10

15

20

https://doi.org/10.5194/bg-2019-462
Preprint. Discussion started: 7 January 2020
© Author(s) 2020. CC BY 4.0 License.

Particulate Rare Earth Element behavior in the North Atlantic
(GEOVIDE cruise)

Marion Lagarde', Nolwenn Lemaitre?, Héléne Planquette®, Mélanie Grenier!, Moustafa Belhad;j', Pascale
Lherminier®, Catherine Jeandel'

' LEGOS, University of Toulouse, CNRS, CNES, IRD, UPS, Toulouse, 31400, France
2 ETH, Zurich, IGP, Zurich, Switzerland

3 LEMAR, University of Brest, CNRS, IRD, Ifremer, Plouzané, 29280, France
4LOPS, Ifremer,CNRS,IRD,UBO, Ifremer, Plouzané, 29280, France

Correspondence to: Marion Lagarde (marion.lagarde@legos.obs-mip.fr)

Abstract. Particulate concentrations of the fourteen Rare Earth Elements (PREE), yttrium and 232-thorium have—been
measured in twe-handred samples collected in the epipelagic (ca 0-200 m) and the mesopelagic (ca 200-1000 m) zones of the
North Atlantic, during the GEOVIDE cruise (May/June 2014, R/V Pourquoi Pas ?, GEOTRACES GAO1). Particulate cerium
(PCe) eoneentrations vary from 0.2 pmol.L! to 16 pmol.L", particulate neodymium (PNd) enes from 0.09 pmol.L"! to 6.1
pmol.L-1 and particulate ytterbium (PYb) eres from 0.01 pmol.L"' to 0.5 pmol.L"". PREE epncentrations are higher close to
the Iberian margin and on the Greenland shelf, where-PREE-eencentrations normalized to Post Archean Australian Shale
(PAAS), display a positive Ce anomaly between 0.3 and 3, and a light REE (LREE) enrichment compared to heavy REE
(HREE) illustrated by high PNdnx/PYby ratios (normalized to PAAS). The lithogenic fraction of the partientate-REE
concentration is closely related to the margin morphology and the hydrodynamic context: off the Iberian margin, up to 100%
of the PREE:s are lithogenic and this lithogenic input spreads westward along isopycnals as intermediate nepheloid layers (INL)
up to 1700 km away. Lithogenic inputs are also observed along the Greenland and Newfoundland margins, although the
circulation stacks them along the coasts.[PREE distributions are also controlled by thgical uptake in the surface layers
@remineralization processes deeper. Low surface concentrations and some normalized REE patterns displaying a negative

Ce anomaly and HREE enrichment indicate freshly formed biogenic particles. A significant relationship between biogenic

@ silica (BSi) and PHREE is also observed in the diatom blooms occurring in the Labrador and Irminger seas. PHo/PY ratio was

25

30

calculated in order to identify processes independent of the ionic radius. However, we could not firmly assess the role of the

iron hydroxides in the scavenging prates of these elements.

1 Introduction

ine particles are the main way to transfer chemical species to the deep ocean together with the convection of water masses.
Particles are abundant in the upper ocean, where dust inputs or massive blooms occur to 1000 pg.L™D, but their
@entration decrease with depth (5 to 60 pg.L' on average in the subsurface and deep ocean, (McCave and Hall, 2002;

Stemmann et al., 2002) ever, particles are up to 1000 times more concentrated in elements than the dissolved phase (Lam
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)l., 2015), and especially in trace elements. For example, in the subpolar North Atlantic

particulate Fe (PFe) concentration can reach 50 nmol.L™! svhen dissolved Fe (DFe) does not exceed 2.5

nmol.L! (Gourain et al., 2019; Menzel Barraqueta et al., 2018; Tonnard et al., 2018). The size spectra between the particulate

35 and the dissolved phase is continuous and the separation between both pools is operational, depending on the porosity of the
filters used to discriminate the two phases, usually 0.4 pum (Planquette and Sherrell, 2012). Concentrations then depend on the
choice of this limit, even if the vertical flux is mostly due to the large, dense, sinking particles, in opposition to the smaller and

less dense particles that are in suspension in the water column. However, these small suspended particles represent over 80%

of the total particle mass (Lam et al., 2015 and references therein)._

G

®l

50  Oceanic tracers such as rare earth elements (REE) are truly adapted to the study of these exchanges (Jeandel et al., 1995; Kuss
et al., 2001; Tachikawa et al., 1999). Physical and geochemical processes such as aggregation-disaggregation, dissolution,

plexation, sorption, mineralization and scavenging lead to a fractionation along the REE series,

55 The North Atlantic is a key region of the global ocean, as it is the highest oceanic sink of anthropogenic CO, (Khatiwala et al.,
2013). Indeed, it is together i) a major place of deep water formation, mainly by convection, which drives the Atlantic
meridional overturning circulation (AMOC), and ii) a productive area, representing up to 18% of the global oceanic primary
production (Sanders et al., 2014).

