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 13 
Abstract 14 

Although the PROFILE and ForSAFE model can accurately reproduce the chemical and 15 
mineralogical evolution of the soil unsaturated zone, it overestimates weathering rates in deeper 16 
soil layers and in groundwater systems. This overestimation has been corrected by improving the 17 
kinetic expression describing mineral dissolution by adding or upgrading ‘braking functions’. The 18 
base cation and aluminium brakes have been strengthened, and an additional silicate brake has 19 
been developed, improving the ability to describe mineral-water reactions in deeper soils. These 20 
brakes are developed from a molecular-level model of the dissolution mechanisms. Equations, 21 
parameters and constants describing mineral dissolution kinetics have now been obtained for 113 22 
minerals from 12 major structural groups, comprising all types of minerals encountered in most 23 
soils. The PROFILE and ForSAFE weathering sub-model was extended to cover two-dimensional 24 
catchments, both in the vertical and the horizontal direction, including the hydrology. 25 
Comparisons between this improved model and field observations are available in Erlandsson 26 
Lampa et al. (2019, This special issue). The results showed that the incorporation of a braking 27 
effect of silica concentrations was necessary and helps obtain more accurate descriptions of soil 28 
evolution rates at greater depths and within the saturated zone.  29 

 30 
1. Introduction 31 

This manuscript reviews the chemical weathering approach adopted by the PROFILE and ForSAFE 32 
models and describes continuing efforts to upgrade the kinetic databases of these models for improved model 33 
calculations.  The application of mineral dissolution kinetics to natural systems requires a large amount of field 34 
input including information on mineral surface areas, mineral abundances over time and their spatial 35 
distribution, fluid flow and biotic activity.  As such this manuscript will by design describe both the weathering 36 
models and the evaluation of laboratory mineral dissolution rate used in the development of the upgraded 37 
kinetic database. 38 

Chemical weathering of silicate minerals, and notably the dissolution rates of these minerals are one 39 
of the most important factors shaping soil chemistry. The quality of the kinetic database in most cases 40 
determines the quality of its simulations of soil evolution. In the 1980’s, the need arose to mitigate acid 41 
deposition, to set critical loads for acid deposition, and to set limits for sustainable forest growth and nitrogen 42 
critical loads. This need led to a re-evaluation of the weathering observations available in scientific 43 
publications and books (Sverdrup 1990, Sverdrup and Warfvinge 1992, 1993, 1995, Drever et al., 1994, Drever 44 
and Clow 1995, Ganor et al., 2005, Svoboda-Colberg and Drever 1993, Crundwell 2013). These observations 45 
led to a model that accurately reproduced weathering rates under field conditions. The early history of these 46 
efforts was reported by Sverdrup and Warfvinge (1988a,b, 1992, 1993, 1995) and Sverdrup (1990). By 1990, 47 
we had a set of equations that described the dissolution rates of 14 minerals (K-feldpar, albite, plagioclase, 48 
pyroxene, hornblende, garnet, epidote, chlorite, biotite, muscovite, vermiculite, apatite, kaolinite, and calcite). 49 
Later more silicate minerals were added, including illite, smectite, montmorillonite, sericite and volcanic glass.  50 
Eventually we amassed kinetic data for 45 additional silicate minerals and 25 different carbonates1 at the time. 51 

 
1Calcite (The calcites are all slightly different; CaCO3 with 0-3% MgCO3 and 0.05%-0.5% apatite, from Sweden, Norway, 
Denmark,and the United States. In addition, kinetics on aragonite (CaCO3), slavsonite (SrCO3), dolomite (CaMg(CO3)2, 
magnesite (MgCO3), brucite (MgOH), siderite (FeCO3), witherite (BaCO3), and rhodochroisite (MnCO3) is available.  
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By the middle of the 1980’s, it became clear that we did not have a standard procedure for building a 52 
weathering rate model based on molecular level mechanisms. There are many reasons for this, the most 53 
important was the lack of a mechanistically oriented approach for guiding experimental studies. The lack of a 54 
mechanistic understanding resulted in important factors being overlooked. Many essential variables required 55 
for a weathering model were missing in the older experimental studies, sample preparation was often 56 
inadequate or not done, and/or the material was inadequately characterized (Sverdrup et al., 1981, 1984, 57 
Sverdrup, 1990). Often the experimental design had significant flaws and many experiments ran for too short 58 
a time; see Sverdrup (1990) for a full description. As such there needed to be a sorting of the data, to avoid the 59 
confusion brought by misleading data. This effort led to the creation of the original PROFILE mineral kinetic 60 
weathering model (Sverdrup, 1990) to estimate the rate at which mineral dissolution provided essential cations 61 
to soil waters. Although this model provides accurate estimates for shallow soils, it became less accurate for 62 
deeper soils (e.g. > 1.5 meter soil depth). 63 

This report outlines our efforts to update these early mineral weathering kinetics models for accurate 64 
predictions of watershed water and deeper groundwater chemistry. This effort builds upon the weathering book 65 
by Sverdrup (1990) and the articles Sverdrup and Warfvinge (1988a,b, 1992, 1995) and Warfvinge and 66 
Sverdrup (1993). There is an advisory chapter on how to estimate weathering rates in soils on a regional scale 67 
in Europe in the United Nations Economic Commission for Europe, Long Range Transboundary Convention 68 
Mapping Manual for Critical loads (Sverdrup, 1996). The weathering rate mapping methodology based on 69 
PROFILE model predictions was tested and used throughout 26 different European countries, and peer 70 
reviewed at annual workshops from 1988 to 2017.   71 

The revision of the original PROFILE weathering rate models described in this report was motivated 72 
by several observations: 73 

 74 
1. The PROFILE model was found to work satisfactorily in the unsaturated zone (0-1 meter), on thin 75 

soils, on rock surfaces, and in low concentration systems (Sverdrup and Warfvinge 1988a,b, 1991, 76 
1992, 1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh et al., 1992, Alveteg et al., 77 
1996, 1998, 2000, Alveteg and Sverdrup 2000).  78 

2. However, the chemical weathering rate for minerals is overestimated by this model in deeper soils, 79 
and at depths of more than 1.5 meters. The original PROFILE model was used down to this depth 80 
(Sverdrup et al., 1988a,b, 1992, 1996, Sverdrup 1990, Janicki et al., 1993, Holmqvist et al., 2003) for 81 
critical loads for streams (Sverdrup et al., 1996) and groundwater (Warfvinge et al., 1987), and may 82 
have possibly resulted in overestimates of the critical load.  83 

3. The weathering rate is overestimated in the deeper soils and in ground water (Sverdrup 1990, 84 
Warfvinge and Sverdrup 1987, 1992a,b,c, Sverdrup et al., 1996).  85 

4. New experimental data published in the literature after 1995 is of far better quality and consistency, 86 
with better experimental designs, better characterized materials and more complete observations than 87 
previous studies. For example, the reader is encouraged to read two studies published by Holmqvist 88 
et al., (2002, 2003) on the weathering rates of clay minerals under soil conditions and the concept of 89 
mineral alteration sequences (Holmqvist 2004, PhD thesis from Chemical Engineering, Lund 90 
University). The minerals used in the weathering rate experiments in those studies were extracted and 91 
separated from in-situ soils at experimental field sites near Uppsala, Sweden.  92 

 93 
This study describes the updated mineral kinetics database used in the PROFILE and ForSAFE 94 

models,  Notably this update includes revised ‘brake functions’ in the kinetic rate equations to better fit the 95 
observed field data down to the groundwater table and below. This was necessitated when the ForSAFE model 96 
(thus also the PROFILE model) was reconfigured for a sloping catchment, expanding the model structure from 97 
a 1-dimensional to a 2-dimensional model accounting for vertical and horizontal solute transport in a 98 
catchment, including the ecosystem. In total 102 minerals are considered in the updated and expanded kinetics 99 
parameter databases. An exhaustive description of the parameterization of the rate equations for all of the 102 100 
minerals will require a text far beyond what is possible in this manuscript, so that only a summary and several 101 
examples are provided here.  102 
 103 
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 104 
Figure 1. Weathering processes were mapped using systems analysis and by drawing causal loop diagrams 105 
(CLD) for the process and the whole system of the weathering process. This is a standard procedure in model 106 
building (Sverdrup and Stiernquist 2002, Sverdrup et al., 2018). B is a balancing loop (sometimes referred to 107 
as a negative feedback) and R is a reinforcing loop (sometimes referred to as a positive feedback) as explained 108 
in the figure. 109 
 110 
2. Methodology 111 

The methods used in this study have their basis in terrestrial ecosystems system analysis and 112 
ecosystems system dynamics as described by Sverdrup and Stiernquist (2002) and Sverdrup et al. (2018). The 113 
main tools employed are the standard methods of system analysis and integrated system dynamics modelling 114 
(Forrester 1961, 1969, 1971, Meadows et al., 1972, 1974, 1992, 2005, Roberts et al., 1982, Senge 1990, Bossel 115 
1998, Haraldsson and Sverdrup 2005, Haraldsson et al., 2006, Sverdrup and Stiernquist 2002, Sverdrup et al., 116 
2018). The overall system is analysed using stock-and-flow charts and causal loop diagrams (Sverdrup et al., 117 
2002). The learning loop was used as the adaptive learning procedure in past studies (Senge 1990, Kim 1992, 118 
Senge et al., 2008, Sverdrup et al., 2018). The conceptual model must be clearly defined and constructed before 119 
any computational work can be undertaken. It is fundamental to understand that the causal understanding is 120 
the model. Systems analysis produces a causal loop diagram (CLD) linking causes, effects, and feedbacks 121 
among the processes in terms of causalities and flows (Albin 1997, Sverdrup et al., 2018, Kim 1992). These 122 
CLD need to be internally consistent. A summary of this approach is provided in Figure 1. A causal loop 123 
diagram is thus a map of the differential equations describing the evolution of the system. Mass- or energy 124 
flow charts and the causal loop diagram uniquely define the system. The ForSAFE model is not calibrated on 125 
large amounts of system output data (Sverdrup and Warfvinge 1992, Sverdrup et al., 2018). Instead, the 126 
system’s causal linkages and the mass balances lead to equations that are parameterized using independent 127 
system properties, initial states and boundary conditions (Sverdrup et al., 2018).  128 
 129 
2.1 Earlier development work and background 130 

Critical to developing a database describing mineral dissolution rates is that it is coupled into a 131 
comprehensive model that can account for the large number of processes that affect rates in the field.  From 132 
the beginning, weathering kinetics was developed and incorporated into the PROFILE model. The kinetics 133 
were parameterized using laboratory measurements and applied to field conditions on a plot scale and on a 134 
regional scale for Sweden (Sverdrup 1990, Sverdrup and Wafvinge 1988a,b, 1992, 1995, Warfvinge and 135 
Sverdrup 1992, 1993). The resulting kinetics sub-model was subsequently coupled into a biogeochemical 136 
ecosystem model, linking solute transport, soil chemistry, weathering, ion exchange, hydrology and biological 137 

The letter R in the middle of a loop indicates
that the loop is reinforcing a behavior in the
same direction, causing either a systematic
growth or decline. It is a behavior that is
moving away from equilibrium point.

The letter B in the middle of a loop indicates
that the loop is balancing and moves the
system in the direction towards equilibrium or
a fluctuation around equilibrium point.

The arrow shows a causality. A variable at the
tail causes a change to the variable at the
head of the arrow.

A plus sign near the arrowhead indicates that
the variable at the tail of the arrow and the
variable at the head of the arrow change in the
same direction. If the tail increases, the head
increases; if the tail decreases, the head
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A minus sign near the arrowhead indicates
that the variable at the tail of the arrow and the
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interactions with microbiology and forest plants, called the SAFE model (Sverdrup et al, 1995). The steady-138 
state model PROFILE and its dynamic variant SAFE, was further developed into other models as described in 139 
the Appendix.  140 
 141 
2.2. Weathering under field conditions 142 

The dissolution of primary minerals at ambient temperature and pressure is irreversible with the 143 
exceptions of a few simple chloride and sulphate salts and a few carbonates (Sverdrup 1990). Such irreversible 144 
reactions do not attain equilibrium in near to ambient temperate systems as the chemical species released to 145 
natural waters combine to form secondary solid phases far before the waters attain close to equilibrium 146 
conditions with respect to primary minerals. Nevertheless, the dissolution rates of the primary minerals have 147 
been observed to slow at far from equilibrium conditions in response to the increased concentration of 148 
dissolved metals including Al and Si. A formulation based on transition state theory for the formation of 149 
activated surface complexes that decay irreversibly was developed by (Sverdrup 1985, Sverdrup and 150 
Warfvinge 1987, 1988a,b, 1992, Sverdrup 1990) to describe the effect of dissolved metals on primary mineral 151 
dissolution at far from equilibrium conditions. Taking account of this approach as well as their coupling to 152 
solute transport, ion exchange, plant nutrient uptake, organic matter decomposition and nitrogen 153 
transformations detailed modelling of chemical weathering rates have been made (Sverdrup and Warfvinge 154 
1988a,b, Sverdrup 1990, Akselsson et al., 2006, 2005, 2004, Sverdrup et al., 1990, 1995, 2017). A comparison 155 
of calculated and observed weathering rates shown in Figure 2, demonstrates this approach can reproduce the 156 
observed rates within ±5% across 4 orders of magnitude for the upper unsaturated parts of a soil (Sverdrup 157 
and Warfvinge 1992, Barkman et al., 1999, Jönsson et al., 1995, Belyazid 2005, Kurz et al., 1998a,b). Further 158 
comparisons of computed and calculated rates made with these models for field tests at Gårdsjön, Sweden and 159 
at various sites were published by Sverdrup et al. (1988a,b, 1993, 1995, 1996, 1998, 2010), Sverdrup (1990, 160 
2009), Sverdrup and Alveteg (1998), Rietz (1995) and Warfvinge et al., (1996), and Holmqvist et al., (2003, 161 
2002). In addition, several other authors tested this approach independently (In the United States; Kolka et al 162 
1996, Phelan et al., 2014, in Scotland; Langan et al. 2006b, in Germany; Becker 2002, in New Zealand: 163 
Zabowski et al., 2007; tests on controlled experiments with granite slabs in the Swedish nuclear waste storage 164 
assessment research programme at Göteborg by Claesson-Nyström and Andersson 1996, in Swedish soil 165 
profiles; Lång 1998). Gunnar Jacks in KTH, Stockholm put these models to several blind test of the alteration 166 
of blank granite surfaces used for ancient rock carvings and controlled mini-catchments (Jacks, unpublished 167 
1990). In each case a close correspondence was observed in calculated as compared to the field weathering 168 
rates.  The current manuscript reports on our efforts to extend these accurate calculations to deeper in the soil 169 
column. 170 
 171 
3. Theory 172 

The kinetic weathering model presented in this manuscript originates from that of Sverdrup and 173 
Warfvinge (1987a,b, 1988a,b, 1992a, 1995) and Sverdrup (1990), but numerous features have been added 174 
since. Some of the updates have been described in later studies (Akselsson et al., 2005, 2005, 2006, 2007, 175 
Alveteg et al., 2000, Kurz et al., 1998a,b, Sverdrup et al., 1997, 2002, 2008). Further updates are described in 176 
this study. New weathering rate data published over the past 25 years have been regressed and new temperature 177 
dependencies and modifications of some rate coefficients has resulted (Sverdrup 2010, Sverdrup et al., 1998, 178 
Rizzetto et al., 2016, Holmqvist et al., 2002, 2003). The mineralogy and surface area inputs to the models are 179 
based on site measurements, and in general are not adjustable parameters. Some of parameters can be 180 
challenging to measure, such as some primary minerals with low soil content (apatite, epidote, pyroxene, 181 
amphiboles, garnets accurate to 0.1%), or mineral surface area. However, getting accurate field estimates of 182 
the weathering rates is also challenging, as it requires making many assumptions, so may be of limited 183 
accuracy. Thus, we are comparing uncertain model estimates with equally or more uncertain field estimates at 184 
the best (Sverdrup et al., 1998).  Nevertheless such comparisons are essential to validate model results. Of all 185 
the parameters needed for calculating mineral dissolution rates in natural systems using laboratory measured 186 
rates among the most challenging are mineral surface areas.  Whereas in laboratory studies of the dissolution 187 
rates of individual minerals it is possible to measure directly the areas of cleaned mineral surfaces using gas 188 
adsorption techniques, field samples are more complex as they many contain the surfaces of several minerals 189 
and these surfaces can be covered by both organic substances or secondary minerals.  Assuming that the surface 190 
area of each mineral in a soil is proportional to its mass or volume fraction may not be appropriate due to the 191 
differing typical shapes of distinct minerals.  The protocols used to estimate the surface areas of natural 192 
minerals in soils within the PROFILE and the ForSAFE models have been reviewed in detail by Sverdrup 193 
(1990).  194 
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 195 
Figure 2. Comparison of weathering rates calculated using the original PROFILE model with corresponding 196 
rates obtained from field observations of the upper undersaturated parts of soils.  Rates shown were reported 197 
or compiled by Sverdrup and Warfvinge (1988a,b, 1991, 1992, 1993, 1995, 1998), Sverdrup (1990), Sverdrup 198 
et al. (1990, 1998), Hettelingh et al. (1992), Barkmann et al. (1999), Holmqvist et al. (2003). The model test 199 
was performed on shallow soil profiles, no deeper than 0.6 meter.  200 
 201 
3.1. Defining chemical weathering 202 

