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Abstract  16 

Zooplankton play an important role in global biogeochemistry, and their secondary production 17 

supports valuable fisheries of the world’s oceans. Currently, zooplankton standing stocks cannot 18 

be estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models 19 

(PBMs) provide an important tool for studying zooplankton on regional and global scales. 20 

However, evaluating the accuracy of zooplankton biomass estimates from PBMs has been a major 21 

challenge due to sparse observations. In this study, we configure a PBM for the Gulf of Mexico 22 

(GoM) from 1993-2012 and validate the model against an extensive combination of biomass and 23 

rate measurements. Spatial variability in a multi-decadal database of mesozooplankton biomass 24 

for the northern GoM is well resolved by the model with a statistically significant (p < 0.01) 25 

correlation of 0.90.  Mesozooplankton secondary production for the region averaged 66 + 8 x 106 26 

kg C yr-1, equivalent to ~10% of net primary production (NPP), and ranged from 51 to 82 x 106 kg 27 

C yr-1, with higher secondary production inside cyclonic eddies and substantially reduced 28 

secondary production in anticyclonic eddies. Model results from the shelf regions suggest that 29 

herbivory is the dominant feeding mode for small mesozooplankton (<1-mm) whereas larger 30 

mesozooplankton are primarily carnivorous.  In open-ocean oligotrophic waters, however, both 31 

mesozooplankton groups show proportionally greater reliance on heterotrophic protists as a food 32 

source.  This highlights an important role of microbial and protistan food webs in sustaining 33 

mesozooplankton biomass in the GoM, which serves as the primary food source for early life 34 

stages of many commercially important fish species, including tuna.   35 
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1. Introduction  36 

Within marine pelagic ecosystems, zooplankton function as an important energy pathway between 37 

the base of the food chain and higher trophic levels such as fish, birds, and mammals (Landry et 38 

al., 2019; Mitra et al., 2014). Zooplankton also have a well-documented impact on chemical 39 

cycling in the ocean (Buitenhuis et al., 2006; Steinberg and Landry, 2017; Turner, 2015). The 40 

ecological roles of zooplankton, however, are varied and taxon dependent. Globally, protistan 41 

grazing is the largest source of phytoplankton mortality, accounting for 67% of daily 42 

phytoplankton growth (Landry and Calbet, 2004). Protistan zooplankton function primarily within 43 

the microbial loop leading to efficient nutrient regeneration in the surface ocean (Sherr and Sherr, 44 

2002; Strom et al., 1997). By contrast, mesozooplankton contribute significantly less to 45 

phytoplankton grazing pressure, consuming an estimated 12% of primary production globally 46 

(Calbet, 2001), but strongly impact the biological carbon pump. In addition to grazing pressure on 47 

phytoplankton, mesozooplankton affect the biological carbon pump through top-down pressure on 48 

protistan grazers, production of sinking fecal pellets, consumption of sinking particles, and active 49 

carbon transport during diel vertical migration (Steinberg and Landry, 2017; Turner, 2015). 50 

Herbivorous mesozooplankton are particularly important to study as they are often associated with 51 

shorter food chains that enable efficient energy transfer from primary producers to higher trophic 52 

levels of immediate societal interest such as economically valuable fish species and/or their 53 

planktonic larvae.  54 

Zooplankton populations have been identified as being vulnerable to impacts of a warming ocean 55 

(Caron and Hutchins, 2013; Pörtner and Farrell, 2008; Straile, 1997), through direct temperature 56 

effects on metabolic rates (Ikeda et al., 2001; Kjellerup et al., 2012) and thermal stratification-57 

driven alterations in food web structure (Landry et al., 2019; Richardson, 2008). Studies aimed at 58 

monitoring and predicting zooplankton populations are therefore critical for understanding the 59 

first-order effects of a warming ocean on marine ecosystems given the importance of secondary 60 

production and the impact zooplankton have on biogeochemical cycling. Despite their importance, 61 

zooplankton have been historically sampled with limited temporal and spatial resolution. Unlike 62 

ocean hydrodynamics and phytoplankton variability, zooplankton abundance cannot currently be 63 

estimated remotely from space. Thus, numerical models provide a useful tool for synoptic 64 

assessments of zooplankton stocks on basin and global scales (Buitenhuis et al., 2006; Sailley et 65 

al., 2013; Werner et al., 2007). Nonetheless, evaluating the accuracy of zooplankton abundance 66 
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estimates in numerical experiments, such as three-dimensional physical-biogeochemical ocean 67 

models (PBMs), is a major challenge due to the sparse ship-based observations in most regions 68 

(Everett et al., 2017). Consequently, PBMs are typically predominately validated against surface 69 

chlorophyll (Chl) from remote sensing products (Doney et al., 2009; Gregg et al., 2003; Xue et al., 70 

2013).   71 

In most marine environments, phytoplankton net growth rates and biomass are determined 72 

primarily by the imbalance between phytoplankton growth and zooplankton grazing (Landry et 73 

al., 2009). PBMs can accurately predict phytoplankton standing stock (i.e. compare well with 74 

satellite Chl observations) despite being driven by the wrong underlying dynamics, leading to 75 

major errors in model estimates of secondary production and nutrient cycling (Anderson, 2005; 76 

Franks, 2009). For instance, parameter tuning using only surface Chl as a validation metric can 77 

allow broad patterns in phytoplankton biomass to be reproduced even with gross over- or 78 

underestimation of phytoplankton turnover times.  Similarly, even a model that is validated against 79 

satellite Chl and net primary production might completely misrepresent the proportion of 80 

phytoplankton mortality mediated by zooplankton groups, leading to inaccurate estimates of 81 

important ecological metrics like secondary production and carbon export. Hence, validating 82 

PBMs against zooplankton dynamics is key to increasing confidence in model solutions. The 83 

importance of validation is further evident when considering zooplankton impacts on the behaviors 84 

of biogeochemical models (Everett et al., 2017). Differences in simulated zooplankton 85 

communities expressed through the number of functional types, various mathematical grazing 86 

functions, or the arrangement of transfer linkages have been shown to have substantial impacts on 87 

the dynamics of simple and complex biogeochemical models (Gentleman et al., 2003b; Gentleman 88 

and Neuheimer, 2008; Mitra et al., 2014; Murray and Parslow, 1999; Sailley et al., 2013).  89 

The Gulf of Mexico (GoM) is a particularly suitable region for examining zooplankton dynamics 90 

with PBMs. In the northern and central Gulf, zooplankton abundances have been extensively 91 

measured for over three decades (1982-present) by the Southeast Area Monitoring and Assessment 92 

Program (SEAMAP). Within the SEAMAP dataset, zooplankton biomass exhibits strong 93 

spatiotemporal variability, reflecting complex physical circulation in the GoM.  Circulation off the 94 

shelf is characterized by substantial upper layer mesoscale activity driven primarily by the 95 

energetic Loop Current (Forristall et al., 1992; Maul and Vukovich, 1993; Oey et al., 2005). In 96 
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contrast, coastal and shelf circulation patterns are predominantly wind-driven (Morey et al., 2003a, 97 

2013). Freshwater discharged by the Mississippi River and other smaller rivers is frequently 98 

entrained offshore by shelf break interaction with mesoscale features (e.g., anti-cyclonic loop 99 

current eddies), leading to strong horizontal and vertical gradients in physical and biogeochemical 100 

quantities (Morey et al., 2003b). Overlap of these gradients with the SEAMAP study region result 101 

in zooplankton collections across biogeochemically heterogeneous environments, providing a 102 

powerful model constraint. For instance, Chl ranges across three orders-of-magnitude (~0.01 – 10 103 

mg Chl m-3) from oligotrophic to eutrophic waters.  104 

Over the past decade several PBM studies have been conducted in the GoM, all primarily 105 

examining nutrient and phytoplankton dynamics. Early work by Fennel et al. (2011) examined 106 

phytoplankton dynamics on the Louisiana and Texas continental shelf, concluding that loss terms 107 

(e.g., grazing) rather than growth rates dictated accumulation rates of phytoplankton biomass. With 108 

the same biogeochemical model, Xue et al. (2013) conducted the first gulf-wide PBM study to 109 

investigate broad seasonal biogeochemical variability and to constrain a shelf nitrogen budget. 110 

More recently, Gomez et al. (2018) implemented a biogeochemical model with multiple 111 

phytoplankton and zooplankton functional types to gain a more detailed understanding of nutrient 112 

limitation and phytoplankton dynamics in the GoM. To examine phytoplankton seasonality and 113 

biogeography in the oligotrophic Gulf, Damien et al. (2018) validated a PBM based on a unique 114 

subsurface autonomous glider dataset. Together, these studies have demonstrated the utility of 115 

PBMs for investigating GoM lower trophic levels and have also highlighted the key ecosystem 116 

roles of zooplankton. Specifically, both Fennel et al. (2011) and Gomez et al. (2018) identified the 117 

importance of zooplankton in modulating the simulated seasonal patterns of phytoplankton 118 

biomass, emphasizing the importance of top-down control on the shelf. Although simulated 119 

zooplankton community results were not presented, Damien et al. (2018) noted that biotic 120 

processes such as grazing pressure, are “essential to fully understanding the functioning of the 121 

GoM ecosystem.” However, in all of these studies, zooplankton validation was largely absent.  122 

In this study, we configured a PBM for the GoM to estimate zooplankton abundance and analyze 123 

zooplankton community dynamics. The PBM is forced by three-dimensional hydrodynamic fields 124 

from a data assimilative Hybrid Coordinate Ocean Model (HYCOM) hindcast of the GoM 125 

(http://www.hycom.org). The PBM is based on the biogeochemical model NEMURO (North 126 
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Pacific Ecosystem Model for Understanding Regional Oceanography; Kishi et al., 2007), which is 127 

substantially modified here for application to the GoM. The model is integrated over 20-years 128 

(1993-2012) and validated against an extensive combination of remote and in situ measurements 129 

including total and size-fractioned mesozooplankton biomass and grazing rates, microzooplankton 130 

grazing rates, phytoplankton growth rates and net primary production as well as validation of 131 

surface chlorophyll and vertical profiles of chlorophyll and nitrate. Our goals were: 1) to develop 132 

and validate a PBM to estimate mesozooplankton abundance, 2) to characterize the spatiotemporal 133 

variability in mesozooplankton dietary composition, and 3) to quantify regional mesozooplankton 134 

secondary production. We focus primarily on the oligotrophic open-ocean GoM, where prey (i.e. 135 

zooplankton) availability may be limiting for fish, their larvae and other higher trophic levels. 136 

