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Abstract. Particulate concentrations of the fourteen Rare Earth Elements (PREE), yttrium and 232-thorium were measured in
200 samples collected in the epipelagic (ca 0-200 m) and the mesopelagic (ca 200-1500 m) zones of the North Atlantic, during
the GEOVIDE cruise (May/June 2014, R/V Pourquoi Pas?, GEOTRACES GAO01), providing the most detailed snapshot of
the PREE distribution in the North Atlantic so far. Concentrations of particulate cerium (PCe) varied between 0.2 pmol L
and 16 pmol L%, while particulate neodymium (PNd) concentrations ranged between 0.1 pmol L™*and 6.1 pmol L. Particulate
ytterbium (PYb) concentrations ranged between 0.01 pmol L and 0.50 pmol L. In addition, this study showed that PREE
distributions were also controlled by the biological production in the upper sunlit ocean and by remineralization processes in
the mesopelagic area. Low surface concentrations combined with normalized PREE patterns displaying a negative Ce anomaly
and HREE enrichments pointed to freshly formed biogenic particles imprinting the seawater signature. A significant
relationship between biogenic silica (BSi) and PHREE was also observed in the Labrador and Irminger Seas, due to the
occurrence of strong diatom blooms at the sampling time. In order to identify dissolved-particulate processes independent of
the ionic radius, we used PHo/PY ratios and showed that absorption processes were predominant in the upper ocean while
adsorption processes dominated at deeper depths.

This study highlighted different lithogenic fractions of PREE and dispersion depending on the shelf: off the Iberian margin,
up to 100% of the PREE were determined to have a lithogenic origin. This lithogenic input spread westward along an
intermediate nepheloid layer (INL), following isopycnals up to 1700 km away from the margin. In contrast, along the

Greenland and Newfoundland margins, the circulation maintained lithogenic inputs of PREE along the coasts.

1 Introduction

Particles and water mass circulation are the main vectors in transferring chemical species from the surface to the deep ocean
(Gehlenetal., 2006; Kwon et al., 2009; Lam and Marchal, 2015; Ohnemus and Lam, 2015). Particles are abundant in the upper

ocean (up to 1000 pg L), where dust inputs or important blooms occur, and their concentration decrease with depth in the
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subsurface and deep ocean (5 to 60 pg L on average, McCave and Hall, 2002; Stemmann et al., 2002). Particles are usually
divided in two classes: large sinking particles that dominate the vertical flux, and small particles that are in suspension in the
water column. These small suspended particles represent over 80% of the total particle mass (Lam et al., 2015 and references
therein). In addition, their higher surface to volume ratios make suspended particles the main drivers of dissolved-particulate
exchanges (Crecelius, 1980; Trull and Armand, 2001). Elements are up to 1000 times more concentrated in particles than in
the dissolved phase (Lam et al., 2015), and among them trace metals are especially enriched in particles. For example, in the
subpolar North Atlantic, particulate iron (PFe) concentrations can reach 50 nmol L while dissolved Fe concentrations does
not exceed 2.5 nmol L (Tonnard et al., 2020). As the size spectrum between the particulate and the dissolved phase is
continuous, the separation between the two pools is truly operational, based on the porosity of the filters used to discriminate
the two phases, usually 0.4 um (Planquette and Sherrell, 2012). Concentrations may then depend on the choice of this limit.
In the ocean, three main sources of particles are distinguishable (Fowler and Knauer, 1986; Jeandel et al., 2015; Lam et al.,
2015 and references therein). The first one is lithogenic, with inputs from the rivers, dust deposits, ice melting and resuspension
of deposited sediments. The second is biogenic, and related to the production of fresh organic matter by photosynthetic activity
followed by zooplankton grazing, and the following food web activity. The last one results from authigenic processes such as
the precipitation and formation of red clays, oxides and hydroxides. All these sources and processes lead to a very
heterogeneous pool, in time, space and composition, evolving throughout their stay in the ocean and controlling the density of
particles, and consequently their fate in the water column. Then, exchanges between the particulate and dissolved phases
determine the chemistry of seawater and the residence time of the chemical species in the ocean (Jeandel et al., 2015; Jeandel
and Oelkers, 2015; Turekian, 1977).

Oceanic tracers such as rare earth elements (REE) are adapted to the study of these exchanges (Jeandel et al., 1995; Kuss et
al., 2001; Tachikawa et al., 1999b). Rare earth elements form a homogenous family characterized by a gradual filling of the
4f orbital as their atomic number increase. Except for cerium (Ce), their external orbital comprises three electrons, rendering
their chemical properties relatively similar. However, the increasing weight concomitant with an increasing atomic number
and the decreasing ionic radius generates slight differences between the light and heavy REE behaviors (LREE and HREE
respectively). In seawater REE are mostly complexed by carbonates, this complexation increasing with the atomic number:
86% of lanthanum (La, the first REE of the series) is found as carbonates complexes, while this proportion is 99% of lutetium
(Lu, the last REE of the series) (Schijf et al., 2015). Thus, the REE will react differently in the water column depending on
various physical and geochemical processes such as aggregation-disaggregation, dissolution, complexation, sorption,
mineralization and scavenging. These processes will lead to a fractionation along the REE series. Consequently, measuring
the distribution of REEs between the solid and dissolved phases can help tracing and quantifying these processes.
Documenting these exchanges in the subarctic North Atlantic using REE among other tracers was one of the goals of the
GEOVIDE cruise (2014, GA01 GEOTRACES cruise; Fig. 1). The North Atlantic is a key region of the global ocean, as it is
the most important oceanic sink of anthropogenic CO; (Khatiwala et al., 2013), and it is i) a major place of deep water

formation, mainly by convection, which drives the Atlantic meridional overturning circulation (AMOC), and ii) a productive
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area, representing up to 18% of the global oceanic primary production (Sanders et al., 2014). The GEOVIDE section
investigated stations close to the Iberian, Greenland and Canadian coasts and crossed areas of contrasted surface productivity.
This cruise was part of the GEOTRACES program, which aims to document trace elements cycles in the ocean by a better
understanding of their sources and sinks, including their export by particles (Henderson et al., 2007). Constraining the drivers
of the particle-solution exchanges is thus an important issue in this area.

In this context, we present the first basin scale section of PREE concentrations and fractionation patterns in suspended particles
collected in the Subpolar North Atlantic (SPNA), along the GEOVIDE section, from the surface to 1500 m depth. In the
following, we specifically discuss processes affecting the PREE distribution such as lithogenic inputs from the margins,

influence of biological activity and the role of ionic radius on their fate in the water column.

2 Methods
2.1 Study area: hydrographical and biogeochemical context

Samples were collected in the epipelagic and mesopelagic zones (0 m — 1500 m) during the GEOVIDE cruise (16th of May
2014 to 30th of June 2014, R/V Pourquoi Pas?) along the transect presented in Fig. 1. This figure also presents the main surface
currents, as described in details in Zunino et al. (2017) and Garcia-Ibafiez et al. (2018), together with the three main
biogeochemical provinces identified by Longhurst (1995) and described in details by Lemaitre et al. (2018b): the subtropical
North Atlantic (NAST), the North Atlantic drift (NADR) and the Arctic (ARCT) regions. The location of the stations where
suspended particles were sampled (Fig. 1) were chosen to be representative of the diversity of water masses (Fig. 2) and
biogeochemical provinces (Sarthou et al., 2018). Warm and salty waters coming from the tropical Atlantic are advected
towards the Arctic by the North Atlantic Current (NAC, see Table 1 for abbreviation list). In response to air-sea exchanges
and mixing with polar waters, surface waters become colder and fresher, but more importantly, denser. Thus, they tend to mix
with underlying waters, particularly during convection events triggered by storms. In the Nordic Seas (between 65°N and
80°N), the water column can be ventilated down to the bottom, while convection never exceeds 2000 m in the subpolar gyre.
The freshly formed deep water then returns southwards mainly through western boundary currents (Daniault et al., 2016;
Garcia-Ibafez et al., 2015, 2018; Zunino et al., 2017).