In this context, we present the first basin scale section of PREE concentrations and fractionation patterns obtained for

60 suspended particles collected in the North Atlanti along the GEOVIDE section (GA01 GEOTRACES cruise), from
the surface to 1500 m. We will specifically discuss processes affecting the PREE distribution such as lithogenic inputs from

the margins, influence of biological activity and the role of ionic radius on their fate in the water column.
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2 Methods
2.1 Study area: hydrographical and biogeochemical context

Samples have-been collected in the epipelagic and mesopelagic zones (0 m — 1500 m) during the GEOVIDE cruise (16th of
May 2014 to 30th of June 2014, R/V Pourquoi Pas ?) along the transect presented in Fig. 1. This figure also presents the main

surface currents, as describetogether with the three main

identified by Longhurst (1995) and described in details by Lemaitre et al. (2018). The position of

is characterized by warm and salty waters (Garcia-Ibafez et al., 2018;
Longhurst, 1995; Reygondeau et al., 2018; Zunino et al., 2017). This province is depleted in nutrients, yet under influence of
margin inputs, displayed a declining bloom of cyanobacteria during the cruise (Lemaitre et al., 2018). Stations #1 and #13
were sampled in the NAST. The North Atlantic Drift region (NADR) is located between the NAST and the Reykjanes ridge,
with higher nutrient concentrations than in the NAST (Longhurst, 1995). A strong bloom of coccolithophorids, with a

85 maximum intensity in the Icelandic basin, occurred during the cruise, generating the highest primary production rate observed
on GEOVIDE (1740 molC.m2.d"!, station #26, Fonseca-Batista et al., 2019) and high carbon export (up to 80 molC.m2.d"!,
station #32, Lemaitre et al., 2018). Four open ocean stations were sampled in this province: in the northern branch of the NAC
(station #21), at the Subpolar front (station #26), in the northern branch of the NAC (station #32) and on the Reykjanes Ridge
(station #38).

90 West of the Reykjanes Ridge, the Irminger and Labrador Seas (Fig. 1) are rich in nutrients, and belong to the Arctic region

@ CT).
part of the ARCT region is under the influence of the Newfoundland margin. In this province, station #44 was sampled in the

middle of the gyre of the Irminger Sea, station #51 in the EGCC and station #53 on the Greenland shelf. In the Labrador Sea,

95  station #64 is in the West Greenland Current (the continuity of the EGCC after it passed Cape Farewell) and station #69 is in
the area of formation of LSW, where strong convection events occurred the winter before GEOVIDE (Garcia-Ibafiez et al.,
2018; de Jong and de Steur, 2016). Westward, the station #77 is close to the Newfoundland margin (ca 300 km).
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2.2 Sampling at sea

Two sampling systems have been deployed during GEOVIDE to collect suspended particles: a standard CTD rosette equipped
with 12 L Niskin bottles and a clean CTD rosette equipped with 12 L GO-FLO bottles. The standard rosette was used to collect
samples dedicated to the concentration analyses of dissolved and particulate barium in excess (Baxs)@olved and particulate
REEs (including Nd isotopic composition) as well as ancillary parameter analyses. Bay, and PREE chemical treatment and
analyses were conducted on the same samples: Bays was first measured at the Royal Museum for Central Africa (Tervuren,
Belgium), then PREEs were later analyzed at LEGOS (Toulouse, France; this work). Ba and concentrations were
measured at-beth-plaees, allowing us to compare our procedures. Regarding the samples collected with the clean rosette, Ba,
232Th an ith the latter belonging to REEs, named YREEs when Y is included) were also measured. Ba and 23Th were
used to compare the data obtained with the standard and clean rosette procedures (as done for Bays by Lemaitre et al., 2018,
with comparable results: r>= 0.61, p <0.01 ,@ S1 in supplementary) distinguishable by the sampling systems, filtration
method, chemistry performed on filters and analysis. The comparison of Y concentrations from the two procedures validated
the use of our standard rosette to sample YREEs, less prone to contaminatio@i trace metals, as shown by van de Flierdt et
al. (2012).
Sampling method and sample preparation for water collection with the standard rosette for Bays and PYREE analyses described
here follow those of Lemaitre et al. (2018). Sampling was focused on the epipelagic and mesopelagic zone@ — 1500 m).
On board, four to eight liters were filtered usin slightly pressurized containers. Bottles were shaken three times as
recommended in thTRACES cookbook; to avoid the loss of particles by sticking to the walls or settling at the bottom
of the bottle. Seawater was then poured in the Perspex containers at the base of which polycarbonate filters of 0.4 um porosity
(Nuclepore®, 47 mm or 90 mm of diameter) were mounted. After sample filtration, the container was rinsed with <5 mL of
@-pure water (Milli-Q; 18.2 MQ.cm) to remove the maximum of sea salt deposited on the membranes. Finally, filters were
removed using plastic tweezers and were dried under a laminar flow hood at ambient temperature before being stored in clean
petri dishes.
arding samples collected with the clean rosette, sampling method and samples preparation are described in Gourain et al.
(2019).

2.3 Sample preparation and analysis

Filters were first cut 3 two parts using a ceramic blade. One half was archived, while the other half was placed in a clean
Teflon vial (Savillex®). The filter was then digested with a strong acid solution made of 1.5 mL HCI, 1 mL HNO3 and 0.5
mL HF, all concentrated (Merck® Suprapur Grades)@s were subsequently left on hot plates at 90°C overnight.