2 Methods and data 137 

2.1 Biogeochemical model configuration 138 

2.1.1 NEMURO model description 139 

The biogeochemical model for this study is based on NEMURO (Kishi et al., 2007) but has been 140 

modified and parameterized to more accurately reflect the ecology of the GoM (herein called 141 

NEMURO-GoM). NEMURO is a concentration-based, lower-trophic-level ecosystem model 142 

originally developed and parameterized for the North Pacific. Like most marine functional-group 143 

biogeochemical models, it is structured around simplified representations of the lower food web 144 

originating from earlier nutrient-phytoplankton-zooplankton models (Fasham et al., 1990; Franks, 145 

2002; Riley, 1946). Complexity is added through additional state variables and transfer functions 146 

with the specific goal of resolving dynamics within the nutrient, phytoplankton and zooplankton 147 

pools. In total, NEMURO has eleven state variables: six non-living state variables – nitrate (NO3), 148 

ammonium (NH4), dissolved organic nitrogen (DON), particulate organic nitrogen (PON), silicic 149 

acid (Si(OH)4) and particulate silica (Opal); two phytoplankton state variables – small (SP) and 150 

large phytoplankton (LP); and three zooplankton state variables – small (SZ), large (LZ) and 151 

predatory zooplankton (PZ).  152 

Each biological state variable in NEMURO is an aggregated representation of taxonomically 153 

diverse plankton groups that function similarly in the ecosystem. The phytoplankton community 154 

is modeled as two functional types of obligate autotrophs: small phytoplankton (SP, predominantly 155 

cyanobacteria and picoeukaryotes in the GoM) and large phytoplankton (LP, diatoms). Small 156 
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zooplankton (SZ) represent heterotrophic protists, and metazoan zooplankton are divided into 157 

suspension-feeding mesozooplankton (LZ) and predatory zooplankton (PZ). Here, we assume that 158 

LZ and PZ are non-migratory. Heterotrophic bacteria are implicitly represented by temperature-159 

dependent decomposition rates, which represent nitrification and remineralization processes. 160 

NEMURO uses nitrogen as a model “currency” since it is the major limiting macronutrient in 161 

much of the ocean. Silica is also included as a potentially co-limiting nutrient for diatoms (i.e. LP). 162 

By default, sinking in NEMURO is restricted to PON and Opal, and benthic processes are not 163 

included. Here, because of the large shelf area in the GoM, we implemented a simple diagenesis 164 

of PON/Opal to NO3/SiO4 and removal of PON/Opal through sedimentation, where 1% of the flux 165 

sinking out of bottom cell was removed and 10% converted back into NO3/SiO4. However, we 166 

found that this had no significant impact on the simulated surface Chl or mesozooplankton biomass 167 

on the shelf. The inclusion of a more complex sediment diagenesis model (including 168 

denitrification) would have added further realism (Fennel et al., 2011).  However, our main focus 169 

was to evaluate zooplankton dynamics in the oligotrophic region where higher trophic levels that 170 

depend on mesozooplankton secondary production may experience food limitation and where 171 

benthic processes are negligible.  172 

NEMURO was chosen for the present study because it distinguishes SZ, LZ and PZ, permitting a 173 

detailed analysis of dynamics for multiple functional types in the GoM zooplankton community. 174 

During initial GoM simulations, default NEMURO parameterizations, configured for the North 175 

Pacific (Kishi et al., 2007), substantially overestimated surface nitrate, surface Chl, and 176 

mesozooplankton biomass relative to observations. We attribute these differences to: 1) 177 

substantially higher temperatures in the GoM compared with the North Pacific, which significantly 178 

increase decomposition and growth rates in the model resulting in higher nutrient recycling and 179 

elevated near-surface stocks of phytoplankton and zooplankton, and 2) distinct differences in 180 

taxonomic composition of phytoplankton and zooplankton communities in the GoM and North 181 

Pacific, with significant differences in key parameter values associated with growth and grazing.  182 

For more details on the specific processes represented and the interactions between state variables 183 

in NEMURO, we direct readers to Kishi et al. (2007). All model equations are provided in the 184 

supplement to this manuscript. Biogeochemical model forcing, initial and open boundary 185 



  8 

conditions are also outlined in Supplement S1. Briefly, daily average shortwave radiation fields 186 

obtained from Climate Forecast System Reanalysis (CFSR) were used to force light limitation of 187 

phytoplankton. Once a final parameter set was determined (see section 2.1.3), initial and open 188 

boundary conditions for all state variables were prescribed from a spun up idealized one-189 

dimensional version of NEMURO-GoM. After initializing, the three-dimensional model was spun 190 

up over four years before conducting the full 20-year experiment. River nutrient input from the 191 

Mississippi was prescribed using nitrate samples collected by United States Geological Survey 192 

(USGS) and due to a lack of observations for other rivers was prescribed for all 37 rivers 193 

represented in the model. 194 

2.1.2 Modifications to default NEMURO model  195 

To improve realism for application to the GoM, five structural changes were made to the original 196 

NEMURO model. First, we removed the SP to LZ grazing pathway. The original SP state variable 197 

for the North Pacific represents nanophytoplankton (e.g. coccolithophores), which can be 198 

important prey of copepods and other mesozooplankton. In the GoM, however, cyanobacteria and 199 

picoeukaryotes (too small for direct feeding by most mesozooplankton) comprise much of the 200 

phytoplankton biomass and hence are represented as SP in our model. In addition to adding 201 

ecological realism, this change in direct trophic connection between SP and LZ allowed the model 202 

to produce a more realistic LP-dominated phytoplankton community on the shelf (see Discussion). 203 

Next, quadratic mortality was replaced with linear mortality for all biological state variables with 204 

the exception of predatory zooplankton (PZ). In biogeochemical models, quadratic mortality is 205 

often used for numerical stability and/or to represent implicit loss terms to an un-modeled parasite 206 

or predator that covaries in abundance with its prey (e.g. viral lysis of phytoplankton or predation 207 

by un-modeled higher predators) (Anderson et al., 2015). However, grazing mortality is explicitly 208 

modeled in NEMURO and viral mortality is generally not a substantial loss term for bulk 209 

phytoplankton (Staniewski and Short, 2018). Quadratic mortality was retained for PZ, to account 210 

for predation pressure of un-modeled predators (e.g. planktivorous fish). During the model tuning 211 

process, we found that removal of quadratic mortality from the four other plankton functional 212 

groups was an important parameterization change that allowed the model to simulate more realistic 213 

mesozooplankton biomass in the oligotrophic GoM (see Discussion). 214 
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The default ammonium inhibition term and light limitation functional form in NEMURO were 215 

replaced in NEMURO-GoM with more widely adopted parameterizations. The exponential 216 

ammonium inhibition term in the nitrate limitation function was replaced with the term described 217 

by Parker (1993), as has been done in previous PBM studies (Fennel et al., 2006) due to the non-218 

monotonic behavior of the default NEMURO ammonium inhibition term. At high NO3 219 

concentrations, the default term is known to generate unrealistic phytoplankton nutrient uptake 220 

patterns in which total nutrient uptake (i.e. uptake of NO3 + uptake of NH4) can actually decrease 221 

despite increases in NH4 (and constant NO3).  222 

Light limitation in NEMURO is based on an optimal light parameterization that implicitly includes 223 

photoinhibition. This formulation was replaced with the Platt et al. (1980) functional form that 224 

allows one to explicitly control the amount of photoinhibition, which can be important in the GoM 225 

where surface irradiances are high. Additionally, the Platt functional form is commonly used and 226 

thus parameter values are easier to find for comparison (e.g. initial slope of the PI curve (α)). This 227 

formulation is also implemented in newer versions of NEMURO, such as the code used in the 228 

Regional Ocean Modeling System (ROMS) NEMURO biogeochemical package.  229 

Finally, to account for photoacclimation and more accurately simulate Deep Chlorophyll 230 

Maximum (DCM) dynamics, we replaced the constant C:Chl parameter with a variable C:Chl 231 

model where ratios for SP and LP were allowed to vary based on the formulation described by Li 232 

et al. (2010), which considers both light and nutrient limitation (see Supplemental). The Li et al. 233 

(2010) equations build on a previously constructed dynamic regulatory model of phytoplankton 234 

physiology which describes C:Chl variability under balanced growth and nutrient saturated 235 

conditions at constant temperature (see Geider et al., 1998)).  Herein, “default” NEMURO includes 236 

the modified ammonium inhibition, light formulation, and variable C:Chl model. 237 

2.1.3 NEMURO-GoM model tuning procedure 238 

In total, NEMURO includes 71 parameters, 23 of which were modified in the present study. For 239 

initial model tuning, we used an idealized one-dimensional model designed to mimic the 240 

oligotrophic GoM. To guide our tuning procedure, we relied on a semi-quantitative approach 241 

where the one-dimensional model solution was evaluated based on five ecosystem benchmarks. 242 

Target values for benchmarks and other ecosystem attributes were determined from observations 243 
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or a theoretical basis. Ecosystem benchmarks included: surface Chl, mesozooplankton biomass, 244 

DCM depth, DCM magnitude, and SP:LP ratio. Surface Chl and mesozooplankton biomass were 245 

chosen as benchmarks to evaluate the realism of plankton biomass in the model. The DCM depth 246 

and magnitude were chosen to evaluate the vertical structure of the simulated ecosystem, and 247 

SP:LP ratio was used to gauge the realism of the plankton community composition (i.e. high SP:LP 248 

is expected in the oligotrophic GoM). The model was also tuned by considering the relative 249 

magnitudes of loss terms for phytoplankton (grazing, mortality, respiration, and excretion), total 250 

protistan zooplankton grazing relative to mesozooplankton grazing, as well as surface and deep 251 

nitrate concentrations. We outline each parameter change, justification and the resulting impact on 252 

the ecosystem benchmarks simulated by the idealized one-dimensional model in Supplement S3. 253 

Where possible, we modified parameters in groups so that relative changes were consistent 254 

throughout the model (e.g. doubling all zooplankton mortality terms). After tuning in the one-255 

dimensional model, parameter sets were implemented into the full three-dimensional model where 256 

additional tuning was performed. Once a final parameter set was determined we conducted a 257 

parameter sensitivity analysis over 18 individual experiments to identify impacts of parameter 258 

changes from default NEMURO values (S4).  259 

2.2 Physical model configuration 260 

2.2.1 Description of the offline numerical environment  261 

To run large numbers of three-dimensional simulations efficiently for basin-scale tuning, 262 

NEMURO-GoM was run offline using the MITgcm offline tracer advection package. MITgcm 263 

was selected as it contains convenient packages for running offline simulations (McKinley et al., 264 