At the south east end of the section, the North Atlantic subtropical (NAST) province is characterized by warm and salty waters
(Garcia-lbafiez et al., 2018; Longhurst, 1995; Reygondeau et al., 2018; Zunino et al., 2017). This province is depleted in
nutrients despite being under influence of continental inputs, and was sampled during the declining stage of the cyanobacteria
bloom (Lemaitre et al., 2018b). Stations #1 and #13 were sampled in the NAST. The North Atlantic Drift region (NADR) is
located between the NAST and the Reykjanes ridge, with higher nutrient concentrations than in the NAST (Longhurst, 1995).
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A strong bloom of coccolithophorids, with a maximum intensity in the Icelandic basin, was occurring during the sampling
time, and was associated with the highest primary production rate determined during the GEOVIDE cruise (1740 molC m2 d-
1) station #26, Fonseca-Batista et al., 2019) and with high carbon export (up to 80 molC m2 d, station #32, Lemaitre et al.,
2018b). Four open ocean stations were sampled in this province: within the southern branch of the NAC (stations #21 and
#32), at the Subpolar front (station #26) and above the Reykjanes Ridge (station #38).

West of the Reykjanes Ridge, the Irminger and Labrador Seas (Fig. 1) located in the Arctic region (ARCT) were nutrient-
replete. Large blooms of diatoms occurred in this area, with a maximum of primary production at the end of May, three weeks
before the GEOVIDE sampling in the Labrador Sea and one month before the sampling in the Irminger Sea (Lemaitre et al.,
2018b). The western part of the ARCT region is under the influence of the Newfoundland margin. In this province, station #44
was sampled in the middle of the gyre, station #51 in the East Greenland Coastal Current (EGCC) and station #53 on the
Greenland shelf. In the Labrador Sea, station #64 was influenced by the West Greenland Current (following the EGCC after
it crossed Cape Farewell) while station #69 was located within the formation area of LSW, where strong convection events
occurred the winter before GEOVIDE (Garcia-Ibafiez et al., 2018; de Jong and de Steur, 2016). Westward, the station #77 was

located close to the Newfoundland margin (ca 300 km).

2.2 Sampling at sea

Suspended particles were collected with 12 L Niskin bottles mounted on a standard rosette and samples were dedicated to the
concentration analyses of particulate barium in excess (Baxs, biogenic Ba), dissolved and particulate REE (including Nd
isotopic composition) and yttrium (often integrated to REE as chemical analogue, named YREE in such case) as well as
ancillary parameter analyses, including particulate 232-thorium (**Th). The description of the sampling and filtration methods
for water collected with this rosette follows that of Lemaitre et al. (2018b). Briefly, sampling was focused on the epipelagic (0
m — 200 m) and mesopelagic zones (200 m — 1500 m). Sampling bottles were shaken three times as recommended in the
GEOTRACES cookbook (https://geotracesold.sedoo.fr/Cookbook.pdf), to avoid the loss of particles by sticking to the walls
or settling at the bottom of the bottle. Then, four to eight liters of seawater were filtered off-line using clean slightly air
pressurized containers (Perspex®). Suspended particles were collected onto polycarbonate filters of 0.4 um porosity
(Nuclepore®, 47 mm or 90 mm of diameter). After sample filtration, the filter was rinsed with <5 mL of ultra-pure water
(Milli-Q; 18.2 MQ cm) to remove most of sea salts. Finally, filters were carefully removed using plastic tweezers and were
dried under a laminar flow hood at ambient temperature then stored in clean Petri dishes. Samples were handled in line in order
to avoid contamination.

Ba, 2%2Th, yttrium Y and PREE digestion procedure were performed on the same sample and the resulting solution was shared
between analysts. 2%2Th and Ba (but not Y) were first measured at the Royal Museum for Central Africa (Tervuren, Belgium),
then Ba, 2°2Th, Y and PREE were later analyzed at LEGOS (Toulouse, France; this work). Details of this procedure are

described in section 2.3.1.
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A clean sampling system was also deployed at the same stations to collect suspended particles dedicated to the analysis of
trace metals prone to contamination like iron (Fe) or zinc (Zn). It was composed of a clean rosette equipped with 12 L GO-
FLO bottles. Suspended particulate samples were collected on paired polyethersulfone and mixed ester cellulose filters of 0.45
pm and 5 pm porosity, respectively. The sample digestion and the subsequent analytical work were conducted in LEMAR,
Brest (Gourain et al., 2019). The digestion procedure was slightly different than the procedure used on filters collected with
the standard rosette (see section 2.3.2). Ba and Y were also measured on these “clean samples” together with other trace metals,

in Brest.

2.3 Sample preparation and analysis

2.3.1 Leaching procedure and analysis for the PYREE

Polycarbonate filters mounted on the Perspex® filtration units were first cut into two parts using a ceramic blade. One half
was archived, while the other half was placed in a clean Teflon vial (Savillex®). The filter was then digested at Tervuren with
a strong acid solution made of 1.5 mL HCI, 1 mL HNO3 and 0.5 mL HF, all concentrated (Merck® Suprapur Grades) (Lemaitre
etal., 2018b). Vials were left on hot plates at 90°C overnight. After this, the filter was fully digested, and the solution was then
evaporated until near dryness. Finally, 13 mL of 0.32 mol L* HNO3 (Merck® Suprapur Grades) were added in the Savillex®
vials and the leaching solutions were transferred into clean polypropylene tubes (VWRT™). Then, Y, Ba, 22Th and REE
concentrations were measured using 2 mL of these archive solutions. Only few samples required an additional dilution by a
factor between 1.3 and 1.5 using HNO3 0.32 mol L (prepared from Merck® nitric acid 65%, EMSURE® distilled twice at
LEGOS to get the purest product), because the archive solution volume was below 2mL, which is the volume required by the
ICP-MS measurement. These aliquots were placed in clean 5 mL polypropylene tubes and doped with a solution containing
In and Re (ca. 100 ppt of both tracers) in order to correct matrix effects and sensitivity shifts during analysis. Analyses were
performed at the Observatoire Midi Pyrénées (Toulouse, France) using a high-resolution inductively coupled plasma mass
spectrometer (SF-ICP-MS, Element XR, Thermo Fischer Scientific®) in low resolution mode. The SF-ICP-MS was coupled
to a desolvating nebulizer (Aridus I, CETAC Technologies®) to minimize oxide and hydroxide production rates and thus
(hydr)oxide interferences (Aries et al., 2000). Oxide production rates were determined at the beginning and the end of every
session using a Ce solution (Ce0<0.03%). Other REE (hydr)oxides rates were then determined using the constant
proportionality factor between them, previously determined with the same analytical configuration (Aries et al., 2000). Oxide-
hydroxide interferences represented 0.001% to 1% of the signal except for Eu (0.3% to 10%). Isobaric interferences were
corrected directly by the software of the ICP-MS, and thoroughly checked before the session. A five-point calibration curve
was established using a multi elemental standard solution at the beginning, the middle and the end of the analysis. The 20.10°
12 g g of REE standard was measured every 5 samples. Standards were prepared by the dilution of a multi element stock
solution (SCP Science, PlasmaCAL, Custom standard) in 0.32 mol L™t HNO; with ca 0.1 ppb of In and of Re, to match the

relative concentrations measured in the samples. The certified reference material SLRS-5 (NRC Canada) was systematically
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analyzed with the samples and their concentrations are within the error bar of the consensual values published by Yeghicheyan
et al. (2013), with a smaller error (see Fig. S1). Reproducibility was assessed by measuring two or three times 2 mL of 23
samples from the same leaching solution. The difference between replicates varied from 0 % to 20%, and were mostly under
10%. The average percentage of difference between these analytical replicates is presented on Fig. S2. Procedural blanks have
been estimated by conducting the same chemical procedure on clean, unused filters. The average chemical blank (n = 8)
represented 0.01% to 5% of the sample concentrations, except for Y and Lu for which the contribution of the blank was
generally higher (between 1% and 30%). Blanks were finally subtracted to the measured concentrations.

