that of Lacan and Jeandel, 2005, who showed that the Nd isotopic signatures (ɛNd) of SPMW transported by the EGIC do not vary significantly along the Greenland shelf. In the same way, the lithogenic influence is moderate at station #77, land-ocean exchanges being reduced due to the EGCC again (1.5 ± 0.2 Sv, Daniault et al., 2016). While the
- $(1.5 \pm 0.2 \text{ station #77, hard-ocean exchanges being reduced due to the EOCC again (<math>1.5 \pm 0.2 \text{ sv}$, Damaut et al., 2010). While the processes are at play.
- High lithogenic proportions are also observed at station #69 but not to the east of the Labrador Sea (station #64; Fig. 5). In contrast with the Iberian margin, no intermediate enriched layers are observed (Figs. 2 and 3) and the lithogenic fraction is less
- 295 ortant and remains roughly constant below 200 m at stations #51 (about 45%) and #77 (around 60%, Fig. 5). Normalized total concentrations display fractionated PREE patterns, underlining authigenic processes likely at play in this area.
 Comparable lithogenic percentages have been reported by Garcia-Solsona et al. (2014) between South Africa and Antarctic, from 0% at the surface to 80% deeper, with higher lithogenic proportions for HREE than for LREE. Using PAI as a lithogenic tracer, Tachikawa et al. (1999) evaluated the lithogenic proportion to be between 50% and 80% at the different Eumeli sites

300 in the east tropical Atlantic.

Gourain et al. (2019) reported similar results than ours for PFe and PMn at the same stations along GEOVIDE. These authors observed strong lithogenic contribution from the Iberian margin spreading until station #32, lower contribution along the Newfoundland margin and no particular lithogenic contribution along the Greenland margin, in agreement with our observations. Using lithogenic PMn as a tracer of sediment resuspension, they observe that 100% of PMn is originating from

- 305 sediment resuspension at station #1 between 250 m and 1000 m (their Fig. 4). Interestingly, Le Roy et al. (comm. pers.) Derved an unexpected maximum of ²²⁷Ac activity at 500 m at stations #1 and #21, indicating a strong sediment source, again Sistent with the PREE data. At station #13 at 200 m, however, no lithogenic maximum is identified. This could result from the compression of isopycnals, leading to the merging of the two maxima observed eastward (Fig. 4). Unfortunately, the different sampling resolutions for PREE and ²²⁷Ac do not permit to further compare data between these tracers except at the
- 310 surface of station #1, where a maximum of ²²⁷Ac is consistent from the lithogenic PREE signal. These layers highly enriched in lithogenic particles could be attributed to the formation of intermediate nepheloid layers (INL) at 250 m and 500 m along the Iberian margin, similarly to those revealed slightly north by McCave and Hall (2002). A contribution of the Mediterranean Water (MW) to these high concentrations and lithogenic proportions cannot be excluded too, but the lack of data in the core of the MW (1000 m to 1500 m, García-Ibáñez et al., 2018) prevents us from further
- 315 investigations.

A highly energetic process is needed to enhance such strong resuspension of lithogenic matter. It may be due to the friction and energetic excitation of internal waves along the continental slope (Cacchione, 2002). Another source can be the erosion of the coast by the strong current (from 0.05 m.s^{-1} to 0.1 m.s^{-1}) coming out from Gibraltar and flowing northward along the Iberian

margin (Gourain et al., 2019; McCave and Hall, 2002; Zunino et al., 2017). Our observations could also result from a
combination of both, with generation of internal waves south of station #1 generating sediment resuspension, those particles being advected northward by the current.

To sum up, margins can provide significant amounts of particulate lithogenic material to the ocean; nevertheless, occurrence and magnitude of these inputs are depending on the morphology of the margin and the hydrodynamical forcing, leading (or not) to nepheloid layer formations.

325 4.3 C E fractionation: Ce anomalies

Ce is the only REE having a (IV) oxidation state in the water column. When adsorbed onto particles together with other REEs, oxidation (biotic or abiotic) makes it less prone to desorption than other REEs, leading to Ce enrichment of the particulate phase (Byrne and Kim, 1990; Elderfield, 1988; Moffett, 1990, 1994; Tachikawa et al., 1999). This oxidation is thought to occur for authigenic Ce adsorbed on Fe(OH)₃ and MnO₂ (Bau, 1999; Bau et al., 1996). This PCe enrichment is commonly quantified by the ratio of the PCe concentration on the theoretical PCe concentration calculated using its neighbors PNd and

330 quantified by the ratio of the PCe concentration on the theoretical PCe concentration calculated using its neighbors PNd an PPr and expressed as Ce*, following Bolhar et al. (2004):

$$\frac{Ce}{Ce^*} = \frac{[Ce]}{2*[Pr] - [Nd]} \quad (4)$$

In the present set of data, this ratio is always larger than one (positive anomaly) except at stations #26, #32, #51 and #77 335 between the surface and ca. 100 m, where PCe is depleted compared to other PREEs, as add discussed above. This surface minimum is followed by a pronounced (Ce/Ce*>3) positive anomaly down to 200 m. At greater depth, the anomaly is relatively higher in the NADR region compared to the NAST and ARCT regions.

- These results indicate that Ce oxidation occurs after particles left the surface, leading to a subsurface maximum. At greater depths, remineralization rates are high in the ARCT region, moderate in the NAST region and low in the NADR region
 (Lemaitre et al., 2018). It is likely that lower remineralization rates conduct to higher net fluxes from the dissolved phase toward the particulate phase, associated with a strong and irreversible scavenging of Ce by adsorption and oxidation, while a fraction of the other trivalent REEs are released by desorption from the particles (Bau, 1999; Tachikawa et al., 1999). A stronger anomaly could also reflect higher particle concentrations offering higher surface reactive areas, but particle mass
- remains unknown at those depths and beam transmissiometry does not allow identifying higher particle concentrations.
 To compare PCe to Mn and Fe (hydr)oxides, particulate Fe(OH)₃ and MnO₂ concentrations are calculated with the formula of Lam et al. (2017, Figure S6) using PMn, PFe and PAI data from Gourain et al. (2019). The observed decoupling between Ce
- anomaly and MnO₂ distributions indicates that more processes are at play than the biologically mediated oxidation that would lead to similar distributions of the two tracers (Moffett, 1990). Different complexation conditions between these two elements likely prevent the occurrence of a good correlation. The positive Ce anomaly is not observed when the residence time of particles is short, which is the case in the NADR and the ARCT regions where the export is strong (stations #51 and #77,

Lemaitre et al., 2018). CaCO₃ formation can explain the observed negative anomalies at station #26 and #32 (Garcia-Solsona)

et al., 2014; Haley et al., 2005; Sholkovitz and Shen, 1995). However, this hypothesis does not hold at station #21 where CaCO₃ concentration is high while the PCe anomaly is positive (Fig. S4 in supplementary). A surface photoreduction could explain the surface weak anomalies by reducing Ce(IV) in Ce(III) that can be desorbed from particles. The MnO₂ depletion in the surface waters of NADR region would support this hypothesis, although this MnO₂ depletion reaches 500 m (ie below the 355 euphotic layer, Fig S6A in supplementary). In the NAST region, a MnO₂ surface minimum occurs too, but does not correspond to a PCe/Ce* minimum.

4.4 The influence of biological activity on the REE distributions

4.2 The influence of biological activity on the REE distributions

- The surface of open-sea stations (all of them except #1 and #53) are characterized by a higher lithogenic proportion for LREEs. 66) than for HREEs, meaning that the expected relative enrichment of the authigenic phase in LREE -due to their lower solubilityis not observed (see the vertical profiles reported in Fig. 5). Thus, an uncommon enrichment of the authigenic material in HREEs is observed in these samples, also shown in the total PREE patterns (Fig. 5 and Fig. S4 in supplementary). Indeed, these patterns display a negative Ce anomaly on the first hundred meters and enrichment in HREEs characterized by high
- 365) (PYbN/PNdN ratios (>1, Fig. 4) that can reach 1000 m. Such kind of pattern is classically observed for dissolved REEs, more rarely for PREEs. Suspended PREEs displaying such "dissolved-type" pattern suggest that they have been likely formed (ht) ugh absorption than adsorption processes, the latter leading to fractionation between the REEs, which is not the case during, the uptake of REEs in the carbonate planktonic shells (Palmer and Elderfield, 1986). The negative PCe anomaly (Fig. 7)

suggests recently formed particles on which Ce oxidation leading to positive PCe anomaly have not occurred yet. All these

- stations are subject to a strong primary production (Fonseca-Batista et al., 2019), so the preferential transfer of HREEs from 370 the dissolved phase to the authigenic particulate one likely occurs when the biological stripping is active. However, this transfer is more important in the ARCT region than in the NADR region, leading to stronger HREE enrichments, while the highest bloom activity was observed in the NADR region with a maximum at station #26. The high prevalence of coccolithophorids characterizing this bloom (Lemaitre et al., 2018) could explain the relatively low HREE enrichment, except at station #26. In
- 375 the NADR region, the patterns flatten with depth to present a quasi-lithogenic signature under 60 m, suggesting that particles with a strong organic signature have not reach this depth yet. In the ARCT region, the bloom was dominated by diatoms, still active at station #51 and declining at the others (Fonseca-Batista et al., 2019; Lemaitre et al., 2018). This declining bloom leads to a strong export, but high remineralization rates decrease the biological signature proportion in favor of the lithogenic one at depth (Fig. 5). Even if the characterization of the authigenic phase leans on 232Th and the assumption that REEs and 232Th
- 380

behave similarly from the original lithogenic source, it is thus very likely that biological uptake appears to have a strong effect on the total REE patterns observed.