2004). That is, the dynamical equations of motion are not computed during the NEMURO-GoM 265 

integration, but rather the physical prognostic variables (i.e., temperature, salinity and three-266 

dimensional velocity fields) are prescribed from daily-averaged flow fields saved from a previous 267 

hydrodynamic model integration. This allows the recycled use of flow fields leaving only the tracer 268 

equations to be computed. In the offline MITgcm package, the prognostic variables provide input 269 

to an advection scheme and mixing routine that conservatively handles offline advection and 270 

diffusion of the biogeochemical tracer fields. MITgcm has many options for linear and non-linear 271 

advection schemes. Here we use a 3rd order direct space time flux limiting scheme. Sub grid-scale 272 

mixing of the biogeochemical fields is handled offline through the nonlocal K-Profile 273 

Parameterization (KPP) package based on mixing schemes developed by Large et al. (1994). For 274 
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more information about the MITgcm packages, we direct readers to the MITgcm manual 275 

(http://mitgcm.org/).  276 

There are two main advantages to running PBMs in an offline environment: 1) the momentum 277 

equations are not integrated during the model run; and 2) the physical time step is no longer bound 278 

by the dynamical Courant–Friedrichs–Lewy (CFL) numerical stability criterion, which together 279 

significantly reduces the computational cost. Instead, the stability of the tracer advection scheme 280 

and time scales needed to resolve biological/physical processes of interest set the limits on the time 281 

steps and prescription frequencies of flow fields. When the physical time step is shorter than the 282 

flow field prescription frequency, a simple linear interpolation of the flow fields is performed 283 

between time steps. Offline simulations of tracer advection have been found to closely resemble 284 

online runs (that is, computed together with the integration of the hydrodynamic model’s 285 

prognostic equations) when the three-dimensional flow fields are prescribed at a frequency that is 286 

at or below the inertial period (T = 2π/f, TGoM >24 hr) for a region (Hill et al., 2005). 287 

In the present study, the offline time step (30 minutes) is an order of magnitude greater than the 288 

hydrodynamic model’s (HYCOM-GoM, described in Section 2.2.2) baroclinic time step (120 289 

seconds). For reference, HYCOM-GoM required ~76 days to run to completion on 64 parallel 290 

cores. These time requirements would increase considerably with the 11 additional 291 

biogeochemical tracers used in NEMURO. In contrast, NEMURO-GoM ran significantly faster, 292 

taking a total of ~50 hours on 80 parallel cores. Offline models offer a valuable tool for integrating 293 

PBMs particularly as spatial resolution and complexity in these models continues to increase (e.g., 294 

DARWIN (Follows et al., 2007), GENOME (Coles et al., 2017)). While computationally 295 

advantageous, however, offline simulations have inherently greater input and output (I/O) 296 

demands that can become bottlenecks in some applications. Issues with conservation can also arise 297 

as three-dimensional advection schemes are only approximately positive definite. 298 

2.2.2 Description of the offline dynamical fields 299 

The NEMURO-GoM model is “forced” by daily averaged three-dimensional velocity, temperature 300 

and salinity fields from a pre-existing 20-year (1993-2012) HYCOM (HYbrid Coordinate Ocean 301 

Model) (Chassignet et al., 2003) regional GoM hindcast (H-GoM). H-GoM is based on version 302 

2.2.99B of the HYCOM code, originally provided by the Naval Oceanographic Office 303 
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(NAVOCEANO) Major Shared Resource Center. H-GoM was run at 1/25th degree (~4 km) 304 

horizontal resolution with 36 vertical hybrid coordinate layers and assimilated historic, in situ and 305 

satellite observations. The domain encompasses the entire GoM and extends south of the Mexican-306 

Cuba Yucatan channel to 18 °N and as far east as 77 °W (Fig. 1). Further details on H-GoM 307 

(experiment ID: GOMu0.04/expt_50.1), including model forcing and the main model 308 

configuration file (i.e. blkdat.input_501), can be found at https://www.hycom.org.  309 

The H-GoM flow fields were mapped from the HYCOM native hybrid vertical coordinate to z-310 

levels used by the MITgcm. NEMURO-GoM was configured for 29 vertical z-levels (10-m 311 

intervals from 0-150 m, 25-m intervals from 150-300 m, 50-m intervals from 300-500m, and 1000 312 

m, 2000 m, ~4000 m).  Mapping was performed by computing total zonal and meridional 313 

transports across the lateral boundaries of each MITgcm grid cell (e.g., 0-10 m bin; which may 314 

include multiple HYCOM layers) and then dividing by the area of the respective cell face. This 315 

vertical mapping approach is consistent as both HYCOM and MITgcm use an Arakawa C-grid 316 

orientation for model variables. The H-GoM bathymetry was adjusted such that no partial cells 317 

existed in the domain to avoid thin cells. The continuity equation was subsequently used to 318 

calculate vertical velocities. The use of transports in this approach ensures conservation and 319 

approximately identical profiles of vertical velocity to those in H-GoM fields. For mapping of 320 

temperature and salinity fields (used in the KPP mixing routine and for scaling biological 321 

temperature dependent rates), a simple linear interpolation was performed.  322 

2.3 Model validation 323 

2.3.1 Surface chlorophyll observations 324 

A benchmark for surface Chl was determined using the Sea-Viewing Wide Field-of-View Sensor 325 

(SeaWIFS) product from the Ocean Biology Processing Group (OBPG) of the National 326 

Aeronautics and Space Administration (NASA). The product used here is the mapped, level-3, 327 

daily, 9-km resolution images from 4 September 1997 to 10 December 2010 processed according 328 

to the algorithm of Hu et al. (2012). To compute model-data point-to-point comparisons, we take 329 

the corresponding daily-averaged simulated surface Chl field and interpolate to the SeaWIFS grid 330 

before applying the daily cloud coverage mask corresponding to the matching SeaWIFS image. In 331 

total 4,291 daily images consisting of 22,244,513 non-zero cell values (herein referred to SeaWIFS 332 
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measurements) were used to validate NEMURO-GoM. Approximately 500-1200 daily model-data 333 

point-to-point comparisons were made for each SeaWIFS grid cell (Fig 1). 334 

 335 

Figure 1 (A-E): Spatial and temporal coverage of all observational data sets used for model 336 

validation. Total number of non-zero SeaWIFS gridded values from the level 3 product from 4 337 

September 1997 to 10 December, 2010 along with cruise sample locations collected during May, 338 

2017 (circles) and 2018 (triangles) and nitrate profiles from the World Ocean Database (dots) (A). 339 

Total annual sampling of the SEAMAP surveys from 1983-2017 (B) with samples overlapping 340 

with the PBM simulation period denoted in red. Total sample density within each 0.5° x 0.5° box 341 

(C). Total seasonal sampling (D). Number of years with at least one sample (E). 1000 m isobaths 342 

and coastline are denoted by black continuous lines.  343 

2.3.2 Mesozooplankton biomass observations  344 

To evaluate model mesozooplankton biomass estimates, we used plankton tows collected during 345 

SEAMAP surveys in the northern and central GoM. In total, 11,781 plankton tows were collected 346 

from 1983-2017, with two main annual surveys in the spring (offshore) and fall (shelf) (Fig. 1). 347 
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On average, SEAMAP collected approximately 300 samples per year with a specific sampling 348 

array offshore and more general sampling coverage on the shelf. In total, 6,835 samples were used 349 

for direct point-to-point model-data comparisons. Samples were collected using standard gear 350 

consisting of a 61-cm diameter bongo frame fitted with two 333-μm mesh nets. The nets were 351 

fished in a double-oblique tow pattern from the surface down to 200 m or 5 m off the bottom and 352 

back to the surface. Simultaneous samples were also collected using a 202-μm mesh net during 82 353 

tows. Of these samples, roughly half were collected in the oligotrophic GoM. The average ratio 354 

between biomass measured in the 333- and 202-μm bongo tows (0.5093 + 0.12) was used to 355 

convert 333-μm samples so that direct comparisons could be made with model mesozooplankton 356 

(LZ+PZ) biomass fields. 357 

In NEMURO-GoM, the small zooplankton (SZ) state variable represents early stages of 358 

mesozooplankton and heterotrophic protists (e.g. ciliates), which are typically < 200 μm in the 359 

ocean. The large zooplankton (LZ) state variable represents small suspension-feeding 360 

mesozooplankton (e.g. small to medium sized copepods), which were assumed to range in size 361 

from 0.2 to 1.0 mm. Predatory zooplankton (PZ) are considered to be large mesozooplankton (e.g. 362 

large copepods) ranging in size from 1.0 to 5.0 mm. Mesozooplankton size classes were defined 363 

to allow comparisons to be made with field measurements (see section 2.3.4). Zooplankton 364 

biomass in net tows was originally quantified as displacement volumes (DV). Carbon mass (CM) 365 

equivalents were subsequently calculated as log10(CM) = (log10(DV) +1.434)/0.820 (Wiebe, 1988; 366 

Moriarty and O’Brien, 2013). For comparison to the SEAMAP climatology the model 367 

mesozooplankton fields were similarly depth averaged to the bottom or 200 m and converted to 368 

units of carbon assuming Redfield C:N ratio. For point-to-point model-data comparisons, 369 

simulated mesozooplankton biomass fields were interpolated to SEAMAP sample locations/times 370 

before being depth averaged to the corresponding sample tow depth.  371 

2.3.3 Observed vertical profiles of chlorophyll and nitrate 372 

Depth profiles of Chl were also collected during SEAMAP surveys using a SeaBird WETStar 373 

fluorometer attached to a CTD.  Calibration of the fluorimeter was infrequent, and thus profiles 374 

were used to determine the depth of the fluorescence maxima for comparisons to DCM depths in 375 

the model. In total, 2,435 profiles were collected from 2003 to 2012, with 1,052 profiles overlying 376 
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bottom depths >1000 m. Profiles were available for earlier SEAMAP surveys; however, no 377 

standard QA/QC protocol for fluorometer data was in place prior to 2003. 378 

To evaluate DCM magnitudes in the model, we used 145 fluorescence profiles collected during 379 

May 2017 and 2018 process study cruises (see section 2.3.4). The fluorometer was attached to a 380 

CTD and calibrated using 126 in situ Chl samples. Chl concentrations were determined from 381 

filtered samples collected at depths ranging from 5 to 115 m using High Performance Liquid 382 