The PREE concentrations were measured on 2 mL of the archived solutions, which were placed in clean 5 mL polypropylene
tubes and doped with a solution containing In and Re (ca 100 ppt of both tracers) in order to correct matrix effects and

sensitivity shifts during analysis. In addition to REEs, Y, Ba and ?**Th concentrations were measured in the same leaching
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solution. Analyses were performed at the Observatoire Midi Pyrénées (Toulouse, France) using a high-resolution inductively
coupled plasma mass spectrometer (SF-ICPMS, Element XR, Thermo Fischer Scientific®) coupled to a desolvating nebulizer
(Aridus II, CETAC Technologies®) to minimize oxides and hydroxides production rates and thus (hydr)oxides interferences
(Aries et al., 2000). Oxide production rates were determined at the beginning and the end of every session using a mono-
elementary Ce solution (Ce0<0.03%). Other REE (hydr)oxides rates were then determined using the constant proportionality
factor between them (Aries et al., 2000), previously determined with the same analytical configuration. Interferences represent
0.001% to 1% of the signal except for Eu (0.3% to 10%).
A five points calibration curve was established with a multi elemental standard at the beginning, the middle and the end of the
analysis, while a standard solution eeneentrated with 20.10"> g.g! of REE was measured every 5 samples. The certified
reference material SLRS-5 (NRC Canada) was systematically analyzed with the samples and their concentrations are within
the error bar of the consensual values published by Yeghisheyan et al. 2013, with a smaller error (see Figure S1 in
@lementary). Reproducibility was assessed by measuring two or three times several samples from the same leaching
solution, and varied from 0% to 20%, like the error.
Procedural blanks have-been, estimated by conducting the chemistry on clean, unused filters. The average chemical blank (n=
8) represents 0.01% to 5% of the sample concentrations, except for Y and Lu for which the contribution of the blank was
generally higher (between 1% and 30%).
Uncertainty of each concentration, estimated from error propagation was between 20% and 30% (and can be up to 40% for
Eu) of the concentration. In addition to the mass spectrometry standard deviation the other sources contributing to the final
error bar of the concentrations are: the proportion of filter analyzed, the volume of leachate and the volume taken in the archive
for the analysis@details on errors, see Fig. S2 in supplementary.
Thus the hypothesis of homogeneity is assumed e light of the apparent consistency of suspended particles on filters.
The same digest solutions were also analysed at the Royal Museum for Central Africa (Tervuren, Belgium) mainly for
determining Ba and some other element concentrations, including 2**Th. It was conducted using an inductively coupled plasma
quadrupole mass spectrometer (ICP-QMS; X Series 2 Thermo Fischer®). Bg, Y and *2Th were also measured in clean rosette
samples@ digestion procedure and analytical method are detailed in Gourain et al. (2019). Concentrations of Ba and ?*2Th
are consistent between the analysis conducted in Brest and the PREE analysis in Toulouse. “Toulouse” Ba concentrations vs.
“Tervuren” Ba concentrations give a regression slope of 0.87 (r>=0.90, n=198). For 232Th, “Toulouse” concentrations vs.
“Tervuren” concentrations give a slope of 1.05 (1>=0.98, n=198), which is also very comparable. Bg and Y analyses were used
@mpare the clean rosette and standard rosette procedures. Consistent Ba concentrations were found when compared to the
results of Lemaitre et al. (2018; r>=0.61, n=66). ¥ concentrations measured in Toulouse on samples collected with the standard
rosette match, the concentrations obtained in Brest on the clean samples, with a regression slope of 0.93 (r>=0.82, n=78 points
at same depths). Thus both procedures are suitable for PREE analysis. In addition, these validations allow us to discuss the

PREE concentrations with the trace metal eneg from Gourain et al. (2019).
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3 Results

The data set of PYREE, PBa and@’rh concentrations is compiled in Table 2. For sake of clarity, we only displayed PCe,

PNd and PYDb concentrations (Fig. 2 and 3), these-three REEs representing the light REEs (Nd), heavy REEs (Yb) and a specific
@vior (Ce).[LREEs and HREEsS are supposed to react to different processes during dissolved-particulate exchanges.

aIV oxidation state in addition to the III oxidation state common to all REEs and its oxidation onto particles prevent desom

The Ce (III)/Ce(IV) distribution is therefore a proxy of redox and desorption processes.

PCe (Fig. 2) concentrations are higher than PNd (Fig. 3{and B) concentrations, which are higher than PYb concentrations

(Fig. 3 Cand D) @ oreement with their respective natural abundance and reactivity.