A relationship between HREEs and biogenic matter, mostly BSi, have been suggested by Akagi (2013) following thermodynamic calculations. According to this work, 10% to 20% of REEs are forming a REE(H3SiO4)2+ complex with silicic acid, this proportion being more important as the atomic number is low and with depth. Complexation of REE with

- 385 silicates was further confirmed by Patten and Byrne (2017), although these authors estimated lower complexation constant, thus a less important fraction of REEs complexed by silica. In addition, significant correlations were observed between dissolved Si and dissolved HREE by Bertram and Elderfield (1992; western Indian Ocean), Akagi et al. (2011, North Pacific Ocean); Stichel et al. (2012) and Garcia-Solsona et al. (2014), both in the Atlantic sector of Southern Ocean), Grenier et al. (2018; Kerguelen Islands) and Pham et al. (2019; Solomon Sea). Contrastingly in other areas, the correlation between SiOH4
- 390 and REEs present a curvature or is absent (Patten and Byrne, 2017, their Fig. 7; Zheng et al., 2016, their Fig. 11). Even if the causes of such relationships are not clear, the PYbN/PNdN ratio in the authigenic phase is the highest between the surface and 50 m in the Irminger Sea and the Labrador Sea, where BSi concentrations are also the highest (Sarthou et al., 2018), reflecting a bloom dominated by diatom species (Fig. S5A and B in supplementary material). Although the correlation between BSi and PHREEs stays weak (from R²=0.06 for Ho to R²=0.4 for Lu), this correlation coefficient rises with the atomic mass number
- 395 (Fig. S5C), showing that BSi has a significant influence on authigenic PREE distributions from Tb to Lu that does not appear for lighter REEs. These correlations may show that in some areas the HREE distributions are linked to the biogeochemistry of silicate, and not only to a conservative mixing as shown by Zheng et al. (2016) and de Baar et al. (2018). This relationship would depends on the abundance and the nature of particles (the occurrence of diatoms), and on the speciation of REEs in the dissolved phase as shown by de Baar et al. (2018). Akagi, (2013) and Akagi et al. (2011) proposed an incorporation of the
- 400 silica-REEs complexes during the frustules construction, but the mechanism under this enrichment during diatom blooms remains to be clarified. Linking it to usual complexation and adsorption processes is not straightforward since this would imply a sharp break between LREE and HREE affinities with BSi, which has still to be demonstrated. In addition, an effective relationship between BSi and PHREE can be blurred by other scavenging processes implying particulate Mn and Fe (hydr)oxides, also known to influence the slope between LREE and HREE.

405 4.5 The PAAS-normalized particulate Ho/Y ratio: a proxy of processes independent of the ionic radius

Yttrium (Y) and the lanthanide holmium (Ho) are characterized by about the same ionic radius and identical charge, making them "geochemical twins" (Bau, 1999). The PAAS-normalized particulate ratio (PHoN/PYN) highlights differences in their distributions, and therefore allows identifying radius-independent fractionation processes affecting YREE in seawater. We choose to normalize PHo/PY measured in our particulate samples to the PAAS ratio to reveal any relative loss or enrichment

- 410 compared to continental material (Fig. 8). Due to differences of electron configuration, Ho is more prone to establish ionic bounds, and then to be preferentially scavenged by adsorption onto (hydr)oxides as FeOH3 and MnO2. In comparison, Y is preferentially scavenged when covalent bounds are established (Censi et al., 2007; Bau, 1999; Bau et al., 1995). Along the GEOVIDE section, PHoN/PYN ratio varies between 0.4 and 1.5, with most of the values less than 1 (i.e. depleted compared to PAAS), which does not support the expected preferential scavenging of Ho. Moreover, PHoN/PYN relationship with FeOH3
- 415 and MnO2 doesn't fit to any pattern (Fig. 9). PHoN/PYN is higher when [Fe(OH)3)> 10-2 μg.L-1, while there is no evidence of a higher HoN/YN ratio when MnO2 content increases. However, while there is a pronounced east-west gradient in the

Biogeosciences

Fe(OH)3 distribution, the PHoN/PYN ratio (Fig. S6 in supplementary) is low (<0.6) in Labrador Sea surface waters (station #69), the Irminger Sea (stations #44 and #51) and from the surface to 750 m in the NADR region (stations #21, #26 and #32). These locations are depleted in both MnO2 and Fe(OH)3 (Fig. S6 in supplementary), leading to a weak adsorption of Ho. All

- 420 along the section, low ratios are observed at the surface and until 800 m in the areas of marked biological productivity (stations #26, #32, #69), although they are directly linked to primary production intensity. This suggests a preferential scavenging of Y during the formation of biogenic matter, as reported by Censi et al. (2007), and not through simple adsorption which would support preferential scavenging of Ho. In the NADR region, at depths between 200 m and 600 m that are characterized by strong and positive PCe anomaly and a persistent PHREE enrichment, a PHo depletion is observed at stations #26 and #21.
- 425 The low remineralization rates observed in this area could make persistent the PY enrichment formed at the surface, when the positive PCe anomaly suggests that a dynamic scavenging occurs. The difference between those two elements can be explained by a preferential scavenging of LREE compared to HREE during adsorption processes. The PHo enrichment at station #32 between 350 m and 600 m goes with the most important Ce positive anomaly, indicating intensive exchanges by adsorption with the dissolved phase, and then a stronger scavenging of REEs.
- 430 In the ARCT region, slightly lower ratios are observed at station #69 than for others, and this station is characterized by a lower primary production and the higher remineralization rates along the section (Lemaitre et al., 2018). Ho, more adsorbed than Y is then more prone to be released, leading to a lower signal due to the Y enrichment of the covalent part of the particles, less easily remineralized. The higher ratios at other ARCT stations indicate scavenging by particles, although the Ce anomaly is lower than in the NADR region.
- 435 Thus, our results show that high PHoN/PYN ratio not only reflects sorption processes driven by the occurrence of Fe(OH)3 and to a lesser extent MnO2 but all processes favoring outer-sphere complex formation, which would promote Ho and other REEs scavenging compared to Y. The relationship with particle production, particle residence time and remineralization rates is not clear indicating the influence of other parameters not identified yet.

References

445

440 Akagi, T.: Rare earth element (REE)-silicic acid complexes in seawater to explain the incorporation of REEs in opal and the "leftover" REEs in surface water: New interpretation of dissolved REE distribution profiles, Geochimica et Cosmochimica Acta, 113, 174–192, doi:10.1016/j.gca.2013.03.014, 2013.

Aries, S., Valladon, M., Polvé, M. and Dupré, B.: A Routine Method for Oxide and Hydroxide Interference Corrections in ICP-MS Chemical Analysis of Environmental and Geological Samples, Geostandards and Geoanalytical Research, 24(1), 19–31, doi:10.1111/j.1751-908X.2000.tb00583.x, 2000.

Bau, M.: Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect, Geochim. Cosmochim. Ac., 63(1), 67–77, 1999.

Biogeosciences

Bau, M. and Koschinsky, A.: Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts, Geochem. J., 43(1), 37–47. doi:10.2343/geochemi 1.0005.2009

450 47, doi:10.2343/geochemj.1.0005, 2009.

Bau, M., Koschinsky, A., Dulski, P. and Hein, J. R.: Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater, Geochim. Cosmochim. Ac., 60(10), 1709–1725, 1996.

Bayon, G., German, C. R., Burton, K. W., Nesbitt, R. W. and Rogers, N.: Sedimentary Fe–Mn oxyhydroxides as
paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE, Earth and Planetary Science
Letters, 224(3–4), 477–492, doi:10.1016/j.epsl.2004.05.033, 2004.

Bertram, C.J. and Elderfield, H.: The geochemical balance of the rare earth elements and neodymium isotopes in the oceans, Geochim. Ac., 57, 1957–1986, 1992.

Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M. and Whitehouse, M. J.: Characterisation of early Archaean chemical
sediments by trace element signatures, Earth and Planetary Science Letters, 222(1), 43–60, doi:10.1016/j.epsl.2004.02.016,
2004.

Byrne, R. H. and Kim, K.-H.: Rare earth element scavenging in seawater, Geochimica et Cosmochimica Acta, 54(10), 2645–2656, doi:10.1016/0016-7037(90)90002-3, 1990.

Cacchione, D. A.: The Shaping of Continental Slopes by Internal Tides, Science, 296(5568), 724–727, doi:10.1126/science.1069803, 2002.

Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V. and Gladyshev, S.: The northern North Atlantic Ocean mean circulation in the early 21st century, Progress in Oceanography, 146, 142–158, doi:10.1016/j.pocean.2016.06.007, 2016.

Elderfield, H.: The oceanic chemistry of the rare-earth elements, Philosophical Transactions of the Royal Society of London, 470 A(325), 105–126, 1988.

van de Flierdt, T., Pahnke, K., Amakawa, H., Andersson, P., Basak, C., Coles, B., Colin, C., Crocket, K., Frank, M., Frank, N., Goldstein, S. L., Goswami, V., Haley, B. A., Hathorne, E. C., Hemming, S. R., Henderson, G. M., Jeandel, C., Jones, K., Kreissig, K., Lacan, F., Lambelet, M., Martin, E. E., Newkirk, D. R., Obata, H., Pena, L., Piotrowski, A. M., Pradoux, C., Scher, H. D., Schöberg, H., Singh, S. K., Stichel, T., Tazoe, H., Vance, D. and Yang, J.: GEOTRACES intercalibration of

475 neodymium isotopes and rare earth element concentrations in seawater and suspended particles. Part 1: reproducibility of results for the international intercomparison: Intercalibration of Seawater Nd Isotopes, Limnol. Oceanogr. Methods, 10(4), 234–251, doi:10.4319/lom.2012.10.234, 2012.

Fonseca-Batista, D., Li, X., Riou, V., Michotey, V., Deman, F., Fripiat, F., Guasco, S., Brion, N., Lemaitre, N., Tonnard, M., Gallinari, M., Planquette, H., Planchon, F., Sarthou, G., Elskens, M., LaRoche, J., Chou, L. and Dehairs, F.: Evidence of high

480 N<sub>2</sub> fixation rates in the temperate northeast Atlantic, Biogeosciences, 16(5), 999–1017, doi:10.5194/bg-16-999-2019, 2019.

Biogeosciences

García-Ibáñez, M. I., Pardo, P. C., Carracedo, L. I., Mercier, H., Lherminier, P., Ríos, A. F. and Pérez, F. F.: Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre, Progress in Oceanography, 135, 18–36, doi:10.1016/j.pocean.2015.03.009, 2015.

485 García-Ibáñez, M. I., Pérez, F. F., Lherminier, P., Zunino, P., Mercier, H. and Tréguer, P.: Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic, Biogeosciences, 15(7), 2075–2090, doi:10.5194/bg-15-2075-2018, 2018.

Garcia-Solsona, Esther, Jeandel, Catherine, Labatut, Marie, Lacan, François, Vance, Derek, Chavagnac, Valérie and Pradoux, Catherine: Rare earth elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic,

- Geochim. Cosmochim. Ac., 125, 351–372, 2014.
 Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C. and Ragueneau, O.: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, , 17, 2006.
 Gourain, A., Planquette, H., Cheize, M., Lemaitre, N., Menzel Barraqueta, J.-L., Shelley, R., Lherminier, P. and Sarthou, G.: Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES)
- GA01) section, Biogeosciences, 16(7), 1563–1582, doi:10.5194/bg-16-1563-2019, 2019.
 Grenier, M.: Differentiating Lithogenic Supplies, Water Mass Transport, and Biological Processes On and Off the Kerguelen Plateau Using Rare Earth Element Concentrations and Neodymium Isotopic Compositions, Frontiers in Marine Science, 5, 30, 2018.

Guichard, F., Church, T. M., Treuil, M. and Jaffrezic, H.: Rare earths in barites: distribution and effects on aqueous partitioning,
Geochimica et Cosmochimica Acta, 43(7), 983–997, doi:10.1016/0016-7037(79)90088-7, 1979.

Haley, B. A., Klinkhammer, G. P. and Mix, A. C.: Revisiting the rare earth elements in foraminiferal tests, Earth and Planetary Science Letters, 239(1–2), 79–97, doi:10.1016/j.epsl.2005.08.014, 2005.

Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Vivancos, S. M., Lam, P. J., Ohnemus, D. C., Huang, K.-F., Robinson, L. F., Lu, Y., Cheng, H., Edwards, R. L. and Moran, S. B.: Intensity of Th and Pa scavenging partitioned by particle chemistry in
the North Atlantic Ocean, Marine Chemistry, 170, 49–60, doi:10.1016/j.marchem.2015.01.006, 2015.

- Jeandel, C., Bishop, J. K. and Zindler, A.: Exchange of neodymium and its isotopes between seawater and small and large particles in the Sargasso Sea, Geochimica et Cosmochimica Acta, 59(3), 535–547, doi:10.1016/0016-7037(94)00367-U, 1995. de Jong, M. F. and de Steur, L.: Strong winter cooling over the Irminger Sea in winter 2014-2015, exceptional deep convection, and the emergence of anomalously low SST: IRMINGER SEA COOLING AND CONVECTION, Geophys. Res. Lett., 43(13),
- 510 7106–7113, doi:10.1002/2016GL069596, 2016.
 Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F. and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10(4), 2169–2191, doi:10.5194/bg-10-2169-2013, 2013.

Kuss, J., Garbe-Schönberg, C.-D. and Kremling, K.: Rare earth elements in suspended particulate material of North Atlantic 515 surface waters, Geochimica et Cosmochimica Acta, 65(2), 187–199, doi:10.1016/S0016-7037(00)00518-4, 2001.

Lacan, F. and Jeandel, C.: Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water: NEODYMIUM ISOTOPIC COMPOSITION, Geochemistry, Geophysics, Geosystems, 6(12), n/a-n/a, doi:10.1029/2005GC000956, 2005.

Lam, P. J., Twining, B. S., Jeandel, C., Roychoudhury, A., Resing, J. A., Santschi, P. H. and Anderson, R. F.: Methods for
 analyzing the concentration and speciation of major and trace elements in marine particles, Progress in Oceanography, 133, 32–42, doi:10.1016/j.pocean.2015.01.005, 2015.

Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., García-Ibáñez, M. I., Gourain, A., Cheize, M., Monin, L., André, L., Laha, P., Terryn, H. and Dehairs, F.: Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic, Biogeosciences, 15(8), 2289–2307, doi:10.5194/bg-15-2289-2018, 2018.

Lerner, P., Marchal, O., Lam, P. J. and Solow, A.: Effects of particle composition on thorium scavenging in the North Atlantic, Geochimica et Cosmochimica Acta, 233, 115–134, doi:10.1016/j.gca.2018.04.035, 2018.
 Lherminier, P. and Sarthou, G.: The 2014 Greenland-Portugal GEOVIDE CTDO2 hydrographic and SADCP data (GO-SHIP A25 and GEOTRACES GA01), SEANOE, doi:https://doi.org/10.17882/52153, 2017.
 Longhurst, A.: Seasonal cycles of pelagic production and consumption, Progress in Oceanography, 36(2), 77–167,

530 doi:10.1016/0079-6611(95)00015-1, 1995.

McCave, I. . and Hall, I. .: Turbidity of waters over the Northwest Iberian continental margin, Progress in Oceanography, 52(2–4), 299–313, doi:10.1016/S0079-6611(02)00012-5, 2002.

Menzel Barraqueta, J.-L., Schlosser, C., Planquette, H., Gourain, A., Cheize, M., Boutorh, J., Shelley, R., Contreira Pereira, L., Gledhill, M., Hopwood, M. J., Lacan, F., Lherminier, P., Sarthou, G. and Achterberg, E. P.: Aluminium in the North

Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal, Biogeosciences, 15(16), 5271–5286, doi:10.5194/bg-15-5271-2018, 2018.
Moffett, J. W.: Microbially mediated cerium oxidation in sea water, Nature, 345(6274), 421–423, doi:10.1038/345421a0, 1990.
Moffett, J. W.: The relationship between cerium and manganese oxidation in the marine environment, Limnol. Oceanogr., 39(6), 1309–1318, doi:10.4319/lo.1994.39.6.1309, 1994.

Palmer, M. R.: Rare earth elements in foraminifera tests, Earth and Planetary Science Letters, 73, 285–298, 1985.
 Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. and Pearce, R.: Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: Dust sources, elemental composition and mineralogy, Marine Chemistry, 174, 103–119, doi:10.1016/j.marchem.2015.06.004, 2015.