Chromatography (HPLC). Since the cruise sampling does not overlap with our NEMURO-GoM 383 

simulation period, model-data comparisons were made for all 20 years of the model run using 384 

sample locations and time of the year. This was also done with other field measurements from the 385 

process cruises (see section 2.3.4). For model-data comparisons of nitrate, we utilized profiles 386 

from the World Ocean Database (WOD). In total, 96 profiles were available during our simulation 387 

period and located in the oligotrophic GoM (>1000 m isobath). Profiles were collected during all 388 

months except March and December with the majority of samples collected during May, July and 389 

August (Fig. 1A).  390 

2.3.4 Biomass and rate measurements from process study cruises 391 

Although in situ rate measurements are made much less frequently than biological standing stock 392 

measurements, they offer very powerful constraints for validating the internal dynamics of a 393 

biogeochemical model (Franks, 2009).  Consequently, we made phytoplankton and zooplankton 394 

rate measurements on two cruises in the open ocean GoM in May 2017 and 2018 and used these 395 

measurements to validate the model (Fig. 1A). On the process study cruises, we utilized a quasi-396 

Lagrangian sampling scheme to investigate plankton dynamics in the oligotrophic GoM. Two 397 

drifting arrays (one sediment trap array and one in situ incubation array) were deployed to serve 398 

as a moving frame of reference during ~4-day studies (“cycles”) characterizing the water parcel 399 

(Landry et al., 2009; Stukel et al., 2015).  During these cycles, we measured daily profiles of Chl, 400 

photosynthetically active radiation, phytoplankton growth rates and productivity, protistan grazing 401 

rates, and size-fractionated mesozooplankton biomass and grazing rates. 402 

Size-fractionated mesozooplankton biomass and grazing rates were determined from daily day-403 

night paired oblique ring-net tows (1-m diameter, 202-μm mesh). In total, 40 oblique bongo net 404 

tows (16 in 2017 and 24 in 2018) sampled the oligotrophic GoM mesozooplankton community 405 
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from near surface to a depth ranging from 100-135 m. Upon recovery, the sample was anesthetized 406 

using carbonated water, split using a Folsom splitter, filtered through a series of nested sieves (5, 407 

2, 1, 0.5, and 0.2 mm), filtered onto pre-weighed 200-µm Nitex filters, rinsed with isotonic 408 

ammonium formate to remove sea salt, and flash frozen in liquid nitrogen. In the lab, defrosted 409 

samples were weighed for total wet weight, and subsampled in duplicate (wet weight removed) 410 

for gut fluorescence analyses. The remaining wet sample was dried and subsequently reweighed 411 

and combusted for CHN analyses to determine total dry weight and C and N biomasses. Gut 412 

fluorescence subsamples were homogenized using a sonicating tip, extracted in acetone, and 413 

measured for Chl and phaeopigments using the acidification method. The phaeopigment 414 

concentrations in the zooplankton guts were the basis for calculated grazing rates using gut 415 

turnover times based on temperature relationships for mixed zooplankton assemblages. For 416 

additional details, see Décima et al. (2011) and Décima et al. (2016). 417 

Protistan grazing rates were measured using the two-point, “mini-dilution” variant of the 418 

microzooplankton grazing dilution method (Landry et al., 1984, 2008; Landry and Hassett, 1982).  419 

Briefly, one 2.8-L polycarbonate bottle was gently filled with whole seawater taken from six 420 

depths (from the surface to the depth of the mixed layer).  A second 2.8-L bottle was then filled 421 

with 33% whole seawater and 67% 0.2-μm filtered seawater. Both bottles were then placed in 422 

mesh bags and incubated in situ at natural depths for 24 h.  These experiments were conducted on 423 

each day of the ~4-day cycle.  After 24 h, the bottles were retrieved, filtered onto glass fiber filters, 424 

and Chl concentrations were determined using the acidification method (Strickland and Parsons., 425 

1972). Net growth rates (k=ln(Chlfinal/Chlinit)) in each bottle were determined relative to initial Chl 426 

samples. Phytoplankton specific mortality rates resulting from the grazing pressure of protists were 427 

calculated as m = (kd – k0)/(1-0.33), where kd is the growth rate in the dilute bottle and k0 is the 428 

growth rate in the control bottle. Phytoplankton specific growth rates were calculated as μ = k0 + 429 

m. For additional details, see Landry et al. (2016) and Selph et al. (2016). Phytoplankton net 430 

primary production was quantified at the same depths by H13CO3
- uptake experiments. Triplicate 431 

2.8-L polycarbonate bottles and a fourth “dark” bottle were spiked with H13CO3
- and incubated in 432 

situ for 24 h at the same sampling depths as for the dilution experiments. Samples were then filtered 433 

and the 13C:12C ratios of particulate matter determined by isotope ratio mass spectrometry.  434 

3.0 Results  435 
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3.1 Surface chlorophyll model-data comparisons  436 

Model surface Chl estimates were found to agree closely with satellite observations reproducing 437 

patterns in both the oligotrophic and shelf region (Fig. 2). Spatial covariance between SeaWIFS 438 

climatology and model surface Chl climatology (calculated with daily cloud cover mask applied) 439 

is statistically significant (p < 0.01) with a correlation (ρ) of 0.72. When model estimates are 440 

compared to all 22,244,513 SeaWIFS measurements at corresponding times and locations (i.e. 441 

daily grid cell pairs), we find a ρ value of 0.50 (p < 0.01). To facilitate more detailed model-data 442 

comparisons, the GoM domain was divided into an oligotrophic region (>1000 m bottom depth) 443 

and a shelf region (<1000 m bottom depth). In the oligotrophic region, the correlation between 444 

model-data daily grid cell pairs is significant but weak (ρ = 0.17, p < 0.01) as a result of relatively 445 

low large-scale spatial variability, and hence dominance at the mesoscale.  However, bias is quite 446 

low (-0.014 mg Chl m-3), equivalent to 10% of the observed mean. In the shelf region, the 447 

correlation is higher (ρ = 0.47, p < 0.01) yet the bias is greater (+0.90 mg Chl m-3), equivalent to 448 

92% of the mean. Previous GoM studies have determined ρ values for monthly averages, which 449 

we calculate here for comparison. Based on 30-day averages, the ρ values are 0.70 (p < 0.01) for 450 

the oligotrophic region and 0.26 (p < 0.01) for the shelf region.  451 

In addition to resolving the dominant spatiotemporal variability, the model also captures the 452 

amplitude of the seasonal surface Chl signal reasonably well. In the oligotrophic region, the model 453 

accurately estimates the observed annual surface Chl minimum (Model: 0.065 + 0.005 vs. 454 

SeaWIFS: 0.065 + 0.007 mg Chl m-3) while slightly underestimating the observed annual 455 

maximum (Model: 0.47 + 0.15 vs. SeaWIFS: 0.75 + 0.55 mg Chl m-3). When model estimates for 456 

the entire oligotrophic region are taken into account (i.e. not restricted to satellite measurement 457 

locations and times), the annual minimum develops in early September, and the maximum 458 

develops in late January (Table 1). In the shelf region, greater model-data mismatch exists for 459 

surface Chl, with the model overestimating the observed annual minimum by 15% (Model: 0.23 + 460 

0.09 vs. SeaWIFS: 0.20 + 0.07 mg Chl m-3) and the observed annual maximum by 102% (Model: 461 

8.09 + 1.31 vs. SeaWIFS: 4.01 + 1.23 mg Chl m-3). Here, we find the annual surface Chl seasonal 462 

cycle almost completely out of phase with the oligotrophic region, with the annual minimum 463 

developing in early February and the annual maximum developing at the end of July (Table 1). 464 
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 465 

Figure 2 (A-F): Comparison of surface chlorophyll (mg m-3) between SeaWIFS observations and 466 

model from 4 September 1997 to 10 December 2010. Average SeaWIFS chlorophyll (A). Average 467 

model estimated surface chlorophyll (B). Log10 of the average SeaWIFS chlorophyll (C). Log10 of 468 

the average model estimated surface chlorophyll (D). Time series of simulated 30-day average 469 

surface chlorophyll (red) and SeaWIFS observations (black) for bottom depths >1000 m (E) and 470 

bottom depths <1000 m (F). The 1000 m isobaths and coastline are denoted by black lines. 471 

3.2 Regional mesozooplankton biomass model-data comparisons  472 

Model mesozooplankton biomass (i.e. LZ + PZ) fields also agree closely with observations in both 473 

the oligotrophic and shelf region (Fig. 3). Spatial covariance between SEAMAP climatology and 474 

model climatology of depth-averaged mesozooplankton biomass is statistically significant (p < 475 

0.01) with a ρ value of 0.90. When model estimates are compared to SEAMAP tows at 476 
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corresponding sample times and locations for the 6,835 measurements in the simulation period, 477 

the ρ value is 0.55 (p < 0.01). In the oligotrophic region, the model slightly overestimates 478 

mesozooplankton biomass (Model: 4.09 + 1.82 mg C m-3 vs. SEAMAP: 3.52 + 3.44 mg C m-3) 479 

with ρ value of 0.23 (p < 0.01) with a bias of 0.57 mg C m-3, equivalent to 16% of the observed 480 

mean. Conversely, in the shelf region the model underestimates mesozooplankton biomass 481 

(Model: 17.40 + 13.58 mg C m-3 vs. SEAMAP: 20.91 + 24.62 mg C m-3), with a ρ value of 0.49 482 

(p < 0.01) and a bias of -3.5 mg C m-3, equivalent to 17% of the observed mean. Model estimates 483 

and SEAMAP measurements also compare well with total mesozooplankton biomass 484 

measurements (0.2-5 mm) collected in the oligotrophic region during the process study cruises 485 

(Model: 5.55 + 2.87 mg C m-3 vs. Cruise: 4.33 + 2.28 mg C m-3).  486 

Although seasonal cycles in the oligotrophic and shelf regions could not be derived from the 487 

SEAMAP dataset given the significant differences in sampling locations over the course of a year, 488 

we investigated model-data mismatches for each month. The model closely matches or slightly 489 

underestimates mesozooplankton biomass for most of the year, with the exception of January, May 490 

and August (Fig. 3A). The largest model-data mismatch occurs during March, June, July and 491 

December, when the model underestimates mesozooplankton biomass by approximately 35%. 492 

Unlike surface Chl, the total mesozooplankton biomass (i.e. depth-integrated) seasonality is 493 

similar in both regions of the GoM. In the oligotrophic region, the annual biomass minimum 494 

(maximum) occurs at the beginning of January (middle of May), while in the shelf region, the 495 

annual minimum (maximum) occurs in late December (end of May) (Table 1). 496 
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 497 

Figure 3 (A-E): Comparison of climatological depth-averaged (200 m) mesozooplankton biomass 498 

