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Abstract. Our understanding of climate and vegetation changes throughout the Holocene is hampered by biases in the proxy

representativeness in sedimentary archives. Such potential biases are identified by comparing proxies to modern environments.

Consequently, it becomes important to conduct multi-proxy studies and robust calibrations. The taiga-steppes of the Mongolian5

plateau, ranging from the extremely cold-dry Baikal basin to the Gobi desert, are characterized by low annual precipitation

and continental annual air temperature as well as livestock grazing. The characterization of the climate system of this area

is crucial for the understanding of Holocene Monsoon Oscillations. This study focuses on the calibration of proxy-climate

relationships for pollen and glycerol dialkyl glycerol tetraethers (GDGTs) by comparing large published Eurasian calibrations

with a set of 53 new surface samples (moss, soil and surface sediments). We show that: (1) preserved pollen assemblages are10

clearly imprinted on the extremities of the ecosystem range but mitigated and unclear on the ecotones; (2) for both proxies,

inferred relationships depend on the geographical range covered by the calibration database as well as on the sample nature; (3)

local calibrations, even those derived to the low range of climate parameters encompassed in the study area, better reconstruct

climatic parameters than the global ones by reducing the limits for saturation impact, and (4) a bias in climatic reconstructions

is induced by the over-parameterization of the models by addition of artificial correlation. We encourage the application of this15

surface calibration method to consolidate our understanding of the Holocene climate and environment variations.
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1 Introduction

Since the understanding of the interactions between climate model outputs and their input proxies is a major issue in future

climate change modelling, resolving the issue of climate proxy calibration is crucial (Braconnot et al., 2012). Current changes20

in extremely cold environments (Masson-Delmotte, 2018), such as Mongolia and Siberia, are amplified compared with other

places around the world (Tian et al., 2014) and the drivers of the current degradation of Mongolian environments still need

to be understood. From a climatic point of view, Mongolia is on a junction between the westerlies which are driven by the

North Atlantic Oscillation (NAO) and the East Asian Summer Monsoon which is linked to the El Niño-Southern Oscillations

(ENSO) and the Inter-tropical Convergence Zone. The Mongolian plateau is a hinge area: the high altitude of the Altaï range25

to the west and the Sayan range to the north-west of the country block both the westerlies arriving from the northern Atlantic

ocean through the Siberian basin and the East Asian Summer Monsoon (EASM, Chen et al., 2009) (ITCZ, An et al., 2008).

Lake sediment archives are commonly used to infer past variations of the climate systems associated with vegetation and

human land use (Lehmkuhl et al., 2011; Felauer et al., 2012; Wang and Feng, 2013). Among the proxies available, pollen and30

geochemical biomarkers are commonly used as past climate indicators (Ter Braak and Juggins, 1993; Weijers et al., 2007b).

The pollen signal displays shifts in vegetation composition and structure (Bennett and Willis, 2002) and allows quantitative

reconstructions of climate parameters such as precipitation regime and temperatures (Ter Braak and Juggins, 1993; Birks et al.,

2010; Ohlwein and Wahl, 2012; Wen et al., 2013; Cao et al., 2014). Since vegetation structure and pollen production are mainly

influenced by climatic parameters (Zheng et al., 2008), the palaeo pollen signal is very often interpreted as a response to the35

climate variations through time (Kröpelin et al., 2008; Wagner et al., 2019). Even if human activities influence pollen rain as

well (Hjelle, 1997; Hellman et al., 2009a), these empirical observations of the pollen-climate relation leads to the development

of semi-quantitative (Ma et al., 2008) and quantitative calibrations (Brewer et al., 2007; Schäbitz et al., 2013) of the signal.

Different methods have been developed to reconstruct past climates: Indicator Taxa approaches, Assemblages approaches,

Transfer Functions (TF) and methods based on vegetation models (Birks et al., 2010; Bartlein et al., 2011; Ohlwein and Wahl,40

2012). More precisely, these methods are: the inverse method (IM, Huntley and Prentice, 1988), the Weighted Averaging Partial

Least Squares regression (WAPLS, Ter Braak and Juggins, 1993; Ter Braak et al., 1993), the Artificial Neural Networks (ANN,

Peyron et al., 1998), the Modern Analogue Technique (MAT, Overpeck et al., 1985; Guiot, 1990; Jackson and Williams, 2004),

the Response Surface Technique (RST, Bartlein et al., 1986), Probability Density Functions (PDF, Kühl et al., 2002), Modified

Mutual Climate Range Method (MMCRM, Klotz et al., 2003, 2004), Bayesian Hierarchical Models (BHM, Ohlwein and Wahl,45

2012), etc. Despite some problems and pitfalls, Seppä et al. (2004) demonstrated that pollen-inferred climate reconstructions

are generally consistent and agree well with other independent climatic reconstructions (for northern Europe).

Among the glycerol dialkyl glycerol tetraethers (GDGTs), four distinct groups have been described: the isoprenoid-GDGTs

(isoGDGTs, Hopmans et al., 2000), the branched-GDGTs (br–GDGTs, Damsté et al., 2000; Weijers et al., 2007a, b; Crampton-50

Flood et al., 2019), the Glycerol Monoalkyl Glycerol Tetraethers (H-GDGTs, Naafs et al., 2018) and the hydroxy-GDGTs
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(OH-GDGTs, Liu et al., 2012). GDGT assemblages reflect bacterial activity in rivers (De Jonge et al., 2014b), soil (De Jonge

et al., 2014a) or lakes (Dang et al., 2018) which is also linked to climate parameters (Weijers et al., 2007b), soil typology and

vegetation cover (Davtian et al., 2016), which in turn imply land cover and land use. Accurate determinations of the relation-

ships between GDGT assemblages and climate still need some improvements (Naafs et al., 2018) and especially on local to55

regional scales and in extreme environments.

To evaluate the provenance and the climatic information br–GDGTs bear, several indices have been proposed in the literature

(Table. S1). The first proposed to determine the origin of the GDGTs is the BIT index (Hopmans et al., 2004), followed by the

IIIa/IIa index Xiao et al. (2016). Furthermore, it has been shown both empirically (Weijers et al., 2004; Huguet et al., 2013)60

and on cultures of pure strains (Salvador-Castel et al., 2019 in press) that organisms adjust their membrane plasticity by the

degree and the position of these compounds. The br–GDGT assemblages are also a function of the bacterial species (Naafs

et al., 2018) present in the environment. To monitor these changes, CBT and MBT indexes linked to environmental factors such

as climate and soil parameters have been proposed (Weijers et al., 2007b; Huguet et al., 2013). Some more accurate indexes

have been proposed by De Jonge et al. (2014a) to limit the multi-correlation systems such as MBT′5Me which is independent65

of the pH and CBT5Me which is more representative of the soil pH than the former version of the index. The statistical rele-

vance of these indexes is a major issue in br–GDGT calibration (Crampton-Flood et al., 2019). Some regional indexes for soil

temperature such as Index1 (De Jonge et al., 2014a) and Index2 for Chinese soils (Wang et al., 2016) have been explored too.

For the moisture variations, the Ri/b index has been proposed as a reliable aridity proxy (Yang et al., 2014; Xie et al., 2012).

It has been shown that a linear relation exists between these GDGT indexes and some climatic features (Yang et al., 2014; Lei70

et al., 2016). The Siberian and Mongolian surface soil samples are used to calibrate new climatic relation with GDGTs.