Pham, V. Q., Grenier, M., Cravatte, S., Michael, S., Jacquet, S., Belhadj, M., Nachez, Y., Germineaud, C. and Jeandel, C.:
545 Dissolved rare earth elements distribution in the Solomon Sea, Chemical Geology, 524, 11–36, doi:10.1016/j.chemgeo.2019.05.012, 2019.

Phoebe J. Lam, Jong-Mi Lee, Maija I. Heller, Sanjin Mehic, Yang Xiang and Nicholas R. Bates: Size-fractionated distributions of suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16), Mar. Chem., doi:http://dx.doi.org/10.1016/j.marchem.2017.08.013, 2017.

550 Planquette, H. and Sherrell, R. M.: Sampling for particulate trace element determination using water sampling bottles: methodology and comparison to in situ pumps, Limnology and Oceanography: Methods, 10(5), 367–388, doi:10.4319/lom.2012.10.367, 2012.

R, S.: Ocean Data View, [online] Available from: http://odv.awi.de, 2016.

Rea, D. K.: The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind, Rev.
555 Geophys., 32(2), 159, doi:10.1029/93RG03257, 1994.

Reygondeau, G., Guidi, L., Beaugrand, G., Henson, S. A., Koubbi, P., MacKenzie, B. R., Sutton, T. T., Fioroni, M. and Maury,
O.: Global biogeochemical provinces of the mesopelagic zone, Journal of Biogeography, 45(2), 500–514,
doi:10.1111/jbi.13149, 2018.

Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in Treatise on Geochemistry, pp. 1-51, Elsevier., 2014.

Sanders, R., Henson, S. A., Koski, M., De La Rocha, C. L., Painter, S. C., Poulton, A. J., Riley, J., Salihoglu, B., Visser, A., Yool, A., Bellerby, R. and Martin, A. P.: The Biological Carbon Pump in the North Atlantic, Progress in Oceanography, 129, 200–218, doi:10.1016/j.pocean.2014.05.005, 2014.
Salific L. Chaite and D. H. M. D. H. MIEEE.

Schijf, J., Christenson, E. A. and Byrne, R. H.: YREE scavenging in seawater: A new look at an old model, Marine Chemistry, 177, 460–471, doi:10.1016/j.marchem.2015.06.010, 2015.

565 Shelley, R. U., Roca-Martí, M., Castrillejo, M., Sanial, V., Masqué, P., Landing, W. M., Beek, P. van, Planquette, H. and Sarthou, G.: Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (>40°N; GEOVIDE, GEOTRACES GA01) during spring 2014, Deep Sea Research Part I: Oceanographic Research Papers, 119, 34–49, doi:https://doi.org/10.1016/j.dsr.2016.11.010, 2017.

Sholkovitz, E. and Shen, G. T.: The incorporation of rare earth elements in modern coral, Geochimica et Cosmochimica Acta, 570 59(13), 2749–2756, doi:10.1016/0016-7037(95)00170-5, 1995.

Sholkovitz, E. R., Landing, W. M. and Lewis, B. L.: Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater, Geochimica et Cosmochimica Acta, 58(6), 1567–1579, doi:10.1016/0016-7037(94)90559-2, 1994.

Stemmann, L., Gorsky, G., Marty, J.-C., Picheral, M. and Miquel, J.-C.: Four-year study of large-particle vertical distribution

- (0–1000m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux, Deep Sea Research Part II: Topical Studies in Oceanography, 49(11), 2143–2162, doi:10.1016/S0967-0645(02)00032-2, 2002.
 Tachikawa, K., Handel, C. and Dupré, B.: Distribution of rare earth elements and neodymium isotopes in settling particulate material of the tropical Atlantic Ocean (EUMELI site), Deep Sea Research Part I: Oceanographic Research Papers, 44(11), 1769–1792, doi:10.1016/S0967-0637(97)00057-5, 1997.
- 580 Tachikawa, K., Jeandel, C., Vangriesheim, A. and Dupré, B.: Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site), Deep Sea Research Part I: Oceanographic Research Papers, 46(5), 733–755, doi:10.1016/S0967-0637(98)00089-2, 1999.

Tonnard, M., Planquette, H., Bowie, A. R., van der Merwe, P., Gallinari, M., Desprez de Gésincourt, F., Germain, Y., Gourain, A., Benetti, M., Reverdin, G., Tréguer, P., Boutorh, J., Cheize, M., Menzel Barraqueta, J.-L., Pereira-Contreira, L., Shelley,

- R., Lherminier, P. and Sarthou, G.: Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01), Biogeosciences Discussions, 1–53, doi:10.5194/bg-2018-147, 2018.
 Van Beueskom, J. E. E., Van Bennekom, A. J., Tréguer, P. and Morvan, J.: Aluminium and silicic acid in water and sediments of the Enderby and Crozet Basins, Deep Sea Research Part II: Topical Studies in Oceanography, 44(5), 987–1003, doi:10.1016/S0967-0645(96)00105-1, 1997.
- 590 Yeghicheyan, D., Bossy, C., Bouhnik Le Coz, M., Douchet, C., Granier, G., Heimburger, A., Lacan, F., Lanzanova, A., Rousseau, T. C. C., Seidel, J.-L., Tharaud, M., Candaudap, F., Chmeleff, J., Cloquet, C., Delpoux, S., Labatut, M., Losno, R., Pradoux, C., Sivry, Y. and Sonke, J. E.: A Compilation of Silicon, Rare Earth Element and Twenty-One other Trace Element Concentrations in the Natural River Water Reference Material SLRS-5 (NRC-CNRC), Geostandards and Geoanalytical Research, 37(4), 449–467, doi:10.1111/j.1751-908X.2013.00232.x, 2013.
- 595 Zheng, X.-Y., Plancherel, Y., Saito, M. A., Scott, P. M. and Henderson, G. M.: Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behavior, Geochimica et Cosmochimica Acta, 177, 217–237, doi:10.1016/j.gca.2016.01.018, 2016.

Zunino, P., Lherminier, P., Mercier, H., Daniault, N., García-Ibáñez, M. I. and Pérez, F. F.: The GEOVIDE cruise in May– June 2014 reveals an intense Meridional Overturning Circulation over a cold and fresh subpolar North Atlantic, Biogeosciences, 14(23), 5323–5342, doi:10.5194/bg-14-5323-2017, 2017.

605

600

610

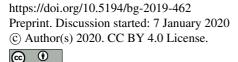
Table 1: List of region, water masse and current abbreviations.

	Regions
SPNA	Subpolar North Atlantic
NAST	North Atlantic Subtropical
NADR	North Atlantic drift
ARCT	Arctic
	Water masses
ENACW	East North Atlantic Central Water
MW	Mediterranean Water
SPMW	Subpolar Mode Water
IrSPMW	Irminger Subpolar Mode Water
LSW	Irminger Subpolar Mode Water
	Currents
NAC	North Atlantic Current
ERRC	East Reykjanes Ridge Current
IC	Irminger Current
EGIC	East Greenland Irminger Current
EGCC	East Greenland Coastal Current

620 Table 2: Particulate REE, Y, Ba and ^{232}Th concentrations with the corresponding 2σ error.

 \odot

142611 145918 56139 77277 85623 93035 91804 29908 80422 34490 27470 57446 31035 80417 5034 S6891 2a 363(5901 192673 228160 609765 333496 333496 213886 326470 397429 589423 217104 02553 264766 495584 383423 Ba 5866 6 8 р 2.5 年 2.5 月 2.5 日 2.5 H 4 0 The second secon National and a second and a sec 2.6. 2.6. 2.6. 2.6. 2.7. 2.6. 2.7. La 1/36/2000 1/2 Latitude. Latitu onsitudeI 10,0359 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 station



