Regulation of nitrous oxide production in low oxygen waters off the coast of Peru

Claudia Frey^{1,2,*},Hermann W. Bange², Eric P. Achterberg³, Amal Jayakumar¹, Carolin R. Löscher⁴, Damian L. Arévalo-Martínez², Elizabeth León-Palmero⁵, Mingshuang Sun², <u>Xin</u> <u>Sun¹</u>, Ruifang C. Xie³, Sergey Oleynik¹, Bess <u>B.</u> Ward¹

¹Department of Geoscience, Princeton University, Princeton, Guyot Hall, 08544 Princeton, USA

² Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany

³ Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24149 Kiel, Germany

⁴ Department of Biology, Nordcee, Danish Institute for Advanced Study, University of Southern Denmark,

10 ⁵ Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain

*current address: Department of Environmental Science, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Keywords: ETSP, ODZ, denitrification, nitrification, N2O production, 15N tracer incubations

- 15 Abstract. Oxygen deficient zones (ODZs) are major sites of net natural nitrous oxide (N₂O) production and emissions. In order to understand changes in the magnitude of N₂O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N₂O production and their regulation is needed. In the ODZ in the coastal area off Peru, the sensitivity of N₂O production to oxygen and organic matter was investigated using ¹⁵N-tracer experiments in combination with qPCR
- 20 and microarray analysis of total and active functional genes targeting archaeal *amoA* and *nirS* as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N₂O production with a mean of 8.7 nmol L⁻¹ d⁻¹ but up to 118 ± 27.8 nmol L⁻¹ d⁻¹ just below the oxic-anoxic interface. Highest N₂O production from ammonium oxidation (AO) of 0.16 ± 0.003 nmol L⁻¹ d⁻¹ occurred in the upper oxycline at O₂ concentrations of 10 30 µmol L⁻¹ which coincided with highest archaeal *amoA* transcripts/genes. <u>During AO</u>,
- 25 N₂O can be produced from two ¹⁵N labeled NH₄⁺ (double labelled) or from only one ¹⁵N labelled NH₄⁺ and one unlabeled nitrogen source (single labelled N₂O). Single labelled N₂O, representing Hybrid N₂O formation₇ (i.e. N₂O getting with one N atom from NH₄⁺ and the other from other substrates such as NO₂⁻) was the dominant species, comprising 70 85 % of total produced N₂O from NH₄⁺, regardless of the ammonium oxidation rate or O₂ concentrations. Oxygen responses of N₂O production varied with substrate, but production and yields were
- generally highest below 10 μmol L⁻¹ O₂. Particulate organic matter additions increased N₂O production by denitrification up to 5-fold suggesting increased N₂O production during times of high particulate organic matter export. High N₂O yields of 2.1% from AO were measured, but the overall contribution by AO to N₂O production was still an order of magnitude lower than that of denitrification. Hence, these findings show that denitrification is the most important N₂O production process in low oxygen conditions fueled by organic carbon supply, which implies a positive feedback of the total oceanic N₂O sources in response to increasing oceanic deoxygenation.^{*}

35

5

Formatiert: Hochgestellt

Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Hochgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Hochgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA), Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, Nicht Fett, Englisch (USA)
Formatiert: Schriftart: Nicht Fett

Introduction

Nitrous oxide (N2O) is a potent greenhouse gas (IPCC 2013) and precursor for nitric oxide (NO) radicals, which can catalyze the destruction of ozone in the stratosphere (Crutzen 1970, Johnston 1971), and is now the 40 single most important ozone-depleting emission (Ravishankara et al. 2009). The ocean is a significant N₂O source, accounting for up to one third of all- natural emissions (IPCC 2013) and this source may increase substantially as a result of eutrophication, warming, and ocean acidification (see e.g. Capone and Hutchins 2013, Breider et al. 2019). Major sites of oceanic N2O emissions are regions with steep oxygen (O2) gradients (oxycline), which are usually associated with coastal upwelling regions with high primary production at the surface. There, high 45 microbial respiratory activity during organic matter decomposition leads to the formation of anoxic waters also called oxygen deficient zones (ODZs), in which O2 may decline to functionally anoxic conditions (O2 <10 nmol kg⁻¹, Tiano et al. 2014). The most intense ODZs are found in the eastern tropical North Pacific (ETNP), the eastern tropical South Pacific (ETSP) and the northwestern Indian Ocean (Arabian Sea). The anoxic waters are surrounded by large volumes of hypoxic waters (below 20 μ mol L⁻¹ O₂) which are strong net N₂O sources (Codispoti 2010; Babbin et al. 2015). Latest estimates of global, marine N2O fluxes (Buitenhuis et al. 2018, Ji et al. 2018) agree 50 well with the 3.8 Tg N y⁻¹ (1.8 – 9.4 Tg N y⁻¹) reported by the IPCC (2013), but have large variability in the resolution on the regional scale, particularly along coasts where N2O cycling is more dynamic. The expansion of ODZs is predicted in global change scenarios and has already been documented in recent decades (Stramma et al. 2008, Schmidtko et al. 2017). This might lead to further intensification of marine N₂O emissions, which will constitute a positive feedback on global warming (Battaglia and Joos, 2018). However, decreasing N₂O emissions 55

- have also been predicted based on reduced nitrification rates due to reduced primary and export production (Martinez-Rey et al. 2015, Landolfi et al. 2017) and ocean acidification (Beman et al. 2011, Breider et al. 2019). The parametrization of N_2O production and consumption in global ocean models is crucial for realistic future predictions, and therefore better understanding of their controlling mechanisms is needed.
- 60 N2O can be produced by both nitrification and denitrification. Nitrification is a two-step process, comprising the oxidation of ammonia (NH₃) to nitrite (NO₂⁻) (ammonia oxidation, AO) and NO₂⁻ to nitrate (NO₃⁻)) (NO2- oxidation). The relative contributions to AO by autotrophic ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) have been inferred, based on the abundance of the archaeal and bacterial amoA genes, which encode subunit A of the key enzyme ammonia monooxygenase (e.g. (Francis et al. 2005, Mincer et 65 al. 2007, Santoro et al. 2010, Wuchter et al. 2006)). These studies consistently revealed the dominance of archaeal over bacterial ammonia oxidizers, particularly in marine settings (Francis et al. 2005, Wuchter et al. 2006, Newell et al. 2011). In oxic conditions, AO by AOB and AOA forms N2O as a by-product (Anderson 1964; Vajrala et al. 2013; Stein 2019) and AOA contribute significantly to N2O production in the ocean (Santoro et al. 2011; Löscher et al. 2012). While hydroxylamine (NH2OH) was long thought to be the only obligate intermediate in AO, NO has
- 70 recently been identified as an obligate intermediate for AOB (Caranto and Lancaster 2017) and presumably AOA (Carini et al. 2018). Both intermediates are present in and around ODZs and correlated with nitrification activity (Lutterbeck et al. 2018, Korth et al. 2019). Specific details about the precursor of NO to form N₂O in AOA remains controversial. Stiegelmeier et al. (2014) concluded that NO is derived from NO2⁻ reduction to form N2O, while Carini et al. (2018) hypothesized that NO is derived from NH2OH oxidation, which can then form N2O. A hybrid
- N2O production mechanism in AOA has been suggested, where NO from NO2⁻ reacts with NH2OH from NH4⁺, 75 which is thought to be abiotic, i.e., non-enzymatic (Koslovski et al. 2016). Abiotic N₂O production, also known as chemodenitrification, from intermediates like NH2OH, NO or NO2⁻ can occur under acidic conditions (Frame et

al. 2017), or in the presence of reduced metals like Fe or Mn and catalyzing surfaces (Zhu-Barker et al. 2015), but the evidence of abiotic N_2O production/chemodenitrification in ODZs is still lacking.