(MZB, mg C m-3) between SEAMAP observations (left) and model output (right). Monthly 499 

average MZB samples organized by month (A). Monthly variability is not representative of 500 

seasonality as sampling locations change between months. MZB from all SEAMAP tows (B). 501 

MZB 20-year model average (C). Log10 of SEAMAP MZB (D). Log10 of model MZB (E).  502 

3.3 Chlorophyll and nitrate profile model-data comparisons 503 

To validate the vertical structure of the simulated ecosystem, we utilized observed profiles of 504 

fluorescence, Chl and nitrate.  When simulated DCM depths were compared to all 2,435 SEAMAP 505 

fluorescence profiles, we find a statistically significant correlation (ρ = 0.59, p < 0.01) with the 506 

observed maximum fluorescence depth. The maximum fluorescence depth ranged from the surface 507 

to 143 m while model values show a similar variability ranging from the surface to 163 m (Fig. 508 

4A).  In the oligotrophic region, the model overestimates the DCM depth (Model: 95 + 20 m vs. 509 

SEAMAP: 80 + 25 m) and has a ρ value of 0.38 (p < 0.01) with a bias of 15 m, equivalent to 19% 510 

of the observed mean. In the shelf region, the model also overestimates DCM depth (Model: 63 + 511 
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26 m vs. SEAMAP: 53 + 23 m) and has a ρ value of 0.49 (p < 0.01) with a bias of 10 m, equivalent 512 

to 19% of the observed mean.  513 

In contrast, the model slightly underestimated the DCM depth when compared to calibrated 514 

fluorescence profiles collected during the process cruises (Model: 100 + 18 m vs. Observed: 107+ 515 

21 m) (Fig. 4B). In terms of magnitude, the model overestimates DCM Chl (Model: 0.74 + 0.35 516 

mg Chl m-3 vs. Observed: 0.38 + 0.13 mg Chl m-3), although most of the observations fall within 517 

one standard deviation of the model average. Despite this model-data mismatch, simulated nitrate 518 

profiles closely match profiles from the World Ocean Database (WOD). In both model and 519 

observations, the mean nitracline occurred at approximately 75 m (Fig. 4C). On average, model 520 

nitrate tended to be lower at the surface and higher at depth relative to observations. Above the 521 

nitracline, model nitrate was 0.071 + 0.39 mmol N m-3 while observed nitrate was 0.55 + 1.29 522 

mmol N m-3. Below 200 m, model and data show better agreement, with deep nitrate in the model 523 

of 24.92 + 3.28 mmol N m-3 compared to 23.55 + 5.21 mmol N m-3 in WOD profiles. 524 

 525 

Figure 4 (A-C): Model-data comparisons of DCM depth (A) chlorophyll profiles (B) and nitrate 526 

profiles (C). DCM depth was evaluated using un-calibrated fluorescence profiles obtained during 527 

SEAMAP cruises. Chlorophyll profiles were collected during the May 2017 and 2018 Lagrangian 528 

process cruises. For comparisons, the model and data were sampled at corresponding locations and 529 

time of the year for all simulated years. Nitrate values from World Ocean Database that overlapped 530 



  22

with the simulation period and were located in the oligotrophic GoM (>1000 m) were used for 531 

model-data comparisons.    532 

3.4 Size fractionated mesozooplankton biomass and grazing model-data comparisons 533 

To further constrain the phytoplankton and zooplankton community simulated by NEMURO-534 

GoM, we utilized in situ measurements collected during the process study cruises. First, we 535 

compared the relative proportions of LZ and PZ biomass to four discrete size classes measured at 536 

sea (Fig. 5A, C).  In both model and observations, we find nearly identical size distributions 537 

assuming that LZ approximates the smallest two size classes of mesozooplankton sampled (“small 538 

mesozooplankton”, 0.2-1.0-mm) and PZ approximates the largest two size classes (“large 539 

mesozooplankton”, 1.0-5.0 mm). In the field data, small mesozooplankton biomass varied from 540 

33 to 46 % (median = 40%, at 95% C.I.), while model estimates of LZ biomass vary from 31 to 541 

46% (median = 40%). Large mesozooplankton biomass in the field data varied from 54 to 67% 542 

(median = 60%), while model estimates of PZ biomass vary from 54 to 69% (median = 60%). 543 
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 544 

Figure 4 (A-D): A summary of field (black) and model (red) estimates of mesozooplankton size-545 

fractioned biomass and grazing rates. Mesozooplankton size-fractioned biomass as a percent of 546 

total biomass for each of the four size classes measured at sea in May, 2017 and 2018 (A). 547 

Corresponding mesozooplankton specific grazing rates for each of the four size classes (B). Field 548 

data aggregated into two size classes for direct comparison with model biomass estimates for large 549 

(LZ) and predatory (PZ) mesozooplankton (C). Similarly, model data comparison of specific 550 

grazing rates by large and predatory zooplankton to aggregated field estimates (D). Whiskers 551 

extend to 95% confidence interval. Outliers for model estimates are not shown. 552 

Mesozooplankton specific grazing rates measured during the process study cruises were also used 553 

to validate the simulated mesozooplankton community. Field measurements showed that specific 554 

grazing rates (μg Chl mg C-1 d-1), decreased consistently with increasing mesozooplankton size-555 

class (Fig. 5B). For model-data comparisons, we computed grazing on LP by LZ and PZ at each 556 
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depth. Grazing terms were converted into units of Chl using the model estimated C:Chl ratio for 557 

LP before being depth-integrated to the corresponding net tow depth and normalized to simulated 558 

depth-integrated LZ and PZ biomasses. We find that model mesozooplankton grazing estimates 559 

capture the general trend of decreased specific grazing rates with increasing mesozooplankton size 560 

(Fig. 5D). However, the model overestimates grazing by small mesozooplankton while 561 

underestimating grazing by large mesozooplankton. In the field data, small mesozooplankton 562 

grazing ranges from 1.34 to 2.51 μg Chl mg C-1 d-1 (median = 1.85) while model estimates of LZ 563 

grazing rates vary from 3.64 to 8.14 μg Chl mg C-1 d-1 (median = 6.01). Field measurements of 564 

large mesozooplankton grazing range from 0.76 to 1.44 μg Chl mg C-1 d-1 (median = 0.94), while 565 

model estimates of PZ grazing vary from 0.44 to 0.70 μg Chl mg C-1 d-1 (median = 0.58). In terms 566 

of total grazing, the model average is considerably higher (2.99 + 2.20 μg Chl mg C-1 d-1) then 567 

found in the field measurements (1.38 + 0.59 μg Chl mg C-1 d-1) (see Discussion). 568 

3.5 Phytoplankton growth and microzooplankon grazing model-data comparisons 569 

Measurements of specific phytoplankton growth rates, phytoplankton mortality due to 570 

microzooplankon grazing, and net primary production (NPP) were used to evaluate protistan 571 

dynamics in the model. We find the model underestimates phytoplankton growth and 572 

microzooplankton grazing while overestimating NPP (Fig. 6A, B). Phytoplankton specific growth 573 

rates from dilution experiments range from 0.50 to 0.66 d-1 (median = 0.55 d-1) while model 574 

estimates of phytoplankton (SP+LP) specific growth rates vary from 0.13 to 0.27 d-1 (median = 575 

0.21 d-1). In terms of microzooplankton grazing rates, field data range from 0.19 to 0.55 d-1 (median 576 

= 0.39 d-1) while model estimates of SZ vary from 0.10 to 0.21 d-1 (median = 0.16 d-1). NPP 577 

estimates show better agreement between model and data, with rates from 276 to 360 mg C m-2 d-578 

1 (median = 321 mg C m-2 d-1) in field data while model estimates vary from 190 to 741 mg C m-2 579 

d-1 (median = 431 mg C m-2 d-1). 580 

Although the model underestimates phytoplankton growth and microzooplankton grazing rates, 581 

the relative proportion of NPP consumed by protists in the model (67 - 85%; median = 76%) 582 

compares reasonably well to field measurements (55 - 92%; median = 72%) (Fig. 6C). Notably, 583 

the model average proportion of phytoplankton production consumed by protists closely matches 584 

the mean for all tropical waters reported by Calbet & Landry (2004). When phytoplankton 585 

mortality due to mesozooplankton grazing was evaluated in the model at cruise sample locations 586 
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we find mesozooplankton grazing accounts for 13 + 8 %, which also closely agrees with the global 587 

average (Calbet et al., 2001).  588 

 589 

Figure 5 (A-C): Specific phytoplankton growth (μ, d-1) and microzooplankon grazing (m, d-1) 590 

between model (red) and field data (black) (A). Depth-integrated net primary production (mg C 591 

m-2 d-1) (B). The fraction of phytoplankton growth that is grazed by protists in the model and field 592 

data (C). Whiskers extend to the 95% confidence intervals. Outliers for model estimates are not 593 

shown. 594 

3.6 Simulated mesozooplankton diet  595 

After model tuning and validation, we utilized NEMURO-GoM to investigate spatiotemporal 596 

variability in diet and secondary production of the GoM mesozooplankton community. First, we 597 

examined the trophic level of LZ and PZ in the model, which provides a measure of their 598 

cumulative diet. Trophic level is calculated by computing the dietary contributions of each prey in 599 

LZ (i.e. LP and SZ) and PZ diets (i.e. LP, SZ, and LZ), assuming that the trophic level of LP = 1 600 

and SZ = 2. In the oligotrophic region, both LP and SZ contribute approximately 50% to LZ diet, 601 

as indicated by a mean trophic level near 2.5 (2.54 + 0.02) for LZ (Fig. 7A). In the same region, 602 

PZ have a trophic level of 2.78 + 0.04 indicating a higher contribution of zooplankton to their diet 603 

(i.e. SZ and/or LZ) (Fig. 7B). In the shelf region, LZ are more herbivorous, as indicated by a 604 

decrease in trophic level to 2.31 + 0.01, while PZ are more carnivorous, as indicated by an increase 605 

in trophic level to 2.90 + 0.04.  606 

Despite little evidence for LZ diets dominated by zooplankton in the annual average (in contrast 607 

to PZ, which often have a trophic level ~3), we commonly find regions in instantaneous fields 608 
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during both winter and summer conditions where SZ are the dominant prey source for LZ (Fig. 609 

7C, E). These regions, typically in the Loop Current or Loop Current Eddies (LCEs), highlight the 610 

episodic importance of heterotrophic protists as prey sources for small mesozooplankton in the 611 