2d 8 13	~	9	20 F	13	31	11	18	1	13	4	11	5	9	34	i r	n n	1	9	2	-	13	18	57	នន	19	51	n 61	Ξ	o 0	2	~	∞ ⊊	2∞	99	2	2 o	-	51 E	110	0 0	1 = 2	1 =	: 7	÷	28	5	3 20
34 23 H	28	53	15	2	124	24	99	54	22	55	88	37	40	111	18	22	60	۲ <u>3</u>	31	56	52	68	63	80	02	5	33	48	99	4 14	36	33	38	42 19	£ 5	55 41	28	90	51	۲ %	66	Q ¶8	62	<u>3</u>	3 88	110	87
2 0 25144 26265	30251	35351	71100	106021	180885	126347	1162/1	91240	73879	76794	87121 68667	46599	22479	46234	97617	61826	90658	119718	154030	145273	188037	173766	122160	178220	68519	62115	24501	65571	65939	104464	95418	99893 173030	144442	157662	146382	105587	111536	62238 73162	28695	40187	42593	76161	42526	63794	55961	83561	99616 99616
Ba 01837 05418	13079	40814	11306	18735	46966	97786	65/59 90904	57061	10797	82115	16075	89696	00956	84356	00571	49864	57124	198773	068000	192067	45823	679261	28812	32581	73012	44631	95415	\$2420	87476	28979	36440	35327	63764	15076	643485	182268	84902	82183 96424	19978	1411	79071	18481	85884	79389	48305	50485	26025
1 1 2 2	1	-	n c s s	5 4	5	4	5 4 5		13	2	2 1 3	3 1	1	1 130		10	<u> </u>	-	0 4	11	17	9	999	- <u>-</u>	9 2	۰ اہ 80 ع			89 75 2	4 4	4	4 4	19	2 1 1	9	4 4	4	2 2		- 9 2 2		2 C	4 - 4 -	C1 C 88 2	10	5 3	1
1 21 22	0 23	51	4 -	4 4	0	9 i	9 12	12	4	5 15	11 0	202	9	4.			_		8 4	1 1 9	9 15	33	20 3	1 33 V	12 25	8 -	4 4 1			17	=	51 5 51 5	12	2 c	4	9 5	1	1 11 8	1.5	3 F	121	1 0	6 21	0 0	- 5 9 9	33 25	86 43 21 21 21 21 21 21
5 Y 163 851	8										590 846																						582								1011			· ·		110	17
5 - +												111		11			_					. 1	. 11.	1.1			1	11.11									-			11	 					- 10	
9 T T																						_																								5	4 14 0 0
- 1 N																						_																			57 1.						
	m	i mi	ñ r	9 64	2	8	7 m	m	m	H					÷	끈	-l-					-								-1			5 72 - 1-						3			i ₹	m	in e	14	57 3	₩ × ¥
n 2 0 3 3 3															╧							_																		10	0 00 4						
- 13 m		الـــا								LIL			L																		L		الــال						JĽJL				° (9 '	16	6 4	00:
r 2d 13 23	12												السار																														=	2 C	임	8 1	67 10 67 16 81 10
E 8 7	4	i i i	n c	4 24	6	i i	- - -	i M		H		-					۲ŀ												= -		H									4 %	1.2	ñĕ	4	4 6	12	8	100
4 7 8	5	- C	<u></u>	10		<u>س</u>	<u></u>			ЦĻ												_									<u>الب</u>		4 m							04	17 :	0 "	4	4 0	14	- 9	+ 0 4
1 57 H	1	-		1 10					1																						<u>الب</u>				12	20		2 2	121							2.0	100
5 m 7	5			+ + 60	8	 			-	ř												!											1 1		14		~	+ 6	2	- ~ + ~	101		5 2	2 2	10	÷ 1	80 D 31 3 20 2
	닏	إنسار																				_																									
4 6 2	4																																													5 7	<u> </u>
E 2 2	1		2 0 2 0	0 in				1	1														==				==		==			==		==						==	24 12					24	101
5 6 5 9 7 9	8																					_																			81 2			200	10		2 39
9 11 9	1	8						H	H	H		10			╬	H						-						P			۲Ļ															20	165
1 2 8			2 G	n 89	m m	· · ·	4 9	9	2	8] –	1		⊹⊢	H	4		╬	-	님	4		_					_ -		H		ł							<u>ר</u> ר	× ~ v			9 9	2 00	100	
0 0 E	2	2			-	۹ ا ا			8	-	6 C	2 00 1 00	8	4 4	4 - t v			- ·	4 -	8	8	-	6	4							H۲		2 18								10	10	2 4	9 9	10	4 6	784
0 7 7 5 0 7 7 5	9	2			-	~ · ·	2	0	-	~1 80	20	96	5	2 Q 7 T	9 -		-		7 - N 0		2 2	4	4 4	9 0							H							-								2 4	4 60 4
6 15 8 8 8 8	Ξ	6			4		00	8		-	4 8	8	4	5 0			-ŀ			-	님	-	-it	23 2	8 15						H۲									4 0	1 84	2 V Q	2	11 2	12	- C - C	3 165
18 20	14	2	86	2	45	8	201	10	6	Ξ	91	: 6	56	1 30	9	61	63	3	2 2	6	12	19	25	19.1	1 28								108		° 9	9 8	4	95	8	4 8	32:	= =	2	51 S	19	8:	1616
Nd 754 426	545	426	3 5	335	192	375	428	418	390	418	423	139	253	127	114 174	52	52	562	16	334	477	769	816		1194	<u> </u>	4 4 4						488	395	452	452	194	431	376	35	497	124	524	555	12	888	826
29 29	40	8	35	3	1	ห	38	51	2	3	88	6 68	112	86	1	5	5	19	9 6	28	31	2	5	49	89	8	25	26	នេះ	9 23	19	88	9 12	ละ	38	33	1	37 28	5	1 2	រខ	5	37	37	14	8 8	2 2 2
Pr 200	144	119	58 F	80	20	<u>1</u>	8 1	108	102	115	115	372	504	345	36	88	68	89	81 E	: 22	120	197	5	196	340	238	121	109	10	93 S	\$	32	140	31	128	127 84	3	151	5	à Ē	100	131	15	156	206	247	231
20 178 96	153	85	90	218	66	269	2695	328	287	373	386	1419	379	259 M	112	751	133	135	120	142	251	398	401	423	1249	421	110	Ξ	186	174	395	140	253	239	276	254 190	109	306	86	118	113	753	320	330	411	539	494 494 567
Ce	909	362	102	396	132	143	222	366	201	427	265 160	127	704	560	821	169	543	: 63	44	665	022	615	652	782	086	114	76	9/1	66 1	191	813	808	121	082	205	147	E	394	115	210	061	113	387	444	833	306	107
5 H G	10	2	2 C	1 82	2		10	32 1	-	=	1 1	32 6	-	8 3	1 2	<u>1</u>	2	6 s	2 5	6	1 1	1	11	18 1	5 0	10	8 5	83	30	9	-	9 9 9 9			1 6	1 0	0	1 1 1	5	2	1 1 1 1 1	 2 -	. 1	1 1	. 6	59 2	100
- 2 - 0			2 0	10	2		55 <u>28</u>		=	-	2 2	1	5 6(1 33		0	7		2 F	12	11	5	44	1 21	1 22	5 2 2		F	~~ •	+ 5	~	20	1 1			222	9	2 2		2 2	- 1			+ -	18	5 25	225
m] La 1142 593	82	62	6	8 75	31	28 28	4 1	2			578						410			468					2191		823			456		402		202	603	577	J	573		607				92	36	110	1045 1045
Depth [40 60							380	2005	598	700	200	10	20	40	88	100	120	140	180	200	300	400	200	002	800	1000	28	40	09 6	100	120	140	200	300	500	009	800	1100	10	40	09	100	120	140	180	200	400
StationLongitudeLatitudeDepth [m] 32 -26.7030 55.515 40 32 -26.7030 55.515 60	55.515	55.515	212.00	515.55	55.515	55.515	CIC.CC	55.515	55.515	55.515	55.515 55.515	58.843	58.843	58.843	58 843	58.843	58.843	58.843	58.843	58.843	58.843	58.843	58.843	58.843	58.843	58.843	29.62 59.62	59.62	59.62	59.62	59.62	59.62	59.62	59.62	59.62	59.62	59.62	59.62 59.62	59.8	59.8	59.8	50.8	59.8	59.8 50.e	59.8	59.8	59.8 8.92
Longitude L -26.7030 -26.7030														-31.2660						-31.2660					-31.2660			-38.954		-38.954	8.954	8.954	-38.954	8.954	3.954	-38.954 -38.954	8.954	8.954 8.954	-42.013	013	-42.013	CIU-2	42.013	-42.013 42.013	42.013	2.013	-42.013 -42.013 42.013
tionLon 2 -26. 2 -26.																																															
stati 32 32	ŝ	ŝ	n in	i M	3	ί, μ	n m	i m	ŝ	3	in ji	í ñ	ñ	<i>с</i> , с	n ñ	n m	ŝ	ιñ δ	Ú.S.	n m	ñ	ñ	ς, η	n m	ñ	ŝ	4 4	4	4 4	+ 4	4.	4 4	4	4 4	4	4 4	4	44	0.0	2	100	2	10	5	0	ς, γ	125