In recent decades, climate calibrations have been proposed in arid central Asia from pollen semi-quantitative climate recon-

struction (Ma et al., 2008), pollen transfer functions (Herzschuh et al., 2003, 2004; Cao et al., 2014; Zheng et al., 2014), and

br–GDGT regression models (Sun et al., 2011; Yang et al., 2014; Ding et al., 2015; Wang et al., 2016; Thomas et al., 2017).75

These studies focus on areas around the EASM line (fig. 2, Chen et al., 2010; Li et al., 2018), while our study took place on

the northernmost part of this climatic system (Haoran and Weihong, 2007). Moreover, we apply for the first time a multi-proxy

calibration comparison study.

The aim of this study is to take advantage of new, modern surface sample datasets in Siberia and Mongolia to propose an80

adapted calibration of pollen and bacterial biomarker proxies for cold and dry environments. For that purpose, local calibrations

are compared with large calibrations to infer the influence of calibration scale and proxy types on derived climatic parameters.

Our approach is summarized in the following steps:

1. Collection of a new set of modern surface samples for Mongolia with homogeneous characterisation of their bioclimate

environment.85
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2. Evaluation of the match between actual bioclimate environments and the associated pollen rain and biomarker assem-

blages.

3. Creation of local Siberia-Mongolia climate calibrations for pollen and GDGTs and application of these calibrations to

provide climate reconstructions.

4. Comparison of local and global calibrations on the Mongolian study case.90

5. Discussion of the implications of the calibration discrepancies in terms of climatic reconstructions in arid and cold

environments.

2 Mongolian and Siberian Study Area

2.1 Sampling Area and Sample Types

The study area lies from 52◦29′N to 43◦34′N in latitude and from 101◦00′E to 107◦06′E in longitude. The surface samples95

were collected around Lake Baikal (n=12, Irkoustsk Oblast, Russia, Fig. 1.G) and the samples gathered throughout Mongo-

lia were taken in autumn 2016 following five transects (n=29): in the Sayan range (MRUT1), in the Khentii mountain range

(MMNT1 and MMNT2, Fig. 1.E), in the Orkhon valley (MMNT3), in the Gobi desert and the Gobi-Altai range (MMNT4,

Fig. 1.D). Finally, the Khangai mountains were sampled with surface and top lacustrine sediment samples (MMNT5S01 to

MMNT5M07, Fig. 1.F). For each site, the Garmin eTreX10 was used to record GPS coordinates to five-meter accuracy (Sup-100

plementary Table S1). Depending on aridity and vegetation at each site, a soil or a moss polster was sampled. Moss acts as a

pollen trap recording a three to five-year mean pollen signal (Räsänen et al., 2004). In drier areas, the soil surface samples have

the same function, in spite of a lower pollen conservation (Lebreton et al., 2010). In parallel, the two types of sample were also

used for actual GDGT analysis following the calibration approaches presented in De Jonge et al. (2014a), Davtian et al. (2016)

and Naafs et al. (2017, 2018).105

2.1.1 Vegetation and Biomes

The central part of the Mongolian plateau is characterized by a dry and cold flat desert with a 1220 m.a.s.l. median elevation

(Fig. 1.A, Wesche et al., 2016) and is intersected in its northern part by the Khentii range and in its southern part by the

Gobi-Altai range aligned along a NW-SE direction. A wet and cold highland in the Khangai ranges culminates at 4000 m.a.s.l

and a flatter and wetter Mongolian area, the Darkhad basin, is located in the north, close to the Russian border on the edge of110

the Siberian Sayan range. In the northernmost area, the geography is characterized by the Baikal lake basin at a lower altitude

(around 600 m.a.s.l) (Fig. 1.G) Demske et al., 2005).

The distribution of vegetation and biomes follows a latitudinal belt organization: in the North the boreal forest presents

a mosaic of light-taiga dominated by Pinus sylvestris mixed with birches (Demske et al., 2005). On the Mongolian plateau,115
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Figure 1. A: Topographic map of Mongolia (from ASTER data) with the surface samples and weather stations considered in the present study;

B: Mean Annual Precipitations; C: Mean Annual Air Temperatures; D: Focus on the samples surrounding the Taatsiin Tsagaan Lake, Gobi

desert; E: Focus on the samples along a valley in the Khentii range; F: Localisation of Khangai surface samples; G: Focus on the Baikal Lake

transect. The Mongolian GIS Data is issued from a dataset ASTER (https://biosurvey.ku.edu/directory/nicholas-kotlinski), the meteorological

dataset from WorldClim2 and infrastructures from public dataset (ALAGaC) (https://marine.rutgers.edu/ cfree/gis-data/mongolia-gis-data/)
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the dark-taiga dominated by larches (Larix sibirica) and Siberian pines (Pinus sibirica) also presents some spruces and fewer

birches (Betula spp.). The Mongolian taiga is constrained to a region spanning from the Darkhad Basin to the Khentii range

(Fig. 1.A). On the north face of the Khangai piedmont, the vegetation is dominated by a mosaic of forest-steppe ecosystems:

the steppe is dominated by the Artemisia spp. associated with Poaceae, Amaranthaceae, Liliaceae, Fabaceae and Apiaceae.

On these open-lands there are some patches of taiga forest, following roughly the broadside and the northern face of the crest120

letting on to the grasslands in the valley. The two last vegetation layers through the elevation gradient is an alpine meadow

dominated by Cyperaceae and Poaceae with a huge floristic biodiversity and an alpine shrubland with pioneer vegetation on

the summits. On the southern slope of the range, the ecotone between the steppe and the desert vegetation extends hundreds of

kilometers from the northern part of the Gobi desert (with water supplied by the Gobi lake area in the middle) to the Gobi-Altai

range in the south (Klinge and Sauer, 2019). In the southernmost part of the country, the warm and dry climate conditions125

favour desert vegetation dominated by Amaranthaceae, Nitrariaceae and Zygophyllaceae. The vegetation cover is lower than

25% and is mainly composed of short herbs, succulent plants and a few crawling shrubs.

2.2 Bioclimate Systems

In the central steppe-forest biome the vegetation is marked by an ecotone with short grassland controlled by grazing in the130

valley and larches on the slopes. The forest is gathered in patches constituting between 10% and 20% of the total vegetation

cover. There are also some patches of Salix and Betula riparian forests among the sub-alpine meadows on the upper part of

the range. This vegetation is characteristic of the northern border of the Palaearctic steppe biome (Wesche et al., 2016). This

biome is characterised by a range of 800 to 1600 m.a.s.l, a Mean Annual Air Temperature (MAAT, Fig. 1.C) between -2 and

2◦C and a Mean Annual Precipitations (MAP, fig. 1.B) from 180 to 400 mm.yr−1 (Wesche et al. (2016) based on Hijmans135

et al., 2005). In Mongolia, even if the MAP are very low (MAPMongolia ∈ [50;500]mm.yr−1), the major part of the water

available for plants is delivered during late spring and early summer, in contrast to Mediterranean and European steppes (Bone

et al., 2015; Wesche et al., 2016). These seasons are the optimal plant growth periods. Mongolian summer precipitations are

controlled by the East Asian Summer Monsoon system (EASM) instead of the Westerlies’ winter precipitation stocked onto

the Sayan and Altai range (Fig. 2, An et al., 2008).140

3 Methods

3.1 Pollen Analysis and Transfer Functions

Different chemical processes were performed on the samples: the mosses were deflocculated by KOH and filtered by 250µm

and 10µm sieves to eliminate the vegetation pieces and the clay particles. Then, acetolysis was performed to destroy biological145

cells and highlight the pollen grains. For the soil samples, 2 steps of HCl and HF acid attacks were added to the previous pro-

6

https://doi.org/10.5194/bg-2019-475
Preprint. Discussion started: 30 January 2020
c© Author(s) 2020. CC BY 4.0 License.



tocol to remove all the carbonate and silicate components. All the residuals were finally concentrated in glycerol and mounted

between slide and lamella. The pollen counts were carried out with a Leica DM1000 LED microscope on a 40× magnification

lens. The total pollen count size was determined by the asymptotic behaviour of the rarefaction curve. This diagram was plotted

during the pollen count using PolSais 2.0, software developed in Python 2.7 for this study. The rarefaction curve was fitted with150

a logarithmic regression analysis. The counter was suspended whenever the regression curve reached a flatter step (Birks et al.,

1992). A threshold for the local derivation at dx/dy = 0.05 was set. The total count is usually around n ∈ [350;500] grains for

steppe or forest and n ∈ [250;300] for desert slides.