Weathering neutralizes acids (neutralizing all or part of acid rain) and provides nutrients for vegetation 203 
(e.g. Ca2+, Mg2+, K+, PO4) (Sverdrup 1990, Sverdrup and Warfvinge 1995, Sverdrup et al., 2002). Thus 204 
weathering rates are defined as “the base cation release rates from the chemical weathering of minerals”, “plant 205 
nutrient base cation release rates from the chemical weathering of minerals” or “the rate of acid neutralization 206 
by chemical weathering of soil minerals”. Only secondarily are we interested in loss of minerals and soil profile 207 
development (Rietz 1995, Warfvinge et al., 1996, Sverdrup et al., 1996, 2002). Thus, the weathering rates in 208 
this study have been expressed as the sum of the release rates of base cations (Ca2+, Mg2+, K+, Na+) from the 209 
process. This is linked to the destruction of minerals, though results are generally expressed in these terms. 210 

 211 
 212 

 213 
a                                                                       b 214 

Figure 3. Overview of the PROFILE model. The original PROFILE model operates with a number of layers, 215 
and a vertical percolation of water. A set of processes take place in every layer. (b) A look inside PROFILE, 216 
showing how weathering is connected with other ecosystem processes (Sverdrup and Warfvinge 1995). 217 
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 218 
Figure 4. Different soil processes communicate with the weathering processes via the soil solution. (Sverdrup 219 
et al., 2002). 220 
 221 
3.2. Mineral weathering rates 222 

The weathering rate of a mineral, r, defined here as its dissolution rate, is assumed to stem from the 223 
sum of 5 simultaneous chemical reactions, involving the mineral surface and either aqueous H+, H2O, OH-, 224 
organic acid ligands, or CO2. Assuming that the reactions occur at distinct active mineral surface sites, they 225 
can be summed linearly in accord with (Sverdrup 1990, Sverdrup and Warfvinge 1995): 226 

R! = # A" ∗ 	 # r#

$#%%&'()#&*
+,-.)#&*%

#/0

1#*,+-'%

"/0

																														(1a) 227 

 228 
where RW stands for the soil weathering rate in a single soil layer. Aj refers to the soil mineral surface available 229 
for dissolution for each mineral j considered, ri designates the rate of the individual chemical reactions i. If 230 
some reactions occupy the same active mineral surface sites, the expression given above would change to a 231 
quadratic sum. Note that the results of the two equations are quite similar, so that the importance of knowing 232 
if several reactions operate of the same surface site is relatively small. For the whole soil profile the rates are 233 
summed over the different soil layers with depth and we get: 234 
 235 

R2&#' = # R!,%

4-5,+%

%/0

																														(2) 236 

 237 
where RSoil denotes the weathering rate in the whole soil profile, and s represents the layer number. Evidence 238 
that the H+, H2O and OH- reactions take place at distinct surface sites has been reviewed by Sverdrup (1990) 239 
and again by Holmqvist et al., (2003). The H2O, the organic reaction and the CO2 reactions may occur at the 240 
same sites, but considering the available data, we have assumed that they occur at distinct sites and thus favour 241 
a linear sum of rates. More on these assumptions have been reported by Sverdrup (1990), Sverdrup and 242 
Warfvinge (1995), and Holmqvist et al. (2002, 2003).  243 
 244 
3.3. Field weathering rates 245 

To estimate field weathering rates using laboratory determined kinetic coefficients, an ecosystem 246 
model is required to scale the process to field conditions. This ecosystem model includes effects of climate, 247 
soil morphology, plants, trees, microbiology in the soil and fungi (Lin et al., 2017, Smits and Wallander 2016, 248 
Smits et al., 2014). An ecosystem model is incorporated within PROFILE and ForSAFE (Sverdrup and 249 
Warfvinge 1988a,b, 1991, 1992, 1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh et al., 250 
1992, Barkmann et al., 1999, Holmqvist et al., 2003, Barkman et al., 1999). Figure 3 shows how the steady-251 
state PROFILE model was configured (Sverdrup and Warfvinge 1988a,b, 1992, 1993, Sverdrup and Alveteg 252 
1998). In the dynamic integrated terrestrial ecosystem assessment model ForSAFE-VEG, the system evolution 253 
takes account of interactions with a living biosphere, organic matter turnover and ion exchange (c.f. Figure 4). 254 
Further details of these models can be found in the appendix and the literature (Sverdrup et al., 1987, 1995, 255 

irreversible decay

   soil
solution

ion exchange

nutrient uptake
by plants

plant exudates

denitrification

nitrification

organic matter
decomposition

immobilization

precipitation

solute transport

solute transport

mineral
weathering

precipitates

https://doi.org/10.5194/bg-2019-464
Preprint. Discussion started: 27 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 7 

1996a,b, 1998, 2007, 2014, 2016, 2017, 2019, Wallman et al., 2002, 2003, Zancchi et al., 2014, 2016a,b, 256 
Belyazid et al., 2017, 2018).  257 

To estimate field weathering rates, each reaction i for every mineral j is corrected for the field site 258 
temperature and for the partial wetting of the soil (Sverdrup 1990, Sverdrup and Warfvinge 1995, Sverdrup 259 
and Alveteg 1998) in accord with: 260 
 261 

R! = h(θ) ∗ # A" ∗ 	 # /	r# ∗ g#,"(T)2

$#%%&'()#&*
+,-.)#&*%

#/0

1#*,+-'%

"/0

																																																														(3) 262 

 263 
where θ stands for the fraction of the soil mineral surfaces wetted, Aj designates the surface area of the mineral 264 
j, h(θ) refers to a wetting function for the mineral material and T signifies the soil temperature in centigrade. 265 
gij(T) corresponds to the temperature adjustment function for reaction i of mineral j. ri denotes the reaction rate 266 
of dissolution reaction i.  This adjustment is based on the Arrhenius equation and takes account of the 267 
difference in rates between the temperature of the field site and that of the parameter database, which was set 268 
at 8oC (Sverdrup 1990). Figure 6 shows the reaction causal loop diagram for silicate minerals in the soil 269 
(Sverdrup 1990, Sverdrup and Warfvinge 1995). This diagram shows how the mineral weathering process 270 
communicates with other biogeochemical processes in a terrestrial ecosystem. The causal loop diagram is a 271 
graphical display of the differential balances in the system. Together with the flow charts, they define the 272 
system. The process has several intermediate equilibrium steps, but pass an irreversible dissolution threshold 273 
(Figure 7). The single irreversible step makes the whole process irreversible. The reaction products exert a 274 
negative effect on the amount of activated complex that can decay, thus they slow the dissolution reaction. But 275 
once the activated complex has formed, it has a constant decay rate, set by quantum mechanics (Sverdrup 276 
1990, Sverdrup and Warfvinge 1995). The full derivation of the rate equations, starting from the elementary 277 
chemical reactions and the decay of the surface complexes according to transition state theory has been 278 
reviewed by Sverdrup (1990) and Sverdrup and Warfvinge (1995). 279 
 280 
3.4 Mineral reaction kinetics 281 

As stated above, five reactions are assumed to contribute to the total chemical weathering rate of a silicate 282 
mineral in soils (Sverdrup 1990, 2009, Sverdrup and Warfvinge 1995): 283 
 284 

1. The reaction between the mineral surface and the aqueous hydrogen ion 285 
2. The reaction between the mineral surface and the water molecule 286 
3. The reaction between the mineral surface and aqueous carbon dioxide 287 
4. The reaction between the mineral surface and aqueous organic acid ligands 288 
5. The reaction between the mineral surface and the aqueous hydroxy ion 289 

 290 
Reactions 1-4 in the list above were included in earlier versions of the PROFILE and ForSAFE mineral 291 
dissolution rate equations (Sverdrup 1990, Sverdrup and Warfvinge 1995). This original model has been 292 
enlarged to include reaction 5.  293 

The reaction of the mineral surface with the aqueous H+ ion, reaction 1, is considered part of the 294 
reaction with the H+ reaction regardless of the source of H+ (Figures 5 and 7). Both CO2 and organic acids can 295 
change the fluid pH, and this is accounted for in the H+ reaction. Figure 5 shows the reaction pathway through 296 
the H+ reaction, adapted after Sverdrup (1990). Some of the reaction products form secondary minerals. 297 
Amorphous phases may also precipitate from solution. These can slowly recrystallize to secondary minerals. 298 
This has been generalized in Figure 6.  299 

Reaction number 4 between organic acid ligands and the mineral surface contains at least two distinct 300 
contributions: one from fast and one from slower reacting organic acid ligands (Sverdrup 1990). We have 301 
simplified this to one generic rate equation that could be parameterized for some minerals (feldspar, olivine, 302 
pyroxenes, hornblende, apatite; Sverdrup et al., 1990, later literature has extended the list somewhat). The 303 
importance of organic acids for weathering has been frequently over estimated in the literature, and several 304 
claims of strong effects of organic acids have been made (For a review see Smits and Wallander 2016, Smits 305 
et al., 2014, Sverdrup 1990, 2009 but also Keegan and Laskow-Lehey 2014 on why these claims have been so 306 
persistent). The highest concentration of organic acids occur in the upper soil layers, where the mineral content 307 
is relatively low. As the mineral contents increase with depth, the concentrations of organic acids are lower 308 
and have only a marginal effect on the overall weathering rate (Sverdrup 2009).  309 
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Organic acids in soils are mostly sourced from soil organic matter decomposition. Trees, soil fungi 310 
and mycorrhiza do not have the ability to increase the weathering rate significantly (See Sverdrup 1990, 2009, 311 
Sverdrup and Warfvinge 1992, Warfvinge and Sverdrup 1993 for details, kinetic expressions and data 312 
underpinning this, see Smits and Wallander 2016 and Smits et al., 2014 on the subject concerning apatite). 313 
Trees and vegetation can indirectly affect weathering rates when they take up Ca, Mg, K as nutrients, and 314 
thereby removing weathering rate products that can slow mineral dissolution. Decomposition of plant debris 315 
and soil organic matter produce organic acids that may react with the minerals. This effect is passive, and does 316 
not occur not by design of the plants (See Smits and Wallander 2016 and Smits et al., 2014 for measurements, 317 
Keegan and Laskow-Lehey 2014 for some social aspects and Sverdrup 2009 for a further analysis from a 318 
systemic perspective).  319 

 320 
 321 
Figure 5. The reaction pathway through the H+ reaction passes over several reversible steps that change the 322 
surface sites and create an unstable surface complex; the Transition State Surface Complex that will decay 323 
irreversibly. Note that the process is irreversible, and thus cannot go backwards. The mineral may dissolve 324 
completely, be altered to a secondary mineral or form precipitates that slowly recrystalize to secondary solid 325 
phases.  326 

 327 
Figure 6. Reaction pathway for silicate minerals in soils according to Transition State Theory as implemented 328 
by the authors (See Sverdrup 1990, Sverdrup and Warfvinge 1995 for a full explanation). 329 
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 330 
Figure 7. The partial causal loop diagram for the weathering of a soil. See Sverdrup et al. (2018) for a full 331 
explanation of causal loop diagrams and their use in modelling. 332 

 333 
Fluorides form soluble complexes in water with aluminium and silicates. The reaction of the mineral 334 

surface with fluoride anions forms a strong reactions, but this occurs very rarely as the fluoride concentrations 335 
are very low. The fluoride reaction has been ignored in this approach for most soils in natural terrestrial 336 
ecosystems, as this would cause an unnecessary complication of the aluminium and silicate chemistry. The 337 
dissolution rate per surface area of a mineral considering the first of the four above reactions is thus consistent 338 
with (Sverdrup and Warfvinge 1988, 1992):  339 
 340 

r6&)-'	 =	 r8! 	+ 	r8"9 + r:9" + r;																											(4) 341 
 342 

The mineral dissolution kinetic equation for the 4 individual reactions applied in the original PROFILE 343 
model was the simplified version of the full kinetic expression based on the Transition State Theory applied 344 
to silicate chemical weathering (see Sverdrup 1990, Sverdrup and Warfvinge 1995): 345 
 346 

r = 	k8 ∗ 	
[H<]*#
f8

				+ 						
k8"9
f8"9

			+ 			k:9" ∗ 	P:9"
*$%" 			 ∗ 	

1
f:9"

			+ 	k; ∗ 	
[R]=&

1 +	K9+> ∗ 	 [R]=&
	 ∗
1
f;
				(5) 347 

 348 
where the different n designate reaction orders. The different kH, kH2O, kCO2, kR stand for rate coefficients. 349 
Constitutents within brackets [c] are concentrations, and R refers to organic ligands. The different fH+, fH2O, 350 
fCO2, fR, fOH signify retarding or ‘brake’ functions defined by (Sverdrup 1990, Sverdrup and Warfvinge 1992, 351 
Warfvinge and Sverdrup 1993, Sverdrup and Warfvinge 1995): 352 
 353 

f8! = >1 +	
[BC]
C?:,8

A
@#
∗ 	>1 +	

[AlA<]
CB',8

A
5#
																																		(6) 354 
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f8"9 = >1 +	
[BC]
C?:,8"9

A
@#"%

∗ 	>1 +	
[AlA<]
CB',8"9

A
5#"%

										(7) 356 

f!"! = #1 +
[BC]
C#!,!"!

*
%"#!

∗ #1 +
[Al&']
C(),!"!

*
*"#!

																																						(8) 357 

 358 

f; =	>1 +	
[BC]
C?:,;

A
@'
∗ >1 +	

[AlA<]
CB',;

A
5'
																																		(9) 359 

 360 

f98( = >1 +	
[BC]
C?:,98

A
@%#

∗ 	>1 +	
[AlA<]
CB',98

A
5%#

																				(10) 361 

 362 
Note that the retardation or ‘braking’ functions represent molecular mechanisms that slow the reaction by 363 
forming fewer active surface complexes (Sverdrup 1990, Sverdrup and Warfvinge 1995). Al3+ is the 364 
concentration of positive aluminium species in the aqueous solution, and not necessarily equal to the total 365 
aluminium concentration (Sverdrup 1990 – see also section 4.8); this concentration can be calculated using 366 
aqueous speciation estimates as described below. The subscript BC,OH represents a term related to base 367 
cations (BC) in the OH- reaction, Note this slowing of the rates with increasing fluid concentration is not due 368 
to the approach to a mineral-water equilibrium state. The dissolution of many primary silicate minerals is not 369 
reversible under normal soil conditions as the fluids do not attain close to equilibrium conditions. Instead, there 370 
will be a steady-state between the reaction at the surface and the removal of ions by solute transport and 371 
precipitation into secondary phases. This may look like an equilibrium condition, but does not behave like one. 372 
A few minerals are exceptions such as calcite, a few other carbonates, hydroxides and quartz. Even with these 373 
the attainment of equilibrium is kinetically limited. For calcite in soils we have observed this to take several 374 
days or weeks (Warfinge et al., 1987). All other minerals (feldspars, pyroxenes, amphiboles, etc.) do not 375 
precipitate from solution, some amorphous aluminosilicate clay precursors only precipitate very slowly. 376 
 377 
3.5. The updated kinetics equation 378 
The original 4 mineral dissolution reactions have been enlarged to include OH--reaction in the present 379 
study. The complete equation is consistent with  380 
 381 

r6&)-'	 =	 r8! 	+ 	r8"9 + r:9" + r;< + r98( 																													(11) 382 
 383 
The full kinetic equation for all 5 reactions is (Sverdrup 1990, Sverdrup and Warfvinge 1995): 384 
 385 

r = 	k8 ∗ 	
[H<]*#
f8

				+ 						
k8"9
f8"9

			+ 			k:9" ∗ 	
	P:9"
*$%"

1 + K:9" ∗ 		P:9"
*$%"

		 ∗ 	
1
f:9"

				 386 

																																								 387 

																													+	k; ∗ 	
[R]=&

1 +	K9+> ∗ 	[R]=&
	 ∗
1
f;
				+ 	 		k98 ∗

[OHC]*%#
f98

															(12) 388 

 389 
For most minerals, the strongest effect of the brake functions is that of aluminium at pH < 7, followed by silica 390 
and base cations. At pH > 8, the strongest effect is from silica and base cations, and less pronounced for 391 
aluminium (Sverdrup 1990). Before applying Equation (12) a number of new adaptions have been carried out 392 
as described below. 393 
 394 
3.6. Retardation of mineral dissolution rates by organic ligands 395 
The original formula for the slowing of mineral dissolution rates with increasing organic ligand concentration 396 
was (Sverdrup 1990, Sverdrup and Warfvinge 1995): 397 
 398 

													rDEF = 	k; ∗
[R]=&

1 +	[R]=&
	 ∗
1
f;
																											(13) 399 

 400 
this has been reformulated to: 401 
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 402 

											rDEF = k; ∗ 				>
[R]