Four sources of errors could affect the final data: errors on i) the proportion of filter analyzed that comes from cutting the
filters in halves; ii) the volume of leachate; iii) the volume taken in the archive for analysis; iv) the standard deviation associated
with ICP-MS measurements. The final error was calculated by propagating the uncertainties of these different sources, except
for the cutting error, which is rather theoretical than empirical and was impossible to evaluate at the time. We assumed that
particles had a homogenous distribution on the filters as heterogeneity is difficult to assess. This hypothesis is supported by
the good agreement of Y, Ba and %*2Th between the samples from Niskin bottles and the samples from GO-FLO bottles, which
were not cut in halves (see section 2.3.2 below). The different errors, their method of calculation and their comparison are

summarized in Fig. S3.
2.3.2 Laboratory to laboratory comparisons and validation of our data

Ba and 2%2Th results were used to compare the data obtained between Tervuren and Toulouse in order to assess the consistency
of the different ICP-MS analyses. Y was used to compare the consistency of data obtained between Brest and Toulouse using
two different sampling systems, filtration, digestion and analytical procedures. Y concentrations were more specifically used
to validate the YREE sampling with the standard rosette, which is less prone to contamination than Fe or Zn, as underlined by
van de Flierdt et al. (2012).

Results are presented in Fig. S4. Analytical determination of Ba and 2*2Th concentrations were performed in Toulouse and in
Tervuren (Lemaitre et al., 2018b). In Tervuren, an inductively coupled plasma quadrupole mass spectrometer (ICP-QMS; X
Series 2 Thermo Fischer®) was used, while a high-resolution mass spectrometer was used in Toulouse (HR-ICP-MS; Element
XR Thermo Fischer®). “Toulouse” vs. “Tervuren” Ba concentrations show a regression slope of 0.86 (r2=0.91, n=198). For
232Th, “Toulouse” vs. “Tervuren” concentrations show a slope of 1.05 (r2=0.98, n=198; Fig. S4).

The comparison between the two sampling and subsequent analytical procedures is illustrated by Y concentrations analyzed
in “Brest” and “Toulouse”. In Brest, filters collected with the clean-rosette were leached with a mixture of HF and HNO3
during 4 hours at 130°C before evaporation (for details see Gourain et al., 2019), while in Toulouse, filters collected with the
standard rosette were digested with a HCI, HF and HNOs solution (see above section 2.3.1). The comparison shows an excellent

consistency between both datasets: for Y, the regression slope is 0.93 (r>=0.82, n=78; Figure S4). For Ba, the regression slope
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is 0.86 (r2=0.91, n=78). This intercomparison exercise supports the excellent reliability of our PREE data and allows us to

discuss the PREE concentrations in the context of trace metal concentrations from Gourain et al. (2019) in the following parts.

3 Results

Concentrations of PY, PREE, PBa and PZ2Th are compiled in Table 2. For sake of clarity, we only displayed PCe, PNd and
PYb concentrations (Fig. 2 and 3) since these three REESs represent the light REE (Nd), heavy REE (Yb) and a specific behavior
(Ce). Noteworthy, LREE and HREE are not equally influenced by dissolved-particulate exchanges (Koeppenkastrop et al.,
1991; Koeppenkastrop and De Carlo, 1992, 1993; Sholkovitz, 1992; Sholkovitz et al., 1994). As free trivalent LREE are more
abundant in seawater, they are more prone to adsorption on particles than HREE (Schijf et al., 2015). The specific behavior of
Ce is due to the occurrence of its IV oxidation state in addition to the Il oxidation state common to all the REE. Two
mechanisms for Ce oxidation have been proposed so far: a microbially mediated oxidation in seawater under oxic conditions
that leads to formation of insoluble CeO2, more particle reactive than Ce(l1) (Byrne and Kim, 1990; Elderfield, 1988; Moffett,
1990, 1994; Sholkovitz and Schneider, 1991) and an oxidative scavenging onto Mn oxides particles (De Carlo et al., 1997;
Koeppenkastrop and De Carlo, 1992). These two processes act in addition to the general scavenging process that affects all
the trivalent REE by surface complexation, thus leading to the Ce enrichment in particles and its stronger depletion in the
dissolved phase compared to other REE.

Particulate Ce concentrations are higher than PNd concentrations (Fig. 2; Fig. 3 A and B), which are higher than PYb
concentrations (Fig. 3 C and D), in agreement with the natural abundance and reactivity of these three REE: the light Ce and

Nd are more abundant than the heavy Yb, and Ce is the most particle-reactive of the REE.

3.1 Cerium

As shown in Fig. 2, particulate Ce concentrations varied between 0.2 pmol L (station #64) and 16.3 pmol L (station #32;
Fig. 2). They were higher close to the Iberian margin (station #1: 1 pmol L < PCe < 9.4 pmol L) and on the Greenland shelf
(station #53: 5.7 pmol L? < PCe < 14.6 pmol L). In the NAST (station #13) and the NADR (stations #21 to #38) regions,
vertical profiles presented a surface or subsurface maximum at all stations. A second maximum was observed at 160 m at
station #13 and in the NADR region (except close to the subarctic front, at station #26). Below 200 m depth, PCe concentrations
decreased and reached a value of 2 pmol L™ within the mesopelagic area. Particulate Ce concentrations were higher to the east
of the subarctic front (stations #13 and #21) compared to the west (stations #26, #32 and #38). In the ARCT region, surface
PCe concentrations were lower and increased between 80 m and 160 m, with all PCe > 1 pmol L™ at all open-sea stations.
Maximum concentrations were observed just below 200 m, at stations #44, #64 and #69. At depths greater than 200 m, PCe
concentrations were more variable in the ARCT region than in the NADR region. They were higher than those observed at the
surface except at station #69 where they remained between 1 pmol L™ and 2 pmol L. Particulate Ce profiles differed from

that of PNd and PYb at two stations only: station #38, where higher concentrations were observed at 100 m and 800 m for PCe
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only; station #44, where PCe concentrations were more variable in the epipelagic zone than PNd and PYb, with maxima located

at 120 m and 160 m depth. These maxima were not observed for other PREE at this station.

3.2 Neodymium

As for PCe (and other PREE, see supplementary information and Table 2), PNd concentrations were the highest close to the
Iberian and Greenland margins with values up to 4.5 pmol L in the upper 100 m (Fig. 3 A and B). Concentrations decreased
as the distance to margins increased, as seen at stations #13 where PNd were lower than 1 pmol L. Low PNd values were

also measured at station #77, which is relatively close to the Newfoundland margin, yet located outside of the continental shelf.