GoM. High proportions of SZ in LZ diets can be attributed to the competitive advantage of SP 612 

over LP in extremely low nutrient environments such as in the Loop Current, resulting in high 613 

abundances of SP and their predators (SZ) relative to LP. Instantaneous fields also reveal that 614 

phytoplankton can be important prey for PZ as well, particularly during summer, as indicated by 615 

trophic levels of around 2.5 in the western GoM (Fig. 7F). In addition to strong variability in 616 

trophic positions, there are also regions in the oligotrophic GoM, most clearly in the centers of 617 

LCEs during summer, where the model predicts no feeding by mesozooplankton (Fig. 8E). The 618 

convergent anti-cyclonic circulation of LCEs is typically associated with low phytoplankton 619 

biomass, which at times may fall near or below feeding thresholds in the NEMURO grazing 620 

formulation. This formulation is intended to simulate suppression of feeding activity for 621 

zooplankton at mean prey densities that cannot support the energy expended while searching for 622 

prey.  623 

To investigate which prey contributes most to LZ and PZ diets, we computed each prey source 624 

term for both LZ and PZ at each grid cell (Fig. 8). As we would expect, the dominant prey for LZ 625 

and PZ align closely with spatial variability in their respective trophic positions. For LZ diet, 626 

herbivory dominates throughout the GoM, except for the Loop Current (Fig. 8A). LP contribution 627 

to LZ diet is highest on the shelf, where LP biomass is also high due to the competitive advantage 628 

of LP over SP in high nutrient conditions. In contrast, PZ diet varies with the relative availability 629 

of SZ and LZ prey. In the oligotrophic region, PZ feed mainly on SZ (heterotrophic protists) 630 

because LZ biomass is relatively low. On the shelf, they consume primarily LZ (Fig. 8D). Despite 631 

the significant change in dominant prey between the shelf and oligotrophic regions, PZ trophic 632 

positions remain fairly consistent (Fig. 7D) because SZ in the oligotrophic region and LZ in the 633 

shelf region both feed predominantly on phytoplankton and hence occupy similar trophic levels. 634 

In the instantaneous fields for winter (Fig. 8B, E) and summer (Fig. 8C, F), the dominant prey for 635 

both LZ and PZ show substantial mesoscale variability, indicating that oceanographic features 636 

such as fronts and eddies influence not only biomass but also zooplankton ecological roles (see 637 

Discussion). 638 
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 639 

Figure 7 (A-F): Trophic levels of simulated large zooplankton (LZ, top) and predatory 640 

zooplankton (PZ, bottom). Annual-average trophic positions of LZ (A) and PZ (D). Instantaneous 641 

trophic positions of LZ (B) and PZ (E) for winter conditions on 4 February 2012. Instantaneous 642 

trophic positions of LZ (C) and PZ (F) for summer conditions on 5 August 2011.  643 

644 

Figure 8 (A-F): Dominant prey source for simulated large zooplankton (LZ, top) and predatory 645 

zooplankton (PZ, bottom). Colors indicate dominant prey. Brightness indicates percent of 646 

dominant prey in the zooplankton diet. Annual averaged field for LZ (A) and PZ (D). Instantaneous 647 

winter condition for LZ (B) and PZ (E) on simulated day 4 February 2012. Instantaneous summer 648 

conditions for LZ (C) and PZ (F) on 4 August 2011. 649 
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3.7 Simulated mesozooplankton secondary production 650 

To our knowledge, regional secondary production for the GoM has not been quantified previously. 651 

Based on our model, secondary production due to mesozooplankton averages 66 ± 8 x 106 kg C yr-652 

1, and ranged from a minimum of 51 x 106 kg C (in 1999) to a maximum of 82 x 106 kg C (in 653 

2011).  In the oligotrophic region, LZ secondary production averages 35 ± 5 mg C m-2 d-1 while 654 

PZ secondary production is 11 ± 2 mg C m-2 d-1 (Fig. 9). The annual secondary production 655 

minimum develops at the end of December while the annual maximum occurs at the beginning of 656 

June (Table 1). In this region, mesozooplankton are responsible for 14 ± 2 x 106 kg C yr-1, 657 

equivalent to 6% of NPP. On the shelf, secondary production is about 4-fold higher, with LZ 658 

production of 146 ± 17 mg C m-2 d-1 and PZ production of 42 ± 5 mg C m-2 d-1. Here, the annual 659 

minimum also occurs at the end of December but the maximum occurs later at the end of July 660 

(Table 1). On the shelf, secondary production constitutes a higher proportion of NPP (13%) and 661 

averages 51 ± 6 x 106 kg C yr-1. 662 

In addition to differences in total secondary production, significant differences were found in the 663 

mesozooplankton community response to changes in total phytoplankton biomass on the shelf and 664 

in the oligotrophic region. On the shelf, the average ratio between LZ and PZ secondary production 665 

is 3.51 and remains almost constant with increasing phytoplankton biomass (ρ = 0.13, p < 0.01). 666 

Although we find a similar average value in the oligotrophic region (3.14), ratios are more variable 667 

and strongly dependent on phytoplankton biomass (ρ = 0.52, p < 0.01).  Ratios of LZ to PZ 668 

secondary production reached values of ~2.5 in the lowest phytoplankton biomass regions of the 669 

open ocean GoM and increased to ~4.0 during times and places where local phytoplankton biomass 670 

was high.  These differences likely stem from the longer turnover times of PZ, which make them 671 

less sensitive to variability in bottom-up drivers and allows them to have a proportionally greater 672 

role in oligotrophic settings. 673 

As witnessed in the instantaneous fields of diet and secondary production, mesoscale eddies are 674 

common features in the GoM and hence important to quantify for regional zooplankton dynamics. To 675 

investigate secondary production inside cyclonic and anticyclonic eddies we 676 

implement the TOEddies eddy detection algorithm (Laxenaire et al., 2018) which uses surface 677 

velocities along closed contours of sea surface height (SSH) for detection of mesoscale eddies 678 

(Chaigneau et al., 2011; Laxenaire et al., 2019; Pegliasco et al., 2015). Grid cells located inside each 679 
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eddy are defined within the SSH contour associated with the maximum mean surface velocity (interior 680 

grid cells). Grid cells located between the outer most closed contour and within 1.5 radius of the 681 

eddy center and not within another eddy were used to define background conditions outside of 682 

eddies (exterior grid cells). Only eddies with areas larger than an equivalent circular diameter of 683 

100km and not within the Loop Current were considered in the analysis. On average, 3.78 cyclonic 684 

and 3.33 anticyclonic eddies were identified in each daily velocity field. We find that cyclonic 685 

eddies were associated with 10% higher secondary production relative to exterior grid cells and the 686 

ratio of secondary production in interior cells to exterior cells ranged from 0.4 to 3.37 (95% CI).  In 687 

contrast, secondary production was substantially lower inside anticyclonic eddies accounting for only 688 

46% of the average secondary production in exterior cells (0.03 - 1.87 (95% CI)). In addition to their 689 

convergent nature that dampens nutrient input, lower rates of secondary production in anticyclonic 690 

eddies can likely be attributed to the presence of highly oligotrophic Loop Current water trapped within 691 

large anticyclonic LCE. 692 

693 

Figure 9 (A-F): Vertically integrated secondary production (mg C m-2 d-1) by simulated large 694 

zooplankton (LZ, top) and predatory zooplankton (PZ, bottom). Annual average of secondary 695 

production for LZ (A) and PZ (D). Instantaneous model output of secondary production in winter 696 

for LZ (B) and PZ (E) on simulated day 4 February 2012. Instantaneous model output for 697 

secondary production in summer for LZ (C) and PZ (F) on 2 August 2011.   698 

Table1: Average seasonal minimum and maximum values in the model (1993-2012) and the day 699 

of year in which they occur for surface chlorophyll (mg m-3) and depth-integrated estimates of 700 

phytoplankton biomass (mg C m-2), net primary production (mg C m-2 d-1), mesozooplankton 701 
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biomass (mg C m-2), and mesozooplankton secondary production (mg C m-2 d-1) calculated by 702 

spatially averaging daily fields over the oligotrophic (upper half of table) and shelf regions (lower 703 

half of table). Day of year values are in the format “day/month + days.” 704 

 Daily Field Value Day of Year  

Diagnostic (Oligotrophic) Annual Min. Annual Max. Day of Min. Day of Max. 

Surface Chlorophyll  0.09 + 0.005 0.27 + 0.06 9/9 + 23 1/29 + 13 

Phytoplankton Biomass  2300 + 130 3600 + 140 12/26 + 7 4/29 + 17 

Net Primary Production 290 + 70 1000 + 120 12/31 + 12 7/6 + 27  

Mesozooplankton Biomass 1000 + 40 1400 + 90 1/1 + 4  5/19 + 18 

Secondary Production 18 + 4 68 + 10 12/31 + 10 6/4 + 15 

Diagnostic (Shelf) Annual Min. Annual Max. Day of Min. Day of Max. 

Surface Chlorophyll  1.96 + 0.15 3.00 + 0.30 2/8 + 37 7/31 + 58 

Phytoplankton Biomass  3200 + 290 5200 + 440 1/1 + 9  7/18 + 11 

Net Primary Production 750 + 120  2000 + 220 12/31 + 8  7/21 + 14 

Mesozooplankton Biomass 670 + 70 1100 + 90 12/29 + 7 5/23 + 25 

Secondary Production 94 + 17 270 + 28 12/31 + 6  7/20 + 16  

 705 

4.0 Discussion 706 

Many parameters in biogeochemical models are poorly constrained by observations and laboratory 707 

studies and/or highly variable in the environment. The numbers and uncertainties around these 708 

parameters allow PBMs with varying degrees of tuning to reproduce a single ecosystem attribute 709 

(e.g., surface Chl) even if multiple processes are inaccurately represented (Anderson, 2005; 710 

Franks, 2009). Once validated, one of the main values of coupling physical and biogeochemical 711 

models (i.e. PBMs) is their utility for making inferences about portions of the lower trophic level 712 

that are under sampled and/or difficult to measure in the field. If PBMs are to be utilized to explain 713 

variability rather than simply fit an observational dataset, multiple ecosystem attributes, must be 714 

validated and the underlying model structure and assumptions critically evaluated. In the section 715 

below, we further justify changes to model structure by evaluating the underlying assumptions in 716 

default NEMURO and discuss model-data mismatch before drawing conclusions about the GoM 717 

zooplankton community and the implications of its dynamics for higher trophic levels.  718 

4.1 Justification for NEMURO modifications 719 
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The phytoplankton community in the North Pacific (NP) domain where NEMURO was originally 720 

designed is largely composed of nanoplankton (original SP) and microplankton (original LP). By 721 

default, SP is assumed to represent coccolithophores and autotrophic nanoflagellates, which can 722 

be important prey of copepods and other mesozooplankton in temperate and subpolar regions 723 