1 +			 [R	 +	 [R]GHIHJ]		
A
*'
∗
1
f;
																(14) 403 

 404 
The difference in these equations is that the latter contains one additional parameter [R]Limit  in fR that has the 405 
effect to set a lower concentration, below which the organic acids have no effect. This equation has been 406 
parameterized and used in the final expression provided below. This limit was incorporated into the organic 407 
acid ligand retardation function fR  (Smits and Wallander 2016, Smits et al., 2014, Sverdrup 1990, 2009). 408 
 409 
3.7. Retardation of mineral dissolution rates by aqueous CO2  410 

The main effect of the presence of CO2 on mineral dissolution rates is to change the pH of the solution. 411 
This effect is accounted for by the chemical solution equilibria, and dealt with in the H+ reaction. The dedicated 412 
CO2 term takes into account the effect of a reaction between the CO2 and the mineral surface. The effect of the 413 
presence of aqueous organic species decreases at higher concentrations of organic acids as the surface sites 414 
have become saturated with organic acid ligands. We hypothesize that CO2 exhibits the same behaviour. Some 415 
data show that CO2 also reacts with mineral surface sites as some type of carbonate ligand (a bicarbonate 416 
coordinated towards a cation in the lattice) adsorbed to the surface, setting up a transitional surface complex 417 
may decay. The mechanism by which CO2 effects silicate dissolution rates appears to follow the sequence 418 
(Sverdrup 1990, Sverdrup and Warfvinge 1995, Brady and Carrol 1994, Golubev et al., 2005, Navarre-Sitchler 419 
and Thyne 2007, Berg and Banwart 2000): 420 
 421 

1. The CO2 molecule attaches to the mineral surface 422 
2. The CO2 molecule forms a bicarbonate-water-metal complex with the mineral surface on singly 423 

coordinated metal cations. Indications are that it may be the CO3
2- ligand that is forming a surface 424 

complex. 425 
3. A cation is lifted into the complex (K, Na, Mg, Ca, Fe, etc..)  426 
4. A small fraction of the surface complexes detach from the surface and the mineral dissolves. 427 

 428 
Thus there should potentially be an upper concentration limit where additional aqueous CO2 will have no 429 
further effect on mineral dissolution rates. This seems to occur between 10 and 50 atmospheres of CO2 partial 430 
pressure for mica and chlorites (Drever et al., 1996, Mast and Drever 1987, Hausrath et al., 2009). Observations 431 
on some other minerals indicate of a similar behaviour, but this limit remains elusive due to lack of data. In 432 
addition the dissolution rates of some minerals exhibit no detectable effect of the presence of aqueous CO2, 433 
and some are only slightly inhibited by this species. Lagache (1965, 1976), Busenberg and Clemency (1976), 434 
Berg and Banwart (2000) and Golubev et al., (2005) reported experiments performed at different CO2 partial 435 
pressures between 0 and 26.3 CO2 atmospheres and temperatures between 0 oC and 200 oC. The original 436 
equation used by Sverdrup (1990) and Sverdrup and Warfvinge (1995) to describe these data was 437 
 438 

																								r:9" = 	k:9" ∗ 	
	P:9"
*$%"

1 + K:9" ∗ 		P:9"
*$%"

		 ∗ 	
1
f:9"

																(15) 439 

 440 
In this study we use a variation of this equation of the form: 441 
 442 

																								r:9" = 	k:9" ∗ 				>
P:9"

1 +			K:9" ∗ 	(P:9" 	+ 	P:9"KHIHJ)	
A
*$%"

∗
1
f:9"

													(16)			 443 

 444 
Evidence suggests that the value of PLimit CO2 is in the range of 5 to 10 atmospheres and KCO2=0.05 and nCO2 445 
=0.6 for albite (Sverdrup 1990). Navarre-Sitchler and Thyne (2007) suggest nCO2=0.45, which is for practical 446 
purposes the same. Berg and Banwart (2000) suggested nCO2=0.25 at low pressures of CO2. As mentioned 447 
above, a similar behaviour was observed for mica, biotite and chlorites. Indications are that something similar 448 
takes place on the surface of montmorillonite, diaspore, gibbsite, goethite and lepicrocite. There almost no 449 
experimental data available allowing the retrievial of the parameters in Equation (16) for other minerals. The 450 
effect of increasing aqueous CO2 has been overlooked in most experimental studies.  451 
 452 
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 453 
a                                                              b 454 

Figure 8. The calculated effect of aqueous carbon dioxide on mineral dissolution reactions using Equation 15 455 
in (a) and Equation 16 in (b). See Table 2 for values for different minerals. 456 
 457 

Table 1. Retrieved values of the parameter z in the silica brake function describing the dissolution 
rates of various silicate minerals (see equations 24-28). 
# Silica brake response group z-values suggested by the mineral reactions 

H+  H2O  CO2 Organic acids OH- 
1 K-Feldspar and sericite 

Muscovite group and illites 
6 
7 

2 
3 

2 
3 

2 
3 

1 
2 

2 Albite 
Na-rich Plagioclase 
Ca-rich Plagioclase 

8 
7 

10 

4 
4 
6 

4 
4 
6 

4 
4 
6 

3 
3 
4 

3 Biotite group 
Chlorite group 
Serpentinite  
Aluminum-nesosilicates 
Aluminium pyroxenes 
Tourmaline group 

16 6 6 6 4 

4 Amphibole group 
Pyroxene group 
Epidote group 
Nesosilicate 

20 
32 
32 
32 

16 16 16 8 

5 All other silicates 32 16 16 16 8 
6 Carbonates n.a n.a n.a n.a n.a 

 458 
Values calculated of the effect of aqueous CO2 on silicate dissolution rates are illustrated in Figure 8. These 459 
calculations suggests that there is a significant saturation of the surface with CO2 at approximately 5 to 10 460 
atmospheres partial pressure of CO2. See Table 1 for the z-values suggested for different minerals. Note that 461 
the values of this parameter are based on minimal supporting experimental data - the available experimental 462 
data are few and somewhat incomplete (See Golubev et al., 2005 for a limited but useful assessment). Overall, 463 
the effect of CO2 at normal soil conditions is limited. Nevertheless, these results provide a range for model 464 
parameter adjustment. The effect of dissolved CO2 on rates may become significant for deep aquifers, 465 
subsurface CO2 storage and in industrial high-pressure situations (Sverdrup 1990). 466 
 467 
3.8 The silica retarding or ‘brake’ function 468 
An illustrative plot of the effect of aqueous silica on silicate mineral dissolution rates is provided in Figure 9. 469 
The equation used to describe the retardation effect of dissolved Si on mineral dissolution rates was: 470 
 471 

1
f2#
	= 	

1

1 + K2#,# ∗ H
[Si]
C2#

K
L)* 																																				(17)		 472 

 473 
The value for the silica brake coefficient  KSi,i =100 was chosen, and causes a gradual reduction in the 474 
dissolution rate of minerals down to a minimum of approximately 0.9% of the rate unaffected by silica at very 475 
high silica concentrations (see Table 1). Figure 9 shows values of the silica brake function calculated using 476 
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Equation 17, using the surface constant value, KSi=100, and the saturation concentration CSi=900 mmol per m3 477 
in Equation 17 together with the coefficients in Table 3. Exponents from zSi = 0.5 to 32 in Equation (17) of the 478 
silica rate brake are shown in Figure 9.  479 
 480 

 481 
Figure 9. Calculated effect of dissolved Si on silicate dissolution rates generated using Equation (17) together 482 
with  KSi=100, and the saturation concentration, CSi=900 mmol per m3 and the coefficients in listed in Table 483 
1. 484 

 485 
a                                                                    b 486 

Figure 10. a) Plot illustrating the fate of silica during the mineral dissolution process. b) Diagram showing 487 
how the aluminium and silica concentrations are estimated in the model. The H+ concentration is used with 488 
the equation called the “Gibbsite” equation (Eq. 19) to estimate the Al3+ concentration in the soil solution. 489 
These H+ and Al3+ concentrations are used in Equation 21 to estimate the silica concentration that is used to 490 
quantify the silica ‘brake’ on the mineral weathering reactions. 491 
 492 
Figure 10a shows a plot illustrating the fate of silica in the dissolution process. Only a small part of the aqueous 493 
aluminium and aqueous silica produced by the dissolution of minerals remain in solution. Most precipitates 494 
out as secondary phases. Figure 10b shows how the aluminium and silica concentrations are estimated in the 495 
model. To estimate [Al3+] and [SiO2] in the above equations we assume the systems are close to equilibrium 496 
with a gibbsite-like and a kaolinite-like phase. Thus we assume that aluminium precipitates out from the 497 
solution, controlled by something that appears to be gibbsite-like; it is likely something amorphous of unknown 498 
composition, see Alveteg et al. (1995). The “Gibbsite” reaction is: 499 

 500 
  Al3+ + 3 OH-  = Al(OH)3                           (18) 501 
 502 
Leading to the “Gibbsite” expression: 503 
 504 
  [Al 3+] = KG * [H+]Y       (19) 505 
 506 
where the exponent Y has a value of 2.4 to 3. KG is the Gibbsite coefficient and defined in the critical loads 507 
mapping manual (Sverdrup et al., 1990). An expression analogous to the Gibbsite approximation is used to 508 
calculate the SiO2 concentration (Equation 22b, below). We assume that the Si will be present as H4Si(OH)4 509 
in the fluid phase, not upsetting any charge balance constraints. We assume that silica precipitates out, 510 
controlled by what that appears to be kaolinite. As such, there is a similar expression can be used for 511 
approximating the silica concentration: 512 
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 513 
 2 Al3+ +  2 SiO2 + 6 OH- =   Al2Si2O5(OH)4 + H2O                (20)     514 
 515 
which gives the apparent equilibrium expressions: 516 
 517 
 [Al3+]2 * [OH-]6 * [SiO2]2 = KKaolinite                     (21) 518 
 519 
And this can be re-arranged to: 520 
 521 

[SiOM]M =	KNOPGH=HJQM ∗
[H<]R

[AlA<]M
																																																																																						(22a) 522 

 523 
which leads to the “kaolinite” expression: 524 
 525 

													[SiOM] = 	KS-&'#*#), ∗
[H<]A

[AlA<]
																																																																																							(22b) 526 

 527 
where KKaolinite is the equilibrium coefficient being used. Note that the “equilibrium” equations assumed above, 528 
are not true equilibrium, and that kaolinite and gibbsite minerals dissolve very slowly under normal conditions. 529 
Both the “gibbsite” and “kaolinite” mentioned above are crude simplifications, possibly representing an 530 
amorphous precipitate combined with precipitation kinetics and ion exchange (see Alveteg et al., 1995, Rietz 531 
1995, Warfvinge et al., 1996 for more information).  532 
 533 
3.9. The full kinetic expression  534 

The equations and approximations summarized above leads to the full revised mineral dissolution rate 535 
equations given by 536 
  537 

r = 	k8 ∗ 	
[H<]*#
f8

				+ 						
k8"9
f8"9

			+ 			k:9" ∗ 	P:9"
*$%" 	 ∗ 	

1
f:9"

 538 

																													+	k; ∗ [R]=& ∗
1
f;
				+ 	 		k98 ∗

[OHC]*%#
f98

												(23)						 539 

where the retarding or ‘brake’ functions are given by: 540 
 541 

f8! = >1 +	
[BC]
C?:,8

A
@#
∗ 	>1 +	

[AlA<]
CB',8

A
5#
∗ 		>(1 + K2#,8 ∗ >

[Si]
C2#,8!

A
L#
A																																		(24) 542 

 543 

f8"9 = >1 +	
[BC]
C?:,8"9

A
@#"%

∗ 	>1 +	
[AlA<]
CB',8"9

A
5#"%

∗ 		>(1 + K2#,8"9 ∗ >
[Si]

C2#,8"9
A
L#"%

A										(25) 544 

 545 

f!"! = 21 + KCO2 ∗	
PCO2

PCO2Limit
3
nCO2

∗ #1 +
[BC]
C#!,!"!

*

%"#!

∗ #1 +
[Al&']
C(),!"!

*
*"#!

																																																			 546 

																										∗ #1 + K+,,!"! ∗ #
[Si]
C+,,!"!

*
-"#!

*																	(26) 547 

 548 

f; =		>1 +			
[R]

[R]4#[#)
A
*'
∗ 	>1 +	

[BC]
C?:,;

A
@'

∗ >1 +	
[AlA<]
CB',;

A
5'
∗ 		>(1 + K2#,; ∗ >

[Si]
C2#,;

A
L'
A				(27) 549 

 550 

									f98( = >1 +	
[BC]
C?:,98

A
@%#

∗ 	>1 +	
[AlA<]
CB',98

A
5%#

∗ 	>(1 + K2#,98 ∗ >
[Si]

C2#,98(
A
L%#

A																				(28) 551 

 552 
where:  553 
 CBC,i is the lower limiting base cation concentration in reaction i,  554 
 CAl,i is the lower limiting aluminium concentration in reaction i,  555 
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 CSi,i is the lower limiting silica concentration in reaction i,  556 
 PCO2limit  is the lower limiting carbon dioxide partial pressure in reaction i, 557 

[R]limit is the lower limiting organic acid concentration in reaction i as concentration of DOC, 558 
xi is the base cation brake reaction order for i,  559 

 yi is the aluminium brake reaction order for i  560 
 zi is the silica brake reaction order of i. 561 
 KCO2 is the CO2 brake coefficient and set to 20. 562 

KSi,i is the silica brake constant for reaction i, set to 100. 563 
 564 

Table 2. Alteration series from muscovite, biotite and feldspars to clays, corresponding to Figure 11. 
# Mineral Interlayer Octahedral Tetrahedral 

Muscovite pathway 
1 Muscovite K Al2 Al1.0Si3.0O10(OH)2 
2 Illite 1 K0.5Mg0.01Ca0.01Al0.05 Al1.6Fe0.25Mg0.1Ti0.04 Al0.6Si3.4O10(OH)2 
3 Illite 2 K0.44Mg0.01Ca0.01Al0.07 Al1.6Fe0.25Mg0.1Ti0.04 Al0.6Si3.4O10(OH)2 
4 Illite 3 K0.39Mg0.013Ca0.013Al0.06 Al1.5Fe0.32Mg0.1Ti0.08 Al0.6Si3.4O10(OH)2 
5 Illitic vermiculite K0.35Mg0.03Ca0.03Al0.06 Al1.63Fe0.32Mg0.08Ti0.07 Al0.6Si3.4O10(OH)2 
6 Kaolinite   Al2.0Si2O5(OH)4 

Chlorite pathway 
1 Chlorite Ca0.5Mg1.5 Al1.0Fe0.5 Mg1.5 Al1.0Si3.0O10(OH)2 
2 Vermiculite 1 K0.32Mg0.07Ca0.09Al0.05 Al1.52Fe0.35Mg0.1 Al0.6Si3.4O10(OH)2 
3 Vermiculite 2 K0.30Mg0.05Ca0.05Al0.05 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
4 Vermiculite 3 K0.25Mg0.04Ca0.04Al0.08 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
5 Al/OH interlayered vermiculite K0.11Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 
6 Kaolinite   Al2.0Si2O5(OH)4 

Biotite pathway 
1 Biotite K1.0Mg2.0 Al0.5Fe0.5Mg1.0 Al1.0Si3.0O10(OH)2 
2 Vermiculite 1 K0.32Mg0.07Ca0.09Al0.05 Al1.52Fe0.35Mg0.1 Al0.6Si3.4O10(OH)2 
3 Vermiculite 2 K0.30Mg0.05Ca0.05Al0.05 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
4 Vermiculite 3 K0.25Mg0.04Ca0.04Al0.08 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
5 Al/OH interlayered vermiculite K0.1Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 
6 Kaolinite   Al2.0Si2O5(OH)4 

Feldspar pathway 
1 Feldspar K, Na, Ca  Al1Si3O8 
2 Sericite Na0.1K0.75 Al1.9Mg0.1 Al0.84Si3.16O10(OH)2 
3 Sericitic vermiculite 1 K0.3 Mg0.02Ca0.05 Al0.02 Al1.0Si3O10(OH)2 
4 Sericitic vermiculite 2 K0.1 Mg0.05Ca0.02 Al0.05 Al1.0Si3O10(OH)2 
5 Al/OH interlayered vermiculite K0.1Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 
6 Kaolinite   Al2.0Si2O5(OH)4 

 565 
3.10. Secondary phases in the soil 566 
A significant fraction of primary minerals dissolve incongruently to alteration minerals often referred to as 567 
secondary minerals and clays. Both terms are inconsistently used in the literature, and thus we define them as 568 
follows: We define clay minerals by their composition (kaolinite, gibbsite, quartz) and as listed in Table 3. 569 
This approach is thus not based on particle size, but on the molecular crystalline structure. Secondary minerals 570 
are formed in either two ways; a mineral that has been altered significantly in situ as is described in Table 2, 571 
for example when muscovite is altered through a series of illite and vermiculite phases and finally to kaolinite 572 
as the end product. Vermiculite, illite, montmorillonite are minerals of variable composition that are often 573 
called clays, In the soil, amorphous phases are composed of aluminium, silicate and soil organic substances. 574 
These amorphous phases slowly change composition as the organic matter decomposes and a more solid 575 
structure emerges. The alteration series from muscovite, biotite and feldspars to clays, are illustrated 576 
schematically in Figure 11 and listed in Table 2. The concept behind Table 2 is that as these minerals go 577 
through incongruent dissolution (alteration), they become depleted in certain ions (like Ca, Mg, K or Na, and 578 
depending on pH, in aluminium (at low pH) or silica (at high pH), but the crystal structure remains constant. 579 
Thus the crystal lattice destruction rate remains, but the base cation content of this structure becomes poorer, 580 
yielding less cations and less acidity neutralization. We have simplified this process down to 4 pathways, the 581 
muscovite pathway, the chlorite pathway, the biotite pathway and the feldspar pathway – see Table 2. 582 
Muscovite changes through a series of alteration reactions to illite and finally to kaolinite. Chlorite alters to 583 
vermiculites and finally to kaolinite. Biotite goes through a series of alterations to vermiculite and kaolinite. 584 
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Feldspars go through alterations, K-Feldspars through sericites and plagioclases to vermiculites (Holmqvist 585 
2004, Holmqvist 2002, 2003).  586 
 587 