2 0 12	15	128	84	101	154	106	214	9	'n	•	• •	• •	9	9	1	26	26	5	12	Ξ	14	7	20	» 5	;=	1	19	19	5	15	16	19	5	14	5	2	12	13	<u>1</u>	20	13	ц Ц	30	24	25	58	18	22	20	33	۲ ¹	10
H 9 2	۲ ۲	557	360	455	655 655	448	963	8	29	6	25	2	1	56	99	120	110	3 5	65	47	65	65	25	101	20	54	85	91	95 105	76	2	87	5 S	67	82	8	3 [0	99	09	8	99	50	08 20	105	102	130	18	107	86	109 8	22	8
2 0 2006 9188	1043	7894	37092	434	558	584	745	151	220	570	525	8160	180	97051	87600	05654	297	14734	14583	81857	37486	14976	04268	000	213	3892	63034	90244	88829 07006	5738	24324	15183	37872	33101	35693	2635	2000	251		343	333	1356	1658	794	89240	98941	013730	2690	86674	4247	010480	95922
10	5 6			2	5 5	7	8		2.		36	1		6		10	89	3 =	1	0	-		2:	5 F	16		-			12	4 12	극		H				82	7 6	3 6	5	22		8		-6		9	8	11	2 =	. 6
Ba 225811 259060	229489	33488	156732	14907	15851 26851	30367	198138	52388	112942	05130	01200	1477.	35375	40062	369040	48567.	36972	10567	47886	35123	619258	51649	47387	17704	14543	15959	29150	39971	40128	50972	58258	54226	642.91	637841	629344	20202	403509	38192	108338	15041	25870	33585	124242	379949	388952	453521	122819	49138	40016	59692	51175	13734
2225	54	520	260	129	5 F	89	145	2	29	20 2	2 3	1 12	2 99	3	12	66	517	40	25	26	63	59	5	9	62	49	10	94	515	16	67	8	5 5	2	203	3 6	6	84	000	6	142	53	02	45	38	2	56	6	29	59 °	78	3 5
Y 926 366 2	221	376 1	1 65 6	358	1 1 2	3 60/	1 602	21	6.	4 8	, , ,	36	18	50	12	341 2	558 4	3 9	53	180	1	679	6 2	222	969	637	856 2	906	117	8	789	818	619	306	912 2	287	32	2	1 689	223 3	014 4	59	40	15	55	63	69	16	58	20	80 52	17
2 0 1 9 1 8	11		4 4 7 0	4	4 4 4 4	5	2				भ र	" 1 –		. 1		2	210	- I-		4	-	- 0			9 F	- 1	1	-		1	-	- 0		~			<u> </u>		4 4	4	4 2	6	1.		1			•	1			- - -
2 2 2	9	88	16	5	នុង	17	7	~ ~	m	1 0	10		1 -	5	4	~			1 4	2	-1	4		n e	9 - 7	4	5	5	~ ~	• 4	m	m (m (m	6	4	mr	1 00	m ;	10	12	8	2		• • •	4	4	m m	4	m	4 0	n (r	-
9 7 6	11 ø	\$	85	58	24	36	ę.	4	• •	4 -	+ ~			6	6	14	14	: r-	8	9	~	<i>∞</i> •	• •	2	3	9	~	~	6 %	0	9	9	0 0	9	-	» v		9	38	34	56	1:	2.	- n	~		9 9	-	9	<i>∞</i> v		9
Yb 37	51	E	2/2	128	36	156	185	2	5	9 5	2	37	57	38	38	64	99	5	32	25	35	34	82	2 2	90	59	38	40	6 6	15	30	29	22	50	33	5	3 8	8	4 0	151	17	3	246	34	32	33	3 5	3	29	<u>ب</u>	36	15
1 1			4 A	4	0 0	9	-		-1-	1.	1-	-	i-	-	2	2	20	1-	• ~	-		-	į.	- ~	1-	Ā	٦	2		-	-	-		Ā	-		17	-	n 4	• •	m	~		• •	-	-		Ā	-		• •	1-
6 5 m	00 v	8	y 11	2	5	33	38	~	m (10	1	t (**	n v		6	10	90	•		4	~	2	2	n 1	1	4	9	9	» v	5	2	4.	4 ~	4	5	2	•	4	9 5	19	16			2	5	. 0	4 4	5	5	9 -	4 v	14
2a 10 8	14	27	31 0	34	3 5	41	27	m	• •	4 4		o v	9	9	Ξ	18	18	. 0	6	~	0	9	00 v	2	\$	F	10	Ξ	= 2	: 00	~	~	- 00	-	0	9,	00	~	72	30	33	1	= •	0	9	9	~ ~	0	~	9 r	~ ~	00
4 3 E	61	218	122	152	204	170	51	2	2	9 5	2	3 5	3 00	39	5	73	5		36	31	40	4	5	6	6	30	42	44	45	33	34	33	3 8	34	6	50	3.55	8	۲ د د د	130	86	5	20	38	37	4	3 3	39	34	5 5	37	: 6
3 n 3	5	18	10	12	95	14	5	-	-		•	1	4 (**	6	4	9	9 4	» (*	9	m	m	m	-	• •	0	0	m	m	4 4	-	m	~	- 1 (*	2	3	m	۰ ۱	m,	0	0	9	4	n (1	n m	m	m (m (1	5	m	ς	4 6	1 (1
Ho 12	11	: - :	2 4	56	92	61	8.	4	•		0	• •	5	: 11	12	5	26	3 4	2	Ξ	14	1	2	o ç	30	Ξ	5	15	10	1	12	1	= =	1	14	2:	: 2	11	5	9	30	5	9	13	5	19	2	1	12	16	14	: =
2d 17	28	101	61	E	101	81	109	n (00 r	•	• •	- =	16	17	30	32	34	5	3	15	18	19	o 1	00	1=	12	18	3	20	5	15	5	5 1	1	18	16	19	14	3 2	4	32	51	5	5	19	19	212	16	5	18	1 Y	1
74 65 Dy	119	426	246	321	422	341	459	8	÷	2	2 %	8	8	88	5	141	111	2	F	99	78	8	88	120	30	8	80	80	88	69	65	S	8	8	28	5	3 22	63	5 5	206	149	5	5	12	F	2	3 3	38	69	S 5	10	6
n n 3	5	12	1 2	1	a 😫	14	61	- (<u>-</u>	•	• •	10	4 (*	n m	4	-	94	» «	n	m	m	m '	d -	• •	10	1	m	-4	m v	2	6	m	20	6	m .	4 (4 m	m 1	n v	~ ~	~	m 1	n S	? m	4	4	m (1	n (1	m	m 1	n (*	۲ ۳
11 II	21	2 12 2	24	58	74	59	86	m	• •	4 4	•	~	9 12	=	16	31	8	3 5	13	9	1	7	P -	4 %	300	Ξ	13	16	2 X	1 =	Ξ	1	2=	Ξ	е	28	3 12	=;	3 8	38	24	7	4	1	5	19	= =	:	1	7	::	12
20	31	121	128	6	133	105	14	<u> </u>	~ ~	7 0	1=	12	19	21	33	39	99	18	21	1	21	8	° •	2	3 11	12	33	21	31	: 22	17		9 5	5	12	1	51	33	200	26	38	8	10	20	26	2	312	17	21	51	17	3 8
5d 88 88	143	195	317	438	182	454	678	6	÷۱	100	20	2 (S	8	88	10	170	100	01	93	75	96	<u> </u>	87	51	8	68	102	102	108	87	81	86	9 82	83	8	16	26	8	151	258	12	<u>[</u>]	<u> </u>	333	96	Ë	16	10	5	Ξĕ	28	8
6 6	00 F	18:	3	27	99 97	30	÷	-	2	۱ ۲	4 "	n «	ľ	2	8	2	= :	* *	0	~	9	9	<u>-</u>	- <	n c	4	9	9	° 0	<u>`</u>	9	<u>~</u> .	4 ~	4	11	<u>ه</u> ،	9	4	0 °	2	~	<u>~</u>	<u>^</u>	2	9	-	~ ~	~ ~	9	9 4		-
Eu 25	36	121	54	0 12	2 10	1 13(9 200	4	0	•	۹ :	214	3 5	18	5	4	46	3 6	•	19	3	5		0 7	3 7	1	26	53	50 % 20	3	2	57	313	21	4	5	3 8	21	2 2	22	33	7	5 P	54	57		24	38	3	5 53		1 2
1 2d	34	123	7 8	2 12(d 7	3 13	2 199	**	20 F	• •	• =	:::	12	61	6 27	5 46	6 42	2 F	1 26	5	4 23	1	8 ×	0 2		-	5 25	30	5 28	3 21	21	12	17 0	8	8	1 1	2 2	8	8 50	2 7	6 38	7	4 F	8 25	8 30	6 31	3 53	2	8 26	3 28		
Sm 76 81	519	66	2 Q	56	212	56	5 93	2	5	20	14	ř v		52	Ξ	19	11	; o	10	2	10	=	50	3 =	- 6	8	Ξ	=	11	19	1	8	88	6	8	80	12	8	8 1 1 1 1	24	1	2:		=	H	7	20	1	Ξ	1 1		2
	111	88	1 550	2 730	-66 7 110	\$ 76	7 131		8 5 7	<u>,</u>	9	164	2	6	133	208	225	10	Ξ	93	Ξ	2		201	2	87	137	125	1 14	Ξ	104	E	S S	10	132	4 8	145	2	12	231	162	3	125	144	162	18	<u> </u>	15	145	121 5		174
Nd 385 431	729	388	2364	3402	44/2	3268	9	8	198	110	140	250	384	391	562	948	936	453	484	387	522	263	455	6	319	393	617	583	780	562	486	516	400	510	604	150	112	518	808	1062	748	515	623	667	663	847	515	746	655	202	000	550
2d 27	31	2	169	225	352	232	135		4:	:	1=	: 9	2	51	37	54	99 F	2	37	55	33	8	61:	18	317	3	39	35	44	6	28	83	8 6	8	38	9 8	34	5	5 5	5	4	8	5 8	4	45	8	39	4	4	45		3 5
Pr 105 117	201	1178	112	1039	1415	973	1962	5	8:	4 2	14	331	105	Ξ	155	244	257	128	133	109	148	158	128	124	6	114	180	159	205	166	131	149	142	147	5	125	50	149	166	253	196	4	127	200	193	258	5	223	199	218	180	166
2a 235 268	492	1915	1329	1884	2655	1785	3160	⁴⁸	162	4 6	5	1062	268	1032	326	463	577	240	249	254	298	325	263	667 YOC	192	325	645	340	386	319	260	291	311	306	370	384	427	330	160	226	631	219	320	458	405	587	384	467	796	436	308	872
Ce 1018 1172	12256	8331	5684	8782	1499	7634	4593	201	100	205	338	3078	1165	4264	1388	2114	2470	1064	1091	1089	1349	1454	1194	8/01	875	1523	2992	1595	1982	1563	1236	1374	151/	1483	1696	1201	2068	1604	181	1033	2920	987	1575	2143	1788	2709	1736	2259	3645	2068	1070	3974
103	61	12	7 86	09	101 1 246 1	38	198	6		2 8	20	14	5	38	67	99	8 19	1	46	4	5	4	5	200	30	35	10	6	3123	12	58	41	4 %	30	62	53	15	53	18	99	33	8	24	32	26	E	9 59	Ξ	51	99	17	12
		. 6 .	507	95 8	- 14 - 14 - 14	22	49					96	2 - 2		-	21	48 6	1-		-	-			2 2	t 🗠	58		9	34	20	6			5	9	00	12		2 5		81		9 F	87 2	5	29	6 5	1027 2	27	85	10	15
n] La 444 503	2	4	34.02	39	24	9	68	ž ľ	4	18	16	1È	3 6	5	F	1	==	: 2	19	4	ų,	0	213	= 2	18	9	85	6	==	3	4	9	< 8	6	7	2	5	2	14	16	10	ř	25	101	96	2 l	66	19	16	81 6	¢ ¢	18
pth 600 700	800	99	6 6	09	100	120	140	10	8	P S	88	100	120	140	160	199	300	005	009	700	800	006	1000	11	41	09	80	100	120	200	300	400	200	700	802	1001	1500	1501	2 2	36	09	80,	120	140	160	200	401	500	601	200	000	1002
deDe																																																				
59.8 59.8 59.8	59.8	59.9	59.9	59.5	59.95	59.9	59.9	0.66	0.90	0.40	0.65	59.0	59.0	59.0	59.0	59.0	59.07	50.0	59.07	59.0	59.0	59.0	0.60	55.82	55.8	55.8	55.8	55.8	55.84	55.8	55.8	55.8	55.8	55.8	55.8	8.CC	55.8	55.8	670	52.9	52.9	52.9	670	52.9	52.9	52.9	9220	52.99	52.9	52.9	52.9	52.9
StationLongitudeLatitudeUepth[m] 51 42.013 59.8 600 51 42.013 59.8 700	013	-43.006	900	900	90	900	900	580	085	163	183	083	083	083	083	083	083	183	083	083	083	083	083	560	093	093	093	093	093	093	093	093	560	093	093	200	093	093	500	560	560	560	560	560	560	560	660	-51.095	560	560	560	260
	210	12	43.5	43.	43.	43.	43.	9	10.4	14.	46.	46.	46.	-46.	-46.	-46.	46.	46	46.	-46.	-46.	-46.	9	48.	148	-48.	-48.	-48	48.48	-48.	-48.	48.	48.	-48.	-48	48.	48.	48	12	-51.	-51.	-51	112	-51	51.	21.	11	51.	51.	-51.	-51	-51
14 4 4 4	4 4	1				'		'	· .																																					·	1.1		'			