3.3 Ytterbium

Distributions of PNd and PYb differed in several ways (Fig. 3). Stations #13, #44 and #69 displayed a maximum in subsurface
for PYb that was not observed for PNd. In contrast, a local maximum in PNd was identified at 160 m at stations #64 and #69,
but not for PYb. In the open ocean, at stations #21, #26, #32 and #38, concentrations of both elements were higher in the
surface layer than below. The highest PYb concentrations were determined in the NADR region, which was the most
productive at the time of the cruise (Fonseca-Batista et al., 2019). Concentrations then decreased with depth to become
constant, except at station #38 where they increased again in the mesopelagic zone (below 300 m). In the ARCT region, surface

concentrations of PNd were lower at 100 m than at 250 m, similar to station #1 contrasting on this point with the NADR region.

3.4 PYbn/PNdn ratios

To highlight a possible fractionation between LREE and HREE, the PYbn/PNdy ratio is calculated from concentrations
normalized to the Post Archean Australian Shale (PAAS), commonly used for REE normalization, in order to get rid of the
natural abundance “zig zag distribution” of the REE (Piper and Bau, 2013). This normalization allows i) a better diagnostic of
the fractionation between PREE and ii) comparison with patterns in the literature. Results are presented in Fig. 4. The
PYbn/PNdy ratio varied between 0.2 and 4.5, with an outlier (9) at station #13 at 40 m. Lower ratios (< 1) were observed along
the margins, increasing with the distance from the coast. In the open ocean, except at station #38, PYbn/PNdy was higher at
the surface (> 1.4), and decreased in the subsurface layers, ranging between 1 and 1.4. At station# 38, it was smaller than 1 in
the upper 100 m and around 1 below. The lowest PYbyn/PNdy ratio was determined in the core of the epipelagic zone at station
#21 at 100 m (Fig. 4), where high concentrations of PLa, PCe, PPr and PNd (in other words, LREE) were measured. However,
for other stations with a similar enrichment, no low PYbn/PNdy ratios were observed (stations #21 at 600m, #32 at 450 m and
#38 at 800 m).
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4 Discussion
4.1 Comparison with other studies

Particulate REE data in suspended particles are very scarce in the literature. To our knowledge, for the North Atlantic, only
one other set of concentrations was published by Kuss et al. (2001), who measured PREE in samples centrifuged from several
m? of water at a depth of 7 m, collected along the 20°W meridian between 30°N and 60°N. Even though this study is located
in a different area of the North Atlantic Ocean, and only in surface, similarities can be pointed out. Kuss et al. (2001) observed
PCe concentrations ranging between 0.2 pmol L and 4.9 pmol L™ with higher concentrations close to the margins especially
near the Iberian margin, consistent with our data. Their PNd concentrations of ca. 0.5 pmol L™ to the south east of the NADR
are also consistent with ours. The PNd concentrations reported by Tachikawa et al. (1999b) at a station located in a mesotrophic
zone of the north-east tropical Atlantic and directly influenced by Saharan dust (6 g m? yr'to 15 g m? yr, Rea, 1994) were
almost 2 times higher than those reported here (PNd = 2.6 pmol L* at 10 m at station M, when PNd <1.4 pmol L for
GEOVIDE at 10 m; Fig. S5). The same authors measured lower concentrations than ours at the oligotrophic site of their study,
where the dust flux was lower than at the mesotrophic site (4-5 g m2 yr?, Rea, 1994) but higher than that found during the
GEOVIDE cruise (2 ng m?to 500 ng m, Shelley et al., 2017). Interestingly, PCe concentrations measured by these authors
are similar to those reported in this study, for both the mesotrophic and oligotrophic sites. The difference of concentrations
observed for the other PREE can be due to the fact that particle concentrations are usually higher in the subpolar North Atlantic
than in the tropical Atlantic (Gehlen et al., 2006).

4.2 Lithogenic and authigenic PREE fractions

Particulate REE are found in both the lithogenic and authigenic phases of particles. Schematically, particles are often
represented with a “lithogenic core” coated by authigenic material (Bayon et al., 2004; Sholkovitz et al., 1994). The “lithogenic
core” has an external origin, product of the continental weathering transported by the winds or discharged by the rivers to the
continental margins. The authigenic phases are produced in the water column, and particulate REE present in this phase can
result from surface biological activity or scavenging by organic coatings and/or iron and manganese oxides and hydroxides
(Bau, 1999; Bau and Koschinsky, 2009; Lam et al., 2015). Traces of the biological absorption can be found in inorganic
planktonic tests (CaCOs, Palmer, 1985; Roberts et al., 2012 and BSi, Akagi, 2013) or in biogenic byproducts like barite (Baxs,
Garcia-Solsona et al., 2014; Guichard et al., 1979). The common view is that LREE are more sensitive to oxide phases of Fe
and Mn, while HREE, more soluble, could preferentially react with biogenic phases (Akagi, 2013; Bertram and Elderfield,
1992; Grenier et al., 2018; Pham et al., 2019). In the Bering Strait, Akagi et al (2011) also observed a strong association
between particulate HREE and biogenic silica collected in sediment traps. This specific BSi control on HREE behavior is
discussed in section 4.6. Distribution coefficients also vary between HREE and LREE with depth and the nature of the particle
phases (Schijf et al., 2015).
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Thus, differentiating the distribution of REE between the lithogenic and authigenic phases can allow estimating the fraction
implied in scavenging and/or absorption processes by the authigenic phase, while the lithogenic fraction can be used to picture
continental inputs. The lithogenic REE fraction could also be estimated using conservative lithogenic tracers such as Al, 2%2Th
or Ti (e.g. Gourain et al., 2019; Tachikawa et al., 1997). These authors used Al as a lithogenic tracer while here we chose to
use 2°2Th. Indeed, the lithogenic fractions calculated from particulate Al (PAIl) concentrations were often higher than 100% in
surface waters close to the margins, revealing that a fraction of the total PAI is likely in the authigenic phase (Lerner et al.,
2018; Van Beueskom et al., 1997). In addition, as Al is more prone to contamination, it was sampled with the clean rosette
(Gourain et al., 2019), while 232Th was measured in the same samples as PREE, collected with the standard rosette. The
concentration of the lithogenic PREE fraction in particles is calculated by multiplying the 232Th concentration in a given sample
by the ratio of the considered REE on 2%2Th in the upper continental crust (UCC, Rudnick and Gao, 2014, Eq. (1)), a value
similar to the uniform #*?Th concentrations reported by Chase et al. (2001) in marine sediments from cores of the South
Atlantic.

[REE]
e

[REEiine] = [*2Th] x (

_ [REEjtpo]

%REEjitny = ~rppm® X 100 @)

%REEquini = 100 — %REE i, (3)

These PREE lithogenic concentrations are then divided by the total PREE concentrations to obtain the fraction of particulate
REE of lithogenic origin (Eq. (2)). The authigenic fraction is then obtained by subtracting the lithogenic fraction from 100 %
(Eg. 3)).