 588 
Figure 11. The alteration sequence developed for primary mineral towards alteration minerals, of which some 589 
are clay minerals. All minerals that dissolve contribute to the precipitation of secondary minerals.  590 
 591 
 592 
 593 
3.11. The parameterization of the kinetic rate equations  594 
The original PROFILE database had kinetic data for 59 different minerals, including about 25 different 595 
carbonates and some artificial silicates. New data from our own experiments (Sverdrup 1998, 1996, Sverdrup 596 
and Alveteg 1998, Holmqvist et al., 2002, 2003; Sverdrup and Holmqvist 2004) and from the literature2 have 597 

 
2Examples are the following list of articles and studies we have used, but not limited to: Ajemba and Onokwuli 2012, Alekseyev 2007, 
Alexeyev et al., 1997, Amram and Ganor 2005, Amrhein and Suare 1992, Anbeek 1992a,b, Anbeek et al., 1994, Aradottir et al., 2013, 
Bandstra et al., 1998, Beig and Lüttge 2006, Bengtsson and Sjöberg 2009, Berg and Banwart 1994, 2000, Bibi et al., 2010, Bickmore 
et al., 2006, Blake and Walther 1996, Blum and Stillings 1995, Blum and Lasaga  1988, 1991, Blum 1994, Brady and Walther 1992, 
Bray et al., 2015, Brandt et al., 2005, Brantley 2003, 2008a,b, Brantley and Stillings 1994, 1996, Brantley and Chen 1995, Brantley 
and Conrad 2008, Brady and Walther 1992, Braun et al., 2016, Bray 2015, Cama et al., 2000, Carrol and Knauss 2005, Carrol and 
Walther 1990, Carrol and Smith 2013, Casetou-Gustafsson et al., 2018, Casey et al., 1991, Casey and Sposito 1992, Casey and Westrich 
1992, Chaïrat et al., 2007, Chen and Brantley 1997, 1998, 2000, Chin and Mills 1991, Critelli et al., 2015, 2014, Cotton 2008, Crundwell 
2013, 2014a,b,c,d, 2015a,b, 2017, Daval et al., 2010a,b, 2013, Devidal et al., 1997, Diedrich et al., 2014, Dixit and Carrol 2007, Dove 
and Crerar 1990, Dorozhkin 2012, Dresel 1989, Drever et al., 1994, 1996, Drewer and Clow 1995, Drewer and Zobrist 1992, Drever 
and Stillings 1997, Dorozin 2012, Duckworth and Martins 2003a,b, Fernandez-Bastero et al., 2008, Fischer and Liebscher 2014, Finlay 
et al., 2010, Fouda et al., 1996a,b, Frogner and Schweda 1998, Fumuto et al., 2001, Gahrke et al., 2005, Ganor et al., 2005, Gautier et 
al., 1994, Gislasson and Hans, 1987, Gislasson and Oelkers 2003, Gislasson et al., 1996, Godderis et al., 2006, Glover et al., 2003, 
Godderis et al., 2006, Golubev et al., 2004, 2005, Guidry and Mackenzie 2003, Goyne et al., 2006, Gudbrandsson et al., 2011, 2014, 
Gustafsson and Puigdomenech 2003, Hamilton et al., 2000, 2001, Hangx and Spiers 2009, Harouiya et al., 2007, Harouiya and Oelkers 
2004, Haug et al., 2010, Hausrath et al., 2009, Hayashi and Yamada 1990, Helgeson et al., 1984, Hellmann 2007, 2006, 2010, Hilley 
et al., 2010, Holmqvist and Sverdrup 2001, Holmqvist et al., 1999, 2002, 2003, 2004, Hodson 2006a,b, Hodson and Langan 1999, 
Hodson et al., 1996, 1997, Hänchen et al., 2006, Huertas et al., 1999, 2001, Jin et al., 2011, Johnsson et al., 1992, Johnson et al., 2014, 
Jonckbloedt 1998, Jönsson et al., 1995, Kalinowski 1997, Kalinowsli and Schweda 1995, Kalinowski et al., 1998, Knauss et al., 1993, 
Køhler et al., 2003, 2005, Kuwahara 206a,b, 2008, Labat and Viville 2006, Lagache 1965, Langan et al., 1996a, b, Lartigue 1994, 
Lasaga 1995, 1998, Lowson et al., 2005, 2007, Lazaro et al., 2015, Lu et al., 2013, 2015, Ludwig et al., 2013, Maher 2010, Malmstrøm 
and Banwart 1997, Malmström et al., 1996, Maurice et al., 2002, Mazer and Walther 1994, McCourt and Hendershot 1992, Metz et 
al., 2005, Meyer 2014, Mongeon et al., 2007, Murakami et al., 1998, Murphy and Helgesson 1987, Murphy et al., 1992, 1996, Nagy 
1995, Nagy and Lasaga 1992, Nagy et al., 1991, Navarre-Sitchler and Thyne 2007, Nesbitt et al., 1991, Nyström-Claesson and 
Andersson 1996, Numan and Weaver 1969, Oelkers 2001a,b,, Oelkers and Schott 1995a,b, 1998, 2001, Oelkers et al., 1994, 2008, 
Oelkers and Gislasson 2001, Olsen 2007, 2008, Olsson 2007, Opolot and Finke 2015, Oxburgh 1991, Oxburgh et al., 1994, Paces 
1983, Palandri and Kharka 2004, Pokrowsky and Schott 2000a,b, 2002, Pokorowsky et al., 2004, Poulson et al., 1997, Prajapati et al., 
2014, Price et al., 2005, Pigiobbe et al., 2009, Ragnarsdottir 1993, Ragnarsdottir and Graham 1996, Raschmann and Fedorockova 
2008, Rietz 1995, Rimstidt et al., 2012, Ross 1969, Rosso and Rimstidt 1999, Rozalen et al., 2014, Running and Gower 1991, Saldi et 
al., 2007, Sanemasa and Katura 1973, Schnoor 1990, Schofield et al., 2015, Schott et al., 2009, 2012, Smith et al., 2013, Smits and 
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been considered to upgrade this database for this study. Care of these new data we have obtained rate 598 
parameters for about 107 different silicate or aluminium minerals and 6 generic carbonates. Of these minerals, 599 
the regression of ~20 have yet to be published. In due time, these will get their own proper publications, it is 600 
beyond the scope of this study to do them in detail. Data and records from unpublished experiments and 601 
experiment evaluations by Sverdrup and Holmqvist are available on paper records held in a large number of 602 
binders at the Inland University of Applied Sciences, at Hamar, Norway. These data are no longer available in 603 
digital form due to computer system changes and data filing format changes that have occurred during the last 604 
20 years. This documentation could be available in 1-2 years time, provided that funding for the redigitalization 605 
work can be obtained. Rather some selected examples are presented below. The estimation of rate parameters 606 
was performed using the complete rate equation 1 and equations 23-28. As such, for a successful regression 607 
of experimental data, the rate must be known, along with the concentrations of all reactants at the conditions 608 
that rate was observed including [H+], pCO2, [R], [OH-], as well as the reaction products in solution potentially 609 
contributing to retarding the dissolution reaction; [Ca2+], [Mg2+], [K+], [Na+], [Al3+], [Al(OH)4

-], [H4SiO4] 610 
(Sverdrup 1990, Sverdrup and Warfvinge 1995). The experiments must have been performed over sufficient 611 
reaction conditions for the parameters in Equation 29 to be estimated. In some cases, the data from different 612 
experimental studies were combined to determine rate parameters or a reaction orders. During the regression 613 
process, experimental studies with insufficient data or documentation were omitted, unless the gap could be 614 
bridged with reasonable assumptions. Data regression was performed by rearranging equation (22) to:  615 
 616 

	k. ∗
[H']/$
f.

= r"0123425 − (
k.!"
f.!"

+	kCO2 ∗
PCO2
nCO2

1 + KCO2 ∗	PCO2
nCO2

∗	
1
fCO2

																								 617 

																														+	kR ∗
[R]𝑛𝑅

1 +	KR ∗ [R]𝑛𝑅
∗
1
fR
+	k". ∗

[OH6]/#$
f".

)														(29) 618 
 619 
In the acid to neutral pH range, such as pH < 7, this equation can be simplified in most instances by removing 620 
the OH-reaction to get (Sverdrup 1990): 621 
 622 

k8 ∗ 	
[H<]*#
f8

=	 r9^%,+_,` − (
k8"9
f8"9

+	k:9" ∗
P:9"
*$%"

1 + K:9" ∗ 	P:9"
*$%"

∗ 	
1
f:9"

	 623 

+	k; ∗
[R]=&

1 +	K; ∗ [R]=&
∗
1
f;
)							(30) 624 

and the in the acid pH range (pH<4), this may be reduced to: 625 
 626 

k8 ∗ 	
[H<]*#
f8

=	 r9^%,+_,`																																																																																																(31) 627 

 628 
By entering the concentrations of H+, base cations, aluminium and silica into these equations, we can determine 629 
the rate coefficient, kH, and fH+.  When the experiment was performed in the absence of organic acids, as is 630 
often the case, Equation (29) reduces to: 631 
 632 

k8 ∗ 	
[H<]*#
f8

=	 r9^%,+_,` − (
k8"9
f8"9

+	k:9" ∗
P:9"
*$%"

1 + K:9" ∗ 	P:9"
*$%"

∗ 	
1
f:9"

	)										(32) 633 

 634 
 

Wallander 2016, Smits et al., 2014, Soler et al., 2008, Stephens and Hering 2003, Stillings and Brantley 1995, Stillings et al., 1996, 
Stockmann et al., 2008, Stumm and Wollast 1990, Stumm and Wieland 1990, Sverdrup 1990, 1996a,b, 1998, 2009, Sverdrup and 
Bjerle 1982, Sverdrup and Alveteg 1998, Sverdrup and Holmqvist 2016, Sverdrup and Warfvinge 1992a,b, 1995, Sverdrup et al., 1986, 
1987, 1995,a,b, 1998, 2002, 2006, 2008, 2010, Traven et al., 2005, Swoboda-Collberg and Drever 1993, Taylor et al., 1999, 2000, 
Taylor and Blum 1995, Taylor et al., 2017, Techer  et al., 2007, Teir et al., 2007, Terry 1983a,b,c, Terry and Monhemius 1983, Thom 
et al., 2013, Valsami-Jones et al., 1998, Turpault and Trotignon 1994, Valsami-Jones et al., 1998, Voltini et al., 2012, Wang and 
Giammar 2012, Wang et al., 2017, Warfvinge and Sverdrup 1992,a,b,c,d, 1993, 1995, Warfvinge et al., 1987, 1992, 1993, 1996, 2000, 
Weissbart and Rimstidt 2000, Welch and Ullman 1993, 1996, 2000, Westrich et al., 1993, White and Brantley 1995, 2003, White and 
Blum 1995, White et al., 1999, Whitfield et al., 2009, 2010, Wogelius and Walther 1991, 1992, Wolff-Boenisch et al., 2004a,b, 2011, 
Wood et al., 1999, Xie and Walter 1994, Yadaw and Chakrapani 2006, Yadaw et al., 2000, Yang and Steefel 2008, Yoo et al., 2009, 
Yu et al., 2016, 2017, Zabowski et al., 2007, Zhang and Bloom 1999a,b, Zhang et al., 1996, 2015, Zhang et al., 2013, Zhang and Lüttge 
2017, 2009a,b, Zhu et al., 2010, Zassi 2009, Zavodsky et al., 1995, Zysset and Schindler 1996). 
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Some experiments were conducted at very low or with no dissolved CO2 present and with organic ligands 635 
absent.  In such cases, Equation (29) reduces to (Sverdrup 1990, Chin et al., 1991): 636 
 637 

ra 		= 	k8 ∗ 	
[H<]*#
f8

=	 r9^%,+_,` −
k8"9
f8"9

																																																															(33) 638 

 639 
In this latter case, two reactions influence mineral dissolution rates: 1) the H+ reaction, and 2) the water 640 
reaction. The variation of rates as a function of pH at such conditions consists of a ‘flat part’ where rates are 641 
controlled by the water reaction (Figure 12).  At these conditions, by entering the concentrations of retarding 642 
base cations, aluminium and silica, the rate coefficients can be determined. In the semi-neutral region (pH 6-643 
8), the expression may be a flat line and the rate expression is reduced to:  644 
 645 

r9^%,+_,` =			
k8"9
f8"9

		+ 	k:9" ∗
P:9"
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1 + K:9" ∗ 	P:9"
*$%"

∗ 	
1
f:9"

	+ 	k; ∗
[R]=&

1 +	K; ∗ [R]=&
∗
1
f;
											(34) 646 

 647 
When neither organic ligands nor CO2 is present, and in the pH range of 6-8, this is reduced to: 648 
 649 

r9^%,+_,` =			
k8"9
f8"9

																																																																																																															(35) 650 

 651 
With only organic acid ligands but no CO2 present, and in the pH range of 6-8, the rate expression becomes: 652 
 653 

r9^%,+_,` =			
k8"9
f8"9

		+ 		k; ∗
[R]=&

1 +	K; ∗ [R]=&
∗
1
f;
																																																						(36) 654 

 655 
In the far alkaline region (pH 10-14), where we may assume that the OH- reaction will be dominant, the rate 656 
expression reduces to: 657 
 658 

k98 ∗
[OHC]*%#

f98
= r9^%,+_,`																																																																																		(33) 659 

 660 
By entering the concentrations of base cations, aluminium and silica, fOH can be determined and the rate 661 
coefficient, kOH, and reaction order, nOH be determined. The reaction order nH and the coupled nOH for the H+ 662 
and the OH- reaction is derived from plots of the rate versus the solution pH  663 

  664 
a                                                               b 665 

Figure 12. Regression plots showing the retarding or ‘braking’ effect of aluminium on the dissolution rate of 666 
albite. The figures were adapted from Sverdrup (1990). The decrease of rates as a function of aqueous 667 
aluminium concentration (the aluminium brake) is very prominent in the range of log [Al3+] from -7 to -4.5. 668 
Aluminium concentrations are in kmol m-3. The figures were adapted from (a) Sverdrup et al. (1990) and from 669 
(b) Carroll and Knauss (2001). For further information, see Sverdrup (1990) and Sverdrup and Warfvinge 670 
(1995). 671 
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 672 
a                                                                       b 673 

Figure 13. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate of 674 
albite. (Sverdrup 1990). The circles represent the data from experiments, the solid lines the model simulations. 675 

                   676 
a                                                                       b 677 

Figure 14. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate of 678 
albite. The solid line is the reaction rate without CO2 or organic acid ligands. 679 
 680 

Figure 13 shows diagrams used to quantify the retarding effect of aluminium on the dissolution rate 681 
of albite feldspar. The figures were adapted from Sverdrup (1990) and the work prepared for Sverdrup and 682 
Warfvinge (1995) and Sverdrup et al., (2009).  Similar results for aluminium were found by Oelkers (2001), 683 
Oelkers and Gislasson (2001), Oelkers and Schott (2001, 1995a,b), Oelkers et al., (1999) for several minerals.  684 
The aluminium brake is very prominent in the range of log [Al] from -7 to -4.5. For further information, see 685 
Sverdrup (1990) and Sverdrup and Warfvinge (1995).   686 
 The reaction order for the organic acid reaction is derived from experiments where only the 687 
concentration of organic ligand, [R], has been varied. This was found to be nR=0.5 on most experiments and 688 
this exponent value was universally adopted, suggesting a divalent ligand being the reactive agent (Sverdrup 689 
1990, Sverdrup and Warfvinge 1995, Oelkers and Schott 1998).   690 