80

When O2 concentrations fall below 20 µmol L-1, nitrifiers produce N2O from NO2-, a process referred to as nitrifier - denitrification (Frame & Casciotti 2010), which has been observed in cultures of AOB (Frame & Casciotti 2010) and AOA (Santoro et al. 2011). During nitrifier-denitrificaaetion (and denitrification), two NO2 molecules form one N2O, which thus differentiates this process from hybrid N2O production.- It has also been suggested that high concentration of organic particles create high NO2⁻ and low-O2 microenvironments enhancing nitrifier-denitrification (Charpentier et al. 2007). Overall, the yield of N₂O per NO₂⁻ generated from AO is lower in AOA then AOB (Hink et al. 2017a, 2017b) but it should be noted that the degree to which N2O yield increases with decreasing O2 concentrations is variable varies with cell densities in cultures or and among field sites, which favors higher N2O production by nitrification in hypoxic waters (Cohen & Gordon 1978; Yoshida 1988; Goreau et al. 1980; Frame & Casciotti 2010, Santoro et al. 2011, Löscher et al. 2012, Ji et al. 2015a, 2018a)-

90

85

The anaerobic oxidation of ammonia by NO_2^{\cdot} (anammox) to form N_2 is strictly anaerobic and important in the removal of fixed N from the system, but it is not known to contribute to N₂O production (Kartal et al. 2007, van der Star et al. 2008, Hu et al. 2019). In suboxic and O2 free environments, oxidized nitrogen is respired by bacterial denitrification, which is the stepwise reduction of NO_{3} nitrate to elemental N_2 via NO_2 , NO and N_2O . N2O as an intermediate can be consumed or produced, but at the core of the ODZ N2O consumption through 95 denitrification is enhanced, leading to an under saturation in this zone (Bange 2008, Kock et al. 2016). Reducing

- enzymes are highly regulated by O2 concentrations and of the enzymes in the denitrification sequence, N2O reductase is the most sensitive to O_2 (Zumft 1997), which can lead to the accumulation of N_2O along the upper and lower ODZ boundaries (Kock et al. 2016). N₂O accumulation during denitrification is mostly linked to O₂ inhibiting the N₂O reductase, but other factors such as sulfide accumulation (Dalsgaard et al. 2014), pH (Blum et 100 al. 2018), high NO3⁻ or NO2⁻ concentrations (Ji et al. 2018), or copper limitation (Granger and Ward 2003) may
- also be relevant. Recent studies contrast the view of nitrification vs. denitrification as the main N2O source in ODZs (Nicholls et al. 2007, Babbin et al. 2015, Ji et al. 2015a, Yang et al. 2017). They show the importance of denitrification in N₂O production in the ETNP from model outputs (Babbin et al. 2015) and in the ETSP from tracer incubation experiments (Dalsgaard et al. 2012, Ji et al. 2015a), based on natural abundance isotopes in N₂O 105
- (Casciotti et al. 2018) or from water mass analysis of apparent N2O production (Δ N2O) and O2 utilization (AOU) (Carrasco et al. 2017).^{45,46}N₂O production from the addition of ¹⁵N-labeled NH₄⁺, NO₂⁻ and/or NO₃⁻ revealed nitrification as a source of N2O within the oxic-anoxic interface, but overall denitrification dominated N2O production with higher rates at the interface and in anoxic waters (Ji et al. 2015a, 2018a). Denitrification is driven by organic matter exported from the photic zone and fuels blooms of denitrifiers leading to high N2 production
- 110 (Dalsgaard et al. 2012, Jayakumar et al. 2009, Babbin et al. 2014). Denitrification to N₂ is enhanced by organic matter additions and the degree of stimulation varies with quality and quantity of organic matter (Babbin et al. 2014). Because N_2O is an intermediate in denitrification, we hypothesize that its production should also be stimulated by organic matter, possibly leading to episodic and variable N2O fluxes.
- N2O concentration profiles around ODZs appear to be at steady state (Babbin et al. 2015), but are much 115 more variable in regions of intense coastal upwelling where high N2O emissions can occur (Arévalo-Martínez et al. 2015). The contributions of and controls on the two N_2O production pathways under different conditions of O_2 and organic matter supply, are not well understood and may contribute to this variability. Hence, the goal of this study is to understand the factors regulating N2O production around ODZs in order to better constrain how future

Formatiert: Tiefgestellt

Feldfunktion geändert

Formatiert: Schriftart: (Standard) +Textkörper (Calibri)

changes in O2 concentration and carbon export will impact production, distribution and emissions of oceanic N2O. 120 Our goal was to determine the impact of O2 and particulate organic matter on N2O production rates using ¹⁵N tracer experiments in combination with qPCR and functional gene microarray analysis of the marker genes, nirS for denitrification and amoA for AO by archaea, to assess how the abundance and structure of the community impacts N2O production rates from the different pathways. 15N-labelled NH4+ and NO2- was used to trace the production of single- (45N2O) and double- labelled (46N2O) N2O to investigate the importance of hybrid N2O production during

125 AO along an O2 gradient.

2 Materials and Methods

2.1 Sampling sites, sample collection and incubation experiments

frozen in liquid nitrogen and kept at -80°C until extraction.

Seawater was collected from 9 stations in the upwelling area off the coast of Peru in June 2017 onboard 130 R/V Meteor (Figure 1). Water samples were collected from 10 L Niskin bottles on a rosette with a conductivitytemperature-depth profiler (CTD, seabird electronics 9plus system). In-situ O2 concentrations (detection limit 2 µmol L-1 O2), temperature, pressure and salinity were recorded during each CTD cast. NO2- and NO3concentrations were measured on board by standard spectrophotometric methods (Hydes et al. 2010) using a QuAAtro autoanalyzer (SEAL Analytical GmbH, Germany). NH4+ concentrations were determined 135 fluorometrically using ortho- phthaldialdehyde according to Holmes et al. (1999). For NeO, bubble-free triplicate samples were immediately sealed with butyl stoppers and aluminum crimps and fixed with 50 µL of a saturated mercuric chloride (HgCl2). A 10 mL He headspace was created and after an equilibration period of at least 2 hours the headspace sample was measured with a gas chromatograph equipped with an electron capture detector (GC/ECD) according to Kock et al. (2016). The detection limit for N₂O concentration is $2nM \pm 0.7nM$. At all experimental depths nucleic acid samples were collected by filtering up to 5 L of seawater onto 0.2 µm pore size

Sterivex-GP capsule filters (Millipore, Inc., Bedford, MA, USA). Immediately after collection filters were flash