(Kishi et al., 2007). However, in tropical regions such as the GoM, smaller picophytoplankton taxa 724 

typically dominate, particularly in highly oligotrophic regions. Common picophytoplankton of the 725 

GoM include cyanobacteria and picoeukaryotes, which are too small for most mesozooplankton 726 

to feed on. Hence, the SP to LZ grazing pathway was removed in our model. We found that 727 

removal of this grazing pathway allowed the model to simulate a more realistic phytoplankton 728 

community on the shelf region. Despite intuition, SP largely dominated the shelf region in the 729 

model when LZ were allowed to graze on SP. After closer inspection, we found that grazing of SP 730 

sustained LZ biomass on the shelf to levels where top-down pressure constrained LP standing 731 

stocks. This prevented large blooms of LP, leading to a competitive advantage for SP even in 732 

highly eutrophic conditions (the Mississippi river delta), which was observed for a wide range of 733 

LP maximum growth rates, LP half-saturation constants, and LZ/PZ grazing rates. Thus, removal 734 

of the SP to LZ grazing pathway added ecological realism and improved the model solution. 735 

During the model tuning process (outlined in the supplemental), we also found that, despite a wide 736 

range of tested parameter sets, the model was unable to simulate mesozooplankton biomass low 737 

enough to match SEAMAP observations in the oligotrophic region. Even with unrealistically low 738 

phytoplankton biomass, equivalent to approximately 50% of surface Chl observed in SeaWIFS 739 

images, the model overestimated mesozooplankton biomass. To achieve realistic levels of 740 

mesozooplankton biomass in the oligotrophic region, default LZ and PZ mortality parameter 741 

values needed to be increased by an order of magnitude. However, this produced unrealistically 742 

high loss rates on the shelf region, leading to mesozooplankton biomass estimates that were 743 

substantially lower than SEAMAP shelf observations. Implementation of linear mortality on all 744 

biological state variables (except PZ) resolved this issue by providing the model with a greater 745 

dynamic range. In NEMURO, and other biogeochemical models, quadratic mortality is often used 746 

to increase model stability and/or is mechanistically justified as representing the impact of 747 

unmodeled predators that co-vary in abundance with prey (Gentleman and Neuheimer, 2008; 748 

Steele and Henderson, 1992). However, grazing losses of all state variables (except PZ), are 749 

already explicitly modeled in NEMURO by default. Hence, removal of quadratic mortality also 750 
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added ecological realism and improved the model solution. Quadratic mortality was retained for 751 

PZ to account for the implicit predation pressure of un-modeled predators (e.g. planktivorous fish). 752 

4.2 Model-data mismatch 753 

4.2.1 Surface chlorophyll discrepancies 754 

Within our model-data comparisons of surface Chl we find that NEMURO-GoM reproduces 755 

important patterns in both the oligotrophic and shelf region. The latter of which, apart from the 756 

northern shelf, has not been well resolved by previous PBMs (e.g., Gomez et al., 2018; Xue et al., 757 

2013). The absence of a shelf Chl signature may, in some cases, be overly attributed to bias in 758 

satellite measurement due to high concentrations of colored dissolved organic matter (CDOM). 759 

While a clear shelf signature is well resolved in NEMURO-GoM, the model-data mismatch is 760 

greater on the shelf compared to oligotrophic regions. This is an expected result considering that 761 

the model incorporates climatological river forcing while actual variability is much more complex. 762 

Furthermore, the absence of CDOM in the model likely contributes to the overestimation of 763 

phytoplankton biomass on the shelf. 764 

In future studies, the inclusion of daily nutrient data like that produced for the Mississippi River 765 

by USGS starting in 2011 is needed for PBMs to better resolve variability on the shelf. Including 766 

benthic processes, such as denitrification (Fennel et al., 2006), may also reduce model-data 767 

mismatch in shelf regions. Implementing more realistic light attenuation (e.g. wavelength-specific 768 

light attenuation or inclusion of CDOM) could further improve estimates of phytoplankton 769 

biomass on the shelf as primary production can be sensitive to different light attenuation 770 

formulations (Anderson et al., 2015). In our model, it was difficult to simulate deep DCMs in the 771 

oligotrophic GoM while also simulating DCMs on the shelf that were shallow enough to maintain 772 

high nitrate. This may reflect the need for more realistic light attenuation in the model. Quantifying 773 

uncertainty in C:Chl ratios is also an important task moving forward, which may decrease model-774 

data mismatch on the shelf as well as other regions. Future PBMs will likely continue to depend 775 

heavily on satellite Chl for the bulk of model validation and hence more in situ samples are needed 776 

to assess changes in phytoplankton light harvesting pigments along gradients from coastal to 777 

oligotrophic regions and from the surface to the DCM. Without these observations, it is difficult 778 

to gauge mismatches between model and satellite ocean color products or in situ profiles of Chl. 779 
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In our model, the most noticeable surface Chl model-data mismatch occurs on the southern GoM 780 

shelf (Campeche Bank (CB)), where the model consistently overestimates surface Chl. This bias 781 

was also notable in the GoM PBM implemented by Damien et al. (2018), particularly in winter. 782 

We believe this discrepancy may be driven by a combination of errors involving overestimation 783 

of shelf mixing by the hydrodynamic model, entrainment of high Chl water (given the 784 

overestimated DCM magnitude in the model), or errors in the open boundary conditions which 785 

result in an overestimation of upwelled nutrients/biomass near the YP that are transported 786 

westward by shelf currents. We found that the CB model-data mismatch was reduced when open 787 

boundary conditions included nitracline depths of greater than 100 m. This may reflect realistic in 788 

situ conditions considering that Caribbean water entering the GoM is highly oligotrophic. During 789 

our process cruises, nitrate was often undetectable above 100 m in samples collected near the Loop 790 

Current (A. Knapp, pers. comm.). 791 

Although modifying the boundary conditions may be justified, deepening the nitracline at the 792 

boundaries made it increasingly difficult to sustain realistic surface phytoplankton biomass in the 793 

oligotrophic GoM. This may point to the importance of nitrogen fixing cyanobacteria, which 794 

provide an alternative source of new nitrogen (other than upwelling and mixing) that could be 795 

supporting phytoplankton at the surface given the strong stratification and deep nitraclines in the 796 

GoM. In the process of model tuning, we noticed that increasing the DON pool by increasing the 797 

PON to DON decomposition rate was necessary to maintain both relatively deep nitraclines and 798 

realistic surface Chl by providing a slow leeching of ammonium near the surface through bacterial 799 

communities. The need for this slow production of ammonium in surface layers may compensate 800 

for nitrogen fixation, which is not included in NEMURO (Holl et al., 2007; Mulholland et al., 801 

2006). In future studies, including diazotrophs as a separate phytoplankton functional type would 802 

be essential for evaluating the importance of nitrogen fixation in the GoM. 803 

Despite the model-data mismatch on the CB, this discrepancy appears to have little impact on the 804 

rest of the GoM. However, the model overestimates surface Chl in the southwestern GoM, which 805 

can likely be attributed to entrainment of high Chl water originating from the CB. Locally, the 806 

ecological impact is likely more significant. Higher phytoplankton biomass would be expected to 807 

support higher mesozooplankton grazing rates and secondary production. Indeed, some of the 808 
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highest model rates of secondary production occur on the CB. Hence, the surface Chl model-data 809 

mismatch may lead to an overestimation of secondary production for this region. 810 

4.2.2 Deep chlorophyll maximum discrepancies 811 

Since most PBMs focus on validating against satellite derived surface chlorophyll, the dynamics 812 

of the DCM is often insufficiently investigated. Consequently, many models predict DCM depths 813 

that are far too shallow.  Identifying this issue in the literature proved to be difficult because most 814 

studies do not provide profiles of simulated Chl (an exception is the recent GoM PBM by Damien 815 

et al. (2018)). We note that DCM depths in the DIAZO model (Stukel et al., 2014) were often quite 816 

shallow or completely nonexistent in the portion of the domain that included the oligotrophic GoM 817 

region. Underestimates of DCM depth in the unmodified COBALT biogeochemical model has 818 

also been identified (Moeller et al., 2019). In our investigation of the PBM implemented by Gomez 819 

et al. (2018), we found that DCMs in the oligotrophic region were commonly shallow and weak. 820 

In the default NEMURO simulation, DCM depths in the oligotrophic region were typically at a 821 

depth of 25 m, which is much shallower than observed (SEAMAP: 80 + 25 m, Process cruises: 822 

107 + 21 m). While this issue may seem insignificant, particularly if a study is focused on mixed-823 

layer dynamics, accurate placement of the DCM can have profound impacts on PBM behaviors, 824 

because the DCM is typically co-located with the nitracline. Unrealistically shallow DCMs and 825 

nitraclines permit unrealistically high nitrate fluxes into the surface layer following mixing events; 826 

thus, validating the DCM in PBMs is critical.   827 

For these reasons, we devoted substantial effort to tuning phytoplankton dynamics in the DCM. 828 

Modifications to α (the slope of the photosynthesis-irradiance curve) and attenuation coefficients 829 

allowed us to move the DCM down to realistic depths. Inclusion of a variable C:Chl module was 830 

also implemented to better resolve the DCM.  However, an additional issue was present in the 831 

default NEMURO simulations, the NEMURO-GoM, and every simulation that we attempted.  In 832 

all simulations that formed DCMs, the location of the DCM was always co-located with a 833 

maximum in phytoplankton specific growth rate, even though field measurements indicate that 834 

phytoplankton growth rates and NPP are either relatively constant with depth or decline in the 835 

DCM.  This is not surprising, given the low photon flux at the base of the euphotic zone and the 836 

energetic demands required to up-regulate cellular density of light harvesting pigments. 837 

Additionally, our field measurements show that the DCM was not associated with a biomass 838 
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maximum (biomass was fairly constant with depth), suggesting that DCM formation in the GoM 839 

is physiologically driven.  840 

We believe this DCM dynamical issue was responsible, in part, for the underestimation of specific 841 

phytoplankton growth and microzooplankon grazing rates by the model despite estimating higher 842 