The percentage of lithogenic PNd along the section is represented in Fig. 5. In this figure, we also chose to represent the
average value of the lithogenic fractions of the remaining PREE for the PLREE at five selected stations, excepted for PCe
because of its distinctive behavior that leads to higher affinity for particles. We also plotted the PHREE at the same stations
(#1, #26, #51, #53 and #77). Error bars represent the standard deviation of the resulting averages. These five stations are
representative of the three dominant biogeochemical contexts observed along the section: under lithogenic input influence (#1,
#53), dominated by biological activity (#26, #51), and influenced by both (#77). Sometimes, the estimated Nd lithogenic
fraction exceeded 100% (up to 550% at 20m at station #1, and up to 130% at 160 m at station #13 and at 200 m at station #32).
This suggests an excess of 232Th in the particles, likely authigenic, or a difference between the adsorption kinetics of 222Th and
REE, as reported by Hayes et al. (2015). In these cases, we capped the lithogenic proportion to 100%. The occurrence of an
authigenic fraction of 22Th may lead to a bias in the calculation of the lithogenic contribution and an overestimation of
lithogenic contributions cannot be excluded at the surface. However, 22Th remains predominantly lithogenic, and the
comparison between the fractions calculated with Al and 2*2Th provided in Fig. S6 for stations #1, #13, #32, #51 and #77

validates the use of 232Th
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4.3 PAAS normalization and REE patterns

The patterns of PAAS-normalized concentrations are represented in Fig. 5 together with the profiles for the same five stations
as in 4.2. For ease of reading, patterns are averaged by depth intervals displaying similar values. Error bars represent the
standard deviation of the concentration series. A dissolved REE pattern obtained in the North Atlantic Deep Water at 12°S at
2499 m (Zheng et al., 2016) is also represented, for comparison with a “typical” dissolved seawater pattern, marked by a
negative Ce anomaly and a pronounced normalized HREE/LREE positive slope (De Baar et al., 1985; Elderfield, 1988;
Elderfield and Greaves, 1982; Tachikawa et al., 1999a). The patterns of other stations are represented in Fig. S7.

The validity of using PAAS for normalization is assessed by the fact that PAAS does not present any significant difference in
REE composition between shales and loess from Europe, North America and China (Rudnick and Gao, 2014), that are potential
sources of lithogenic material for Europe and North America. The flat patterns obtained at stations #1, #13 and #53 validate a
PAAS-like source of lithogenic material. Normalization to atmospheric depositions has been put aside as these inputs were
very low during the cruise (Shelley et al., 2017), and the REE patterns of these dusts are not available. In addition,
normalization to dusts would not have allowed us to compare our data with the REE patterns in the literature, which commonly

uses PAAS to normalize.

4.4 Lithogenic supply at the margins

The high PREE concentrations close to the Iberian margin and on the Greenland shelf suggest that particulate material is
released by the margins to the water column (Fig. 3 and Table 2), the highest concentrations being measured at station #1 (Fig.
5). At these stations, the lithogenic PREE fractions range between 50% and 100% (Fig. 3). The relatively flat total PREE
patterns displayed at these stations show only a slight enrichment in LREE due to their preferential scavenging compared to
the HREE (Fig. 5; Sholkovitz et al., 1994).

High percentages of lithogenic PREE were visible along two isopycnals (60=27.05 and c0=27.4) visible from station #1 to
station #32 (in other words beyond the Subpolar Front) spreading over 1700 km from the Iberian margin (Fig. 6). Similar
maxima have been reported for lithogenic particulate iron (PFe) and particulate manganese (PMn) by Gourain et al., 2019
(their Fig. 6 B).

Above the Greenland shelf, at station #53, the fraction of lithogenic PREE was also high (55% to 86% for PNd), only slightly
lower than at station #1, with a median lithogenic contribution of 59% for PLREE and 83% for PHREE (Fig. 5). Unlike what
was observed to the south eastern end of GEOVIDE section from station #1 to #26, these lithogenic particles do not spread
offshore. Indeed, except at the surface, the lithogenic fraction for LREE was lower than 50% at stations #51 and #64 in the
Irminger Sea and in the Labrador Sea, respectively. This can be explained by the circulation: the East Greenland Irminger

Current (EGIC) is a strong narrow current bypassing Greenland along its shelf (23.4 £ 1.9 Sv, Daniault et al., 2016), likely
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preventing exchanges between the Irminger Subpolar Mode Water (IrSBPMW) and waters of the Greenland shelf, transported
by the EGCC current which flows parallel to the coast (green and orange arrows around the Greenland southeastern tip in Fig.
1). Our observations are consistent with those of Lacan and Jeandel (2005), who showed that the Nd isotopic signatures (eng)
of SPMW transported by the EGIC do not vary significantly along the Greenland shelf. In the same way, the lithogenic
influence is moderate at station #77, where land-ocean exchanges are reduced due to the EGCC (1.5 + 0.2 Sv, Daniault et al.,
2016). While the lithogenic fraction is still relatively high at this station (50% < REEjin, <80% below 150m), the fractionated
patterns indicate that other processes are at play (Fig. 5), like for example preferential scavenging of LREE on Mn and Fe
oxyhydroxides (Bau, 1999) and/or fractionation by diatoms (Akagi et al., 2011). The roughly constant lithogenic contribution
around 60% at station #77 indicates that like around Greenland, no nepheloid layers are spreading from the Newfoundland
margin, at least at the time of the cruise.

Gourain et al. (2019) reported similar results for lithogenic PFe and PMn fractions estimated during the same cruise . These
authors also observed a strong contribution of lithogenic material from the Iberian margin spreading until station #32, a lower
contribution along the Newfoundland margin and almost no lithogenic contribution from the slope of the Greenland margin.
Using lithogenic PMn as a tracer of sediment resuspension, they estimated that 100% of PMn was originating from sediment
resuspension at station #1 between 250 m and 1000 m (their Fig. 4). Interestingly, E. Le Roy (Le Roy, 2019) observed an
unexpected maximum of 22’Ac activity at 500 m at stations #1 and #21, indicating the influence of a sediment source, also
consistent with the PREE lithogenic fraction. However, at station #13, the lithogenic PREE maximum was not found at the
same depth as for ?’Ac (160 m instead of 200m). Unfortunately, the different sampling resolutions for PREE and ??’Ac did
not permit to further compare data between these tracers except at the surface of station #1, where a maximum of 2>’ Ac was
consistent with the lithogenic PREE signal.

These highly enriched depths in lithogenic tracers could be due to the formation of intermediate nepheloid layers (INL) at 250
m and 500 m along the Iberian margin, similar to those revealed slightly more north by McCave and Hall (2002). A contribution
of the Mediterranean Water (MW) to these high concentrations and lithogenic proportions cannot be excluded, but the lack of
data in the core of the MW (1000 m to 1500 m, Garcia-Ibafiez et al., 2018) prevented us to conclude further.

A highly energetic process is needed to generate strong resuspension of lithogenic matter. It may result from the friction and
energetic excitation of internal waves along the continental slope (Cacchione, 2002). Another possible source is the erosion of
the coast by the strong current (from 0.05 m s to 0.1 m st) coming out from Gibraltar and flowing northward along the Iberian
margin (Gourain et al., 2019; McCave and Hall, 2002; Zunino et al., 2017). A combination of all these dynamic processes,
generating internal waves south of station #1 could have led to strong sediment resuspension, and subsequent advection of
resulting particles northward by the current.