140

145

Three different experiments were carried out at coastal stations, continental slope and offshore stations. Experiments 1 and 2 aimed to investigate the influence of O2 concentration along a natural and artificial O2 gradient and experiment 3 targeted the impact of large particles (>50 µm) on N2O production. Serum bottles were filled from the Niskin bottles with Tygon tubing after overflowing three times to minimize O2 contamination. Bottles were sealed bubble free with grey butyl rubber septa (National Scientific) -and crimped with aluminum seals immediately after filling. The grey butyl rubber septa were boiled in MilliQ for 30min to degas and kept in a He atmosphere until usage. A 3 mL helium (He) headspace was created and samples from anoxic (O2 < below 150 detection) water depths were He purged for 15min. He purging removed dissolved oxygen contamination which is likely introduced during sampling and the headspace prevents possible oxygen leakage from the rubber seals (DeBrabandere et al. 2012). Natural abundance 2000 ppb N2O carrier gas (1000 µL in He) was injected to trap the produced labeled N2O and to ensure a sufficient mass for isotope analysis. For all experiments, ¹⁵N-NO2^{-,15}N- NO_3^- , and $^{15}N-NH_4^+$ tracer ($^{15}N/(^{14}N+^{15}N) = 99$ atom-%) were injected into five bottles each from the same depth 155 to a final concentration of 0.5 µmol L⁻¹, except for the NO₃⁻ incubations where 2 µmol L⁻¹ final concentration were anticipated to obtain 10 % label of the NO₃⁻ pool. The fraction labeled of the substrate pools was 0.76 - 0.99 for NH_4^+ , 0.11 - 0.99 for NO_2^- , 0.055 - 0.11 for NO_3^- . In the ¹⁵N- NO_3^- treatment, ¹⁴N- NO_2^- was added to trap the

Formatiert: Tiefgestellt

Formatiert: Tiefgestellt

Formatiert: Tiefgestellt

label in the product pool for $\underline{NO_{2^-}}$ nitrate reduction rates and in the¹⁵N-NH₄⁺ treatment, ¹⁴N-NO₂⁻ was added to a final concentration of 0.5 µmol L⁻¹ to trap the label in the product pool for AO rates.

160

165

For the O₂ manipulation experiments, <u>all serum bottles were He purged and after the addition of different</u> <u>amounts of air saturated site water a final headspace volume of 3 mL was achieved.</u> <u>headspace volume was adjusted</u> depending on the amount of site water added and all samples were He purged. Site water from the incubation depth was shaken and exposed to air to reach full O₂ saturation. Then <u>0</u>, 0.2, 0.5, 2 and 5mL O₂ saturated seawater was added into serum bottles and to reach final measured O₂ concentration of $0 \pm 0.18 \mu$ M, $0.4 \pm 0.24 \mu$ M, $1.6 \pm 0.12 \mu$ M, $5.2 \pm 0.96 \mu$ M and $11.7 \pm 1.09 \mu$ M in seawater. For the ¹⁵N-NO₃-incubations two more O₂ treatments with $21.5 \pm 2.8 \text{ and } 30.2 \pm 3.35 \mu$ M O₂ were carried out to extend the range of a previous study in which N₂O production from ¹⁵NO₃- did not decrease in the presence of up to 7 μ M O₂ (Ji et al. 2018).For the ¹⁵N-NO₄-incubations two more O₂ treatments with 21.5 ± 2.8 and $30.2 \pm 3.35 \mu$ M O₂ were carried out. The O₂ concentration was monitored with an O₂ sensor spot in one serum bottle per treatment using an O₂ probe and meter (FireSting, PyroScience, Aachen, Germany; Figure S<u>1</u>). The sensor spots are highly sensitive in the nanomolar range and prepared

175

180

170

For the organic matter additions, concentrated particles > 50 μ m from 3 different depths were collected with a Challenger stand-alone pump system (SAPS *in situ* pumps, Liu et al. 2005), autoclaved and He purged<u>b</u> before-200 μ L of POC solution were added to each serum bottle <u>before ¹⁵N-NO₂⁻ or ¹⁴N-NO₂⁻ tracer injection</u>. The final <u>particle</u> concentrations and C/N ratios varied between 0.18 – 1.37 μ M C and 8.1 – 15.4, respectively (Table 2). The concentration and C/N ratio of PON and POC of the stock solutions were analyzed by mass spectrometry using GV Isoprime mass spectrometer.

A set of five bottles was incubated per time course. One bottle was sacrificed at t_0 , two bottles at t_1 and two at t_2 to determine a single rate. Total incubation times were adjusted to prevent bottle effects, which become significant after 20 h based on respiration rate measurements (Tiano et al. 2014). Hence, for each experiments varied-lasted from 12 hours (at the shelf stations) to 24 hours (at the slope stations). Incubation was terminated by adding 0.1 mL saturated mercuric chloride (HgCl₂). All samples were stored at room temperature in the dark and shipped back to the lab.

185 2.2 Isotope measurement and rate determination

according to Larsen et al. (2016).

The total N₂O in each incubation bottle was extracted with a purge-trap system according to Ji et al. (2015). Briefly, serum bottles were flushed with He for 35 min (38 ml min⁻¹), N₂O was trapped by liquid nitrogen, H₂O removed with an ethanol trap, a Nafion® trap and a Mg(ClO₄)₂ trap and CO₂ removed with an Ascarited CO₂-Adsorbance column and afterwards mass 44, 45, 46 and isotope ratios 45/44, 46/44 were detected with a GC-190 IRMS system (Delta V Plus, Thermo). Every two to three samples, a 20 mL glass vial with a known amount of N₂O gas was measured to calibrate for the N₂O concentration (linear correlation between N₂O peak size and concentration, r²= 0.99). The isotopic composition of the reference N₂O was δ¹⁵N=1.75 ± 0.10 ‰ and δ¹⁸O=1.9 ± 0.19 ‰ present in ¹⁵N¹⁴N¹⁶O or ¹⁴N¹⁵N¹⁶O for ⁴⁵N₂O and the less abundant ¹⁵N¹⁵N¹⁶O for ⁴⁶N₂O. To evaluate the analyses of ¹⁵N-enriched N₂O samples, internal isotope standards for ¹⁵N₂O were prepared by mixing natural abundance KNO₃ of known δ¹⁵N values with 99% Na¹⁵NO₃ (Cambridge Isotope Laboratories) and converted to N₂O using the denitrifier method (Sigman et al. 2001, Weigand et al. 2016). Measured and expected values were compared based on a binominal distribution of ¹⁵N and ¹⁴N within the N₂O pool (Frame et al. 2017).

Formatiert: Nicht Hervorheben

After N₂O analysis, samples incubated with $^{15}NH_4^+$ and $^{15}NO_3^-$ were analyzed for $^{15}NO_2^-$ to determine rates of NH₄⁺ oxidation and NO₃⁻ reduction, respectively. The individual sample size, adjusted to contain 20 nmol of N₂O, was transferred into 20 mL glass vials and He purged for 10 min. NO₂⁻ was converted to N₂O using sodium azide in acetic acid (McIlvin and Altabet, 2005) and the nitrogen isotope ratio was measured on a Delta V Plus (Thermo).