The reaction order nCO2 for the reaction with CO2 is difficult to constrain, as very few experiments that 691 
allow it to be determined are available (Daval et al., 2013, Berg and Banwart 2000, Golubev et al., 2005, 692 
Fernandez-Bastero et al., 2008, Hangx and Spiers 2009, Lagache 1965, Wogelius and Walther 1991, Wolff-693 
Boenisch et al., 2011, Stephens and Hering 2004, Sverdrup 1990).  The few experiments that are available 694 
often gives conflicting results. Moreover, many experiments dealing with the effect of CO2 on weathering do 695 
not have the required resolution to allow data regression. For the minerals where the CO2 has little or no effect, 696 
this is fine, but for some it is. It was found to be nCO2=0.6 and was universally adopted. Sometimes these 697 
parameterizations can be determined by making single factor plots, but more often, the whole model must be 698 
used to recreate the experiments, taking many factors into account simultaneously. Figure 13 shows the effect 699 
on the base cation (a) and the aluminium concentration (b) on the dissolution rate of albite. Various plots were 700 
used to help data interpretation. Figure 14-15 illustrates how the model was used to plot different combinations 701 
of conditions, to investigate how distinct factors affect the weathering rates. The experimental data were 702 
overlaid in such diagrams (Figures 16-20) to help interpretation towards generating kinetic parameters (rate 703 
coefficients and reaction orders), for example the combination of different organic acid ligand concentrations 704 
and aluminium concentrations.  The last diagram, on the lower right of Figure 15, shows the combination of 705 
different combinations of organic acid ligand concentrations and CO2 pressures in atmospheres.  Figure 16 706 
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shows the effect on rates of the base cation (a) and the aluminium concentration (b) on the dissolution rate for 707 
albite. The circles represent the data from experiments.  708 

A further example of parameterization efforts is shown in Figure 16 for the case of hornblende 709 
dissolution rate data reported by from Holmqvist and Sverdrup (2004) and Holmqvist et al. (2002, 2003). 710 
Figure 16a and 16b shows these data as a function of pH. The figures were adapted from Holmqvist et al., 711 
2003). Figure 16c shows the retarding effect of aluminium on the dissolution rate of hornblende, adapted from 712 
Holmqvist et al. (2003).  Figure 16d shows a three-dimensional plot for the dissolution rate of hornblende, as 713 
a function of solution pH and aluminium concentration (Sverdrup, 1990).  714 

In total, the dissolution rate of hornblende is defined by at least 8 and perhaps 9 different chemical 715 
factors including pH, Ca+Mg, K, Na, Al, DOC, CO2, Si and sometimes Fe concentrations, and in addition to 716 
mineral surface area, soil wetting degree and temperature. For example changes in the aluminium 717 
concentration, can change the weathering rate by several orders of magnitude. Additional examples are 718 
presented in Figs. 17-21. 719 

 720 

 721 
Figure 15. The weathering rate model was used to plot different combinations of conditions, to investigate the 722 
different shapes the weathering rate dependency can change (See Figure 7 and 9 for how the principle works). 723 
The experimental data were overlaid in such diagrams, to help retrieve kinetic parameters (e.g. rate 724 
coefficients and reaction orders). The last diagram, lower right, shows the combination of different 725 
combinations of organic acid ligand concentrations and CO2 pressures in atmospheres.  726 
 727 

Figure 17 shows a typical example of data generated for different minerals during the 1996-2002 field 728 
seasons using a continuous, flow through, fluidized bed, with constant concentration feed solutions. Figure 18 729 
shows the experimentally measured dissolution rates of epidote, after Holmqvist et al. (2003), as a function of 730 
pH according to a number of weathering experiments.  731 
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Figure 7: The temperature has a profound e↵ect on the rate, and certain combinations of changes
in temperature, organic acids and carbon dioxide can remove the pH dependence observed in many
laboratory experiments. This explains the lack of pH dependence in many experiments carried out
in di↵erent organic acids.
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   732 
a                                                                       b 733 

  734 
c                                                                       d 735 

Figure 16. Diagram (a) shows the dissolution rate of minerals presented as base cation release rates as a 736 
function of pH and (b) shows the dissolution rate for hornblende as a function of solution pH, but under 737 
different experimental conditions (Adapted from Sverdrup, 1990). Diagram (c) shows the retarding effect of 738 
aluminium on the dissolution rate of hornblende. (Adapted from Holmqvist et al., 2003). Diagram (d) shows 739 
a three-dimensional plot for the dissolution rate of hornblende, as a function of solution pH and aluminium 740 
concentration (Adapted from Sverdrup, 1990).  741 
 742 

 743 
Figure 17. Typical example of dissolution rate data generated for epidote during 1996-2002 using a 744 
continuous, flow through, fluidized bed, with constant concentration feed solutions (Holmqvist 2002, 2003). 745 
All relevant constituents of the mineral were monitored in the aqueous solution in the experiment. 746 
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Figure 9: Observed results from experiments with Epidote and Hornblende

Figure 10: A three-dimensional plot of the results found for Hornblende from the literature and own
experiments.
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  747 
a                                                                       b 748 

Figure 18. Epidote dissolution rate versus pH according to experiments reported by Holmqvist and Sverdrup 749 
and other literature sources data. 750 
 751 

       752 
a                                                                       b 753 

Figure 19. a) Estimates of the energy of activation for the dissolution of epidote. (b) the dependence of the rate 754 
of epidote on the calcium concentration at pH 2 and pH 4 (From one series of experiments by the authors).  755 
 756 

 757 
Figure 20. Hornblende dissolution rate data from Holmqvist and Sverdrup (2004) and Holmqvist et al, (2002, 758 
2003) suggests that an arithmetic addition gives a good fit to the data. 759 
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 761 
Figure 21. Diagram A show regression results from hornblende dissolution rates, diagram (B) shows 762 
regression results from a natural illite mineral dissolution extracted from an agricultural soil sample taken at 763 
the agricultural research site at Lanna, Uppsala, Sweden. Data from Holmqvist and Sverdrup (2004) and 764 
Holmqvist et al. (2002, 2003) 765 
 766 

The release of all relevant ions was monitored by frequent sampling during the experiments.  Figure 767 
19a shows the activation energy for the dissolution of epidote. The dependence of the dissolution rate of 768 
epidote on the calcium concentration at pH 2 and pH 4 is shown in Figure 19b. Figure 20 and 21 shows data 769 
from Holmqvist and Sverdrup (2004) and Holmqvist et al. (2002, 2003) confirming that an arithmetic addition 770 
of the various rate contributions gives the best fit of the data, consistent with the principle shown in Figure 7. 771 
Figure 21 shows results from hornblende, the bottom diagrams (A, B) shows results from a natural illite 772 
mineral extracted from an agricultural soil sample taken at the agricultural research site at Lanna, Swedish 773 
Agricultural University, Uppsala, Sweden. Model lines were fitted to the data points to set the rate coefficients 774 
and reaction orders. Note that a complete set of kinetic parameters could not be directly generated for all 775 
minerals due to incomplete experimental data sets.  776 

Estimates for some of the rate coefficients in Table 3 were based on mineral crystal structure analogies 777 
(Sverdrup 1990, Holmqvist 2003, Sverdrup and Stiernquist 2002, Crundwell 2014a,b, 2016), crystal bond 778 
energies (Sverdrup 1990, Velbel 1999, Crundwell 2014b, 2016) and comparison with analogue minerals. For 779 
many of the minerals, the dissolution kinetics patterns are very consistent. The dissolution rate curve shapes 780 
of feldspars, garnets, olivines, zoisites allow for this, but also muscovite to illite alteration series, K-feldspar 781 
to sericite alteration series.    782 

For example, for the feldspars, we have sufficient data to parameterize the H+ reaction for 5 different 783 
plagioclases, the mixed composition plagioclases from albite to anorthite. A plagioclase with a different 784 
composition will be interpolated between these as shown in Figure 22. We have the same situation for K-785 
feldpars with increasing contents of Na and Ca, giving a systematic shift in parameter values. The pattern is 786 
very consistent as can be seen from the diagrams shown in Sverdrup (1990). However, for the OH- reaction 787 
we have less information. The OH- rate equation is theoretically linked to the H+ reaction, but more sensitive 788 
to the concentration of the same base cation as in the mineral (Na, K, Ca). With the available data and the 789 
theoretical link, we can estimate the missing parameters for some of the feldspars. There is a similar situation 790 
for the H2O reaction. We have the experiments that allow it to be constrained for most of the feldspars, and 791 
the shifts between the feldspars are systematic and consistent.  792 

For the reaction with organic acid ligands, the situation is more complex. Many of the dissolution 793 
experiments run with organic acids were poorly documented, and getting accurate parameterization from them 794 
is not possible. For some minerals like feldspars and olivine, some experimental results are available (Stillings 795 
et al., 1996 is one example for feldspar) that allow for kinetic parameter estimation. They found nR=0.75 in 796 
the range pH 3-7. For other minerals, we have only single experiments, scattered among some few minerals. 797 
Few experiments are available, and for only a few types of minerals. These provide suggestions on what the 798 
parameter values probably would be. The situation is similar for the reaction between the mineral surface and 799 
CO2. The reaction seems to be weak, and only play a role at elevated pressures. For example, Wang (2013), 800 
based on the experimental results of Hänchen et al. (2006) concluded there was no effect of the CO2 reaction 801 
on olivine dissolution rates beyond the effect caused by CO2 on pH.   802 

Retrieved kinetic parameters are provided in Table 3. Parameters that are derived directly from of one 803 
or more set of experimental data are given in bold font. The kinetic parameters that were estimated are shown 804 
in roman font. The minerals in this table are divided into 11 groups of basic crystalline structures. Some of the 805 
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minerals inside each group have large commonalities with respect to how they dissolve, and this was of great 806 
help in parameter estimation table. 807 

For feldspars, nesosilicates and phyllosilicates, the amount of experimental data available makes the 808 
retrieved parameters robust. If three different compositions of basically the same type of mineral, A, B and C, 809 
are known to have relative rates A>B>C, and we have the kinetic parameters for A and C, then we can be 810 
fairly certain that the values for the kinetic parameters for B are constrained between A and C (see Figure 22). 811 
If they are close, then we would be able to set parameters for B fairly accurately, even with sparse experimental 812 
data for B. This is the case for many minerals (In particular feldspars, nesosilicates, phyllosilicates), and is a 813 
way to get more parameterization from limited experimental data sets.  For the pyroxenes and amphiboles, the 814 
experiments indicate that the minerals behave with some variety depending on their composition, making the 815 
estimates less accurate. But, many pyroxenes are mixtures of definable end members and this was utilized to 816 
interpolate and estimate missing parameters.  817 

 818 

             819 
a: Data points drawn in                                         b: Interpolate line 820 

Figure 22. Some mineral groups have very similar dissolution rate behaviours. Such similarities can be used 821 
to interpolate between them (b) when we have intermediate minerals with only a few data points available (a). 822 
 823 
Nevertheless all parameters in Table 3 together with their kinetic expressions should be further validated as 824 
additional experimental data become available. The ultimate test of the kinetics equations and parameters are 825 
how well they describe both laboratory experiments and field data where independent estimates of the 826 
weathering rate are available. Such tests have been generally successful (see the publications referred to earlier, 827 
and Erlandsson Lampa et al., 2016, 2019), suggesting that the combined methodology (experiments, 828 
analogues, interpolations, estimates based on theoretical rescaling, predictions made based on crystal bond 829 
energies) have captured the kinetics sufficiently well. More on this will be forthcoming in future publications.  830 
 831 
4. Results 832 
4.1. Kinetics and parameterization 833 

The tabulated kinetic coefficients are the major result of this report and they are provided in the Tables 834 
1, 3 and 4. In total the dissolution kinetics parameterization for 112 minerals are provided. Erlandsson-Lampa 835 
et al. (this volume) tested the application of these values using the parameters on the Svartberget research site 836 
as a field evaluation.  837 
 The parameters in Table 3 are for a temperature of 8oC and standard atmospheric pressure.. The 838 
following default approximations were adopted due to the lack of data; CAl for the H+-reaction is taken to be 839 
equal to 1/

3 of the CAl for the OH--reaction. CBC for the H+-reaction is taken to be 1/
3 of the CBC for the OH--840 

reaction. The retarding reaction orders for base cations (x), aluminium (y) and silicate (z) have been extracted 841 
from separate datasets and experiments where it was possible to separate out the effect of silicate alone, having 842 
subtracted the effect of base cations and aluminium first. Default values were computed and scaled with 843 
Madelung crystal lattice site energy (See Sverdrup 1990 and Velbel 1999 for how a-priori weathering rate 844 
coefficient estimates are made from crystal properties). Irreversible dissolution implies that the mineral cannot 845 
be formed from solution under soil conditions, and that there is no saturation concentration or back reaction. 846 
Pokrovsky and Schott (2000) and Rosso and Rimstidt (2000) reports a reaction order of nH+=0.5 for forsterite, 847 
but others report nH+=1.0 (Grandstaff 1986, Blum and Lasaga 1988, Siegel and Pfannkuch 1984, Sverdrup 848 
1990). nH+=1.0 seems to be a property of the nesosilicate group, but there is a possibility that presence of 849 
impurities such as pyroxenes or feldspars in the nesosilicate may give it a different crystal structure and thus 850 
a different nH+. Others, Berg and Banwart (2000), report nH+ in the range 0.5 to 1, depending on pH.  851 
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Table 4 shows the temperature dependencies of the dissolution rates.  All variations of rates on 852 
temperature are computed using a modified Arrhenius equation (Sverdrup 1990, 1998, Sverdrup and 853 
Warfvinge 1988, 1992, 1995). Parameters for this equation generated from experimentally measured rates are 854 
shown in bold. Where experimental data were not available, estimates were computed and scaled with 855 
Madelung crystal lattice site energy from garnet (Sverdrup 1990, Velbel 1999). Values in normal font were 856 
estimated from the lattice energies and the properties of the mineral surface. Table 5 shows the stoichiometry 857 
of the minerals considered in this study.  858 

 859 
 860 

 861 
a                                      b                                      c 862 

Figure 23. Comparison of calculated with measured base cation concentrations at the Svartberget field site, 863 
(Zanchi et al., 2016). Note the base cation concentrations ([Bc]) refer to the sum of the concentrations of Na, 864 
H, Ca, and Mg in units of microequivalents per litre. 865 
 866 

 867 
a: Base cations                                                                       b: Silica 868 

Figure 24. Modelled base cation (a) and Si (b) concentrations plotted against log10 of water transit time 869 
(smooth lines) at the Svartberget field site (See Erlandsson-Lampa et al., 2016, 2019 for a full description of 870 
the field test of the model). Overlain are the observed base cation and Si-concentrations from the soil profile, 871 
plotted against log10 of soil depth (straight lines with symbols).  872 
 873 
4.2. Testing the kinetic model 874 

The most recent comparison between the kinetic weathering model results and field observations 875 
follows in the article by Erlandsson-Lampa et al. (This issue). The research catchment where many of the 876 
model applications have been tested is located in Northern Sweden. A few examples are shown in Figure 23 877 
and 24. Figure 23 shows a comparison between calculated and observed base cation concentrations at the 878 
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Svartberget research site. The model results reproduce the observed concentration pattern (Zanchi et al., 2016). 879 
Figure 23a shows the modelled base cation (Bc)3 concentration and Figure 23b shows the Si concentrations, 880 
plotted against log10 of water transit time (smooth lines). Overlaid are the observed Bc and Si-concentrations 881 
from the soil profile, plotted against log10 of soil depth (solid lines with markers) in Figure 23c. The weathering 882 
model considers all soil processes including ion exchange, vegetation interactions, decomposition of organic 883 
matter, water transport in the catchment in both the horizontal and vertical directions (Belyazid et al., 2004, 884 
2011a,b, 2010a,b, 2015, 2019, Erlandsson-Lampa et al., 2019, Sverdrup et al., 1995, 2002). The model 885 
reproduces the observed field observations as a function of depth (Zanchi et al., 2016). The close 886 
correspondence between the calculated dissolved metal concentrations and the field observation are notable 887 
considering that we employed a silicate dissolution rate model based on laboratory measurements to determine 888 
the composition of the aqueous phase in the soil.  889 
 890 
4.3. Discussion 891 

The detailed comparisons between laboratory measured and field determined weathering rates 892 
generated using the kinetic models described above coupled to soil processes performed using PROFILE and 893 
ForSAFE stand out in stark contrast to the traditional geochemical models, which give results that are several 894 
orders of magnitude different from field observations (Erlandsson-Lampa et al., 2019). It was discovered that 895 
past efforts to describe field weathering rates using laboratory measured dissolution rates without consideration 896 
of the coupling of rates to the major soil processes yielded inaccurate results – see Erlandsson Lampa et al. 897 
(2016) and Nyström-Claesson and Andersson, (1996). Such observations demonstrate a need to take into 898 
account the complete set of processes occurring in the soil. Note that the mineral dissolution ‘brake functions’ 899 
used in this approach act differently on the weathering rates that the equilibrium expressions used in earlier 900 
models (Aagaard and Helgeson 1982, Murphy et al., 1987, Alekseyev et al., 1997, 2004, 2007, Oelkers, 2001, 901 
Oelkers et al., 1994, 2001, 2008). The preference for using the brakes rather than the traditional rate expression 902 
based on a slowing of rates as equilibrium is approached between the surface and the liquid is that equilibrium 903 
is not approached for many primary silicate minerals and thus the weathering process is irreversible.  904 
 905 
7. Conclusions 906 

The complex nature of weathering in the field is nearly impossible to interpret without a 907 
comprehensive model for the whole process. A first step to such interpretations can be the quantitative 908 
description of the dissolution rates of the major rock forming minerals. Even the dissolution rates of an 909 
individual mineral can involve several simultaneous reactions. Thus, experimentally measured rates results 910 
can only be accurately interpreted when a full system model is used. Under field conditions, mineral dissolution 911 
is coupled to other soil processes, and thus a full ecosystem system model is needed for their interpretation. 912 
The apparent difference between field and laboratory dissolution rates arise from the coupling of these 913 
processes, and disappear once a full model is employed. Use of a fully coupled model shows these differences 914 
to be negligible (Keegan and Laskow-Lehey 2014). 915 