Among all of the pollen-inferred climate methods, the MAT and the WAPLS were applied in this study on 4 different155

modern pollen datasets. The MAT consists of the selection of a limited number of analogue surface pollen assemblages with

their associated climatic values. (Jackson and Williams, 2004); while the WAPLS uses a Weight Average correlation method

on a limited number of Principal Components connecting the surface pollen fraction to the climate parameters associated

(Ter Braak and Juggins, 1993; Ter Braak et al., 1993). The first dataset, called New Mongolian-Siberian Database (NMSDB),

is composed of pollen surface samples analysed in this study (N = 49, Fig. 2). The second one is the same subset aggregated to160

the larger Eurasian Pollen Dataset (EAPDB) compiled by Peyron et al. (2013, 2017). From this dataset of 3191 pollen sample

sites, a pollen–Plant Functional Type method was applied to determine the biome for each sample according to the actual pollen

rain (Prentice et al., 1996; Peyron et al., 1998). Then, only the Cold Steppe (COST) dominant samples were extracted from the

main dataset and aggregated with the NMSDB to produce the COSTDB (N = 482 sites). Finally, a scale-intermediate dataset

of samples located within the Mongolian border merged with the Mongolian New dataset is presented as MDB (N = 151 sites).165

The relation between each taxa and climate parameter was checked and then the MAT and WAPLS methods were applied with

the Rioja package from the R environment (Juggins and Juggins, 2019).

3.2 SIG Bioclimatic Data

Because Mongolia and Siberia have relatively few weather stations (Fig.1.A), climate parameters were extracted with R from

the extrapolated climatic database WorldClim2 (Fick and Hijmans, 2017). We used Mean Annual Precipitation (MAP, Fig.1.B),170

Mean Annual Air Temperature (MAAT, Fig.1.C), as well as temperatures and precipitations for spring, summer and winter

(Tspr, Pspr, Tsum, Psum, Twin and Pwin), Mean Temperature of the Coldest Month (MTCO) and the Mean Temperature of the

Warmest Month (MTWA) in this study to characterize the actual climate. The elevation data and the topographic map originate

from the ASTER imagery (Fig.1.A). The biome type for each site derives from the LandCover database (Olson et al., 2001),

classification and field trip observations.175

3.3 GDGT Analysis

After freeze drying, about 0.6 grams of surface samples were subsampled. The Total Lipid Extract (TLE) was microwave ex-

tracted (MARS 6 CEM) with dichloromethane (DCM):MeOH (3:1) and filtered on empty SPE cartridges. The extraction was

processed twice. Following Huguet et al. (2006), C46 GDGT (GDGT with two glycerol heed groups linked by C20 alkyl chain

7
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Figure 2. Eurasian map of all the pollen surface samples included in the database. The color code refers to the biome pollen inferred for

each site. The codes are WAMX, Warm Mixed Forest; WAST Warm Steppe; TEDE, Temperate Deciduous Forest; XERO, Xerophytic

Shrubland; COMX, Cool Mixed Forest; HODE, Hot Desert; CLMX Cold Mixed Forest; PION Pioneer forest; TAIG, Taiga forest; COST,

Cold Steppe; COCO, Cold Conifer Forest; TUND, Tundra; ANTH, Anthropic environment; CLDE, Cold Deciduous Forest; CODE, Cold

Desert. The thickest points underline the COST samples selected in this study for the transfer function method. The arrows indicate the

main climatic system driving the Mongolian climate: in orange the Westerlies arriving from the North Atlantic ocean and in blue the Indian

Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). The dashed line represents the EASM limit following Chen et al.

(2010), (Li et al., 2018) and Haoran and Weihong (2007) for the northernmost part of the boundary.

and two C10 alkyl chains) was added as internal standard for GDGT quantification. Then, apolar and polar fractions were sep-180

arated on an alumina SPE cartridge using hexane: DCM (1:1) and DCM/MeOH (1:1), respectively. Analyses were performed

in hexane: iso-propanol (99.8:0.2) by High Performance Liquid Chromatography Mass Spectrometery (HPLC-APCI-MS, Ag-

ilent 1200) proceeded in LGLTPE-ENS de Lyon, Lyon, following Hopmans et al. (2016) and Davtian et al. (2018).

Statistical treatments on isoprenoid-GDGTs (Fig.4.A) and branched-GDGTs (Fig.4.B) abundances were treated following185

two methods presented in Deng et al. (2016), Wang et al. (2016) and Yang et al. (2019): compounds were gathered by chemical
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structures as cycles (CBT) or methyl groups (MBT, De Jonge et al., 2014a) or compounds and especially the br–GDGTs were

expressed as fractional abundance [xi] (Fig.4.B, Sinninghe Damsté, 2016), as follows:

f [x]i =
ni

Nbr−−GDGT∑
j=1

xj

(1)

To infer temperature from br–GDGT abundances, two kinds of model were applied: the linear relation between temperature190

and MBT–CBT indexes, and a Multiple Regression (MR) model between one climate parameter and a proportion of multiple

br–GDGT fractional abundances. For the simple linear regression model, a correlation matrix between climate parameters and

indexes was calculated using the corrplot Rcran library. For the MR models, we developed in the R environment a Stepwise

Selection Model (SSM, Yang et al., 2014) to determine the best fitting model connecting climate parameters with br–GDGTs

fractional abundances. Then we gathered some of the climate–GDGT linear relations established in previous papers (De Jonge195

et al., 2014a; Naafs et al., 2017, 2018; Sinninghe Damsté, 2016; Yang et al., 2014, 2019) focusing on a single climatic parame-

ter, MAAT (Supplementary Table S2). These models were clustered into 3 categories: the type of sample, the geographical area

and the statistical model. According to the type of environment from which the samples originated, there was peat, soil and

lake-inferred modelling. For the geographical area of samples, we discriminated the regional model (on the country or district

scale) from the global model made on the world scale. Finally, there were 2 statistical families of model: the first one was built200

on common ratios like the MBT–CBT, and the second one was inferred with the multiple regression model. All these models

were applied on the Mongolian surface samples and compared with the actual MAAT value at each site.