205

200

For each serum bottle, total N₂O concentration (moles) and ${}^{45}N_2O/{}^{44}N_2O$ and ${}^{66}N_2O/{}^{44}N_2O$ ratios were converted to moles of ${}^{44}N_2O$, ${}^{45}N_2O$ and ${}^{46}N_2O$. N₂O production rates were calculated from the slope of the increase in mass 44, 45 and 46 over time (Figure S2). To quantify the pathways for N₂O production, rates were calculated based on the equations for N₂ production for denitrification and anammox (Thamdrup and Dalsgaard, 2002). In incubations with ${}^{15}NH_4^+$ and unlabeled NO₂⁻, it is assumed that AO produces ${}^{46}N_2O$ from two labeled NH₄⁺ (equation 1) and some ${}^{45}N_2O$ -labeled N₂O based on binomial distribution (equation 2). If more single labelled N₂O is produced than what is expected (equation 2 and 3)₂-than a hybrid formation of one nitrogen atom from NH₄⁺ and one from NO₂⁻ (equation 4) is <u>assumed to be</u> taking place as found in archaeal ammonia oxidizers (Kozlowski et al. 2016). In incubations with ${}^{15}NO_2^-$, we assume that ${}^{46}N_2O$ comes from nitrifier-denitrification or denitrification, which cannot be distinguished (equation 1). Hence, any production of ${}^{45}N_2O$ not attributed to denitrification produces ${}^{46}N_2O$ and was the only process considered and hence was calculated based on equation (1). Rates (R) are calculated as nmol N₂O L⁻¹ d⁻¹ (Trimmer et al. 2016):

215

210

- (1) $R_{external} = slope^{46}N_2O \times (f_N)^{-2}$
- (2) $R_{expected} = slope^{46}N_20 \times 2 \times (1 f_N) \times (f_N)^{-1}$
- (3) $R_{above} = slope^{45}N_2O p^{45}N_2O_{expected}$
- (4) $R_{hybrid} = (f_N)^{-1} \times \left(slope^{45} N_2 O + 2 \times slope^{46} N_2 O \times \left(1 f_N^{-1}\right) \right)$

220

(5) $R_{total} = pN_2O_{external} + pN_2O_{hybrid}$

where f_N is the fraction of $^{15}\!N$ in the substrate pool $(NH_4^+,NO_2^-$ or $NO_3^-)_{\scriptscriptstyle 2}$ which is assumed to be constant over the incubation time. Hence, changing f_N due to any other concurrent N-consumption or production process during the incubation is neglected. <u>Nevertheless</u>, this assumption the assumption of constant f_N brings some initial considerations which need to be accounted for has implications that may affect the results. There is a potential for 225 overestimating hybrid N2O production in 15NO2, incubations by 5% in samples with high NO3, reduction rates. But in incubations from anoxic depths with high NO3 NO3- reduction rates, no hybrid N2O production iswas found at <u>all.</u> For example, accounting for a decrease in f_N of the <u>NO₃ nitrate</u> pool by active NO₂ oxidation, the process with highest rates (Sun et al. 2017), had an effect of only $\pm 0.2\%$ on the final rate estimate. The presence of DNRA complicates ¹⁵N-labelling incubations because it can change fist in all three tracer experiments. In ¹⁵NO₃-230 incubations, active DNRA produces, ¹⁵NO2⁻ and ¹⁵NH4⁺ from ¹⁵NO3⁻, which can contribute to ⁴⁶N2O production by AO, Even when if a maximum DNRA rate (20 nM d⁻¹ in Lam et al. 2009) is assumed to produce 0.02 nM ¹⁵NH4[±] during the 24 h incubations and all of it is oxidized (maximum, N2O production from AO 0.16 nM d⁻¹, this study) its contribution to ⁴⁶N₂O production is likely minor and within the standard error of the high N₂O production rates from $NO_{3,5}$ hHence an overestimation of the N_2O production rates is unlikely. The same applies in incubations with ¹⁵N-NO2⁻ when DNRA produces ¹⁵NH4⁺, additional ⁴⁶N2O can be produced with a hybrid mechanism by AO. 235 In $^{15}NO_2^{-}$ incubations with high starting $f_{Nf} (>0.7)$ the production of $^{14}NO_2^{-}$ by NO_3^{-} reduction (which decreases

Formatiert: Nicht Hervorheben

Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett,	Hochgestellt
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nichi	t Fett,	Hochgestellt
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nichi	t Fett,	Hochgestellt
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Tief	gestellt		
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett,	Tiefgestellt
Formatiert: Sch	riftart: Nicht	t Fett	
Formatiert: Sch	riftart: Nichi	t Fett	

fxg) leads to an underestimation by max.upto 9%, whereas in incubations with a low fxf (<0.3) the effect is less with max.(upto 3% underestimation of N₂O production rates), In $_{1}^{15}$ NH₄, incubations (fx f>0.9), maximum₂ DNRA rate would lead to an underestimation of 3.5%. Slope of $_{1}^{40}$ N₂O and slope of $_{1}^{45}$ N₂O represent the $_{1}^{40}$ N₂O and $_{1}^{45}$ N₂O production rates, which were tested for significance based on a linear regression (n=5, student t-test, R² > 0.80, p<0.05). Linear regressions that were not significantly different from zero were reported as 0. The error for each N₂O production rate was calculated as the standard error of the slope. Detection limits were 0.002 nmol L⁻¹ d⁻¹ for N₂O production from AO and 0.1 nmol L⁻¹ d⁻¹ for N₂O production from denitrification based on the average measured standard error for rates (Dalsgaard et al. 2012). The curve-fitting tool of Sigma Plot was used for the O₂ sensitivity experiments. A one-way ANOVA was performed on the N₂O production rates to determine if rates

245

were significantly different between POM treatments.

The rates (R) of NH_4^+ oxidation to NO_2^- and NO_3^- reduction to NO_2^- were calculated based on the slope of the linear regression of ${}^{15}NO_2^-$ enrichment over time (n = 5) (equation 6).

(6)
$$R = f_N^{-1} \times slope \delta^{15} N O_2^{-1}$$

250 where f_N is the fraction of ¹⁵N in the substrate pool (NH₄⁺ or NO₃⁻).

 $Yield\ (\%)\ of\ N_2O\ production\ during\ NH_4^+\ oxidation\ was\ defined\ as\ the\ ratio\ of\ the\ production\ rates\ (equation\ 7).$

(7) Yield_{NH4} =
$$\frac{N - N_2 O(\frac{nM}{d})}{N - NO_2(\frac{nM}{d})} \times 100\%$$

Yields of N₂O production during denitrification were calculated based on the fact that N₂O is not a side product during $\underline{NO_{3^-}}$ nitrate reduction to NO_{2^-} but rather the next intermediate during denitrification (equation 8).

255

(8)
$$Yield_{NO3} = \frac{N - N_2 O\left(\frac{TM}{d}\right)}{N - NO_2^{-}\left(\frac{TM}{d}\right) + N - N_2 O\left(\frac{TM}{d}\right)} \times 100\%$$

All rates, yields and errors are reported in Table S3.

2.3 Molecular Analysis – qPCR, Microarrays

260 cD

265

270

DNA and RNA were extracted using the DNA/RNA ALLPrep Mini Kit (Qiagen) followed by immediate cDNA Synthesis from purified and DNA-cleaned RNA using a SuperScript III First Strand Synthesis System (Invitrogen). The PicoGreen dsDNA Quantification Kit (Invitrogen) was used for DNA quantification and QuantiT OliGreen ssDNA Quantification Kit (life technologies) was used for cDNA quantification.