To sum up, margins can provide significant amounts of particulate lithogenic REE to the ocean that must be considered in the
mass balance of REE. Occurrence and magnitude of these inputs depend on the morphology of the margin, the hydrodynamical

forcing and the amount and composition of sediments leading (or not) to the formation of nepheloid layers.
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4.5 Rare Earth Element fractionation: Ce anomalies

As briefly mentioned above, Ce presents a unique chemistry among REE elements with the coexistence of a trivalent and a
tetravalent form. In seawater, the redox cycle of Ce and Mn are strongly linked (Bau and Dulski, 1996; Elderfield, 1988;
Moffett, 1990, 1994). Biotic and abiotic oxidations of Ce have been previously reported. In seawater, the oxidation of Ce®* in
CeO- is microbially catalyzed and the resulting tetravalent CeO is insoluble, and thus preferentially adsorbed by surface
complexes of particles (Byrne and Kim, 1990; Elderfield, 1988; Moffett, 1990, 1994). This pattern of oxidation, which is
similar to Mn oxidation, suggests a common mechanism and possible coprecipitation, yet with different kinetics (Moffett,
1990, 1994). Mn oxides can catalyze Ce abiotic oxidation at the surface of particles, leading to an oxidative scavenging of Ce
by Mn oxides (Bau, 1999; Bau and Koschinsky, 2009; Byrne and Kim, 1990; De Carlo et al., 1997; Koeppenkastrop and De
Carlo, 1992). Also, a Ce enrichment in Fe hydroxides by sequential leaching of ferromanganese crusts has also been reported
(Bau and Koschinsky, 2009). In contrast, experiments of REE addition during Mn oxide and Fe hydroxide precipitation showed
little (Davranche et al., 2004) or no evidence of a preferential Ce scavenging by Fe hydroxides unlike for Mn oxides (De Carlo
etal., 1997; Koeppenkastrop and De Carlo, 1992; Ohta and Kawabe, 2001). Therefore, the preferential Ce scavenging onto Fe
hydroxides is still under debate. This exceptional behavior among REE results in a Ce depletion in seawater.

Conversely, in particles, this leads to a “symmetrical” Ce enrichment compared to other REE when concentrations are
normalized to a lithogenic reference as PAAS (Garcia-Solsona et al., 2014; Tachikawa et al., 1999a). This Ce enrichment is
quantified using the Ce anomaly, calculated with the concentrations normalized to PAAS. The expression of Bolhar et al.
(2004, Eq. 4) is used in this paper:

Ce [Ce]

Ce ~2xppri—va] P

This expression uses Pr and Nd concentrations and is preferred to the one using La and Nd concentrations, as La can also
present anomalies in seawater (Bau and Dulski, 1996).

In this dataset, most of Ce/Ce* ratios are greater than one (i.e. positive anomaly). At stations #26, #32, #51 and #77 between
the surface and ca. 100 m, PCe was depleted compared to other PREE, and (Ce/Ce*) < 1. This surface minimum was followed
by a pronounced positive anomaly down to 200 m. At deeper depths, the anomaly was relatively higher in the NADR region
compared to the NAST and ARCT regions, where they are around 1 when they are >1.2 in the NADR region (Fig. 7).

In the NADR, between the surface and 50 m (stations #26 and #32) and between 20 m and 60 m (station #38, which showed
a surprising positive anomaly at the surface), the negative PCe anomaly was related to the seawater-like patterns, produced by
REE uptake in seawater during formation of biogenic matter (Garcia-Solsona et al., 2014; Tachikawa et al., 1999b): all REEs
were absorbed from seawater without fractionation. These PCe anomalies were rather constant or showed a slight increase
with depth until 50 m or 100 m, depending on the stations. Below, the PCe anomalies increased with depth. These PCe anomaly
variations were consistent with the high productivity and export characterizing this area (Lemaitre et al., 2018b). Indeed, if

particles were removed faster than Ce is oxidized, the Ce anomaly would have been limited with depth (Moffett, 1990). Two
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factors could explain the step in Ce/Ce* observed between 50 m and 100 m in the NADR: the beginning of remineralization
in favor of the release of trivalent REE; and/or a decrease of the particle settling speed, in favor of CeO, adsorption from
seawater and precipitation of Mn oxides which catalyzed Ce oxidation onto particles. Both factors could act simultaneously.
The anomaly became even larger between 200 m and 400 m depending on the profiles, and was constant below 600 m,
suggesting an equilibrium between Ce oxidation, trivalent REE desorption and remineralization processes. The behavior of
PCe at station #21 was less clear, the profile displaying strong vertical variations (Fig. 7B): an important increase in Ce/Ce*
was observed at 40 m depth, then Ce/Ce* decreased at 200m to a value similar to the surface one. These sharp variations
suggested an influence of lithogenic particles, which was not observed at the other stations. A comparison between PCe
lithogenic fractions and of the Ce anomaly vertical profiles showed mirror variations: less pronounced PCe anomalies were
correlated to higher PCe lithogenic proportions (Fig. S8). This could be explained by advection of quite well preserved
lithogenic material with smooth Ce anomaly. This is consistent with the spreading of nepheloid layers from the Iberian margin
discussed above.

In the ARCT region, negative anomalies were also determined at the surface, but they were less pronounced than in the NADR
region (Fig. 7). The PCe anomalies increased down to 200 m at stations #44, #51, #64 and #77 but remained lower than in the
NADR region for the same depth range. These profiles could be compared to the profiles of stations #26 and #32, with a rather
constant PCe anomaly in the first meters that increased after a “critical” depth (here about 40 m versus 100 m in the NADR).
The PCe anomaly was then roughly constant below 200 m at stations #51, #64 and #69. At stations #44 and #77, the anomaly
increased below 700 m and 1000 m, respectively. The weaker negative anomaly at the surface was consistent with a lower
primary production (Lemaitre et al., 2018b). The roughly constant PCe anomaly at depths below 200m indicated that
equilibrium between biotic and abiotic Ce oxidation, adsorption and remineralization of trivalent REE was reached faster in
the ARCT region.

At station #69, high PCe positive anomalies were observed at the surface and there was no significant increase of the anomaly
with depth. These variations were consistent with the fraction of lithogenic PCe but not as much as at station #21, where the
lithogenic fraction was smaller (<60 %, Fig. S8). At this station, the equilibrium between the reactions leading to a PCe
enrichment and adsorption-remineralization of all REE was reached at ca. 100 m, which was deeper than at the other stations
of the region, suggesting a lower particle flux. At station #53, Ce anomaly was roughly constant (around 1), which is consistent
with a station dominated by lithogenic inputs.

Four points displayed a Ce /Ce*>3 (station #32 at 140 m and 450 m, station #38 at 100 m and station #64 at 140 m). Although
we cannot exclude punctual contamination in Ce during the sampling, we do not have a clear explanation and decided not to

consider these data further. They are reported under brackets in Table 2 and not included in the figures.

4.6 The influence of biological activity on the PREE distributions

At stations #26, #32, #38 and #44 which displayed a seawater-like pattern at the surface, the formation of biogenic matter

associated with high particle fluxes could explain the negative Ce anomaly and high PYbn/PNdy ratios (>1 and up to 4.5).
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These patterns were progressively attenuating with depth due to the Ce oxidation discussed in the preceding section. However,
the enrichment in HREE could reach 1000 m (Fig. 4), while the negative Ce anomaly was never observed at depths deeper
than 100 m. Yet surprising, this could indicate that HREE are not fully associated with the soft tissues of the biogenic material.
A LREE enrichment was simultaneously observed, consistent with the preferential scavenging of LREE onto solid phases.