3.4 Statistical Analyses

GDGTs and pollen matrix were analysed with a Principal Components Analysis (PCA) to determine the axes explaining

the variance within the samples. The biotic values (pollen and GDGTs) were also compared to abiotic parameters (climate,205

elevation, location and soil features) by the way of a Redundancy Analysis (RDA). The regression models were run with

the p− value < 0.05 for the relevance of the model, the R2 for the level of correlation between the variables, the RMSE to

determine the climate error of the models and Akaike’s information criterion (AIC) to quantify the over-parameterization effect

of multiple regression models (Arnold, 2010; Symonds and Moussalli, 2011). All the statistical analyses were performed with

the Rcran project, using the ade4 package (Dray and Dufour, 2007) for multivariate analysis. All the plots were made with the210

ggplot2 package (Wickham, 2016) or the Rioja package (Juggins and Juggins, 2019) for the stratigraphic plot and the pollen

clustering using the CONISS analysis method (Grimm, 1987).
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4 Results

4.1 Pollen, Climate and Ecosystems Relations

4.1.1 Pollen Rain and Vegetation Representation215

The pollen rain (Fig. 3) is dominated by six main pollen taxa: Pinus sylvestris, Betula spp., Artemisia spp., Poaceae, Cyperaceae

and Amaranthaceae. The pollen diagram, sorted by bio-climate from the wet and relatively warm Siberian basin on the upper

part to the dry-warm Gobi desert on the bottom, presents a net AP decrease from 85% to 5%. In Fig. 5.C we can see that 34.26

% of the variance is explained by PC1 extending from positive values associated with NAP (Amaranthaceae, Poaceae and

Artemisia spp.) to negative values associated with AP (Pinus undet., Betula spp. Picea obovata and Larix sibirica). This trend220

shows the transition between ecosystems, marked by the seven main CONISS clusters (Fig. 3) and PC1 and PC2 variations

(fig. 5.C). Below are the over-representative main taxa for each of the Siberian–Mongolian transect ecosystems:

1. Light taiga dominated by Pinus sylvestris (> 70%), Pinus sibirica and very low NAP (< 5%).

2. Mixed dark taiga–birches sub-taiga with an assemblage of Larix sibirica, Picea obovata, P. sylvestris and P. sibirica.

3. Forest-steppe ecotone same AP assemblages that the dark taiga ecosystem with 20% of Artemisia spp., plus occurence225

of Poaceae, Cyperaceae, Thalictrum spp. and Convolvulus spp.

4. Steppe still dominated by Artemisia spp. (30%) and rising Poaceae (25%), Brassicaceae

5. Alpine meadow overpowered by Cyperaceae up to 50 %, Poaceae, Brassicaceae, Amaranthaceae and Convolvulus spp.

6. Steppe-desert ecotone highlighting by the transition between Amaranthaceae–Caryophyllaceae community and Poaceae–

Artemisia spp. assemblages.230

7. Desert dominated by Amaranthaceae (from 25 % to 65 %) and by rare pollen-type Caryophyllaceae, Thalictrum spp.,

Nitraria spp. and Tribulus spp.

4.1.2 Pollen – Climate Interaction

The pollen rain trends follow similar variations to bio-climate parameters in MAP, MAAT and elevation (Fig. 3). Highest

AP/NAP values are correlated to large MAP (up to 500 mm.yr−1) and relatively high MAAT (around 1 ◦C), in the low range235

Siberian basin. Then the transition between AP and NAP dominance is marked by decreases in both MAAT (-1 ◦C) and MAP

(300 mm.yr−1) connected to the high-elevation Khangai range. Finally, the dominance of NAP in the Gobi desert area is

linked to very arid conditions (MAP < 150mm.yr−1) and relatively warm MAAT (up to 4 ◦C). The correlation between the

taxa themselves and climate parameters isR2 = 0.38 (RDA, Fig.5.D). Rise in MAAT is associated with that of Amaranthaceae,

Poaceae, Sedum-type and Caryophyllaceae percentages. On the contrary, decrease in MAAT is associated with a rise in the AP240
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and Cyperaceae, Artemisia spp. and Brassicaceae percentages. MAP, fairly related to RDA1, rises with AP and decreases with

NAP (Fig.5.D). Finally, the elevation gradient favors Artemisia spp. and Cyperaceae for NAP and Salix spp. and Larix sibirica

for AP (Fig.5.D).

4.1.3 MAT and WAPLS Results

To reconstruct bioclimatic parameters from pollen data, MAT and WAPLS methods were applied on the four scales, modern245

pollen datasets and the ten climate parameters (Table 1). All these methods can be run with n ∈ [1;10] parameters: the number

of analogues for MAT and the number of components for WAPLS. The best transfer functions among all of them were selected

by the following approach: in a first step, for each climate parameter the methods fitting with the higher R2 and the lower

RMSE were selected. Then, in case the highest R2 and the lowest RMSE were not applied for the same number of analogues

or components, we chose the method presenting the lower number of parameters. Despite the small number of parameters250

relative to the number of observations, the method fits well (Arnold, 2010, table 1). MAT transfer function gives better R2 in

bigger DB than in smaller ones. Fitting increases with the diversity and the size of DB, since MAT is looking for the closest

value between climate and pollen abundance. By contrast, WAPLS fits better on the local scale and especially with a smaller

number of sites. In this case, the pull of data is largest and the variance is largest (Ter Braak and Juggins, 1993). WAPLS also

leads to better value of RMSE than R2, in contrast to MAT. For temperature, pollen fits better with Tspr or MTWA in Mongo-255

lia. Temperatures of the warmest months indeed control both vegetation extension and pollen production (Ge et al., 2017; Li

et al., 2011) and especially in very cold areas such as Mongolia. For precipitation, the significant season is the one associated

with the Summer Monsoon System in Mongolia (Wesche et al., 2016). Almost all the Mongolian precipitation falls during the

spring and the summer (Wang et al., 2010), and the amount of precipitation controls, among other parameters, the openness

of the landscape in Mongolia (Klinge and Sauer, 2019). To simplify the confrontation of the diverse models, the MAAT and260

MAP were isolated from the rest of the climate parameters. Even if these two climate parameters are not the best fitting pollen

methods, they are the easiest to interpret and are comparable with the GDGT regression models commonly based on MAAT

and MAP.

4.2 GDGT – Climate Calibration265

4.2.1 GDGT Variance in the dataset

Iso–GDGTs are dominated by GDGT0 and crenarcheol (X percent in relative abundances, respectively, in Fig.4.A). Since

the majority of these molecules are thought to be produced in the lake water column (Schouten et al., 2012), the variations

of fractional abundance in the soils and moss samples are very discrete and poorly linked to climate parameters. Br–GDGT
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concentrations differ depending on the sample type:270

[br−−GDGTtot]sed = 88± 18ng.g−1
sed (2)

[br−−GDGTtot]moss = 82± 76ng.g−1
moss

[br−−GDGTtot]soil = 24± 30ng.g−1
soil

br–GDGT fractional abundances are consistent with each type of sample: the major compounds are the Ia, II′a, IIa and IIIa

(Fig. 4B). These compounds explain dominantly the total variance (Fig. 5A). Particularly, the PC1 representing 22.77 % of the275

total variance identifies two clusters: the 5-methyl associated with the taiga samples on one side and the 6, 7-methyl associated

with the steppe and desert samples on the other side
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B

Figure 4. Fractional abundances of (A) isoprenoid-GDGTs and (B) branched-GDGTs for moss polsters (green), soil surface samples (orange)

and lacustrine core top sediments (blue). The punctuation marks ’ and " refer to 6 and 7 methyl, respectively.

The sediment samples from Mongolian lakes are more homogeneous than the surface samples, especially when compared

with the moss polsters that present a wide variability (Fig. 4B). Generally, soil samples are more relevant analogues to sediments280

than moss polsters (Fig. 4B). This variability shows an influence of the sample type on br–GDGT responses. Sample type also

bears climate information, since soil and moss polsters originate from steppe to desert environments and forest/alpine meadows,

respectively.