The abundances of total and active *nirS* and archaeal *amoA* communities were determined by quantitative PCR (qPCR) with assays based on SYBR Green staining according to methods described previously (Jayakumar et al. 2013, Peng et al. 2013). Primers nirS1F and nirS3R (Braker et al. 1998) were used to amplify a 260-bp conserved region within the *nirS* gene. The *pirS* pPrimers are not specific for epsilon-proteobacteria (Murdock et al. 2017), but in previous metagenomes from the ETSP epsilon-proteobacteria where below 3-4 % of the reads or not found, except in very sulfidic, coastal stations (Stewart et al. 2011, Wright et al. 2012, Ganesh et al. 2012, Schunck et al. 2013, Kavelage et al. 2015). Primers Arch-amoAF and Arch- amoAR (Francis et al. 2005) were used to quantify archaeal *amoA* abundance. A standard curve containing 6 serial dilutions of a plasmid with either an archaeal *amoA* fragment or a *nirS* fragment was used on respective assay plates. Assays were performed in a StratageneMx3000P qPCR cycler (Agilent Technologies) in triplicates of 20- 25ng DNA or cDNA, along with a no primer control and a no template control. Cycle thresholds (Ct values) were determined automatically and used

Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett,	Hochgestell	t
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett,	Tiefgestellt	
Formatiert:	Schriftart:	Nicht Fett,	Hochgestell	t
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Schriftart:	Nicht Fett		
Formatiert:	Hochgeste	llt		

Formatiert: Schriftart: Kursiv

to calculate the number of nirS or archaeal amoA copies in each reaction, which was then normalized to copies per 275 milliliter of seawater (assuming 100% recovery). The detection limit was around 15 copies mL⁻¹ based on the Ct values of the no template control.

Microarray experiments were carried out to describe the community composition of the total and active nirS and archaeal amoA groups using the DNA and cDNA qPCR products. Pooled qPCR triplicates were purified and cleaned using the QIAquick PCR Purification Kit (Qiagen). Microarray targets were prepared according to

280 Ward and Bouskill (2011). Briefly, dUaa was incorporated into DNA and cDNA targets during linear amplification with random octomers and a Klenow polymerse using the BioPrime kit (Invitrogen) and then labeled with Cy3, purified and quantified. Each probe is a 90-mer oligonucleotide consisting of a 70-mer archetype sequence combined with a 20-mer reference oligo as a control region bound to the glass slide. Each archetype probe represents a group of related sequences with 87 ± 3% sequence identity of the 70-mer sequence. Microarray targets 285 were hybridized in duplicates on a microarray slide, washed and scanned using a laser scanner 4200 (Agilent

Technologies) and analyzed with GenePix Pro 6.0. The resulting fluorescence ratio (FR) of each archaeal amoA or nirS probe was divided by the FR of the maximum archaeal amoA or nirS FR on the same microarray to calculate the normalized FR (nFR). nFR represents the relative abundance of each archetype and was used for further analyses.

290

Two different arrays were used, BCO16 which contains 99 archaeal amoA archetype probes representing ~8000 archaeal amoA sequences (Biller et al. 2012) and BCO15 which contains 167 nirS archetype probes representing ~2000 sequences (collected from NCBI in 2009). A total of 74 assays were performed with 21 nirS cDNA targets, 21 nirS DNA targets, 16 amoA cDNA targets and 16 amoA DNA samples. The original microarray from BCO15 and BC016 are available via GEO (Gene Expression Omnibus; 295 http://www.ncbi.nlm.nih.gov/geo/) at NCBI (National Center for Biotechnology Information) under GEO Accession No GSE142806XXXX.

Spearman Rank correlation was performed from all N2O production rates, AO and NO32 nitrate reduction

2.4. Data analysis

rates, environmental variables, nirS and archael amoA gene and transcript abundance as well as the 20 most 300 abundant archetypes of total and active nirS and amoA using R. Only significant values (p<0.05) are shown. Archetype abundance (nFR) data were square-root transformed and beta-diversity was calculated with the Bray-Curtis coefficient. Alpha diversity of active and total nirS and amoA communities was estimated by calculating the Shannon diversity index using PRIMER6. Bray-Curtis dissimilarities were used to perform a Mantel test to determine significant differences between active and total communities of nirS and amoA using R (Version 3.0.2, 305 package "vegan" (Oksanen et al., 2019). Canonical Correspondence Analysis (CCA) (Legendre & Legendre 2012) was used to visualize differences in community composition dependent upon environmental conditions using the software PAST (Hammer et al. 2001). Before CCA analysis, a forward selection (Borcard et al. 1992) of the parameters that described the environmental and biological variables likely to explain the most significant part of

the changes in the archetypes was performed. 310 The make.lefse command in MOTHUR was used to create a linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al. 2011) input file from the MOTHUR shared file. This was followed by a LEfSe (http://huttenhower.sph.harvard.edu/lefse/) to test for discriminatory archetypes between O2 levels. With a normalized relative abundance matrix, LEfSe uses the Kruskal-Wallis rank sum test to detect features with

significantly different abundances between assigned archetypes in the different O2 levels and performs an LDA to

315 estimate the effect size of each feature. A significant alpha of 0.05 and an effect size threshold of 2 were used for all marker genes discussed in this study.

3. Results

3.1 Hydrographic conditions

320

The upwelling system off Peru is a hot spot for N2O emissions (Arévalo-Martínez et al. 2015) with most intense upwelling in austral winter but maximum chlorophyll during December to March (Chavez and Messié, 2009; Messié and Chavez, 2015). The sampling campaign took place during austral fall in the absence of intense upwelling or maximum chlorophyll. The focus of this study was the region close to the coast, which has highly variable N2O concentration profiles (Kock et al. 2016) and N2O emissions (Arévalo-Martínez et al. 2015). The 325 Peru Coastal Water (PCW, temperature <19.5°C, salinity 34.9 - 35.1) and the equatorial subsurface waters (ESSW, temperature 8-12°C, salinity 34.7 - 34.9) (Pietri et al. 2013) were the dominant water masses off the Peruvian coast sampled for N₂O production rate measurements (Table 1). At the southern-most transect at $15.5^{\circ} - 16^{\circ}$ S a meso-scale anticyclonic mode water eddy (McGillicuddy et al. 2007), which was about to detach from the coast, was detected from deepening/shoaling of the main/seasonal pycnoclines (Bange et al. 2018, Figure S34). 330 Generally, the stations were characterized by a thick anoxic layer (254 m - 427 m) reaching to the seafloor at two shelf stations (894, 883). NO2⁻ concentration accumulated only up to 2 µmol L⁻¹ in the secondary NO2⁻ maximum (SNM) at the northern transect (stations 882, 883), but up to 7.19 µmol L⁻¹ along the southern transect (Figure 2, station 907, 912). N₂O concentration profiles showed a high variability with respect to depth and O₂ concentrations (Figure 2). The southern transect (station 907,912) showed the lowest N_2O concentrations (5 nmol L⁻¹) in the center 335 of the anoxic zones. At the same time, station 912 in the center of the eddy showed highest N_2O concentration with 78.9 nmol L^{-1} at $[O_2]$ below detection limit in the upper part of the anoxic zone. Above the ODZ, the maximum N_2O peak ranged from 57.9 – 78.9 nmol L⁻¹ and was found at an O_2 concentration range from below detection (883, 894, 892, 912) up to 67 μ mol L⁻¹ (907). Three stations (892, 894 and 904) showed high surface N₂O concentrations of 64 nmol L⁻¹.