3.1 Cerium

Particulate Ce concentrations (PCe, Fig. 2) vary between 0.2 pmol.L"! (station #64) and 16.3 pmol.L-1 (station #32; Fig. 2).
They are higher close to the Iberian margin (station #1: 1 pmol.L-1 < PCe < 9.4 pmol.L"!) and on the Greenland shelf (station
#53: 5.7 pmol.L!' < PCe < 14.6 pmol.L"). In the NAST (for station #13) and the NADR regions, (vertical profiles present a
surface or subsurface maximum at all stations. Below 200 m depth, PCe concentrations decrease and reach a value of 2 pmol.L
!in the mesopelagic zone. PCe concentrations are higher to the east of th@x front (stations #13 and #21) compared to the
west (stations #26, #32 and #38). A second maximum is observed at greater; depth at station #13 and in the NADR region
(except close to the subarctic front, at station #26). In the ARCT region, surface PCe concentrations are lower and increase at
the bottom of thelagic zone for all open-sea stations (PCe > 1 pmol.L"). Maximum concentrations are observed at the
bottom of thelepipelagic zone at stations #44, #64 and #69.(PCe concentrations are more variable in the mesopelagic zone of
the ARCT region than in the NADR region, and higher than the ones observed at the surface except at station #69 where they
are about within the same range (1 pmol.L"! < PCe <2 pmol.L!).[PCe profiles differ from that of PNd and PYDb at two stations
only: station #38, where peaks of PCe are observed at 100 m and 800 m, that are not observed for the other PREE profiles;
station #44, where PCe concentrations are more variable in the epipelagic zone than PNd and PYb, with maxima at 120 m and

160 m that are not observed for other PREEs.

3.2 Neodymium

As for PCe (and other PREEs@supplementary information), PNd concentrations are the highest close to the Portugal and
Greenland margins with values up to 4.5 pmol.L™! in the upper 100 m (Fig. 3(aand B). Concentrations decrease as the distance
to margins increases, as seen at stations #13 where PNd hardly reaches 1 pmol.L™\. Low PNd values were also measured at

station #77, although this station is relatively close to the Newfoundland margin, but locate(@of the continental shelf.
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3.3 Ytterbium

Distributions of PNd and PYb (Fig. 3) differ on several points: three stations (#13, #44 and #69) display a maximum in
subsurface for PYb that is not observed for PNd, whereas a local maximum in PNd is identified at 160 m at stations #64 and
#69, but not for PYb. In the open ocean, at stations #21, #26, #32 and #38, concentrations are higher in the surface layer (from
0 m to 200 m). The highest concentrations were determined in the NADR region, which was the most productive during the
cruise (Fonseca-Batista, 2018). Concentrations then decrease with depth to become constant, except at station #38 where they
increase again in the@opelagic zone. In the ARCT region, surface concentrations of PNd are lower at 100 m compared to

250 m, similar to station #1 while the contrary is observed in the NADR region.

3.4 PNdn/PYbn ratios

To highlight a possible fractionation between LREE and HREE, the PNdn/PYby ratio is calculated from concentrations
normalized t S, in order to get rid of the natural abundance effect of the REEs. Results are presented in Fig. 4, interpolated
along the section. This ratio presents a high variability, changing from 0.01 to 4.3. Higher ratios (> 1) are observed along the
margins, decreasing as the distance to the coast increases. PNdn/PYbn is lower at the surface (< 0.7) except at stations #1, #38
and #53, and increases in the subsurface layers (0.7 < PNdn/PYbn < 1) in the open ocean. The strongest ratio value is observed
in the core of the epipelagic zone at station #21 (Fig. 4C), where high concentrations of PLa, PCe, PPr and PNd are also

observed. However, for other stations with a similar enrichment, no high PNdn/PYby ratio are observed.

4 Discussion
@Comparison with other studies

PREE data in suspended particles are very scarce in the literature. To our knowledge, for the North Atlantic, only one other
set of concentrations was published by Kuss et al. (2001), who measured PREEs in samples centrifuged from several m? of
water at a depth of 7 m, collected along the 20°W meridian between 30°N and 60°N. These authors observed PCe
concentrations ranging between 0.2 pmol.L! and 4.9 pmol.L"! with higher concentrations close to the margins especially near
the European one, consistent with our data. Their PNd concentrations of about 0.5 pmol.L™! to th of the NADR are also
consistent with ours.[PNd and PYb concentrations reported by Tachikawa et al. (1999)(at a station located in a mesotrophic
zone of the north-east tropical Atlantic, directly influenced by Saharan dust (6 g.m=2.yr™' to 15 gm2.yr'!,Rea, 1994), are higher
than those reported here (PNd = 2.6 pmol.L"! and PYb= 0.94 pmol.L"!' at 10 m). Contrastingly, these authors observed lower
concentrations than ours at the oligotrophic site of their study, where the dust flux is lower than at the mesotrophic site (4-5
g.m2.yr'!, Rea, 1994) but higher than that found during the GEOVIDE cruise (2 ng.m™ to 500 ng.m>, Shelley et al., 2017).

However, these author’s PCe concentrations are similar to those reported in this study, and that for both the mesotrophic and
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-1re found both in the lithogenic and authigenic phases of the particles. Schematically, particles are often represented
with a “lithogenic core” coated by authigenic material (Bayon et al., 2004; Sholkovitz et al., 1994). The lithogenig has an
external origin, product of the continental weathering transported by the winds or discharged by the rivers on the margins. The
225 authigenic phase is of internal origin, major phases being biogenic matter (particulate organic matter POM, biogenic silica

BSi, calcium carbonate CaCOs) and metal oxides and hydroxides such as MnO; and Fe(OH)3.- in the authigenic phase

s could also be

absorbed in inorganic planktonic tests (CaCOj; Palmer, 1985 and BSi,Akagi, 2013) or biogenic byproducts as barite