Taking account the vast literature reporting experimentally measured mineral dissolution rates, it was 916 
possible to create a fully parameterized kinetic database for about 100 minerals. About 40% of the kinetic 917 
parameters were determined directly from experiment interpretations, and the rest were determined from inter-918 
mineral interpolations and using of analogues.  919 

The adjustment of the aluminium ‘brake function’ and the introduction of a silica “brake function” as 920 
described in this work were necessary to improve the description of weathering rates in the lower part of the 921 
soil, below 1 meter depth. The test at the Svartberget catchment suggests that this revised mineral dissolution 922 
model works adequately as can be seen from Figures 24-25.  923 
 924 
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Table 3. Dissolution kinetics parameterization for the 113 minerals from 12 major mineral structural groups that can be used by the current versions of the PROFILE 
and ForSAFE models for estimating the field soil weathering rates at 8oC. Many of the minerals can be grouped into closely related crystallographic groups where 
many analogues are possible. C is the limiting concentration for retarders given in units of 10-6 mol/m3. Numbers in bold are parameters based on the direct fitting of 
existing experimental data. Data and records from unpublished experiments by Sverdrup's and Holmqvist’s experimental studies are available on paper records held 
at the Inland University of Applied Sciences, at Hamar, Norway. The digitized part of these data are no longer available in digital form due to computer system changes 
and data filing format changes that have occurred during the last 30 years. All other parameters not experimentally measured were estimated from interpolation or 
analogues.  All concentrations are expressed in kmol m-3. All exponents n, y, x are dimensionless. The rate coefficients k have the units as to make the weathering rate 
in kEq m-2s-1, where the area is mineral surface area (Equation 23). The weathering rate as focused to on release of cations. The release rates of Si and Al are found by 
stoichiometric adjustment, in subsequent steps. 
Mineral Fundamental chemical weathering reaction coefficients, reaction orders, and feedback effect threshold concentrations 

H+-reaction H2O-reaction CO2-reaction4 Organic acids OH--reaction 
pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 

1a. Feldspars; tectosilicates 
1.1 K-Feldspar, generic 14.7 0.5 0.4 0.4 0.4 0.5 17.5 0.14 4 0.15 300 3 900 16.95 0.6 15.0 0.5 5 15.2 0.3 0.1 12 0.5 5 1 900 
1.2 K-Feldspar I,  14.8 0.5 0.4 0.4 0.4 0.5 17.8 0.14 4 0.15 300 3 900 17.05 0.6 15.1 0.5 5 15.4 0.3 0.1 12 0.5 5 1 900 
1.3 K-Feldspar II;  14.7 0.5 0.4 0.4 0.4 0.5 17.4 0.15 4 0.15 300 4 900 16.85 0.6 13.9 0.5 5 15.3 0.3 0.1 12 0.5 5 1 900 
1.4 K-Feldspar III  14.7 0.5 0.4 0.4 0.4 0.5 17.4 0.15 4 0.15 300 4 900 16.80 0.6 13.9 0.5 5 15.2 0.3 0.1 12 0.5 5 1 900 
1.5 Anorthoclase 13.6 0.6 0.4 0.5 0.4 0.5 17.2 0.15 5 0.15 300 3 900 16.65 0.6 13.7 0.5 5 14.2 0.3 0.1 15 0.5 5 2 900 
1.6 Albite (Ab) 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 
1.7 Oligoclase  14.6 0.5 0.4 0.4 0.4 1 16.8 0.15 4 0.15 250 4 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 4 3 900 
1.8 Labradorite 13.9 0.5 0.3 0.5 0.4 2 16.8 0.15 5 0.15 300 5 900 16.05 0.6 14.7 0.5 5 14.5 0.3 0.1 15 0.5 3 3 900 
1.9 Bytownite 13.8 0.6 0.3 0.6 0.4 3 16.7 0.15 6 0.15 300 6 900 15.95 0.6 14.6 0.5 5 14.4 0.3 0.1 18 0.5 3 3 900 

1.10 Other plagioclase 14.6 0.5 0.4 0.4 0.4 1 16.8 0.15 4 0.15 250 4 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 4 3 900 
1b. Zeolites; tectosilicates 

Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 
pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 

1.11 Helulandite 11.9 0.73 0.2 30 0.2 20 16.8 0.15 4 0.15 250 3 900 16.05 0.6 14.7 0.5 5 14.8 0.3 0.1 12 0.5 4 2 900 
1.12 Analcime 14.5 0.5 0.2 30 0.2 20 16.5 0.15 4 0.15 250 3 900 16.05 0.6 14.7 0.5 5 12.4 0.4 0.1 12 0.5 4 2 900 
1.13 Clinoptilolite 14.5 0.3 0.2 30 0.2 20 16.5 0.15 4 0.15 250 3 900 16.05 0.6 14.7 0.5 5 14.8 0.3 0.1 12 0.5 4 2 900 
1.14 Stilbite 14.5 0.3 0.2 30 0.2 20 16.2 0.15 4 0.15 250 3 900 16.05 0.6 14.7 0.5 5 14.7 0.3 0.1 12 0.5 4 2 900 

2. Nesosilicates 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
2.1 Monticellite 7.7 0.556 0.1 100 0.3 50 >16.4 0 100 0.2 50 16 900 15.4 0.6 13.9 0.5 5 13.3 0.6 0.1 100 0.2 60 14 900 
2.2 Tephroite 9.3 0.566 0.1 100 0.3 50 >17.0 0 100 0.2 50 16 900 15.4 0.6 13.9 0.5 5 13.3 0.6 0.1 100 0.2 60 14 900 
2.3 Nepheline5 9.5 1.0 0.4 10 0.4 10 14.4 0.2 10 0.2 200 6 900 14.8 0.6 14.4 0.5 5 13.0 0.5 0.1 30 0.2 30 4 900 

                                                
4There seems to be some type of CO2 saturation of the surface between 10 and 50 atm CO2 for mica and chlorites, beyond where the rate is no more affected. Some other minerals have indications of similar behaviour, but it 
remains elusive in terms of parameterization. Some minerals appear to have no detectable reaction with CO2, some are slightly inhibited. 
5Nepheline is classified as a feldspatoid in the mineralogical literature. However, when dissolving, the pre-dissolution complexing process at the mineral water interface create an activated surface complex with a nesosilicate 
structure. Thus, a nesosilicate classification here.  
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2.4 Anorthite6 (An) 10.3 1.0 0.4 100 0.2 3 15.8 0.15 100 0.2 200 6 900 16.4 0.6 14.7 0.5 5 13.7 0.25 0.1 30 0.2 30 4 900 
2.5 Forsterite (Fo) 10.2 1.06 0.1 1000 0.3 10 16.4 0 5000 0.2 5 16 900 15.47 0.6 >13.96 0.5 5 13.3 0.6 0.1 100 0.2 60 14 900 
2.6 Olivine (Fo60Fa40) 12.0 1.08 0.3 30 0.3 30 >18.0 0.1 30 0.2 5 16 900 15.95 0.6 14.7 0.5 5 15.4 0.6 0.1 100 0.2 60 14 900 
2.7 Fayalite (Fa) 10.2 1.06 0.1 1000 0.3 50 16.4 0 5000 0.2 5 16 900 15.4 0.6 13.9 0.5 5 13.3 0.6 0.1 100 0.2 60 14 900 
2.8 
2.9 

2.10 
2.11 
2.12 

Al44Py44Gr12  
Al65Py35  
Ad80Gr20  
Al50Py40Gr10 
Gr88Py6Ad6 

12.4 1.0 0.4 300 0.2 50 16.9 0.2 300 0.2 500 8 900 15.8 0.6 14.7 0.5 5 14.9 0.2 0.12 100 0.2 100 6 900 

2.13
2.14 
2.15 
2.16 
2.17 
2.18 

Grossular, (Gr) 
Andradite (Ad) 
Pyrope (Py) 
Almandine (Al)  
Uvarovite (Uv) 
Spessarite (Sp) 

12.4 1.0 0.4 200 0.2 40 16.9 0.2 200 0.2 300 8 900 15.8 0.6 14.7 0.5 5 14.9 0.2 0.12 60 0.2 60 6 900 

2.19 Staurolite 14.7 1.0 0.4 200 0.2 20 17.4 0.2 200 0.3 5 16 900 15.2 0.6 14.4 0.5 5 17.1 0.3 0.12 60 0.2 60 14 900 
2.20 
2.21 

Disthene 
Kyanite 15.5 1.0 0.33 10 0 500 17.0 0.33 10 0 500 4 900 16.5 0.5 15.6 0.5 5 15.8 0.4 0.1 400 0.3 60 3 900 

3. Pyroxenes9 or single chain inosilicates. 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
3.1 Alite 9.6 0.67 0.2 1000 0.3 200 7.85 0.1 400 0.3 5 16 900 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 
3.2 Wollastonite 9.6 0.7 0 5000 0.3 100 15.1 0 5000 0.3 5 16 900 15.2 0.6 13.5 0.5 5 11.6 0.6 0 5000 0.5 5 8 900 
3.3 Spodumene 9.6 0.7 0.2 400 0.3 200 17.2 0.1 400 0.3 5 16 900 15.8 0.6 14.2 0.5 5 14.6 0.6 0.1 400 0.5 5 8 900 
3.4 Diopside  11.1 0.67 0.2 400 0.35 150 14.9 0.1 400 0.3 5 16 900 >14.86 0.6 16.4 0.5 5 13.2 0.6 0 400 0.5 5 8 900 
3.5 Jadeite  11.2 0.7 0.2 400 0.35 150 14.5 0.1 400 0.3 5 16 900 14.4 0.6 14.0 0.5 5 12.9 0.6 0 400 0.5 5 8 900 
3.6 Leucite  11.1 0.4 0.2 400 0.35 150 14.5 0.1 400 0.3 5 16 900 14.4 0.6 14.0 0.5 5 12.9 0.6 0 400 0.5 5 8 900 
3.7 Augite I 12.3 0.7 0.2 500 0.3 200 17.5 0.1 500 0.3 5 16 900 15.8 0.6 14.4 0.5 5 14.8 0.6 0.1 500 0.5 5 8 900 
3.8 Augite II 12.3 0.7 0.2 500 0.3 200 17.5 0.1 500 0.3 5 16 900 15.8 0.6 14.4 0.5 5 14.8 0.6 0.1 500 0.5 5 8 900 
3.9 Hedenbergite 12.8 0.7 0.25 500 0.2 200 17.5 0.16 500 0.3 5 16 900 15.8 0.6 14.4 0.5 5 14.8 0.6 0.1 500 0.5 5 8 900 

3.10 Augite II 13.8 0.7 0.2 400 0.3 200 17.5 0.1 400 0.3 5 16 900 15.85 0.6 14.4 0.5 5 14.8 0.6 0.1 400 0.5 5 8 900 
3.11 Enstatite  13.0 0.7 0.2 400 0.2 100 17.6 0.1 400 0.3 5 16 900 15.8 0.6 14.5 0.5 5 15.0 0.6 0.1 400 0.5 5 8 900 
3.12 Hypersthene 13.2 0.7 0.2 400 0.2 100 17.6 0.1 400 0.3 5 16 900 15.8 0.6 

14.5 
0.5 5 

15.0 0.6 
0.1 400 0.5 5 8 900 

3.13 Ferrosilite 
14.0 0.7 

0.2 400 0.3 200 
17.7 

0.1 400 0.3 5 16 900 15.85 0.6 
14.4 

0.5 5 
14.8 0.6 

0.1 400 0.5 5 8 900 

3.14 Bronzite 14.4 0.7 0.2 400 0.2 200 17.5 0.1 400 0.3 5 16 900 15.8 0.6 14.4 0.5 5 14.8 0.6 0.1 500 0.5 5 8 900 
3.15 Pidgeonite 13.8 

0.7 
0.2 400 0.3 200 17.5 0.1 400 0.3 5 16 900 15.85 0.6 14.4 0.5 5 14.8 0.6 0.1 400 0.5 5 8 900 

3.16 Other pyroxenes 14.0 0.7 0.2 500 0.3 200 17.5 0.1 500 0.3 5 16 900 15.8 0.6 14.4 0.5 5 14.8 0.6 0.1 500 0.5 5 8 900 
4. Amphiboles or double chain inosilicates 

Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

                                                
6Anorthite is classified as a feldspar in the mineralogical literature. However, when dissolving pure anorthite, the pre-dissolution complexing process at the mineral water interface create an activated surface complex with a 
nesosilicate structure. This applied only to pure anorthite with less than 2% other feldspars in the solution. That is why it is listed among the nesosilicates. See Sverdrup (1990) for further details. This may be thecase with 
Monticellite and Tephroite as well. 
7According to Golubev et al., (2005) is the CO2 reaction either very weak or absent, mostly from observations at high 5. For diopside and forsterite over the whole pH range (Golubev et al., 2005). 
8A number of studies report this exponent to be 0.5. It was observed that all nesosilicates have reaction order n=1 in our own experiments, and in about half of all in the literature.  
9He=Hedenbergite, En=Enstatite, Wo=Wollastonite, Di=Diopside, Au=Augite, Ja=Jadeite, Le=Leucite, Bz= Bronzite 
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pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
4.1 Glaucophane 13.5 0.7 0.3 5 0.3 5 16.7 0.6 15 0.3 200 16 900 16.1 0.6 14.7 0.5 5 >16.7 0.3 0.15 400 0.5 60 8 900 
4.2 Pargasite 

13.8 0.7 
0.3 5 0.3 5 

16.6 
0.6 15 0.3 200 16 900 16.1 0.6 14.7 0.5 5 >16.7 0.3 0.15 400 0.5 60 8 900 

4.3 Hornblende I 13.4 0.7 0.4 5 0.3 5 16.3 0.6 15 0.3 200 16 900 15.95 0.6 14.4 0.5 5 17.5 0.1 0.15 400 0.5 60 8 900 
4.4 Hornblende II 14.8 0.6 0.3 5 0.3 5 16.5 0.6 15 0.3 200 16 900 16.15 0.6 14.5 0.5 5 18.2 0.1 0.15 400 0.5 60 8 900 
4.5 Tremolite 15.2 0.2 0.2 5 0.3 5 16.8 0.6 15 0.3 200 16 900 16.2 0.6 14.8 0.4 5 16.1 0.3 0.15 400 0.5 60 8 900 
4.6 Riebeckite 14.9 0.7 0.2 5 0.3 5 18.4 0.6 15 0.3 200 16 900 16.2 0.6 14.8 0.5 5 16.1 0.3 0.15 400 0.5 60 8 900 
4.7 Anthopyllite 13.8 0.25 0.2 5 0.3 5 18.4 0.6 15 0.3 200 16 900 16.2 0.6 14.9 0.1 5 16.4 0.1 0.2 400 0.5 60 8 900 
4.8 Other amphiboles 14.8 0.6 0.3 5 0.3 5 16.5 0.6 15 0.3 200 16 900 16.1 0.6 14.5 0.5 5 18.2 0.1 0.15 400 0.5 60 8 900 

5. Phyllosilicates or sheet silicates 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
5.1 Glauconite 11.8 0.7 0.4 4 0.2 500 17.0 0.2 50 0.1 200 16 900 14.5 0.5 14.5 0.5 5 15.5 0.4 0.15 400 0.3 60 14 200 
5.2 Serpentinite, 

Antigotite 
Chrysotile 

12.7 0.8 0.2 50 0.2 200 17.5 0.1 50 0.1 200 16 900 14.8 0.5 >14.1 0.5 5 17.8 0.6 0.15 400 0.3 60 14 200 

5.3 Talc 13.3 0.7 0.2 50 0.2 200 16.7 0.1 50 0.1 200 16 900 14.5 0.5 14.5 0.5 5 15.5 0.4 0.15 400 0.3 60 14 200 
5.4 Nontronite 14.8 0.3 0.2 30 0.2 20 16.5 0.15 4 0.15 250 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 4 2 900 
5.5 Phlogopite 14.8 0.6 0.3 10 0.2 50 16.7 0.2 10 0.2 500 6 900 15.8 0.5 15.8 0.5 5 15.8 0.5 0.15 400 0.3 60 5 900 
5.6 Biotite10 14.8 0.6 0.3 10 0.2 50 16.7 0.2 10 0.2 500 6 900 15.8 0.5 15.8 0.5 5 15.85 0.5 0.15 400 0.3 60 3 900 
5.7 Mg-Vermicullite14 14.8 0.6 0.4 4 0.2 5 17.2 0.1 4 0.1 500 4 900 16.2 0.5 15.2 0.5 5 15.8 0.5 0.15 400 0.3 60 3 50 
5.8 Mg-Vermicullite 24 14.8 0.6 0.4 4 0.2 5 17.2 0.1 4 0.1 500 4 900 16.2 0.5 15.2 0.5 5 15.8 0.5 0.15 400 0.3 60 3 50 
5.9 Mg-Vermiculite 34 14.8 0.6 0.4 4 0.2 5 17.2 0.1 4 0.1 500 4 900 16.2 0.5 15.2 0.5 5 18.8 0.5 0.15 400 0.3 60 3 50 