340

3.2 Depth Distribution of N₂O production rates and total and active nirS and amoA abundance

 N_2O production varied with depth and substrate (Figure 3, Table S3). In the oxycline, highest AO (34 \pm 0.1 nmol L⁻¹ d⁻¹ and 35 ± 9.2 nmol L⁻¹ d⁻¹) coincided with highest N₂O production from AO (0.141 \pm 0.003 nmol $L^{-1} d^{-1}$ and 0.159 ± 0.003 nmol $L^{-1} d^{-1}$) at both stations of the northern transect, stations 883 and 882, respectively 345 (Figure 3(I)a, b). NH4+ oxidation and its N2O production decreased to zero in the ODZ. The rates of the reductive source pathways for N₂O increased with depth. N₂O production from NO₂⁻ and NO₃⁻ displayed similar patterns with highest production at or below the oxic -anoxic interface (Figure 3(II)). N₂O production from NO₂⁻ showed highest rates of 3.06 ± 1.17 nmol L⁻¹ d⁻¹ (912) and 2.37 ± 0.54 nmol L⁻¹ d⁻¹ (906) further south (Figure 3(II) m, q) compared to lower rates at northern stations, where the maximum rate was 0.71 ± 0.38 nmol L⁻¹ d⁻¹ (Figure 3(II) 350 c, 883). A similar trend was found for N2O production from NO3: lower maximum rates at northern stations with 2.7 ± 0.4 nmol L⁻¹ d⁻¹ (882) and 5.7 ± 2.8 nmol L⁻¹ d⁻¹ (883, Figure 3(II) b) and highest rates in southern transects with 7.2 ± 1.64 nmol L⁻¹ d⁻¹ (((Figure 3(II) 1, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3 and up to 118.0 ± 27.8 nmol L⁻¹ d⁻¹ (Figure 3(II) p, 904) in transect 3(II) p, 904) in transect 3(II) p, 904 in transect 3(II) p, 904) in transect 3(II) p, 904 in transect 3(II) p 912) in transect 4. Generally, N₂O production rates from NO₂⁻ and NO₃⁻ were 10 to 100-fold higher than from AO.

qPCR analysis detected lowest gene and transcript numbers of archaeal *amoA* and *nirS* in the surface
mixed layer (Figure 3(I) k, I, 3(II)r, s). Highest archaeal *amoA* gene and transcript abundance was in the oxycline (1 – 40 μmol L⁻¹ O₂) with 24,500 ± 340 copies mL⁻¹ and 626 ± 29 copies mL⁻¹ at station 883 (Figure 3(I)c, d). *amoA* gene and transcript number decreased in the ODZ to 1000 – 6500 gene copies mL⁻¹ and 20 - 250 transcript copies mL⁻¹. The profiles of *nirS* gene and transcript abundance were similar to each other (Figure 3(II) d, e) with highest abundance in the ODZ up to 1 x 10⁶ copies mL⁻¹ and 2.9 x 10⁵ copies mL⁻¹, respectively. Denitrifier *nirS* genes and transcripts peaked in the anoxic layer and were significantly correlated with N₂O production from NO₂⁻ but not from NO₃⁻. Archaeal *amoA* gene and transcript abundances were significantly correlated with AO and, N₂O production from AO (Figure S<u>5</u><u>3</u>). N₂O concentrations did not correlate with any of the measured variables (Figure S<u>5</u><u>3</u>).

365 3.3 Influence of O₂ concentration on N₂O production

380

 N_2O production along the *in situ* O_2 gradient for the substrates NO_2^- and NO_3^- decreased exponentially with increasing O_2 concentrations (Figure 4b, c) while for NH_4^+ , the N_2O production was highest at highest sampled O_2 concentration (Figure 4a). At *in situ* O_2 levels above 8.4 µmol L⁻¹ N_2O production decreased by 100% and 98% from NO_3^- and NO_2^- , respectively (Figure 4b, c).

In the manipulated O₂ treatments from the oxic - anoxic interface (S11, S19) a unimodal response of N₂O production from NH₄⁺ and NO₂⁻ to O₂ is apparent (Figure 4d, e). Increasing and decreasing O₂ concentrations inhibited N₂O production from NH₄⁺ and NO₂⁻ with the highest N₂O production rate between 1.4 - 6 µmol O₂ L⁻¹. However, this response was only significant in sample S11 (Figure 4d, e). There was no significant response to O₂ concentration of N₂O production from NO₃⁻. O₂ did not inhibit N₂O production from NO₃⁻ up to 23 µmol L⁻¹
 (Figure 4f).

The proportion of hybrid N₂O produced during AO, i.e., the formation of N₂O from one ¹⁵⁵N from the labelled-NH₄⁺ and one ¹⁴N from a non–labelled-N compound (excluding NH₄⁺) such as NO₂⁻, NH₂OH or NO, was consistently between 70 – 85 % across different O₂ concentrations for manipulated and natural O₂ concentrations (Figure 5a, c). Hybrid formation during N₂O production from NO₂⁻ varied between 0 and 95% along the natural O₂ gradient (Figure 5b). In manipulated O₂ treatments hybrid formation from NO₂⁻ did not change across different

O₂ treatments but with respect to the original depth, 0% in sample S11 which originated from 145 m of station 892 or 78% in sample S19 from 120m of station 894 (Figure 5d).

Highest N₂O yields during AO (over 1%) occurred between 1.4 and 2 μmol O₂ L⁻¹, and decreased at both higher and lower O₂ concentrations (Figure 6a). However, only the increase in yield from nmol O₂ to 1.4 – 2 μmol
L⁻¹ O₂ was significant (t-test, p<0.05) and the following decrease in yield was not (t-test, p>0.05). In the manipulated O₂ treatment of sample S19 (Figure 6c) the same significant pattern was observed, whereas in S11 highest yield was found at 12 μmol L⁻¹ O₂. N₂O yield during NO₃⁻ nitrate reduction to NO₂⁻ decreased to zero at 8.4 μmol L⁻¹ O₂ along the natural O₂ gradient (Figure 6b) while no significant response occurred in the manipulated O₂ treatments (Figure 6d). There, NO₃⁻ nitrate reduction was decreasing with increasing O₂ but N₂O production was steady with increasing O₂ leading to high yields between 38.8 ± 9 % - 91.2 ± 47 % at 23 µmol L⁻¹ O₂.

3.4 Effect of large particulate organic matter on N₂O production

405

395

The autoclaving of the concentrated POM solution liberated NH₄⁺ from the particles, reducing the N/C ratio of the particles compared to non-autoclaved particles (Table 2). The highest NH₄⁺ accumulation is found in samples with the largest difference in N/C ratios <u>between autoclaved and non-autoclaved particles</u> (Table 2, 904-20m, 898-100 m). Addition of $0.17 - 1.37 \mu$ mol C L⁻¹ of autoclaved particles > 50 μ m (Table 2) produced a significant increase in N₂O production by up to 5.2- and 4.8-fold in 10 and 7 out of 19 additions for NO₂⁻ and NO₃⁻ respectively (Figure 7a, b). There was no linear correlation of the origin (mixed layer depth, oxycline or anoxic zone), the quality (N/C ratio) or the quantity of the organic matter on the magnitude of the increase. Only samples S20 and S17 were not stimulated by particle addition and N₂O production from denitrification did not significantly differ from the control (Figure 7b).