Guichard et al., 1979)..LREEs woul

Thus, differentiating the distribution of the REEs i allows us to estimate the fraction implied in scavenging

processes by the authigenic phase, while the lithogenic one enables to picture continental inputs. The high PREE concentrations
235 observed in Fig. 3 close to the Portugal margin and on the Greenland shelf suggest that particulate material is released by the
margins to the water column. Lithogenic REE fraction can be guantified, using conservative lithogenic tracers such as Al, Th
or Ti (Gourain et al., 2019; Tachikawa et al., 1997). These authors used Al as a lithogenic tracer, but here we chose to use
. Indeed, the lithogenic fractions calculated from particulate Al (PAI) concentrations were often higher than 100% in

revealing that a fraction of the total Paj, is likely in the authigenic phase (Lerner et al.,

|

240 2018; Van Beueskom et al., 1997). In addition, Al being more prone to contamination, was sampled with the clean rosette
(Gourain et al., 2019), while 2*2Th used for calculation was measured in the same samples as PREEs, collected with the standard
rosette. The concentration of the lithogenic PREE fraction in particles is calculated by multiplying the 2*?Th concentration in

a given sample by the ratio of the considered REE on 2*?Th in the upper crust (Rudnick and Gao, 2014, Eq. (1)).

[REEiho] = [22Th] x ( [REE] )UCC 1)

[232Th]

245 [DEiine = Foome @
3)

These PREE lithogenic concentrations are then divided by the total PREE concentrations to obtain the pereentage of particulate

@ with a lithogenic origin (Eq. (2)). The authigenic concentrations are then obtained by—
(Eq. (3))-
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@ percentage of lithogenic PNd along the section is represented in Fig. 5./ Then we chose to represent the average value of
the lithogenic fractions of the remaining PREEs for the LREE, excepted for PCe on one hand and for HREE on the other hand.
Profiles of five selected stations (#1, #26, #51, #53 and #77) are shown in Fig. 5. These stations are representative of the three
different@‘ibutions observed along the section. Error bars represent the standard deviation of the resulting averages, the
contribution of the error on the concentrations being negligibl@pared to the laters. For some points at station #1 and at 160

stations #13 and #32, the calculated lithogenic proportion exceeds 100%, suggesting an excess of 23>Th in the particles,
likely authigenic, or a difference between the adsorption kinetics of *?Th and REE, as reported by Hayes et al. (2015). In these
cases, we capped the lithogenic proportion to 100%.
PREE concentrations are normalized to Post-Archean Australian shale, PAAS (Rudnick and Gao, 2014). This normalization
allows 1) a better diagnostic of the fractionation between PREEs and ii@parison with patterns in the literature. As shown
by the PAAS-normalized patterns of the lithogenic fractions (Fig. S3 in supp. mat.), PAAS is a valuable reference to

@esent the lithogenic material. In addition, it does not present any significant difference in REE composition with shales
and loess from Europe, North America and China (Rudnick and Gao, 2014). Normalization to atmospheric depositions has

put aside as these inputs were low during the cruise (Shelley et al., 2017) andnormalization to dusts led to patterns
depleted in Eu and Gd, and enriched in Tb, Dy, Ho and Er (data from Patey et al., 2015, on dusts collected close to Cape Verde;
Fig. S3), less representative of lithogenic inputs than PAAS. Patterns normalized to PAAS are presented in Fig.5 for selected
stations. To facilitate readability, patterns of each sample are averaged by layers displaying similar values. Error bars represent
the standard deviation of the concentration series, the errors on PAAS concentrations being negligible compared to it./A REE
pattern obtained in the Atlantic seawater at 12°S (Zheng et al., 2016) is also represented together with station #26 patterns, for

comparison.

4.2 Lithogenic supply by the margins

The high concentrations of PREEs (Fig. 3) at stations #1 and #53 reflect lithogenic inputs from the margins. At these stations,
the lithogenic PREE fractions range between 50% and 100%, the highest ones being observed at station #1 (Fig. 5). The
relatively flat patterns displayed at these stations for total PREE indicate a weak fractionation of PREEs, with a little
enrichment in@Es due to their lower solubility compared to the HREEs@se maxima can be seen beyond the Subpolar
Front until station #32, spreading along the isopycnals 27.05 and 27.4 over 2500 km from the Iberian margin (Fig. 6). Similar
@ima have been reported by (Gourain et al., 2019, Fig. 6 B) for lithogenic PFe and PMn), lithogenic PMn being taken by
these authors as tracer of sediment resuspension.
Above the Greenland shelf, at station #53, the proportion of lithogenic PREE is also high, only slightly lower than at station
median contributions of 59% for PLREE and 83% for PHREE; Fig. 5).Unlike what is observed to the eastern end of the
section, these lithogenic particles remain on the shelf and do not spread offshore. Except at the surface for LREE, the lithogenic
proportion are lower than 50% at stations #51 and #64 in the Irminger Sea and in the Labrador Sea respectively. This

containment of particles along the shelf is explained by the circulation. Indeed, the East Greenland Irminger Current (EGIC)
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is a strong narrow current bypassing Greenland along if shelf (23.4 + 1.9 Sv, Daniault et al., 2016), likely preventing exchanges
between the Irminger Subpolar Mode Water (IrSBPMW) and waters of the Greenland shelf, transported by the EGCC current
which flows parallel to the coast (green and orange arrows around the Greenland southeastern tip in Fig. 1). Our observations
are consistent with that of Lacan and Jeandel, 2005, who showed that the Nd isotopic signatures (eNd) of SPMW transported
by the EGIC do not vary significantly along the Greenland shelf. In the same way, the lithogenic influence is moderate at
station #77, land-ocean exchanges-reduced due to the EGCC again (1.5 = 0.2 Sv, Daniault et al., 2016). While the

hgenic fraction is still relatively high at this station (50% < REEjin, <80% below 150m), fhe fractionated patterns indicate