4.2.2 Climate Influence on br–GDGT Indexes

The influence of the bio-climate parameters on the br–GDGT matrix variance is connected with MAP (Fig. 5.B: RDA1 = 10.01%).285

The negative values show higher precipitations and uncyclized 5-Me GDGTs, such as Ia, IIa and IIIa. While the lower MAP
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Figure 5. Multivariate statistics for the proxies clustered by ecosystems. A: Principal Components Analysis (PCA) and (B) Redundancy

Analysis (RDA) for br–GDGT fractional abundances; C: PCA and (D) RDA for pollen fractions. The variance percentage explained is

displayed on the axis label; the size of the dataset (n) and the RDA linear regression (R2) are inserted in each plot area.
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match with 6 or 7-Me GDGTs, such as III′′a , II′′a , II′a. The RDA2 is slightly more connected to MAAT and elevation, also

clustering the methyled and cyclized GDGTs to the higher MAAT. The correlation between chemical structure and climate pa-

rameters (Weijers et al., 2004; Huguet et al., 2013) was not strong. All the MBT, MBT’, MBT′5Me and CBT, CBT’ , CBT5Me

relations with climate parameters were tested and showed very low correlation with R2 ∈ [0.1;0.35] (Supplementary Figure290

S3).

4.2.3 Multi-regression Models

The Stepwise Selection Model for the climate – br–GDGT modelling was applied only on the 5 and 6 Methyls, because 7-

methyled br–GDGTs show weak significance in the variance explanation (PCA, Fig. 5A). The NSSM different combinations

of the 15 br–GDGT molecules result in NSSM = 215 = 32768 models possible for each climate parameter. The better fitting295

equations (with low RMSE and AIC and high R-squared) were selected for each number of parameters (number of br–GDGT

issued in the linear regression) for both MAAT and MAP. Within the 2 series of 15 models, only 9 were selected for discussion

(Table 2). The models with the best statistical results were comprised of between 5 to 12 parameters and present a R2 ∈
[0.60;0.76], a RMSE around 1.1 ◦C or 70 mm.yr−1 and a AICMAAT ∈ [152.6;166.2] or AICMAP ∈ [152.6;166.2]. The

earlier a parameter is used in the MR models, the more influence it has. For both MAATmr and MAPmr models, IIIa, III′a,300

IIIb and III′b are the most relevant br–GDGT fractions for the climate reconstruction (Table 2) which is consistent with the

PCA and RDA observations displayed in Fig. 5A and B. The ∆T values closest to 0 reveal the best fitting model on each point

(Fig. 7, panel 1). Then, the box-plot (Fig. 7, panel 2) summarises the best fitting model at the regional scale.

5 Discussion

5.1 Over-Parameterization and Selection of the Best Methods305

Among the possible methods, statistical values help to select the most reliable ones for palaeoclimate reconstruction. However,

the correlation (R2) and errors (RMSE) are not enough to discriminate between them to identify the most suitable ones for

palaeoclimate modelling, especially for the multi-parameter methods, such as br–GDGT multi-regression models and pollen

transfer functions. Indeed, the more input parameters in the method, the more accurate it is (Tables 1, 2 and Fig. 6A and 6B). All

the regression models improve with parameter additions, and especially the less fitting methods improve exponentially (lower310

limit of the R2 area, Fig. 6B). The best R-squared-models for each parameter number (Fig. 6A) correspond to the upper limit

of the R2 area (Fig. 6B). The R2 trend in function of the parameter number follows a logistic regression both for MAATmr

and MAPmr models. However, and especially for MAATmr regression models, this logistic curve becomes asymptotic early,

similar to the RMSE decrease. This model over-parameterization has proven to produce artefacts in ecological modelling

(Arnold, 2010; Symonds and Moussalli, 2011). The issue is thus to identify the threshold in the parameter numbers selected.315

We used Akaike’s Information Criterion (AIC) to determine the better model without over-parameterization for br–GDGT

regression models: the lower the AIC, the better the model (Table 2). The trend of AIC versus the parameter number is however
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more complex (Fig. 6C). For MAATmr, the regression model becomes more accurate from one to five parameters quite rapidly,

but then slowly decreases. The AIC curve takes an asymmetrical hollow shape around five parameters with a steeper slope on

the left side (Fig. 6A). The AIC values for MAATmr6 and MAATmr7 are almost identical (Fig. 6A) . The MAPmr6,7,8 have320

almost equivalent AIC values, while the AIC curve shapes differ for the other MAPmr models (asymmetrical hollow shape

around five with a steeper slope on the left side, Fig. 6A). To sum-up, the most universal models are MAATmr5 and MAPmr7

but the closed models are also valuable in some local contexts. We need to determine the cross-values of these models to select

the appropriate ones for the Siberian-Mongolian context.

Figure 6. Statistical values plotted against the number of parameters of the different MR-GDGT models: the R2, the RMSE normalized on

the highest RMSE value and the AIC also normalized. A: selection of the two best MR models for each number of parameters; B: combination

of the R2 (B) and the AIC (C) values for of all the MR models. The blue dots are for the MAP-models, orange dots for the MAAT one.

5.2 Assessment of the Calibration Feedback325

The cross-values of the nine best MAATmr regression models (Fig. 7A1 and 7A2) and the best MAPmr regression models

(Fig. 7B1 and 7B2) were tested. The MAAT reconstructions provide different responses to the three main bio-climate areas

(parcel A1): if they properly estimate temperatures in the Siberian Baikal basin, they overestimate and underestimate them

for the center of the northern Mongolian mountains and the Gobi desert, respectively. For precipitation (parcel B1), all the

MAPmr, including the ones based on the local to regional databases, also misrepresent the extreme values: precipitation values330

are too high and too low for the Gobi desert and the Baikal basin, respectively. To conclude, the wider the dataset extension,

the more alleviated the extreme values.

Both on MAATmr and MAPmr models, the 95 % interval shrinks with parameter addition, but the mean values do not

necessarily get closer to the climate parameter measured value (the dashed line in Fig. 7.A2 and B2). Therefore, if the tests on335

the AIC point toward the MAATmr4 and the MAPmr7 regression models, the back-cross plots suggest the MAATmr3 and the
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MAPmr6 regression models provide the best estimates for climate reconstruction in lacustrine archives (∆MAP = 0 and best

fitting temperature for the mean value of all samples, Fig. 7.B2 and Fig. 7.B1).

5.3 Global vs. Local Calibration

Whatever proxy is used, when reconstructing temperatures and precipitation from past archives in a given location, there is the340

issue of basing reconstructions on calibrations based on local or global datasets (among others, Tian et al., 2014; Cao et al.,

2014; Ghosh et al., 2017, , Tierney et al., 2019 in press). We tested both approaches on our datasets. The global br–GDGT

- climate calibration artificially reaches higher R-squared than local ones due to the larger range of values of the climate

parameters involved (MAAT ∈ [−5;30] in Naafs et al. (2017) soil world dataset against MAAT ∈ [0;5] in this case study,

inducing a lower signal/noise ratio). Despite the relatively lower R-squared value of 0.62 scored by the MAATmr5 inferred345

model compared with (Pearson et al., 2011; De Jonge et al., 2014a; Naafs et al., 2017), the boxplots for the all MAATmr

calculated from the NSMDB are mostly centred on the mean MAAT value with the shortest variance spreading for all the

sites (Fig. 7C1 and 7C2). These local calibrations fit the best with the MAATDing from Ding et al. (2015) which is also a

local calibration made on the Tibet-Qinghai plateau database. The global databases made on worldwide sites (De Jonge et al.,

2014b, a; Naafs et al., 2017) provide MAATmodel >MAATreal and large standard deviation (SD). The extreme MAAT values350

are attenuated with reconstructed temperatures higher by up to +5 to +10 ◦C in the Siberian basin and the Mongolian plateau,

and lower by up to to -3 to - 5 ◦C in the Gobi desert. Finally, the local calibrations performed on subtropical to tropical Chinese

transects (Yang et al., 2014; Thomas et al., 2017) have smaller SD but largely overestimate MAAT values due to the warmer

conditions of the initial database sites.