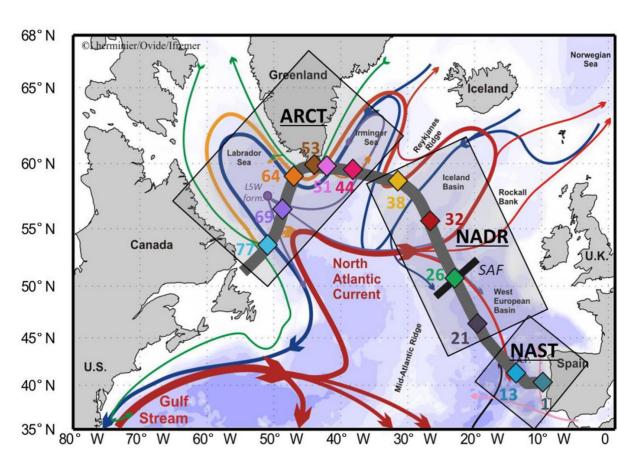
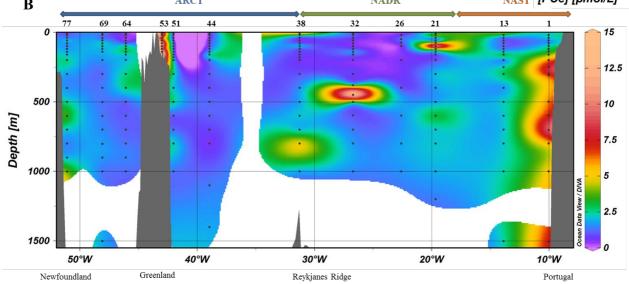
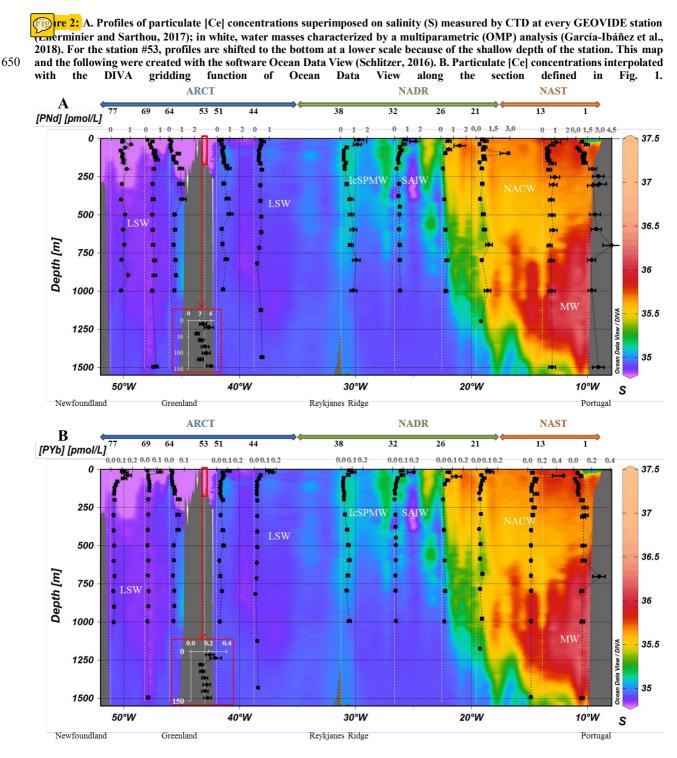
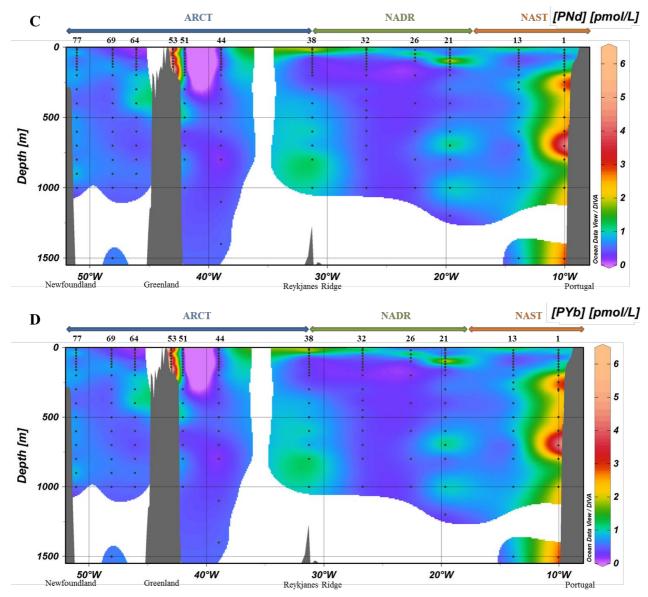
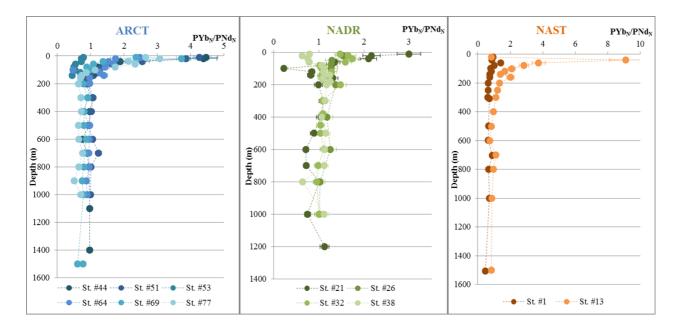