3.5 Diversity and community composition of total and active nirS and amoA assemblages and its correlation with environmental parameters

nFR values from functional gene microarrays were used to describe the nitrifier and denitrifier community composition of AOA and *nirS* assemblages, respectively. nFR was averaged from duplicate microarrays, which replicated well (R² = 0.89 - 0.99). Alpha- diversities of *nirS* and archaeal *amoA* were not statistically different for total and active communities (students t-test, p > 0.05), but were overall lower for RNA (3.2 ± 0.3) than DNA (3.8 ± 0.4) (Table S1). Principle Coordinate Analysis of Bray–Curtis similarity for each probe group on the microarray indicated that the community structure of archaeal *amoA* genes was significantly different from that of archaeal *amoA* transcripts whereas community structure of *nirS* genes and transcripts did not differ significantly (Figure S42). To identify which archetypes were important in explaining differences in community structure of key nitrification and denitrification genes, we identified archetypes that accounted for more than 1% of the total fluorescence for their probe set and that were significantly different with respect to ambient O₂ using a lefse analysis (Table S2). Furthermore, we used CCA to test whether the community composition, or even single archetypes, could explain the N₂O production rates.

The nFR distribution showed greater variability in the active (cDNA) AOA community than in the total community (DNA) among depths, stations and O₂ concentrations (Figure 8a, b). Archetypes over 1% made up
between 76% (DNA) - 83% (cDNA) of the *amoA* assemblage and only 61% (DNA) - 68% (cDNA) of the *nirS* assemblage. The 4 most abundant AOA archetypes AOA55, AOA3, AOA21 and AOA32 made up 20% - 65% of the total and active community (Figure 8a, b). DNA of archetypes AOA55 and AOA79, both related to uncultured AOA in soils, significantly correlated with *in situ* NH₄+ concentrations (Figure S<u>5</u>3). DNA and cDNA from AOA3 and AOA83 were significantly enriched in oxic waters and AOA7, closely related with crenarchaeote SCGC
425 AAA288-M23 isolated from station ALOHA near Hawaii (Swan et al. 2011), was significantly enriched in anoxic and hypoxic waters for DNA and cDNA respectively (Table S2). All other archetypes did not vary with O₂ levels. DNA of AOA 3, closely related to *Nitrosopelagicus brevis* (CN25), identified as the only archetype to be significantly correlated with N₂O production and yield from AO (Figure S<u>5</u>3).

The total and active denitrifier communities were dominated by Nir7, derived from an uncultured clone
 from the ODZ in the ETSP (Lam et al. 2009), and Nir7 was significantly more enriched in the active community (Figure 8c, d). DNA from ODZ depths of the eddy, S15 (907, 130 m) and S17 (912, 90 m), diverged most obviously from the rest and from each other (Figure 8c, d). Interestingly, these two samples were not divergent among the active *nirS* community (Figure 8c, d; Figure S42). DNA of Nir35, belonging to the Flavobacteriaceae derived from coastal waters of the Arabian Sea (Goréguès et al., 2004), was most abundant (12.3 %) at the eddy edge (S15) as

435 opposed to the eddy center (S17) where nir167, representing Anammox sequences from Peru, was most abundant (12.0%). Interestingly, Nir4 and Nir14, among the top 5 abundant archetypes, were significantly enriched in oxic water masses (Table S2). nFR signal of nir166, belonging to Scalindua, and Nir23 were among the top 5 abundant archetypes and significantly enriched in anoxic depths.

CCA is a direct gradient analysis, where the gradient in environmental variables is known a priori and the 440 archetypes are considered to be a response to this gradient. Composition from total and active AOA community did not differ between stations and all samples cluster close together (Figure S<u>6</u>4a, b). S18 (912, 5 m) is a surface sample with lowest NO₃⁻ concentration (8 μ mol L⁻¹), highest temperature and salinity of the data set and the DNA is positively related with O₂ and driven by AOA55, AOA32 and AOA79. RNA of S17 (912, 90 m) clusters with AOA70. AOA55 was abundant and its distribution is driven by O₂ and NH₄⁺ (Figure S<u>5</u>3).

CCA clustered the denitrifier community DNA into one main group with a few exceptions (Figure S<u>64</u> c). Two surface samples (S16, S18) clustered separate and were positively correlated with Nir4 and Nir14 and O₂. Two anoxic samples from the eddy core (S17) and eddy edge (S15) clustered separate with S17 being driven by 3 *nirS* archetypes – Nir54, Nir10 and Nir167 and S15 by Nir23, Nir35 and Nir133 (Figure S<u>64</u> c). Total and active *nirS* community composition did not differ as a function of O₂. Although, composition of active and total *nirS* communities were not significantly different, the active community clustered slightly differently. For *nirS* RNA, surface and oxycline samples (S16 and S10) grouped together and were correlated positively with O₂, temperature and salinity, whereas the anoxic eddy samples did not differ from the rest (Figure S<u>64</u>d). N₂O production from NO₂⁻ significantly correlated with *nirS* gene and transcript abundance but both reductive N₂O production pathways were not linked with a single dominant *nirS* archetype (Figure S<u>6</u><u>3</u>)

Most samples originated from Peru Coastal Water (PCW) characterized by supersaturated N2O

4. Discussion

460

465

470

475

455

445

450

concentrations (Kock et al. 2016, Bourbonnais et al. 2017). Only the deepest sample (S1, 882 - 350m) saw the presence of a different water mass, the equatorial subsurface waters. Thus, our findings about regulation of N₂O production at different stations probably apply to the region as a whole. Several studies indicate that water mass hydrography plays an important role in shaping microbial community diversity (Biller et al. 2012, Hamdan et al. 2012) and a coupling of *amoA* alpha diversity to physical conditions such as salinity, temperature and depth has been shown in coastal waters off Chile (Bertagnolli and Ulloa 2017). While salinity, temperature and depth were prominent factors in shaping the community compositions of nitrifiers and denitrifiers (Figure S64), for N2O production rates correlations with physical and chemical parameters were not consistent. On one hand, oxidative N2O production from NH4+ positively correlated with temperature, salinity, oxygen and negatively with depth and $PO_{4^{3-}}$ concentration. $\overline{}_{7}$ Oon the other hand, reductive N₂O production from NO₂⁻ positively correlated with NH₄⁺ and NO2⁻ concentrations, but negatively with NO3⁻ concentrations (Figure S53), suggesting when NO3⁻ is abundant, denitrifiers are less likely to use NO2 for N2O production during denitrification.- Both oxidative (AO) and reductive (NO2⁻ and NO3⁻ reduction) N cycling processes produced N2O with differential effects of O2 on them. Measured N₂O production rates were always highest from NO₃⁻, followed by NO₂⁻ and NH₄⁺, which is consistent with previous studies that showed denitrification as a dominant N2O source in Peruvian coastal waters harboring an ODZ (Ji et al. 2015a, Casciotti et al. 2018). A low contribution of AO to N_2O production in low O_2 waters is in line with a previous study in this area estimating N2O production based on isotopomer measurements combined with a 3-D Reaction-Advection-Diffusion Box model (Bourbonnais et al. 2017). The low percentage that AO

Formatiert: Tiefgestellt
Formatiert: Hochgestellt
Formatiert: Tiefgestellt
Formatiert: Hochgestellt
Formatiert: Tiefgestellt
Formatiert: Tiefgestellt

contributed to total N₂O production was between 0.5 - 6%, with one exception in the shallowest sample S5 with 30 µmol L⁻¹ O₂ where AO contributed 86% to total N₂O production. We found strong positive effects of decreasing O₂ concentration and increasing particulate matter concentrations on N₂O production in the upper oxycline.