[

Gourain et al. (2019) reported similar results than ours for PFe and PMn at the same stations along GEOVIDE. These authors
observed strong lithogenic contribution from the Iberian margin spreading until station #32, lower contribution along the
Newfoundland margin and no particular lithogenic contribution along the Greenland margin, in agreement with our

observations. Using lithogenic PMn as a tracer of sediment resuspension, they observe that 100% of PMn is originating from

sediment resuspension at station #1 between 250 m and 1000 m (their Fig. 4)._

These layers highly enriched in lithogenic particles could be attrib o the formation of intermediate nepheloid layers (INL)

at 250 m and 500 m along the Iberian margin, similarly to those revealed slightly north by McCave and Hall (2002). A
contribution of the Mediterranean Water (MW) to these high concentrations and lithogenic proportions cannot be excluded
too, but the lack of data in the core of the MW (1000 m to 1500 m, Garcia-Ibafiez et al., 2018) prevents us from further
investigations.

A highly energetic process is needed to enhance such strong resuspension of lithogenic matter. It may be due to the friction
and energetic excitation of internal waves along the continental slope (Cacchione, 2002). Another source can be the erosion of

the coast by the strong current (from 0.05 m.s™! to 0.1 m.s™) coming out from Gibraltar and flowing northward along the Iberian
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margin (Gourain et al., 2019; McCave and Hall, 2002; Zunino et al., 2017). Our observations could also result from a
combination of both, with generation of internal waves south of station #1 generating sediment resuspension, those particles
being advected northward by the current.

To sum up, margins can provide significant amounts of particulate lithogenic material to the ocean; nevertheless, occurrence
and magnitude of these inputs are depending on the morphology of the margin and the hydrodynamical forcing, leading (or

not) to nepheloid layer formations.

4.@ fractionation: Ce anomalies

Ce is the only REE having a (IV) oxidation state in the water column. When adsorbed onto particles together with other REEs,
oxidation (biotic or abiotic) makes it less prone to desorption than other REEs, leading to Ce enrichment of the particulate
phase (Byrne and Kim, 1990; Elderfield, 1988; Moffett, 1990, 1994; Tachikawa et al., 1999). This oxidation is thought to
occur for authigenic Ce adsorbed on Fe(OH); and MnO, (Bau, 1999; Bau et al., 1996). This PCe enrichment is commonly
quantified by the ratio of the PCe concentration on the theoretical PCe concentration calculated using its neighbors PNd and
PPr and expressed as Ce*, following Bolhar et al. (2004):

Ce [Ce]

Ce ~2+prl—va] @

In the present set of data, this ratio is always larger than one (positive anomaly) except at stations #26, #32, #51 and #77
between the surface and ca. 100 m, where PCe is depleted compared to other PREEs, 'Ea dy discussed above. This surface
minimum is followed by a pronounced (Ce/Ce*>3) positive anomaly down to 200 m. At greater depth, the anomaly is relatively
higher in the NADR region compared to the NAST and ARCT regions.

These results indicate that Ce oxidation occurs after particles left the surface, leading to a subsurface maximum. At greater
depths, remineralization rates are high in the ARCT region, moderate in the NAST region and low in the NADR region
(Lemaitre et al., 2018). It is likely that lower remineralization rates conduct to higher net fluxes from the dissolved phase
toward the particulate phase, associated with a strong and irreversible scavenging of Ce by adsorption and oxidation, while a
fraction of the other trivalent REEs are released by desorption from the particles (Bau, 1999; Tachikawa et al., 1999). A
stronger anomaly could also reflect higher particle concentrations offering higher surface reactive areas, but particle mass
remains unknown at those depths and beam transmissiometry does not allow identifying higher particle concentrations.

To compare PCe to Mn and Fe (hydr)oxides, particulate Fe(OH); and MnO, concentrations are calculated with the formula of
Lam et al. (2017, Figure S6) using PMn, PFe and PAl data from Gourain et al. (2019). The observed decoupling between Ce
anomaly and MnQ, distributions indicates that more processes are at play than the biologically mediated oxidation that would
lead to similar distributions of the two tracers (Moffett, 1990). Different complexation conditions between these two elements
likely prevent the occurrence of a good correlation. The positive Ce anomaly is not observed when the residence time of
particles is short, which is the case in the NADR and the ARCT regions where the export is strong (stations #51 and #77,

Lemaitre et al., 2018). CaCO; formation can explain the observed negative anomalies at station #26 and #32 (Garcia-Solsona
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4.4 The influence of biological activity on the REE distributions