5.10 Fe-vermicullite 15.2 0.6 0.4 4 0.2 50 17.6 0.1 4 0.2 200 3 900 16.5 0.5 15.2 0.5 5 18.8 0.5 0.15 400 0.3 60 3 50 
5.11 Illitic vermiculite 15.0 0.6 0.4 4 0.2 5 17.3 0.1 4 0.1 500 4 900 16.5 0.5 15.5 0.5 5 17.0 0.5 0.15 400 0.3 60 3 50 
5.12 Vermiculite Al-OH 

interlayer mineral 15.2 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 6 900 16.5 0.5 15.6 0.5 5 17.2 0.4 0.15 400 0.3 60 5 100 

5.13 Fe-Chlorite 14.8 0.7 0.2 50 0.2 5 17.0 0.1 50 0.1 200 4 900 16.2 0.5 15.0 0.5 5 18.3 0.4 0.15 400 0.3 60 3 50 
5.14 Chlorite 14.8 0.5 0.2 50 0.2 5 17.0 0.1 50 0.1 200 4 900 16.2 0.5 12.6 0.5 5 18.0 0.4 0.15 400 0.3 60 3 50 
5.15 Mg-Chlorite 14.3 0.7 0.2 50 0.2 200 16.7 0.1 50 0.1 200 4 900 15.8 0.5 14.5 0.5 5 18.0 0.4 0.15 400 0.3 60 3 50 
5.16 Smectites11  14.9 0.5 0.4 4 0.2 500 17.6 0.2 4 0.1 50 4 900 16.5 0.5 15.6 0.5 5 17.5 0.5 0.1 400 0.3 60 3 50 
5.17 Muscovite3 15.2 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 12 900 16.5 0.5 15.3 0.5 5 17.2 0.4 0.15 400 0.3 60 10 100 
5.18 Mixed muscovites 

15.1 0.5 
0.4 4 0.1 5 

17.5 
0.2 4 0.1 500 12 900 16.5 0.5 15.3 0.5 5 

17.2 0.4 
0.15 400 0.3 60 10 100 

5.19 Illite 112 15.0 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 3 900 16.5 0.5 15.4 0.5 5 17.2 0.4 0.15 400 0.3 60 2 100 
5.20 Illite 23 15.2 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 3 900 16.5 0.5 15.6 0.5 5 17.2 0.4 0.15 400 0.3 60 2 100 
5.21 Illite 33 15.2 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 3 900 16.5 0.5 15.8 0.5 5 17.2 0.4 0.15 400 0.3 60 2 100 
5.22 Bentonite 15.1 0.5 0.4 4 0.2 500 17.6 0.2 4 0.1 50 4 900 16.5 0.5 15.6 0.5 5 17.5 0.5 0.1 400 0.3 60 3 50 
5.23 Montmorillonite 15.1 0.5 0.4 4 0.2 500 17.6 0.2 4 0.1 50 4 900 16.5 0.5 15.6 0.5 5 17.5 0.5 0.1 400 0.3 60 3 50 
5.24 Sericite 15.2 0.5 0.4 4 0.1 5 17.5 0.2 4 0.1 500 3 900 16.5 0.5 15.6 0.5 5 17.2 0.4 0.15 400 0.3 60 2 100 

6. Cyclosilicates 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 

                                                
10All biotite and vermiculites have the same lattice breakdown rate (Sverdrup and Holmqvist 2004), the release rate results from the combination of lattice down kinetics and the mineral stoichiometry 
11All smectites, including montmorillonites and bentonites have the same lattice breakdown rate (Sverdrup and Holmqvist 2004), the release rate results from the combination of lattice breakdown kinetics and the mineral 
stoichiometry 
12All muscovite and illites have the same lattice breakdown rate (Sverdrup and Holmqvist 2004), the release rate results from the combination of lattice breakdown kinetics and the mineral stoichiometry.  
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6.1 Tourmaline 13.2 1.0 0.3 200 0.2 200 15.4 0.2 200 0.3 100 8 900 14.8 0.6 14.4 0.5 5 >17.0 0.5 0.15 400 0.3 60 8 30 
6.2 Cordierite 15.4 1.0 0.3 200 0.2 200 16.5 0.2 200 0.3 100 8 900 15.9 0.6 15.5 0.5 5 17.4 0.5 0.15 400 0.3 60 8 30 

7. Sorosilicates 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
7.1 Epidote (Ep) 14.0 0.8 0.3 50 0.2 5 17.7 0.2 50 0.2 20 32 900 16.2 0.5 14.4 0.5 5 18.4 0.2 0.15 400 0.3 60 32 200 
7.2 Zoisite (Zo) 15.2 0.5 0.2 50 0.2 5 17.4 0.2 200 0.2 20 32 900 16.3 0.5 14.7 0.5 5 17.2 0.3 0.15 400 0.3 60 32 200 
7.3 Other zoisites 15.2 0.5 0.2 50 0.2 5 17.4 0.2 200 0.2 20 32 900 16.3 0.5 14.7 0.5 5 17.2 0.3 0.15 400 0.3 60 32 200 

8. Aluminosilicates and quartz  
 H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
8.1 Kaolinite 15.1 0.7 0.4 4 0.4 5 17.6 0.2 5 0.4 50 2 900 16.5 0.5 19.5 0.5 5 >15.1 0.6 0.15 400 0.3 60 1 900 
8.2 Gibbsite 13.9 1.0 0.5 5 0 500 16.4 0.2 5 0.4 0 n.a. n.a. >18.0 0.5 16.3 0.5 5 >13.4 1.0 0 5 0 5000 n.a. n.a. 
8.3 Quartz 18.4 0.3 0.3 5 0 500 >17.8 0 5 0 5000 4 900 >18.0 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 

9. Volcanic glasses 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
9.1 Base cation poor 

volcanic glass 
15.2 0.5 0.4 5 0.1 300 18.2 0.1 5 0 50 2 900 17.95 0.5 15.7 0.5 5 15.7 0.25 0.25 5 0.3 60 2 900 

9.2 Base cation rich 
volcanic glass  

15.2 0.5 0.4 5 0.1 300 18.2 0.1 5 0 50 2 900 17.95 0.5 19.5 0.5 5 15.8 0.25 0.25 5 0.3 60 2 900 

9.3 Other glasses 15.2 0.5 0.4 5 0.1 300 18.2 0.1 5 0 50 2 900 17.9 0.5 19.5 0.5 5 15.8 0.25 0.25 5 0.3 60 2 900 
10. Carbonates 

Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 
pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 

10.1 Calcite13  13.6 1.0 0 5000 0.4 5 14.2 0 5000 0.2 1000 16 900 13.2 0.6 13.2 0.5 5 0 0 0 5000 0 5000 16 900 
10.2 Aragonite 13.6 1.0 0 5000 0.4 5 14.6 0 5000 0.2 1000 16 900 13.4 0.6 13.4 0.5 5 0 0 0 5000 0 5000 16 900 
10.3 Dolomite 11.1 0.5 0 3000 0.4 5 17.5 0 3000 0.2 10 4 900 14.8 0.6 14.4 0.5 5 0 0 0 5000 0 5000 4 900 
10.4 Magnesite 13.1 0.5 0 3000 0.4 5 17.6 0 3000 0.2 5 3 900 14.8 0.6 14.4 0.5 5 0 0 0 5000 0 5000 3 900 
10.5 Siderite14 15.4 0.74 0 3000 0.4 5 18.8 0 3000 0.2 10 8 900 14.8 0.6 14.4 0.5 5 0 0 0 5000 0 5000 4 900 
10.6 Rhodochrosite11 15.6 0.67 0 3000 0.4 5 18.6 0 3000 0.2 10 8 900 14.6 0.6 14.2 0.5 5 0 0 0 5000 0 5000 4 900 

11. Phosphates 
Mineral H+-reaction H2O-reaction CO2-reaction Organic acids OH--reaction 

pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi 
11.1 Apatite15 12.8 0.67 0 - 0.4 100 16.1 0.2 20 0.4 50 n.a. n.a. 15.8 0.6 19.5 0.5 5 12.8 0.6 0.15 400 0.3 60 n.a. n.a. 
11.2 Fluoroapatite 12.8 0.7 0 - 0.4 100 15.9 0.2 20 0.4 50 n.a. n.a. 15.8 0.5 19.5 0.5 5 12.8 0.5 0.15 400 0.3 60 n.a. n.a. 

11.3 Other soil 
phosphorus solids 12.8 0.7 0 - 0.4 100 15.8 0.2 20 0.4 50 n.a. n.a. 15.8 0.5 19.5 0.5 5 12.8 0.5 0.15 400 0.3 60 n.a. n.a. 

 
 
 
                                                
13This is a general calcite. Accurate kinetic data are available for 8 different Swedish and 6 different American commercially available calcites, and 4 different Swedish, English, Finnish and Estonian dolomites (See Sverdrup and 
Bjerle 1983). 
14Siderite and rhodocrosite have strong inhibition of the water reaction by dissolved oxygen in the solution.  
15Apatite dissolution is retarded at all pH by oxalate concentrations and the presence of aluminium and iron. Silica seems to interfere less with the rate of dissolution. 
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Table 4. Temperature dependencies, measured are in bold. Default values were computed and scaled with Madelung crystal lattice site energy from different minerals 
(See Sverdrup 1990 for a detailed explanation). Normal font means we have estimated it from the lattice energies and the properties of the mineral surface. Based on 
the modified Arrhenius equation (Sverdrup 1990, 1998, Sverdrup and Warfvinge 1988, 1992, 1995). The units are oK-1 used in the Arrhenius equation as defined in 
Sverdrup (1990). 
Mineral Fundamental chemical reactions Comments 

H+ H2O CO2 Organic 
acids 

OH-- 

1. Feldspars 
1.1-1.2 K-Feldspar I; Orthoclase, Sanidine 3500 1940 1700 1200 3200 Irreversible dissolution 

1.3 K-Feldspar II; Microcline 3470 1820 1700 1200 3200 Irreversible dissolution 
1.4 K-Feldspar III; Orthoclase 4090 2000 1700 1200 3500 Irreversible dissolution 
1.5 Anorthoclase  3500 2000 1700 1200 3200 Irreversible dissolution 
1.6 Plagioclase; Albite 3350 2500 1680 1200 3100 Irreversible dissolution 
1.7 Plagioclase; Oligoclase 4200 2330 1700 1200 3600 Irreversible dissolution 
1.8 Plagioclase; Labradorite 4200 2500 1700 2200 3500 Irreversible dissolution 

1.9-1.10 Plagioclase; Bytownite and near anorthite 3500 2500 1700 1200 3100 Irreversible dissolution 
1.11 All other feldspars 3685 2085 1690 1200 3100 Irreversible dissolution 

1b. Zeolites 
1.12 Helulandite 3500 2550 1700 1200 3450 Irreversible dissolution 
1.13 Analcime 3500 2500 1700 1200 3400 Reversible reaction 
1.14 Clinoptilolite 3500 2550 1700 1200 3600 Irreversible dissolution 
1.15 Stilbite 3500 2500 1700 1200 3400 Irreversible dissolution 

2. Nesosilicates 
2.1 Monticellite 3480 4200 1700 1600 2200 Irreversible dissolution 
2.2 Tephroite 2551 4400 1700 1534 1450 Irreversible dissolution 
2.4 Anorthite (An) 1820 5670 1700 1800 1700 Irreversible dissolution 
2.5 Forsterite (Fo) 3350 4510 1700 1800 2100 Irreversible dissolution 
2.6 Olivine  2580 4510 1700 1800 2100 Irreversible dissolution 
2.7 Fayalite 2550 4400 1700 1800 2200 Irreversible dissolution 

2.13 Nepheline 3630 3130 1700 1800 2180 Irreversible dissolution 
2.8-2.18 Garnet mixes,  all garnets 2500 3500 1700 1800 2000 Irreversible dissolution 

2.19 Staurolite 3100 3200 1700 1800 3100 Irreversible dissolution 
2.20-2.21 Disthene, Kyanite 3918 2400 1700 1800 2200 Irreversible dissolution 

2.22 All other nesosilicates 2676 4436 1700 1800 2180 Irreversible dissolution 
4. Pyroxenes 

3.2 Wollastonite 3100 3600 1700 2000 2100 Irreversible dissolution 
3.4 Diopside 2610 3400 1700 2000 2000 Irreversible dissolution 
3.9 Hedenbergite 2311 3500 1700 2000 2000 Irreversible dissolution 

3.7-3.8, 3.10 Augite 2700 4100 1700 2000 2000 Irreversible dissolution 
3.11 Enstatite 2550 5950 1700 2000 2000 Irreversible dissolution 
3.16 All other pyroxenes 2700 4100 1700 2000 2000 Irreversible dissolution 

4. Amphiboles 
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4.1 Glaucophane 4300 3800 1700 2000 3500 Irreversible dissolution 
4.2 Hornblende I 4300 3800 1700 2000 3500 Irreversible dissolution 
4.3 Hornblende II 4300 4000 1800 2200 3500 Irreversible dissolution 
4.4 Tremolite 4500 3390 1700 2000 3600 Irreversible dissolution 
4.5 Antophyllite 3800 3300 1700 2200 4500 Irreversible dissolution 
4.6 All other amphiboles 4300 3390 1700 2000 3500 Irreversible dissolution 

5. Phyllosilicates 
5.1 Glauconite 4300 1950 1700 2000 3500 Irreversible dissolution 
5.2 Serpentinite,  

Chrysotile, Antigorite 4282 3600 1700 2000 3500 Irreversible dissolution 
5.3 Talc 4200 3700 1700 2000 3500 Irreversible dissolution 
5.4 Nontronlte 4500 3500 1700 1200 3400 Irreversible dissolution 
5.6 Biotite 4500 3840 1700 2000 3500 Irreversible dissolution 
5.5 Phlogopite 4500 3840 1700 2000 3500 Irreversible dissolution 
5.7 Vermicullite 1 4500 3840 1700 2000 3500 Alteration mineral, irreversible dissolution 
5.8 Vermicullite 2 4500 3840 1700 2000 3500 Alteration mineral, irreversible dissolution 
5.9 Vermiculite 3 4500 3840 1700 2000 3500 Irreversible dissolution 

5.10 Fe-Chlorite 4500 3800 1700 2000 3500 Irreversible dissolution 
5.14 Fe-Mg-Chlorite 4520 3500 1700 1800 3500 Irreversible dissolution 
5.17 Mg-Chlorite 4500 1400 1700 1700 3500 Irreversible dissolution 
5.19 Muscovite 3038 3800 1700 2000 4656 Irreversible dissolution 
5.21 Illite 1 4500 3800 1700 2000 3500 Alteration mineral, irreversible dissolution 
5.22 Illite 2 4500 3800 1700 2000 3500 Alteration mineral, irreversible dissolution 
5.23 Illite 3 4500 3800 1700 2000 3500 Irreversible dissolution 
5.24 Montmorillonite 4300 3840 1700 2000 3500 Alteration mineral, irreversible dissolution 
5.27 All other phyllosilicates 4410 3770 1700 2000 3500 Irreversible dissolution 

7. Cyclosilicates 
6.1 Tourmaline 3600 3100 1700 1800 2500 Irreversible dissolution 
6.2 Cordierite 2600 5900 1700 2000 2000 Irreversible dissolution 
6.3 All other cyclosilicates 3100 4500 1700 1900 2250 Irreversible dissolution 

8. Sorosilicates 
7.1 Epidote 5330 3800 1700 2000 2300 Irreversible dissolution 
7.2 Zoisite 4400 3900 1800 2200 3300 Irreversible dissolution 
73 All other sorosilicates 4375 3850 1750 2100 3300 Irreversible dissolution 

10. Oxides and simple aluminosilicates 
8.1 Kaolinite 5310 3580 1700 2000 4100 Irreversible dissolution, gibbsite possible outcome 
8.2 Gibbsite 3400 3600 1700 2000 3170 Alteration mineral, irreversible dissolution 
8.3 Quartz 3890 n.a. 2200 2000 3320 Reversible reactions, back reaction, dissolution is kinetically limited 

11. Volcanic glasses 
9.1 Volcanic glass, base cation poor 3890 3010 2400 2800 2700 Irreversible dissolution 
9.2 Volcanic glass, base cation rich 4500 3310 2500 2800 3400 Irreversible dissolution 
9.3 All other volcanic glasses 4200 3110 2450 2800 3050 Irreversible dissolution 

10 Carbonates 
10.1 Calcite and limestones 444 1180 2180 2200 - Reversible reaction, Back reaction important 
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10.2 Aragonite 530 1210 2200 2400 - Reversible reaction, Back reaction important 
10.3 Dolomite 1880 2700 1800 2200 - Irreversible dissolution. Back reaction to calcite and magnesite 
10.5 Siderite 3300 3500 1700 2000 2500 Irreversible dissolution 
10.6 Rhodochrosite 3300 3500 1700 2000 2500 Irreversible dissolution 

11 Phosphates 
11.1 Apatite 3500 4000 1700 1200 2500 Irreversible dissolution, precipitates with oxalate and aluminium important 
11.2 Fluoroapatite 1110 4790 1700 1200 2500 Irreversible dissolution, precipitates with oxalate and aluminium important 
11.3 Immobilized inorganic phosphorus, all other phosphorus 2350 4000 1700 1200 2200 Possibly reversible reaction 

 
Table 5. Stoichiometry of the minerals applied in Tables 3 and 4. 