Figure 1: Map of the studied area (Subpolar North Atlantic, SPNA), including schematized circulation features, adapted from
García-Ibáñez et al. (2015). Bathymetry is plotted in color with interval boundaries at 100 m, at 1000 m, and every 1000 m below
1000 m. The red and green arrows represent the main surface currents, the pink and orange arrows represent currents at
intermediate depths, and the blue and purple arrows represent the deep currents. Diamonds indicate station positions, located in 3
distinct areas (grey squares): the North Atlantic Subtropical province (NAST), the North Atlantic Drift region (NADR), and the
Arctic region (ARCT). The approximate locations of the subarctic front (SAF; black bar crossing station #26) and the formation site
of the Labrador Sea Water (LSW form.) are indicated. The section used in ODV figures is symbolized by the thick grey line. From
Lemaitre et al. (2018).

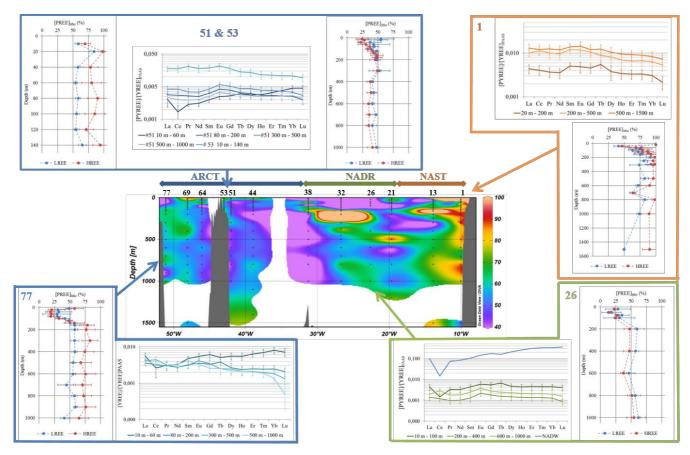



Biogeosciences



655

Figure 3: A. Profiles of particulate [Nd] and B. [Yb] concentrations superimposed on salinity (S) measured by CTD at every GEOVIDE station (Lherminier and Sarthou, 2017); in white, water masses characterized by OMP analysis (García-Ibáñez et al., 2018). At station #53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the station. C. Particulate [Nd] and D. [Yb] concentrations interpolated with the DIVA gridding function of Ocean Data View along the section defined in Fig. 1.



The second secon

665 Figure 5: Center: proportion of lithogenic PNd along the GEOVIDE section (in %); Borders: vertical profiles of the lithogenic fraction of LREEs (except Ce, blue lines) and HREEs (red lines) and PAAS-normalized REE patterns of the total fraction, averaged by depth layers, at stations #1, #26, #51, #53 and #77.

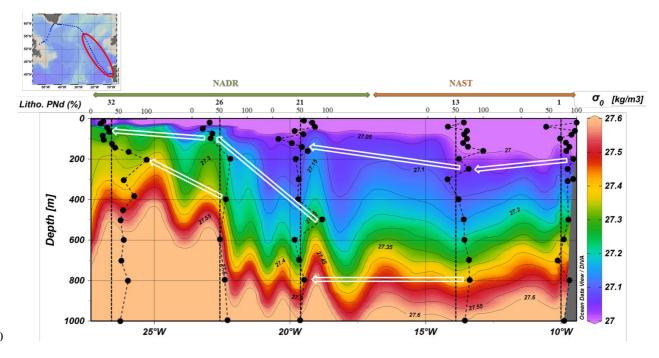
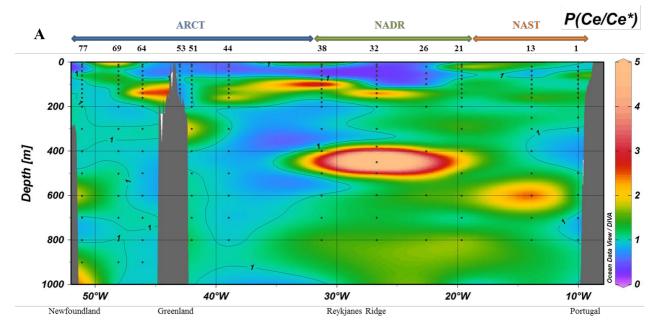
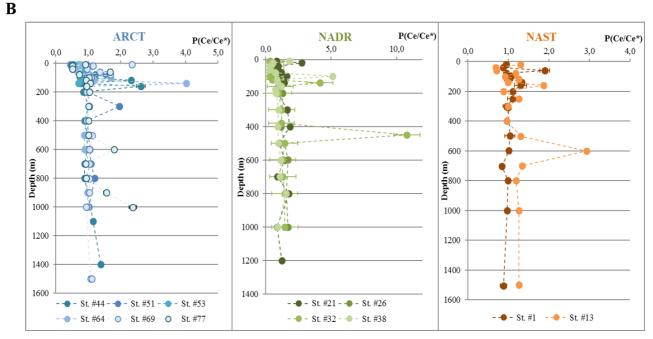
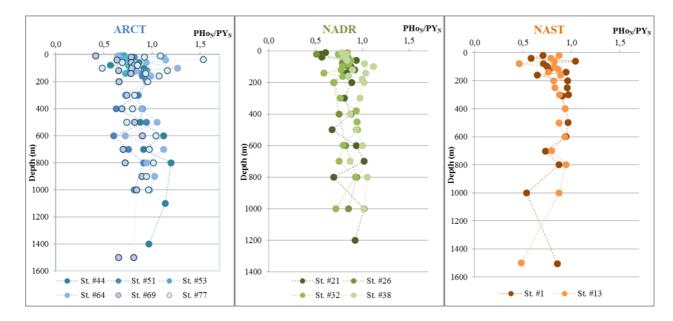




Figure 6: Proportion of lithogenic PNd profiles superposed to density from station #1 to #32



675 Figure 7: A. Particulate Ce anomaly (Ce/Ce*) along the GEOVIDE section, interpolated with the DIVA gridding function of Ocean Data View and B. Ce/Ce* profiles by biogeochemical provinces.

680 Figure 8: PAAS-normalized PHo/PY profiles by biogeochemical provinces.

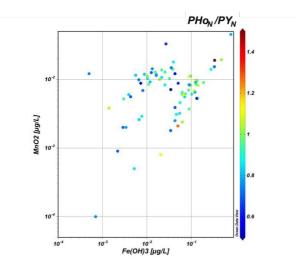


Figure 9: PAAS-normalized PHo/PY ratio as a function of Fe(OH)₃ and MnO₂ concentrations (in µg.L⁻¹).

685

Author contribution

N.L. did the sampling during the cruise, helped by C.J. N.L. did the leaching on the filter and first Ba measurements. C.J., M.B., M.G. and M.L. did REE measurements. ML wrote the manuscript, and C.J., H.P., M.G., N.L. and P.L. did the proofreading.

Competing interests

690 The authors declare that they have no conflict of interest.

Acknowledgments

We deeply thank the crew of the N/O Pourquoi Pas who where indispensable for the cruise. We also thank the Dt INSU members for their help. We thank Jérôme Chmeleff, Aurélie Marquet and Camille Duquenoy for their help for the HR-ICP-MS analysis. Many thanks to

695 Michael Bau for his advices on the interpretation of the Y/Ho part. This work was supported by by the French National Research Agency (ANR-13-BS06-0014, ANR-12-PDOC-0025-01), the French National Centre for Scientific Research (CNRS-LEFECYBER, UMR 5566). The logistics was supported by DT-INSU and GENAVIR.