4.2 The influence of biological activity on the REE distributions

_Suspended PREEs displaying such “dissolved—type” pattern suggest that they have been likely formed

ugh absorption than adsorption processes,

O

The negative PCe anomaly (Fig. 7)
suggests recently formed particles on which Ce oxidation leading to positive PCe anomaly have not occurred yet. All these
stations are subject to a strong primary production (Fonseca-Batista et al., 2019), so the preferential transfer of HREEs from
the dissolved phase to the authigenic particulate one likely occurs when the biological stripping is active. However, this transfer
is more important in the ARCT region than in the NADR region, leading to stronger HREE enrichments, while the highest
bloom activity was observed in the NADR region with a maximum at station #26. The high prevalence of coccolithophorids
characterizing this bloom (Lemaitre et al., 2018) could explain the relatively low HREE enrichment, except at station #26. In
the NADR region, the patterns flatten with depth to present a quasi-lithogenic signature under 60 m, suggesting that particles
with a strong organic signature have not reach this depth yet. In the ARCT region, the bloom was dominated by diatoms, still
active at station #51 and declining at the others (Fonseca-Batista et al., 2019; Lemaitre et al., 2018).This declining bloom leads
to a strong export, but high remineralization rates decrease the biological signature proportion in favor of the lithogenic one at
depth (Fig. 5). Even if the characterization of the authigenic phase leans on-and the assumption that REEs and-
behave similarly from the original lithogenic source, it is thus very likely that biological uptake appears to have a strong effect
on the total REE patterns observed.

A relationship between HREEs and biogenic matter, mostly BSi, have been suggested by Akagi (2013) following
thermodynamic calculations. According to this work, 10% to 20% of REEs are forming a REE(H3Si04)2+ complex with

silicic acid, this proportion being more important as the atomic number is low and with depth. Complexation of REE with
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silicates was further confirmed by Patten and Byrne (2017), although these authors estimated lower complexation constant,
thus a less important fraction of REEs complexed by silica. In addition, significant correlations were observed between
dissolved Si and dissolved HREE by Bertram and Elderfield (1992; western Indian Ocean), Akagi et al. (2011, North Pacific
Ocean); Stichel et al. (2012) and Garcia-Solsona et al. (2014), both in the Atlantic sector of Southern Ocean), Grenier et al.
(2018; Kerguelen Islands) and Pham et al. (2019; Solomon Sea). Contrastingly in other areas, the correlation between SiOH4
and REEs present a curvature or is absent (Patten and Byrne, 2017, their Fig. 7; Zheng et al., 2016, their Fig. 11). Even if the
causes of such relationships are not clear, the PYbN/PNAN ratio in the authigenic phase is the highest between the surface and
50 m in the Irminger Sea and the Labrador Sea, where BSi concentrations are also the highest (Sarthou et al., 2018), reflecting
a bloom dominated by diatom species (Fig. SSA and B in supplementary material). Although the correlation between BSi and
PHREEsS stays weak (from R?=0.06 for Ho to R>=0.4 for Lu), this correlation coefficient rises with the atomic mass number
(Fig. S5C), showing that BSi has a significant influence on authigenic PREE distributions from Tb to Lu that does not appear
for lighter REEs. These correlations may show that in some areas the HREE distributions are linked to the biogeochemistry of
silicate, and not only to a conservative mixing as shown by Zheng et al. (2016) and de Baar et al. (2018). This relationship
would depends on the abundance and the nature of particles (the occurrence of diatoms), and on the speciation of REEs in the
dissolved phase as shown by de Baar et al. (2018). Akagi, (2013) and Akagi et al. (2011) proposed an incorporation of the
silica-REEs complexes during the frustules construction, but the mechanism under this enrichment during diatom blooms
remains to be clarified. Linking it to usual complexation and adsorption processes is not straightforward since this would imply
a sharp break between LREE and HREE affinities with BSi, which has still to be demonstrated. In addition, an effective
relationship between BSi and PHREE can be blurred by other scavenging processes implying particulate Mn and Fe
(hydr)oxides, also known to influence the slope between LREE and HREE.

4.5 The PAAS-normalized particulate Ho/Y ratio: a proxy of processes independent of the ionic radius

Yttrium (Y) and the lanthanide holmium (Ho) are characterized by about the same ionic radius and identical charge, making
them “geochemical twins” (Bau, 1999). The PAAS-normalized particulate ratio (PHoN/PYN) highlights differences in their
distributions, and therefore allows identifying radius-independent fractionation processes affecting YREE in seawater. We
choose to normalize PHo/PY measured in our particulate samples to the PAAS ratio to reveal any relative loss or enrichment
compared to continental material (Fig. 8). Due to differences of electron configuration, Ho is more prone to establish ionic
bounds, and then to be preferentially scavenged by adsorption onto (hydr)oxides as FeOH3 and MnO2. In comparison, Y is
preferentially scavenged when covalent bounds are established (Censi et al., 2007; Bau, 1999; Bau et al., 1995). Along the
GEOVIDE section, PHoON/PYN ratio varies between 0.4 and 1.5, with most of the values less than 1 (i.e. depleted compared
to PAAS), which does not support the expected preferential scavenging of Ho. Moreover, PHoN/PYN relationship with FeOH3
and MnO2/doesn’t fit to any pattern (Fig. 9). PHON/PYN is higher when [Fe(OH)3)> 10-2 pg.L-1, while there is no evidence