NPP (Fig. 4D).  The model-data mismatch at the DCM may also be associated with an 843 

overestimation of phytoplankton biomass which would decrease the vertical transport of nitrate 844 

and hence inhibit primary and secondary production at the surface. Underestimates of primary and 845 

secondary production would be expected to be greatest with a deep DCM and shallow MLD, which 846 

occur during the summer months in the GoM. Indeed, we found that nitrate concentrations above 847 

the nitracline were considerably lower in the model relative to observations. Future PBM studies 848 

need to focus more effort on resolving dynamics of the DCM. 849 

4.2.3 Mesozooplankton grazing discrepancies  850 

Novel to this study, model estimates of mesozooplankton biomass are shown to agree closely with 851 

observations on the shelf and in the oligotrophic GoM. To our knowledge, this study includes the 852 

first quasi-regional zooplankton biomass model validation in a PBM. Our model also provides the 853 

first model-data comparisons of size-specific zooplankton biomass and grazing rates for the GoM. 854 

Such comparisons provide valuable insights into the potential biases of traditional functional group 855 

biogeochemical models pertaining to zooplankton dynamics (Everett et al., 2017). While 856 

NEMURO-GoM shows broad agreement with zooplankton observations, some model-data 857 

mismatch occurs, particularly for mesozooplankton grazing rates.  858 

We identify three factors that may explain the model-data mismatch for mesozooplankton grazing 859 

rates. The first and most obvious factor is the temporal sampling discrepancy as measurements 860 

were collected outside our model simulation period. Model-data mismatch may also arise from 861 

inaccuracies in the field measurements. During our process cruises, the zooplankton gut pigment 862 

measurements were based solely on phaeopigment content due to phytodetrital aggregates and 863 

Trichodesmium colonies found in our zooplankton net tows, which can lead to substantial 864 

contamination. Thus, true mesozooplankton grazing rates were likely underestimated because 865 

undegraded Chl can be abundant in the foreguts of mesozooplankton. Furthermore, the gut pigment 866 

approach assumes that any group of mesozooplankton has a constant gut throughput time (as a 867 
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function of temperature), which is an oversimplification. Uncertainties in model grazing 868 

formulations could also contribute to model-data mismatch (Gentleman et al., 2003a; Sailley et al., 869 

2015). Future in situ grazing measurements are needed to enable an objective selection of grazing 870 

formulations and parameter values. In particular, field studies that shed light on prey selectivity 871 

would be useful for parameterizing PBMs with multiple mesozooplankton functional groups, such 872 

as NEMURO-GoM.  873 

Clear model-data mismatch is also evident in the proportion of grazing mediated by PZ and LZ. 874 

This may be due to the fact that PZ is by default explicitly defined and parameterized as a higher 875 

trophic level mesozooplankton that can feed on LZ.  In reality, while there is a correlation between 876 

size and trophic level in the ocean, many predatory zooplankton are <1 mm, and many suspension-877 

feeding zooplankton are >1 mm; hence, the overlap of taxonomic groups with different functional 878 

roles and sizes makes it difficult to directly compare model categories to field data. For example, 879 

shelf suspension-feeding zooplankton are likely larger than their counterparts in the oligotrophic 880 

GoM although their functional role in the ecosystem does not change between environments.  881 

The ecological impact of the model’s potential overestimation of LZ grazing rates is most likely 882 

to manifest through an increase in the ratio of secondary production to mesozooplankton biomass.  883 

Since both LZ and PZ biomasses are accurately modeled by NEMURO-GoM, the overestimation 884 

of grazing rates suggests that LZ turnover times may be too high, thus leading to higher estimates 885 

of secondary production. However, this interpretation may oversimplify the complex interactions 886 

within pelagic protistan communities.  In the oligotrophic region where our model overestimates 887 

LZ grazing rates, the model indicates that heterotrophic protists comprise approximately half of 888 

the LZ diet. Thus, overestimates of grazing on LP do not necessarily lead to overestimates in total 889 

consumption if <1-mm zooplankton derive substantial nutrition from non-phototrophic sources in 890 

the field.  Furthermore, the model’s construction (i.e., LZ and PZ are functional groups, while the 891 

field data are size classes) suggests that part of the model-data mismatch in Fig. 5d may result 892 

from the presence of some suspension-feeders (i.e., LZ) in the >1-mm zooplankton and some 893 

carnivorous zooplankton (i.e., PZ) in the <1-mm zooplankton.  In this case, the model may simply 894 

attribute too high of a LP:SZ prey ratio to LZ.  If this is the issue, the model’s estimate of LZ 895 

secondary production may be accurate, but its trophic level too low (or, conversely, the trophic 896 

level of PZ too high).  Direct assessments of zooplankton trophic position (e.g., by compound 897 
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specific isotopic analysis of amino acids,(Chikaraishi et al., 2009; Décima et al., 2017) may help 898 

resolve these issues.  899 

4.3 Mesozooplankton dynamics in the open-ocean oligotrophic Gulf of Mexico 900 

Despite its nutrient-poor conditions, the open-ocean GoM ecosystem is a key region for spawning 901 

and larval development of many commercially important fishes, including Atlantic bluefin tuna, 902 

yellowfin tuna, skipjack tuna, sailfish and mahi mahi (Cornic and Rooker, 2018; Kitchens and 903 

Rooker, 2014; Lindo-Atichati et al., 2012; Muhling et al., 2017; Rooker et al., 2012, 2013). Why 904 

so many species choose such oligotrophic waters as habitat for their larval stages is unknown, but 905 

may be due to reduced predation risk (Bakun, 2013; Bakun and Broad, 2003).  Regardless, rapid 906 

growth and survival through the larval period depends on mesozooplankton prey that are suitably 907 

abundant and appropriately sized for these larval fishes. These prey taxa may be especially 908 

sensitive to increased stratification and oligotrophication associated with climate change, making 909 

investigation of their dynamics and production an important topic of research.  910 

Mesozooplankton biomass in the oligotrophic GoM was found to be strikingly low in both 911 

observations and model estimates, approximately an order of magnitude less than on the shelf. 912 

Model results clearly show that this low biomass condition arises from bottom-up resource 913 

limitation.  Our results suggest that low phytoplankton biomass in oligotrophic regions, and 914 

particularly within Loop Current Eddies, may even lead to localized and episodic regions where 915 

phytoplankton concentrations approach thresholds low enough that trigger collapse of 916 

mesozooplankton grazing. Prey limiting conditions for mesozooplankton and their predators 917 

would be expected more frequently in the GoM during warmer ocean conditions. Higher sea 918 

surface temperatures and increased thermal stratification could suppress vertical mixing, resulting 919 

in lower phytoplankton biomass.  920 

Despite extreme oligotrophy and dominance of picophytoplankton, our model shows that both PZ 921 

and LZ can be sustained at modest abundances in the oligotrophic GoM.  Indeed, the substantial 922 

abundances of large (>1 mm) mesozooplankton, equivalent to 60% of total mesozooplankton in 923 

both observations and model results (Fig. 4A, C), is an important result that helps explain the 924 

success of larval fish in the region.  Our results show that large mesozooplankton (PZ) occupy a 925 

trophic position of approximately 3.0 in the open ocean GoM, which is marginally lower than on 926 
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the shelf where they feed primarily on small mesozooplankton (LZ). The change in trophic position 927 

is associated with a switch from carnivory to feeding predominantly on heterotrophic protists in 928 

the oligotrophic region. This result highlights the importance of intermediate protistan trophic 929 

levels in sustaining mesozooplankton communities in oligotrophic regions. Indeed, both LZ and 930 

PZ ingest proportionally more SZ in the open ocean than on the shelf.  Notably, these protistan 931 

trophic steps cannot be quantified by routine field techniques because they have no pigment 932 

signature to make them visible in gut pigment measurements and may not enrich in bulk 15N 933 

leading to isotopic invisibility from a trophic perspective (Gutiérrez-Rodríguez et al., 2014). 934 

Despite their importance to phytoplankton grazing, they are sometimes missing from GoM 935 

ecosystem models (e.g., Fennel et al., 2011) and severely underrepresented or even absent in 936 

complex mass-balance constrained models (Arreguin-Sanchez et al., 2004; Geers et al., 2016). 937 

New insights may arise from focused investigations of phytoplanktonprotistcrustacean 938 

linkages in oligotrophic regions in both model and experimental studies.  This will likely require 939 

the use of next-generation technologies such as compound specific isotopic analyses of specific 940 

amino acids that have been shown to enrich in protists (Décima et al., 2017) or DNA 941 

metabarcoding to assess zooplankton gut contents (Cleary et al., 2016). 942 

Another robust finding from this study is the dynamic mesoscale variability in zooplankton 943 

abundance, diet, and trophic position.  These model results highlight the impact of Loop Current 944 

Eddies and mesoscale fronts and other features in modifying the biogeochemistry and food web of 945 

the GoM.  The existence of hot spots of productivity in the GoM has been noted in observational 946 

studies (Biggs and Ressler, 2001), and the importance of GoM mesoscale features to fish larvae 947 

has been hypothesized (Domingues et al., 2016; Lindo-Atichati et al., 2012; Rooker et al., 2012). 948 

Indeed, cyclonic eddies were found to have enhanced secondary production in our model, while 949 

secondary production was depressed within anticyclonic eddies. Our results further suggest that 950 

these mesoscale structures may not only modify zooplankton abundances, but also their trophic 951 

roles in the ecosystem, with implications for the transfer efficiencies of carbon and nitrogen in the 952 

pelagic food web.   953 

5.0 Conclusions 954 

We used an extensive suite of in situ measurements to validate zooplankton dynamics simulated 955 

by a PBM of the GoM. The model was able to capture broad patterns in phytoplankton and 956 
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mesozooplankton abundances, depth of the DCM and nutricline, as well as growth and grazing 957 

patterns. Using the validated model to investigate characteristics of the GoM mesozooplankton 958 

community, our results suggest that small mesozooplankton are largely herbivorous and large 959 

mesozooplankton largely carnivorous on the GoM shelf. However, distinct changes in diet were 960 

noted in the oligotrophic GoM, where both groups rely more on protistan prey.  Changes in diet 961 

and secondary production highlighted in this study have the potential to impact food availability 962 

to higher trophic levels, such as pelagic larval fishes. In future work, we plan to couple our model 963 

to an individual-based model of larval fish to evaluate the extent to which mesozooplankton 964 

abundance limits larval fish feeding and growth along their transport pathways in the GoM. 965 

Insights from this ecosystem-based approach may help to better resolve stock-recruitment 966 

relationships that are needed for sustainable fisheries management and improved stock-assessment 967 

models. 968 

969 
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Code and data availability.  970 

The model code and model validation data used in this study can be downloaded from GitHub at 971 

https://github.com/tashrops/NEMURO-GoM. An idealized one-dimensional version of 972 

NEMURO-GoM written in Matlab is also provided. The three-dimensional NEMURO-GoM 973 

model outputs used in the study are available on the FSU-COAPS server in a Network Common 974 

Data Form (NetCDF format).  975 
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