Similarly, for pollen transfer functions, the geographic range of the surface samples on which the calibration relies is a rel-355

evant parameter to take into account for the trustworthiness of the paleoclimate reconstructions. The choice of the maximum

value of this geographic range has been discussed previously for vegetation modelling, for example, the Relevant Source Area

of Pollen (RSAP, Hellman et al., 2009a, b; Bunting and Hjelle, 2010; Prentice, 1985). For MAT and WAPLS regression mod-

els, the same issue holds true. The responses of the eight over-represented taxa to climate parameters are different in the three

geographic ranges. The linear tendency allows for checking the main trends between taxa distribution and climate parameters,360

despite the weak linear regressions (p− value > 0.005 and R2 < 0.4, in Fig. 8) For the majority of these taxa, the trend is the

same, independent of the database size (Larix spp. and Cyperaceae percentages increasing with weaker MAAT, or Amaran-

thaceae and Pinus sylvestris percentages increasing with higher MAAT). However, due to the shift between pollen types and

their associated vegetation (i.e. poaceae-pollen signal similar for a wide diversity of Poaceae communities with very contrasted

ecophysiological features), trends are controlled in some peculiar cases by the geographical clipping of the DB. Thus, Poaceae365

have a positive response to MAP on the global scale but not inside the Mongolian area. The human influence on pollen rain is

also dependent on the biogeographical context, thus, Artemisia spp. is not considered as much human influenced in the Asian

steppe environment (Liu et al., 2006) than in the European one (Brun, 2011).
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Figure 8. Relationships between the eight major pollen taxa (%TP) and MAAT (◦C, upper part of the facet plot) and MAP (mm.yr−1, lower

part). The black line is the linear fitting for all samples (COSTDB), the orange for all the samples from Mongolia (MDB) and the blue only

for the NSMDB samples presented in this article.
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Concerning modeling transfer functions, WAPLS performs better for the local database than for the MDB and COST370

database (Table 1). On these subsets, the WAPLS RMSE and R-square values are even higher than for the MAT transfer

function. The major difficulty resides in the reconstructions of precipitation. Even if the RMSE andR2 values are higher for all

models of MAP than MAAT, the influence of precipitation on vegetation cover is not well understood. In Mongolia it is clear

that the precipitation controls the treeline in mountainous areas (Klinge and Sauer, 2019) and the global openness in the steppe

- forest ecotone (Wesche et al., 2016) as well as human land-use (Tian et al., 2014), but the risk of autocorrelation between375

MAAT and MAP signals is important, even if the RMSE and R2 values are higher for MAP regression models than for MAAT

ones (Telford and Birks, 2009; Cao et al., 2014).

5.4 Issues in Modelling Mongolian Extreme Bioclimate

Firstly, the commonly used br–GDGT indexes (MBT and CBT) are not relevant for arid areas with MAP< 500mm.yr−1

because of the relation between low soil water content and soil br–GDGT preservation and conservation interferes in the br–380

GDGT / climate parameters (Dang et al., 2016). Moreover, the main issue in climate modelling in Mongolia is the narrow

relationship between MAAT and MAP. Because of the climatic gradient from dry deserts in the southern latitudes to wet taiga

forests in the northern ones, MAAT and MAP maps are strongly anti-correlated (Fig. 1 B and C). This correlation could also

be a bias resulting from the interpolation method of the WorldClim2 database. In fact, there are very few weather stations

(Fig. 1.A, Fick and Hijmans, 2017) on the large Mongolian plateau area and a great diversity of mountain ranges interrupting385

them. Moreover, the relevance of the interpolation models suffers from the transition threshold made by Mongolia between the

EASM and the Siberian Westerlies (Fig.2, An et al., 2008).

However, both GDGT and pollen models show that the precipitation calibrations are more reliable than temperature ones

(Tables 2, 1, Figures 3, 6 and 7), reflecting that the Siberian-Mongolian system seems to be controlled by precipitation. This390

dominance of precipitation could be due to seasonality. Even if the br–GDGT production is considered to be mainly linked

to MAAT (Weijers et al., 2007a, b; Peterse et al., 2012), the high pressure Mongolian climate system (Zheng et al., 2004; An

et al., 2008) favors a strong seasonal contrast: almost all the precipitation and the positive temperature values happen during

the summer (Wesche et al., 2016). Consequently, for the NMSDB pollen models (Table 1). The seasonal parameters such

as MTWA, Tsum and Psum better describe the GDGT variability than MAAT and MAP. It is the opposite on EAPDB and395

COSTDB models. The Mongolian permafrost persists half the year in the northern part of the country (Sharkhuu, 2003) and

acts on vegetation cover and pollen production (Klinge et al., 2018). Furthermore, the effects of frozen soils on soil bacterial

communities and GDGT production are thought to be important (Kusch et al., 2019). This system leads to a quasi equivalence

between MAP and PSum while MAAT is torn apart by the large TSum−Twin contrast. The MAP appears then to be the most

reliable climate parameter for Siberian-Mongolian climate studies under the threshold of about 5 ◦C.400

To reduce the signal/noise ratio, a wider diversity of sample sites should be added as initial inputs in the models. This raises

the question of the availability of reliable samples in desert areas. The soil samples in the steppe to desert biomes are often
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very dry and these over-oxic soil conditions are the worst for both pollen preservation (Li et al., 2005; Xu et al., 2009) and

GDGT production (Dang et al., 2016). br–GDGT concentrations in moss polsters and sediments are thus higher than in soils405

in our database.

The soil of the Gobi desert also has a high salinity level which is also a parameter of control on br–GDGT fractional

abundance (Zang et al., 2018). Even if the impact on sporopollenin is not well understood, the salinity also affects pollen

conservation in soils (Reddy and Goss, 1971; Gul and Ahmad, 2006). This taphonomic bias (also climatically induced) could410

explain part of the histogram variance of Fig. 4 related to the sample type as well as the shift of the soil–cluster from the

regression line in the cross-value plot of br–GDGT MBT’/CBT models in Supplementary Figure (S3)

Finally, the saturation effect of the proxies when they reach the limits of their range of appliance is also taken into account.

Since both pollen and br–GDGT signals are analysed in fractional abundance (i.e. % of the total count of concentration), these415

proxies evolve in a [0;1] space. The saturation effect appears when extreme climatic conditions are reached (Naafs et al., 2017).

For instance, in a tropical context, temperature values are too high to be linearly linked to fractional abundances (Pérez-Angel

et al., 2019). Considering pollen–climate relationships, the inferior limit of pollen percentage is critical: for the majority of

pollen types, whenever the MAAT or MAP reaches a very high or low threshold, the pollen fraction approaches zero (Fig. 8).