1a. Feldspars 
 Mineral Formula 

1.1 K-Feldspar KAlSi3O8          =   Or 
1.2 K-Feldspar I; Orthoclase, K-Feldspar I; Sanidine, 100-90% Or97An3 
1.3 K-Feldspar II; 90%, Microcline Or97Ab2An1 
1.4 K-Feldspar II; 80%, Orthoclase Or80Ab20 
1.5 Anorthoclase Or20Ab62An17 
1.6 Albite NaAlSi3O8            =    Ab 
1.7 Plagioclase; Oligoclase Ab85An015 
1.8 Plagioclase; Labradorite Ab46An54 
1.9 Plagioclase; Bytownite Ab22An78 

1.10 Plagioclase; feldparic Anorthite Ab6An94 
1b. Zeolites with tectosilicate structure 

1.12 Helulandite (Ca,Na) 0.45Al0.89Si3.1O8· 2.7 H2O 
1.13 Analcime NaAlSi2O6·H2O 
1.14 Clinoptilolite (Na,K,Ca)2-3Al3(Al,Si)2Si13O36· 12H2O 
1.15 Stilbite Na0.09Ca0.66AlSi3O8· 3.1 H2O 

2. Nesosilicates 
2.1 Monticellite CaMgSiO4 
2.2 Tephoite Mn2SiO4 
2.3 Nepheline (Na0.75K0.25)AlSiO4 
2.4 Anorthite CaAl2Si2O8         =            An 
2.5 Forsterite Mg2SiO4 
2.6 San Carlos, Arizona Forsterite 

Salem, Tamil Nadu Indian olivine 
Norwegian Olivine (Fo65Fa35) 

Mg1.81Fe0.19SiO4 
Mg1.84Fe0.16SiO4 
Mg1.5Fe0.35Al0.02Si1.04O4 

2.7 Fayalite Fe2SiO4 
2.8-2.12 Generic garnet, continuous series  Al44Py44Gr12, Al65Py35,  Ad80Gr20, Al50Py40Gr10, Gr88Py6Ad6 

2.13 Grossular Ca3Al2(SiO4)3;   
2.14 Almandine =Al Fe3Al2(SiO4)3 
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10.2 Aragonite 530 1210 2200 2400 - Reversible reaction, Back reaction important 
10.3 Dolomite 1880 2700 1800 2200 - Irreversible dissolution. Back reaction to calcite and magnesite 
10.5 Siderite 3300 3500 1700 2000 2500 Irreversible dissolution 
10.6 Rhodochrosite 3300 3500 1700 2000 2500 Irreversible dissolution 

11 Phosphates 
11.1 Apatite 3500 4000 1700 1200 2500 Irreversible dissolution, precipitates with oxalate and aluminium important 
11.2 Fluoroapatite 1110 4790 1700 1200 2500 Irreversible dissolution, precipitates with oxalate and aluminium important 
11.3 Immobilized inorganic phosphorus, all other phosphorus 2350 4000 1700 1200 2200 Possibly reversible reaction 

 
Table 5. Stoichiometry of the minerals applied in Tables 3 and 4. 

1a. Feldspars 
 Mineral Formula 

1.1 K-Feldspar KAlSi3O8          =   Or 
1.2 K-Feldspar I; Orthoclase, K-Feldspar I; Sanidine, 100-90% Or97An3 
1.3 K-Feldspar II; 90%, Microcline Or97Ab2An1 
1.4 K-Feldspar II; 80%, Orthoclase Or80Ab20 
1.5 Anorthoclase Or20Ab62An17 
1.6 Albite NaAlSi3O8            =    Ab 
1.7 Plagioclase; Oligoclase Ab85An015 
1.8 Plagioclase; Labradorite Ab46An54 
1.9 Plagioclase; Bytownite Ab22An78 

1.10 Plagioclase; feldparic Anorthite Ab6An94 
1b. Zeolites with tectosilicate structure 

1.12 Helulandite (Ca,Na) 0.45Al0.89Si3.1O8· 2.7 H2O 
1.13 Analcime NaAlSi2O6·H2O 
1.14 Clinoptilolite (Na,K,Ca)2-3Al3(Al,Si)2Si13O36· 12H2O 
1.15 Stilbite Na0.09Ca0.66AlSi3O8· 3.1 H2O 

2. Nesosilicates 
2.1 Monticellite CaMgSiO4 
2.2 Tephoite Mn2SiO4 
2.3 Nepheline (Na0.75K0.25)AlSiO4 
2.4 Anorthite CaAl2Si2O8         =            An 
2.5 Forsterite Mg2SiO4 
2.6 San Carlos, Arizona Forsterite 

Salem, Tamil Nadu Indian olivine 
Norwegian Olivine (Fo65Fa35) 

Mg1.81Fe0.19SiO4 
Mg1.84Fe0.16SiO4 
Mg1.5Fe0.35Al0.02Si1.04O4 

2.7 Fayalite Fe2SiO4 
2.8-2.12 Generic garnet, continuous series  Al44Py44Gr12, Al65Py35,  Ad80Gr20, Al50Py40Gr10, Gr88Py6Ad6 

2.13 Grossular Ca3Al2(SiO4)3;   
2.14 Almandine =Al Fe3Al2(SiO4)3 
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2.15 Spessartine = Sp Mn3Al2(SiO4)3 
2.16 Andradite = Ad Ca3Fe2(SiO4)3 
2.17 Uvarovite = Uv Ca3Cr2(SiO4)3 
2.18 Pyrope = Py Mg3Al2(SiO4)3 
2.19 Staurolite Mg0.2Fe1.2Al7.4Si4.3O22(OH)2 
2.20 Disthene Al2SiO5 
2.21 Kyanite Al2SiO5 

2.223. Pyroxenes (End members are diopside, hedenbergite, enstatite, ferrosillite) 
3.1 Alite (T-slag, K-slag) Ca3SiO5  or (CaO)3SiO2 
3.2 Wollastonite (Ca22Si2O6) Ca1.7Mg0.11Si2.2O6 
3.3 Spodumene (LiAlSi2O6) LiAl0.86Fe0.3Si2O6 
3.4 Diopside (CaMgSi2O6) Ca1.04Mg1.0Al0.02Fe0.01Si2.03O6, Ca0.8Mg0.8Fe0.2Al0.2Si2O6 

3.5 Jadeite (NaAlSi2O6) Na1.0Ca0.2Fe0.3AlSi2O6 
3.6 Leucite (KAlSi2O6) Na0.05K1.09Al1.15Si2.3O6 
3.7 Augite I He55En45  
3.8 Augite II En51Wo39He10 
3.9 Hedebergite (CaFeSi2O6) Ca0.4Mg0.7Fe0.09Al0.15Si1.86O6 

3.10 Augite III Ca0.86Mg1.0Fe0.02Si2O6 
3.11 Enstatite (Mg2Si2O6) Mg1.7Fe0.3Si2O6 
3.12 Hypersthene MgFeSi2O6 (En50Fs50) 
3.13 Ferrosilite  Fe2Si2O6 
3.14 Bronzite (mixed) Mg1.54Fe0.42Ca0.2Si1.9O6 (En70He10Fs20) 
3.15 Pidgeonite Mg50Ca15Fe35 Si2O6 
3.16 Mixed pyroxenes  Ca0.8Mg0.9Fe0.3Al0.04Si2O6   (DiXEnYFsZHeW) 

4. Amphiboles 
4.1 Glaucophane Na2MgFe2Al2Si8O22(OH)2 
4.2 Pargasite NaCa2(Mg4Al)(Si6Al2)O22(OH)2.  
4.3 Hornblende I (Norwegian) Ca2.1Mg4.5 Na0.08Al2.1Si7O22(OH)2(PO4)0.01 
4.4 Hornblende II (Canadian) Ca2.0Mg4.0 Na0.16Al0.4Si8.3O22(OH)2 

4.5 Tremolite Ca2Mg5Si8O22(OH)2 
4.6 Riebeckite Na2Fe2+3Fe3+2Si8O22(OH)2 
4.7 Anthophyllite Mg5.7FeAl0.1Si7.8O22(OH)2 
4.8 Other amphiboles Various compositions 

5. Phyllosilicates 
5.1 Glauconite (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2 
5.2 Serpentine, Antigorite,  Chrysotile Mg4.1Fe0.4Al0.15Si2.8O10(OH)4,,        (Mg, Fe)3Si2O5(OH)4 

5.3 Talc Mg2.8Fe0.18Si4O10(OH)3 
5.4 Nontronite Ca.5(Si7Al.8Fe.2)(Fe3.5Al.4Mg.1)O20(OH)4 
5.5 Phlogopite K1.0Mg3Al1.0Si3O10(OH)2. 
5.6 Biotite K0.9Mg1.9Fe1.1Al1.0Na0.1Si3O10(OH)2 
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5.7 Mg-Vermicullite I K0.5Mg1.5Fe1.1Al1.7Na0.05Si3O10(OH)2 
5.8 Mg-Vermicullite II K0.3Mg1.Fe1.1Al1.5Si3O10(OH)2 
5.9 Mg-Vermiculite III K0.1Mg0.5Fe1.1Al2Si3O10(OH)2 

5.10 Fe-Vermiculite (Mg,Fe+2,Fe+3)3[(Al,Si)4O10](OH)2·4H2O 
5.11 Illitic vermicullite K0.35Mg0.11Ca0.03Al2.13Fe0.32Ti0.07Si3.4O10(OH)2 
5.12 Vermiculite Al-OH interlayer mineral (Mg, Al, Fe2+)3 (Si,Al)4 O10 (OH)2·nH2O 
5.13 Fe-Chlorite V, Chamosite Fe5Al2Si3O10(OH)8 
5.14 Chlorite IV (mixed) Mg0.7Fe2.7Al2.3Si3O10(OH)8 
5.15 Chlorite III (mixed) Mg2Fe3Al2Si3O10(OH)8 
5.16 Chlorite II (mixed) Mg4.9Fe0.6Al1.4Si3O10(OH)8 
5.17 Mg-Chlorite I, Clinochlore Mg5Al2Si3O10(OH)8 
5.18 Smectite Ca0.2Mg1.0Na0.13Al1.0Si4O10(OH)2 
5.19 Muscovite KAl3Si3O10OH2 
5.20 Muscovite (mixed) K0.9Na0.02Mg0.3Fe0.4Al2.7Si3.5O10(OH)2 
5.21 Illite I K0.Mg0.28Fe0.3Al2.6Si3.3O10(OH)2 
5.22 Illite II K0.7Mg0.26Fe0.1Al2.5Si3.1O10(OH)2 
5.23 Illite III K0.6Mg0.25Al2.3Si3O10(OH)2 
5.24 Montmorillonite Ca0.2Mg1.0Na0.13Al1.0Si4O10(OH)2 
5.25 Bentonite See illite 
5.26 Sericite KAl2Si3O10(OH)2 

6. Cyclosilicate 
6.1 Tourmaline Ca1.0Fe3MgAl5Si6O18(BO3)3(OH)4(PO4)0.01 
6.2 Cordierite Ca3.5Fe0.07K0.09Al3.3Si4.6O18 

7. Sorosilicates 
7.1 Epidote Ca1.5 K0.46Fe0.74Al1.5Si3.4O12(OH) 
7.2 Zoisite (Clino-) Ca2.2Fe0.13Al1.5Si3.2O12(OH) 

8. Clay minerals 
8.1 Kaolinite Al2Si2O5(OH)4 
8.2 Gibbsite Al(OH)3 
8.3 Quartz SiO2 

9. Glasses 
9.1 Volcanic glass, base cation poor Ca0.2Mg0.2K0.4Na0.4Al0.8Si3O8 
9.2 Volcanic glass, base cation rich Ca0.62Mg0.53K0.27Na0.27Al0.66Si2.68O8 

10. Carbonates 
10.1a Calcite (Ca) (CaCO3) 99.9(Ca5(PO4)3(OH))0.1 
10.1b Köping limestone Ca97Do2Ma1Ap0.1 
10.1c Red Öland limestone Ca97Do1Sd2Ap0.1 
10.1d Ignaberga limestone Ca50Ar45Do1Sd2Ap0.5 
10.2 Aragonite (Ar) (CaCO3) 99.9(Ca5(PO4)3(OH))0.1 
10.3 Dolomite (Do) (CaMg(CO3)2)99.9(Ca5(PO4)3(OH))0.1 
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10.4 Magnesite (Ma) MgCO3 
10.6 Rhodochrosite MnCO3 
10.5 Siderite (Sd) FeCO3 

11. Phosphorus minerals 
11.1 Apatite (Ap) Ca5(PO4)3(OH) 
11.2 Fluoroapatite Ca5(PO4)3(OH0.7F0.3) 
11.3 Immobilized inorganic phosphorus Unknown, assume as semi-apatite (Ca3AlFe0.5)5(PO4)(F0.1OH0.4(CO3)0.5) 
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Appendix. Overview of the PROFILE family of weathering rate modelling codes 2109 
 2110 

A large number of computational weathering models are based on PROFILE approach. To clarify these 2111 
models and their interconnections the following list is provided 2112 
 2113 
1. Steady-state weathering rate models 2114 

a. 1987-1995; Warfvinge P. and Sverdrup, H.; The single site version of the PROFILE model for 2115 
the calculation and mapping of critical loads and rates of field chemical weathering was developed. 2116 
It has been validated and used operationally in more than 50 countries worldwide. It uses 2117 
laboratory generated kinetic models and coefficients to predict field weathering rates. The 2118 
interface software for PROFILE became outdated, thus, this version is no longer available. 2119 

b. 1992-present; Sverdrup, H., Warfvinge, P., Alveteg, M., Walse, C., Kurz, P., Posch, M., Belyazid, 2120 
S.; The code RegionalPROFILE was developed. This code is a regionalized version of 2121 
PROFILE, used for creating weathering rate maps for soils and catchments across regions and 2122 
countries, as well as to estimate critical loads for forest soils. Updated versions of the code are 2123 
available upon request from Sverdrup, Akselsson or Belyazid. 2124 

c. 2000; Sverdrup, H. and Alveteg, M., The CLAY-PROFILE code was developed. This model was 2125 
made for volcanic and clayey agricultural soils. This code is no longer operable. Archived, the 2126 
code is available upon written request from Sverdrup or Belyazid. 2127 

2. Dynamic weathering models  2128 
a. 1987-2008; Warfvinge P., Sverdrup, H., Alveteg, M., Walse, C., Martinsson, L.: The SAFE model 2129 

and its helper routine MakeDep were created. SAFE is a generally applicable dynamic soil 2130 
chemistry and acidification model. This tool is used worldwide for acidification research, forest 2131 
sustainability assessments and for mapping critical loads.  2132 

b. 1995-1996; Rietz, F., Sverdrup, H., Warfvinge, P.; The SkogsSAFE model was developed. This 2133 
long-term dynamic model simulates soil genesis, mineralogy dynamics, soil chemistry and base 2134 
cation release from chemical weathering in soils over time since the most recent glaciation (14,000 2135 
years ago to present) (Rietz 1995, Warfvinge et al., 1996). This code is written in FORTRAN. 2136 
This code and its databases are available upon written request from Sverdrup.  2137 

c. 1996-2004; Sverdrup, H., Wallman P., Belyazid, S., Alveteg, M., Walse, C., Martinsson, L.: These 2138 
scientists developed ForSAFE, an integrated biogechemical forest ecosystem model for growth, 2139 
nitrogen and carbon cycling. This code is written in FORTRAN code, and the code is available 2140 
upon written request from Sverdrup or Belyazid. 2141 

3. Regional mineralogy estimation 2142 
a. 1990; Sverdrup, H., Melkerud, P. A., Kurz, D.: The UPPSALA model was developed for the 2143 

reconstruction of soil mineralogy from soil total analysis data. This model is run in a spreadsheet. 2144 
It is available upon written request from Sverdrup. 2145 

b. 1998; Sverdrup, H. and Erdogan, B. The Turkey mineral depletion model (TMD) was developed.  2146 
This model estimates soil mineralogy from bedrock geology and estimates of soil age. This code 2147 
is written in STELLA®. It is archived and available upon written request from Sverdrup. 2148 

c. 2005-2010; Posch, M., Kurz, D., Alveteg, M., Akselsson, C., Eggenberger, U., Holmqvist, J; 2007 2149 
A2M, a model to quantify mineralogy from geochemical analyses was developed. This code is 2150 
available on-line from doi:10.1016/j.cageo.2006.08.007, 2151 
https://dl.acm.org/citation.cfm?id=1231715or from Kurz or Akselsson (Posch et al., 2006, 2007). 2152 

 2153 
These models are not commercial products. They do not have ready-made handbooks (only the early single 2154 
site PROFILE models had a good users interface and a user’s manual).  The models are available, but the best 2155 
option to learn how to run these get training from the contact scientists in how to operate the models and how 2156 
to set up the input data for a site or a region. The core code is written in FORTRAN2157 
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