When looking more closely to the authigenic phase of these samples, an uncommon enrichment of PHREE was observed,
consistent with the total PREE patterns (Fig. 5 and S7). A strong primary production was determined at all these stations
(Fonseca-Batista et al., 2019), so the preferential transfer of HREE from the dissolved phase to the authigenic particulate phase
likely occurred when the biological stripping was active. This transfer seemed to have been even more important in the ARCT
region, leading to more pronounced HREE enrichments, while the strongest bloom was observed in the NADR region. In the
ARCT surface waters the PYbn/PNdn could reach 4.5, whereas PYbn/PNdy never exceeded 3 in the NADR region. In the
ARCT region, the bloom was dominated by diatoms, still active at station #51 and #44, and declining at the others (Fonseca-
Batista et al., 2019; Lemaitre et al., 2018b). This declining bloom led to a strong export, but high remineralization rates
decreased the biological imprint in favor of the lithogenic signature at depth (Fig. 5). Thus, we suspect that biological uptake
had a strong effect on the total and authigenic PREE patterns observed during GEOVIDE. A relationship between HREE and
biogenic silica (BSi) was suggested by Akagi (2013), following thermodynamic calculations. According to this work, between
40% and 65% of REE form a REE(H3Si04)?* could complex with silicic acid in the deep North Atlantic. Complexation of
REE with silicates was further confirmed by Patten and Byrne (2017), although these authors estimated a lower complexation
constant, and a smaller fraction of silica-complexed REE. In addition, significant correlations were observed between dissolved
Si and dissolved HREE by Bertram and Elderfield (1992; western Indian Ocean), Stichel et al. (2012) and Garcia-Solsona et
al. (2014, both in the Atlantic sector of Southern Ocean), Grenier et al. (2018; Kerguelen Islands) and Pham et al. (2019;
Solomon Sea). Contrastingly, in other areas, Patten and Byrne (laboratory experiment, 2017, their Fig.7) and Zheng et al.
(tropical South Atlantic, 2016, their Fig. 11) showed that the relationship between SiOH4 and REE was either curvilinear or
not significant. In our study, the highest surface authigenic PYbn/PNdy ratios were located in the Irminger and Labrador Seas,
where the highest BSi concentrations of the GEOVIDE section were also measured (Sarthou et al., 2018) (Fig. S9A and B). A
correlation between BSi and PHREE concentrations was detected although it remained weak, the highest correlation coefficient
being R2=0.4 for Lu. Interestingly, this correlation coefficient increased with the atomic mass number, confirming that BSi has
a significant effect on authigenic PHREE distributions, from Tb to Lu, but not on lighter REE (Fig. S9 C). These correlations
may indicate that in some areas characterized by high diatom blooms, the HREE distributions could be partly linked to the BSi
formation, in agreement with Akagi’s hypotheses. This relationship would depend on the abundance and the nature of particles
(i.e. the occurrence of diatoms), and on the speciation of REE in the dissolved phase (de Baar et al., 2018). Akagi, (2013)
suggested that silica-REEs complexes could be incorporated during frustule formation, but the mechanism underlying this
enrichment during diatom blooms still has to be clarified. Linking it to what is known about complexation and adsorption

processes of the REE is beyond the scope of this work. In addition, an effective relationship between BSi and PHREE can be

15



480

485

490

495

500

505

blurred by other scavenging processes involving particulate Mn and Fe (hydr)oxides, also known to influence the slope
between LREE and HREE.

If diatoms are effectively preferentially incorporating the HREE, the high prevalence of coccolithophorids characterizing the
NADR bloom (Lemaitre et al., 2018b) could explain the relatively low HREE enrichment in surface. Besides, patterns flatten
with depth to present a quasi-lithogenic signature below 60 m, suggesting that particles with a strong organic signature did not

reach this depth at the time of sampling.
4.7 The PAAS-normalized particulate Ho/Y ratio: a proxy of processes independent of the ionic radius

Yttrium (Y) and the lanthanide holmium (Ho) are characterized by roughly the same ionic radius and charge, making them
“geochemical twins” (Bau, 1999). The PAAS-normalized particulate ratio (PHon/PYn) highlights differences in their
distributions, and therefore allows identifying radius-independent fractionation processes affecting YREE in seawater. We
choose to normalize PHo/PY measured in our particulate samples to the PAAS ratio in order to reveal any relative loss or
enrichment compared to continental material (Fig. 8). Because of different electron configurations, Ho is more prone to
establish ionic bounds, and thus to be preferentially adsorbed onto (hydr)oxides like FeOHs; and MnO,. In comparison, Y
preferentially establishes covalent bounds, and will be preferentially absorbed compared to Ho (Censi et al., 2007; Bau, 1999;
Bau et al., 1995). Along the GEOVIDE section, PHon/PY ratio varied between 0.4 and 1.5, with most of the values being
smaller than 1 (i.e. depleted in Ho compared to PAAS). To assess the influence of FeOHs and MnO, on PHon/PYy
distributions, we calculated their concentrations using the formula of Lam et al. (2015) and PMn and PFe data from Gourain
et al. (2019). There was no obvious relationship between PHon/PYn and FeOH3s and MnO- (Fig. 9). Noteworthy, PHon/PY N
ratios were higher when [Fe(OH)3]> 10 pug L and when MnO, content increased. However, the PHon/PYy ratio was low
(<0.6) in the Labrador Sea surface waters (station #69), the Irminger Sea (stations #44 and #51) and from the surface to 750
m depth in the NADR region (stations #21, #26 and #32; Fig. 8). This is consistent with the fact that both these locations are
depleted in MnO- and Fe(OH)s, leading to a weak adsorption of Ho (Fig. 9). All along the section, low PHon/PY  ratios were
observed from the surface to 800 m depth at productive stations (stations #21, #26 and #32, PHon/PYn<0.9). This suggested a
preferential absorption of Y during the formation of biogenic matter, as reported by Censi et al. (2007). In the NADR region,
between 200 m and 600 m depth, PCe anomalies were positive (>1), PHREE were enriched, and PHo concentrations were
relatively depleted at stations #26 and #21 (PHon/PYn <1). The low remineralization rates observed in this area (Lemaitre et
al., 2018a) could explain the enrichment of PY concentrations at the surface. At Station # 32, high PHo concentrations between
350 m and 600 m depth was concomitant with the largest PCe positive anomaly (>1.2), indicating intensive adsorption
processes, leading to an enhanced scavenging of REE.

In the ARCT region, at station #69, slightly lower PHon/PY \ ratios were observed compared to the other stations of this region
(0.5 at the surface, around 0.7 to 0.9 with depth). This station was characterized by a low primary production and the highest

remineralization rates of the section (Fonseca-Batista et al., 2019; Lemaitre et al., 2018b, 2018a). This could have led to high
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adsorption of Ho relative to Y. As Ho is more prone to be released from particles than Y, a lower PHon/PY n ratio was observed.
The higher PHon/PY y ratios determined at the other ARCT stations point to scavenging by particles, although the Ce anomaly
was lower than in the NADR region.

Although the PHon/PY y ratios were not directly correlated to MnO2and Fe(OH)s estimated concentrations, this ratio was lower
when the primary production was high, in agreement with a preferential incorporation of Y into the biogenic matter. The
change of PHon/PY ratios with depth reflects a balance between two processes: the preferential scavenging of Ho by

adsorption onto MnO (identified with PCe anomalies) and remineralization.

5 Conclusion

Particulate concentrations of the fourteen Rare Earth Elements and 2*2Th have been measured in 200 samples of suspended
particles collected in the epipelagic and mesopelagic zones of the Subpolar North Atlantic during the GEOVIDE cruise
(GEOTRACES GAO01) during late spring - early summer of 2014, providing one of the only available PREE distribution
snapshots in the North Atlantic. All PREE concentrations were higher close to the margins (stations #1 and #51), especially at
the Iberian margin and on the Greenland shelf (station #53). These high concentrations contrasted with the low concentrations
measured in the surface waters of the NADR region (stations #26, #32 and #38) and in the Irminger Sea (station #44).