of a higher HON/YN ratio when MnO2 content increases. However, while there is a pronounced east-west gradient in the
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Fe(OH)3 distribution, the PHON/PYN ratio (Fig. S6 in supplementary) is low (<0.6) in Labrador Sea surface waters (station
#69), the Irminger Sea (stations #44 and #51) and from the surface to 750 m in the NADR region (stations #21, #26 and #32).
These locations are depleted in both MnO2 and Fe(OH)3 (Fig. S6 in supplementary), leading to a weak adsorption of Ho. All
along the section, low ratios are observed at the surface and until 800 m in the areas of marked biological productivity (stations
#26, #32, #69), although they are directly linked to primary production intensity. This suggests a preferential scavenging of Y
during the formation of biogenic matter, as reported by Censi et al. (2007), and not through simple adsorption which would
support preferential scavenging of Ho. In the NADR region, at depths between 200 m and 600 m that are characterized by
strong and positive PCe anomaly and a persistent PHREE enrichment, a PHo depletion is observed at stations #26 and #21.
The low remineralization rates observed in this area could make persistent the PY enrichment formed at the surface, when the
positive PCe anomaly suggests that a dynamic scavenging occurs. The difference between those two elements can be explained
by a preferential scavenging of LREE compared to HREE during adsorption processes. The PHo enrichment at station #32
between 350 m and 600 m goes with the most important Ce positive anomaly, indicating intensive exchanges by adsorption
with the dissolved phase, and then a stronger scavenging of REEs.

In the ARCT region, slightly lower ratios are observed at station #69 than for others, and this station is characterized by a
lower primary production and the higher remineralization rates along the section (Lemaitre et al., 2018). Ho, more adsorbed
than Y is then more prone to be released, leading to a lower signal due to the Y enrichment of the covalent part of the particles,
less easily remineralized. The higher ratios at other ARCT stations indicate scavenging by particles, although the Ce anomaly
is lower than in the NADR region.

Thus, our results show that high PHoN/PYN ratio not only reflects sorption processes driven by the occurrence of Fe(OH)3
and to a lesser extent MnO2 but all processes favoring outer-sphere complex formation, which would promote Ho and other
REEs scavenging compared to Y. The relationship with particle production, particle residence time and remineralization rates

is not clear indicating the influence of other parameters not identified yet.
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Table 1: List of region, water masse and current abbreviations.

Regions
SPNA Subpolar North Atlantic
NAST North Atlantic Subtropical
NADR North Atlantic drift
ARCT Arctic

Water masses
ENACW East North Atlantic Central Water
MW Mediterranean Water
SPMW Subpolar Mode Water
Ir'SPMW  Irminger Subpolar Mode Water

LSW Irminger Subpolar Mode Water
Currents

NAC North Atlantic Current

ERRC East Reykjanes Ridge Current

IC Irminger Current

EGIC East Greenland Irminger Current

EGCC East Greenland Coastal Current

620 Table 2: Particulate REE, Y, Ba and *2Th concentrations with the corresponding 2¢ error.
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Figure 1: Map of the studied area (Subpolar North Atlantic, SPNA), including schematized circulation features, adapted from
Garcia-Ibaiiez et al. (2015). Bathymetry is plotted in color with interval boundaries at 100 m, at 1000 m, and every 1000 m below
1000 m. The red and green arrows represent the main surface currents, the pink and orange arrows represent currents at
intermediate depths, and the blue and purple arrows represent the deep currents. Diamonds indicate station positions, located in 3
distinct areas (grey squares): the North Atlantic Subtropical province (NAST), the North Atlantic Drift region (NADR), and the
Arctic region (ARCT). The approximate locations of the subarctic front (SAF; black bar crossing station #26) and the formation site
of the Labrador Sea Water (LSW form.) are indicated. The section used in ODV figures is symbolized by the thick grey line. From
Lemaitre et al. (2018).
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2018). For the station #53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the station. This map

650 and the following were created with the software Ocean Data View (Schlitzer, 2016). B. Particulate [Ce] concentrations interpolated

with the DIVA gridding function of Ocean Data View along the section defined in Fig. 1.
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Figure 3: A. Profiles of particulate [Nd] and B. [Yb] concentrations superimposed on salinity (S) measured by CTD at every
GEOVIDE station (Lherminier and Sarthou, 2017); in white, water masses characterized by OMP analysis (Garcia-Ibaiiez et al.,
2018). At station #53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the station. C. Particulate
[Nd] and D. [Yb] concentrations interpolated with the DIVA gridding function of Ocean Data View along the section defined in Fig.

660 1.
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Figure 6: Proportion of lithogenic PNd profiles superposed to density from station #1 to #32
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Figure 7: A. Particulate Ce anomaly (Ce/Ce*) along the GEOVIDE section, interpolated with the DIVA gridding function of Ocean
Data View and B. Ce/Ce* profiles by biogeochemical provinces.
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Figure 8: PAAS-normalized PHo/PY profiles by biogeochemical provinces.
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Figure 9: PAAS-normalized PHo/PY ratio as a function of Fe(OH); and MnO; concentrations (in pg.L™).
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