These limit areas need to be investigated closely, which legitimises the local calibration methods.420

6 Conclusions

The palaeoenvironmental and palaeoclimatic signals present several uncertainties which can misguide the interpretation of

past variations. This study shows how both a multi-proxy approach and accurate calibration are important in combating these

biases. We propose a new calibration for Mean Annual Precipitation (MAP) and Mean Annual Air Temperature (MAAT) from

br–GDGTs as well as a new pollen surface database available for transfer functions. The correlations between pollen rain and425

climate on one hand and br–GDGT soil production and climate on the other are visible but are still mitigated by the complex

climate system of arid central Asia and the diversity of soils and ecosystems. Precisely, each of our proxies seems to be more

narrowly linked to precipitation (MAP) than temperature (MAAT) counter to the majority of calibrations in the literature.

The nature of the samples considered (soil, moss polster and sediment top-core) also greatly affected these correlations. The

calibration work in the extreme bio-climates of the Siberian basin and Mongolian plateau is difficult because of the low430

range of climate values, despite the climate diversity ranging from cold and slightly wet (north) to the arid and warm (south).

The MAAT and MAP values do not remarkably spread in the vectorial space, which makes harder to distinguish the linear

correlation against variance noise. Moreover, this range of values is close to the lower saturation limit of the proxies, which

makes the accurate local calibration tricky but necessary. The local calibrations also suffer from the reduced size and small

geographic extent of the dataset. The vegetation cover, extending from a high cover taiga forest to nude soil desert cover, also435

buffers the climate signal and the GDGT / pollen response. The correlations between climate parameters and GDGT / pollen
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proportion are therefore lower than they could be at the global scale. Nonetheless, and despite the lower correlation of the local

calibration, these local approaches appear to be more accurate to fit with the actual climate parameters than the global ones:

both for pollen function transfer and br–GDGT multiple regression models. These positive model results have to be considered

in front of over-parameterization limits. Too many parameters in MR–GDGT models or in pollen MAT or WAPLS transfer440

function can add artificially to the linear relation between climate and proxies and lead to misinterpretation of palaeoclimate

records. Akaike’s information criterion associated with RMSE and R2 values is a fair way to select the best climate model.

We encourage the wider application of this local multi-proxy calibration for a more accurate constraint of these central Asian

climatic systems, a crucial improvement to properly model the fluctuations of the Monsoon Line since the Optimum Holocene.

Appendix A: Appendix tables445

The new calibration of climate reconstruction for Mongolia and Siberia presented in this study is based up on the New

Mongolia-Siberia Data Base (NMSDB). Location, ecosystems as well as sample type are provided in Table (S1). Published

br–GDGT/climate calibration equations are tested on the (NMSDB) (S2).

Appendix B: Appendix figure

Cross-plots allow to evaluate the efficiency of these methods (fig. S3).450
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Table 1. Statistical results of the MAT and WAPLS methods applied to four surface pollen datasets and ten climate parameters(a).

Model Database
Climate k best k best k R2 RMSE
parameter R2(b) RMSE(b) selected(c) selected(c) selected(c)

WAPLS

NMSDB

MAAT 2 2 2 0.66 1.17

MTWAQ 2 2 2 0.62 1.68

Tspr 2 2 2 0.70 1.27

MAP 2 1 1 0.79 61.67

Pspr 2 1 1 0.66 11.5

Psum 2 2 2 0.80 34.8

MDB

MAAT 2 1 1 0.35 1.91

MTWA 2 1 1 0.24 2.14

MTCO 2 1 1 0.26 2.75

MAP 3 1 1 0.23 95.11

Psum 1 1 1 0.47 46.86

COSTDB

MAAT 2 2 2 0.54 4.10

MTWA 3 2 2 0.48 3.55

MTCO 2 2 2 0.56 6.34

MAP 4 2 2 0.55 223.67

Psum 3 2 2 0.34 70.8

EAPDB

MAAT 3 3 3 0.72 4.08

MTWA 3 3 3 0.55 3.31

MTCO 3 3 3 0.72 6.49

MAP 3 3 3 0.43 239.6

Psum 2 2 2 0.52 62.33

MAT

NMSDB

MAAT 2 10 2 0.59 1.49

MTWAQ 2 9 2 0.68 1.80

Tspr 2 10 2 0.62 1.66

MAP 2 6 2 0.88 55.52

Pspr 2 4 2 0.89 8.26

Psum 2 9 2 0.82 37.82

MDB

MAAT 5 8 5 0.61 1.64

MTWA 6 9 6 0.53 1.84

MTCO 5 7 5 0.66 2.05

MAP 9 10 9 0.38 88.72

Psum 8 10 8 0.54 46.3

COSTDB

MAAT 8 9 8 0.73 3.28

MTWA 8 10 8 0.67 2.96

MTCO 6 8 6 0.78 4.78

MAP 6 8 6 0.78 166.17

Psum 6 9 6 0.66 53.55

EAPDB

MAAT 5 8 5 0.88 2.90

MTWA 5 9 5 0.79 2.50

MTCO 4 8 4 0.89 4.46

MAP 4 10 4 0.74 181.21

Psum 4 8 4 0.80 44.66

(a) Only the five better fitting regression models for each climate parameter are shown .
(b) Corresponding to the number of parameters used in the model inferring the best R2 and RMSE.
(c) Number of parameters, R2 and RMSE of the finally selected model.

30

https://doi.org/10.5194/bg-2019-475
Preprint. Discussion started: 30 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 2. Statistical values and equations of the best br–GDGT MAATmr and MAPmr models.

Model k R2 RMSE AIC Formula

MAATmr1 1 0.38 1.5 168.4 MAATmr1 =−0.5× 1 + 12.9× [IIIa
′
]

MAATmr2 2 0.52 1.4 162.6 MAATmr2 =−0.7× 1 + 13.4× [IIIa
′
] + 11.8× [IIIb]

MAATmr3 3 0.57 1.3 156.4 MAATmr3 = 0.6× 1− 25.1× [IIIa] + 12.3

×[IIIa
′
] + 7.2× [Ib]

MAATmr4 5 0.62 1.2 152.6 MAATmr4 = 4.5× 1− 36.8× [IIIa]

+7.3× [IIIa
′
]− 37.2× [IIIc]− 24× [IIb]− 5.2× [Ia]

MAATmr5 7 0.66 1.1 153.9 MAATmr5 = 4.8× 1− 38.5× [IIIa] + 7.9× [IIIa
′
]

−27.3× [IIIc]− 3.3× [IIa
′
]− 26.3× [IIb] + 8.5× [IIb

′
]

−5.6× [Ia]

MAATmr6 9 0.67 1.1 155.7 MAATmr6 = 12.3× 1− 52.1× [IIIa]− 16.9× [IIIb]

−25.9× [IIIb
′
]− 41.1× [IIIc]− 6× [IIa]− 10.4× [IIa

′
]

−38.5× [IIb]− 13.3× [Ia]− 32.8× [Ic]

MAATmr7 10 0.68 1.1 157.2 MAATmr7 = 12.3× 1− 52.6× [IIIa]− 16.8× [IIIb]

−25.3× [IIIb
′
]− 35.7× [IIIc]− 6× [IIa]− 10.5× [IIa

′
]

−37.8× [IIb]− 15.4× [IIc]− 13.2× [Ia]− 31.4× [Ic]

MAATmr8 12 0.69 1.1 160.5 MAATmr8 = 12.5× 1− 54.9× [IIIa]− 23.6× [IIIb]

−26.8× [IIIb
′
]− 35.1× [IIIc]− 23.4× [IIIc

′
]− 5.9× [IIa]

−10.4× [IIa
′
]− 40.6× [IIb]− 16× [IIc]− 13.5× [Ia]