The use of 2%2Th as a lithogenic tracer allowed identifying the lithogenic and authigenic REE fractions. The greatest PREE
lithogenic fractions were determined close to the Iberian margin, where 80 % to 100% of PREE have a lithogenic origin, in
particular within two nepheloid layers located at 250 m and 500 m depth. These two nepheloid layers extended westward,
mostly along isopycnals 6o=27.05 and c0=27.4. This lithogenic signature was still visible at station #32, in other words at 1700
km from the margin, due to strong currents and energetic dynamics potentially enhanced by internal waves. Lower lithogenic
fractions, between 50 and 80% of REE, were determined close to the Newfoundland margin, and on the Greenland shelf
(station #53). No significant lithogenic inputs could be observed far from the Greenland shelf at stations #51 and #64. This is
due to the strong EGIC current that prevents exchanges between the shelf and the open ocean.

The influence of biological activity on REE scavenging has also been evaluated. In areas of high biological productivity, the
authigenic phase of particles was enriched in HREE compared to LREE. These particles also displayed negative PCe
anomalies, as well as low PHon/Yy ratios, suggesting recently formed particles with a preferential uptake of HREE and Y by
absorption. In the NADR region, PCe anomaly and LREE enrichment increased with depth, while PHon/PY y ratio remained
low (<1). Low remineralization rates could maintain low PHon/PYn ratios while promoting exchanges with the dissolved
phase. This also led to the building of the PCe anomaly through sorption processes and to PLREE enrichment. In the Labrador
Sea, remineralization rates were higher, moderate PCe positive anomalies were observed together with low PHon/PY y ratios
(1< PCe/Ce*<1.2, PHon/PYN< 1). High remineralization rates could have induced an increase in exchanges between
particulate and the dissolved pools, leading to a lower number of adsorption sites on the authigenic coatings, and to subsequent

lower PCe anomalies. The low PHon/PY yratios can also be attributed to these reduced exchanges. Thus, our results suggested
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that the PHon/PY ratios were less controlled by MnO, and Fe(OH)s than previously proposed but more likely controlled by
other processes such as absorption and adsorption that do not involve these two (hydr)oxides.

We also highlighted the importance of biogenic silica on HREE preferential scavenging, shown by a clear increase of the
PHREE concentrations in the surface waters of the ARCT region, where a massive diatom bloom occurred. The correlation
coefficient between BSi and REE concentrations showed no particular links with the atomic mass number from La to Gd,
while it increased from Tb to Lu. This relationship was only observed for PHREE and the underlying mechanisms will have
to be investigated in future studies.
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Table 1: List of regions and water masses with their acronyms investigated in this study.

SPNA
NAST
NADR
ARCT

ENACW
MW
SAIW
SPMW
IrSPMW
LSW

NAC
ERRC
IC
EGIC
EGCC

815

820

Regions
Subpolar North Atlantic
North Atlantic Subtropical
North Atlantic drift
Arctic
Water masses

East North Atlantic Central Water
Mediterranean Water
Subarctic Intermediate Water
Subpolar Mode Water
Irminger Subpolar Mode Water
Labrador Sea Water

Currents
North Atlantic Current
East Reykjanes Ridge Current
Irminger Current
East Greenland Irminger Current

East Greenland Coastal Current
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Figure 1: Map of the studied area (Subpolar North Atlantic, SPNA), including schematized circulation features, adapted from
Garcia-1béafiez et al. (2015). Bathymetry is plotted in color with interval boundaries at 100 m, at 1000 m, and every 1000 m below
1000 m. Red and green arrows represent the main surface currents; pink and orange arrows represent currents at intermediate
depths; blue and purple arrows represent the deep currents. Diamonds indicate station locations, in 3 distinct areas (grey squares):
the North Atlantic Subtropical province (NAST), the North Atlantic Drift region (NADR), and the Arctic region (ARCT). The
approximate locations of the subarctic front (SAF; black bar crossing station #26) and the formation site of the Labrador Sea Water
(LSW form.) are also indicated. The section used in ODV figures is symbolized by the thick grey line. From (Lemaitre et al., 2018b).
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Figure 2: A. Vertical profiles of particulate [Ce] concentrations superimposed on salinity (S) measured by CTD at every GEOVIDE
station (Lherminier and Sarthou, 2017); in white, the prevailing water masses characterized by a multiparametric (OMP) analysis:
the Mediterranean Water (MW), the Subarctic Intermediate Water, the East North Atlantic Central Water (ENACW), the Subpolar

840 Mode Water (SPMW), the Irminger Subpolar Mode Watern (IrSPMW) and the Labrador Sea water (LSW) (Garcia-1bafiez et al.,
2018). For the station #53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the station. This map
and the following were created with the software Ocean Data View (Schlitzer, 2016). B. Particulate [Ce] concentrations interpolated
with the DIVA gridding function of Ocean Data View along the section defined in Fig. 1, with a zoom in the first 200 m in the upper
panel.
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855  Figure 3: A. Vertical profiles of particulate [Nd] and B. [Yb] concentrations superimposed on salinity (S) measured by CTD at every
GEOVIDE station (Lherminier and Sarthou, 2017); in white, the prevailing water masses characterized by a multiparametric
(OMP) analysis as in Fig. 2. At station #53, profiles are shifted to the bottom at a lower scale because of the shallow depth of the
station. C. Particulate [Nd] and D. [Yb] concentrations interpolated with the DIVA gridding function of Ocean Data View along the
section defined in Fig. 1., with a zoom on the first 200 m in the upper panel.
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865 Figure 4: Vertical profiles of PYb/PNd ratios normalized to PAAS in each biogeochemical province (ARCT, NADR, NAST). The
upper panels present the first 200 m and lower panels all the data. The dashed black vertical line on each panel represents a ratio

equal to the one of PAAS.
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Figure 5: Center: fraction of lithogenic PNd along the GEOVIDE section (in %); Side plots: vertical profiles of the lithogenic fraction
of LREE (except Ce, blue lines) and HREEs (red lines) and PAAS-normalized REE patterns of the total fraction at stations A. #1,
B. #26 C. #51 and #53 and C. #77 Patterns are averaged by depth intervals displaying similar values. Error bars represent the
standard deviation of the concentration series. A typical seawater pattern (NADW; 12°S, 2499m, Zheng et al., 2016) is represented

along with patterns of station #26 with a blue line.
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885 Figure 7: A. Particulate Ce anomaly (Ce/Ce*) along the GEOVIDE section, interpolated with the DIVA gridding function of Ocean
Data View and B. Ce/Ce* profiles grouped by biogeochemical provinces (ARCT, NADR, NAST). The upper panels present the first

200 m and lower panels all the data. Values above 2.5 are not represented. The dashed black vertical line on each panel represents
the absence of anomaly (1).
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Figure 8: PAAS-normalized PHo/PY profiles grouped by biogeochemical provinces (ARCT, NADR, NAST). The upper panels
present the first 200 m and lower panels all the data. The dashed black vertical line on each panel represents the PAAS-ratio (1).

38



M0z borl Fo(OH)3 [ugiL]

A e - S B ARCT NADR NAST

“wow

(Ho/Y)/(Ho/Y)PAAS

C ARCT NADR NAST

30w
Repkjanes Kidge

895 Nevtouniel’ pan——— P A S T et

Figure 9: A. MnO; and B. Fe(OH)s concentrations (in pg.L™) calculated with the formula proposed by Lam et al. (2017) using
particulate Mn, Fe and Al concentrations from Gourain et al. (2019). C. PHo/PY normalized to PAAS.
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