+5.6× [Ib]− 35.8× [Ic]

MAATmr9 15 0.69 1.1 166.2 MAATmr9 = 10.4× 1− 49.5× [IIIa] + 3.3× [IIIa
′
]

−21.5× [IIIb]− 26.2× [IIIb
′
]− 30.9× [IIIc]− 23.3× [IIIc

′
]

−4.4× [IIa]− 8.9× [IIa
′
]− 38.1× [IIb] + 0.3× [IIb

′
]

−13.2× [IIc] + 0× [IIc
′
]− 11.1× [Ia] + 7.7× [Ib]− 31.7× [Ic]

MAPmr1 1 0.34 112 546.1 MAPmr1 = 179.3× 1 + 509.1× [Ia]

MAPmr2 2 0.51 96.1 534.6 MAPmr2 = 59.6× 1 + 2289.9× [IIb
′
] + 710.8× [Ia]

MAPmr3 3 0.58 91.3 532.1 MAPmr3 = 94.1× 1 + 2319.7× [IIb
′
] + 702.2× [Ia]

−3752.5× [Ic]

MAPmr4 5 0.65 82 526.7 MAPmr4 = 245.1× 1− 666.7× [IIIa
′
] + 2431.9× [IIb

′
]

+396.2× [Ia]− 276× [Ib]− 3780× [Ic]

MAPmr5 8 0.69 75.9 525.8 MAPmr5 =−103.8× 1 + 1553.4× [IIIa] + 536× [IIIb]

−3145.6× [IIIb
′
] + 2480.3× [IIIc] + 1290.1× [IIb]

+2459.3× [IIb
′
] + 927.9× [Ia]− 2955.3× [Ic]

MAPmr6 10 0.73 72.5 525.8 MAPmr6 =−511.3× 1 + 1205.9× [IIIa] + 1387.2× [IIIb]

+738.8× [IIa] + 969.8× [IIa
′
] + 1957.1× [IIb]

+3006.3× [IIb
′
] + 2406.4× [IIc] + 2003.1× [IIc

′
]

+1081.7× [Ia]− 2406.3× [Ic]

MAPmr7 12 0.75 68.5 524.8 MAPmr7 =−502.6× 1 + 1359.5× [IIIa] + 2462.5× [IIIb]

−2178.3× [IIIb
′
] + 657.7× [IIa] + 986.8× [IIa

′
]

+2440.5× [IIb] + 3423.5× [IIb
′
] + 2831.2× [IIc]

+1967.2× [IIc
′
] + 1150.2× [Ia]− 955.6× [Ib]− 2103.4× [Ic]

MAPmr8 15 0.76 67.9 530 MAPmr8 =−619.5× 1 + 1725.6× [IIIa] + 161.7× [IIIa
′
]

+2603.5× [IIIb]− 2069.7× [IIIb
′
] + 380.3× [IIIc]

+2226.9× [IIIc
′
] + 730.5× [IIa] + 1028.2× [IIa

′
]

+2569× [IIb] + 3424.2× [IIb
′
] + 2734.6× [IIc] + 1830.5× [IIc

′
]

+1289.3× [Ia]− 854.1× [Ib]− 1745.6× [Ic]
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Table A1. Sample sites included in the New Mongolia-Siberia DataBase (NMSDB).

Label Lat. Long. Elev. Pollen GDGT Type Biomes

MMNT1M01 48.3983 106.8594 1137 x x Moss Steppe-forest

MMNT1M02 48.4014 106.8613 1161 x x Moss Steppe-forest

MMNT2M01 48.4472 107.0542 1438 x x Moss Steppe-forest

MMNT2M02 48.4460 107.0551 1333 x x Moss Steppe-forest

MMNT2M03 48.4449 107.0564 1265 x x Moss Steppe-forest

MMNT2M04 48.4441 107.0580 1266 x x Moss Light taiga

MMNT2M05 48.4425 107.0593 1262 x Moss Light taiga

MMNT2M05’ 48.4444 107.0634 1273 x x Moss Light taiga

MMNT2M06 48.4412 107.0629 1328 x x Moss Light taiga

MMNT2M07 48.4381 107.0660 1475 x x Moss Steppe-forest

MMNT3S01 47.2993 103.6092 1323 x x Soil Steppe

MMNT3S02 47.2000 102.8438 1457 x x Soil Steppe

MMNT3M03 46.8239 102.2307 1669 x x Moss Alpine meadow

MMNT3M04 46.7932 102.0868 1734 x x Moss Alpine meadow

MMNT3S05 46.7800 101.9510 1830 x x Soil Alpine meadow

MMNT4S01 45.6645 101.6054 1750 x x Soil Steppe-desert

MMNT4S02 45.1759 101.4288 1238 x x Soil Desert

MMNT4S03 45.1724 101.4517 1233 x x Soil Desert

MMNT4S04 45.1702 101.4806 1230 x x Soil Desert

MMNT4S05 45.1618 101.4927 1228 x x Soil Desert

MMNT4S06 45.1467 101.5083 1230 x x Soil Desert

MMNT4S07 45.1402 101.5087 1232 x x Soil Desert

MMNT4S08 44.6746 102.1844 1508 x x Soil Steppe-desert

MMNT4M09 44.4509 102.3459 1847 x x Moss Steppe-desert

MMNT4M10 44.3952 102.4511 1677 x x Moss Steppe-desert

MMNT4S11 44.1685 102.6031 1273 x x Soil Desert

MMNT4S12 43.9494 102.7411 1574 x x Soil Steppe-desert

MMNT4S13 43.8636 102.7479 1802 x Soil Steppe-desert

MMNT4S14 43.7650 102.8018 1982 x x Soil Steppe-desert

32

https://doi.org/10.5194/bg-2019-475
Preprint. Discussion started: 30 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Table A2. Sample sites included in the New Mongolia-Siberia DataBase (NMSDB).

Label Lat. Long. Elev. Pollen GDGT Type Biomes

MMNT5C01 48.4074 101.8797 1433 x x Sediment Alpine meadow

MMNT5C03 48.6592 101.2015 1579 x x Sediment Alpine meadow

MMNT5S04 48.4136 102.2389 1566 x x Sediment Steppe

MMNT5M05 48.4203 102.2266 1538 x x Moss Steppe

MMNT5M06 47.7340 101.2459 1646 x Moss Steppe-forest

MMNT5M07 47.7338 101.2460 1647 x Moss Steppe-forest

MMNT5C11 48.9290 101.9588 1316 x Sediment Steppe-forest

MMNT5C12 48.6907 101.4263 1436 x x Sediment Steppe-forest

MRUT1M01 52.0497 104.1132 565 x x Moss Dark taiga

MRUT1M02 52.0498 104.1137 574 x x Moss Dark taiga

MRUT1M03 52.0493 104.1132 582 x x Moss Light taiga

MRUT1M04 52.0500 104.1140 557 x x Moss Dark taiga

MRUT1M05 52.0328 104.2263 640 x x Moss Light taiga

MRUT1M06 52.0148 104.2612 554 x x Moss Dark taiga

MRUT1M07 52.0046 104.3738 476 x x Moss Dark taiga

MRUT1M08 51.9952 104.4023 471 x x Moss Light taiga

MRUT1M09 51.9900 104.4025 473 x x Moss Dark taiga

MRUT1M10 51.9392 104.4636 538 x x Moss Light taiga

MRUT1M11 51.9119 104.5331 725 x x Moss Light taiga

MRUT1M12 51.8797 104.6266 772 x x Moss Light taiga
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