- The occurrence of an anticyclonic mode water eddy at 16°S (transect 4, stations 912, 907) at the time of
 sampling was not unusual, as such eddies have been reported at a similar position (Stramma et al. 2013). High N loss, a large SNM with low NO₃⁻ concentrations and strong N₂O depletion in the core of ODZ of the eddy result in reduced N₂O inside of this kind of eddies as they age and are advected westward (Cornejo D'Ottone et al. 2016, Arévalo-Martínez et al. 2016). Our study found similar patterns with largest SNM (5.23 µM NO₂⁻), lowest NO₃⁻ (14 µmol L⁻¹) and N₂O (4 nmol L⁻¹) concentrations in the eddy center. For the first time N₂O production rates were measured in an eddy, and the rates of up to 1<u>18 ± 27</u>20 nmol L⁻¹ d⁻¹ are the highest N₂O production rates from denitrification reported in the ETSP. Previously reported maximum rates, ranged from 49 nmol L⁻¹ d⁻¹ (Bourbonnais et al. 2017) and <u>50 nmol L⁻¹ d⁻¹</u> (Farias et al. 2009), were obtained using <u>, both -based on a-N₂O isotope and isotopomer approaches, -which provides a-time (weeks-months) and process integrated signals, up to 86 nmol L⁻¹
 </u>
- 490 + d+ (Dalsgaard et al. 2012) based on <u>15N</u> tracer incubations. Hence, the deviation of maximum rates can be explained by 1) the different approaches and 2) the sampling of the core of the eddy. <u>5 both extreme N₂O production</u> at a certain time point and integrated N₂O production over long timescale could be obtained N₂ production measurements (from anammox and denitrification) wereas not measured performed in this study, but should be in future studies to account for potential artefacts by co-occurring NO₃⁻ reduction processes. Here, so it cannot be
- 495 determined whether the eddy only stimulated incomplete denitrification to N₂O production -but not N₂ production from denitrification (i.e. increasing the N₂O/N₂ yield) or if the eddy also increased complete denitrification to N₂ by this high N₂O production represents a high N₂O/N₂ yield or if the N₂ production rates were also-10 times compared to stations higher than outside of the eddy. Considering that at some depths only incomplete denitrification (also known as "stop- and go" denitrification) to N₂O is at work, it would not be surprising that N₂O
- 500 production can reach the same order of magnitude as N₂ production from complete denitrification. Aged eddies also show lower N₂O concentration maxima at the upper oxycline (Arévalo-Martínez et al. 2016), which was not the case in this study where a young eddy was just about to detach from the coast. In fact, the eddy stations show the highest N₂O peak in the upper oxycline within this data set. Eddies and their age imprint mesoscale patchiness and heterogeneity in biogeochemical cycling. It appears that young eddies close to the coast with high N₂O concentrations and high N₂O production rates have a great potential for high N₂O emissions compared to aged eddies or waters surrounding eddies.

4.1 Effect of O₂ on reductive and oxidative N₂O production

510

515

The relationship between O_2 concentrations and N_2O production by nitrification and denitrification is very complex in ODZs. While poorly constrained, the reported O_2 threshold level (1.7 µmol L⁻¹ O_2) for reductive N_2O production is lower (Dalsgaard et al. 2014) than the reported O_2 threshold level (8 µmol L⁻¹) for N_2O consumption in the ETSP (Cornejo and Farías 2012). Nevertheless, the suboxic zone between $1 - 8 \mu mol L^{-1} O_2$ carries high N_2O concentrations indicating higher N_2O production than consumption. In this study, we focused on this suboxic water masses above the ODZ and determined bulk kinetics of O_2 sensitivity in batch experiments, which reflect the metabolism of the microbial community. The effect of O_2 on N_2O production differed between natural O_2 concentrations with varying communities vs. manipulated O_2 concentrations within a community. While

Formatiert: Hochgestellt

Formatiert:	Nicht Hervorheben
Formatiert:	Tiefgestellt, Nicht Hervorheben
Formatiert:	Nicht Hervorheben
Formatiert:	Tiefgestellt, Nicht Hervorheben
Formatiert:	Nicht Hervorheben
Formatiert:	Tiefgestellt
Formatiert:	Tiefaestellt

N₂O production from NO₂⁻ and NO₃⁻ decreased exponentially along the natural O₂ gradient, it did not always decrease for the manipulated O2 treatments. Unchanged N2O production with higher O2 levels in NO3 treatments showed that at least a portion of the community can respond very differently to a sudden increase in O2 than 520 predicted from natural O2 gradients with communities acclimated to a certain O2 concentration. In the ETNP, this pattern has been observed before (Ji et al. 2018a) but the mechanism behind it is unknown. Different responses of N2O production rates to O2 between in situ assemblages and incubationed samples were not unexpected because different rates at different depths were likely not only due to O2 differences but also other factors such as different organic matter fluxes and different amounts and types of N2O producers at different depths. In addition, sSampling 525 with Niskin bottles and purging can induce stress responses (Stewart et al. 2012) and changeshift the richness and structure of the microbial community from the in situ community (Torres-Beltran et al. 2019), which can be one potential explanation for the different responses between manipulated exygen and *in situ* exygen experiments). The removal of other gases like H₂S during purging introduces is another potential artefact. However, it is unlikely as measurable H₂S concentrations have mostly been found at very shallow coastal stations (< 100 m deep) 530 (Callbeck et al. 2018), which was not the case innot the environment of this study. On the contrary, high abundances (up to 12%) of sulfur oxidizing gamma proteobacteria, like SUP05 can be found in eddy-transported offshore waters where they actively contributed to autotrophic denitrification (Calbeck et al. 2018). In this study, itwe cannot differentiate between autotrophic or organotrophic denitrification, but a contribution of autotrophic denitrification in the eddy center is likely. Off the Chilean coast, active N2O production by denitrification was 535 found at up to 50 µmol L-1 O2 (Farías et al. 2009). These results reinforce prior studies showing that distinct steps of multistep metabolic pathways, such as denitrification, can differ in O2 sensitivity (Dalsgaard et al. 2014, Bristow et al. 2016a, 2016b). In various bacterial strains and natural communities, the NO3⁻ reductase enzyme (Nar) which catalyzes the first step in denitrification, is reportedly the most O2 tolerant, followed by the more O2 sensitive steps of NO₂⁻ reduction (Nir) and N₂O reduction (Körner und Zumft 1989, McKenney et al. 1994, Kalvelage et al. 2011). 540 The fact, that-N2O production is insensitive to manipulated O2we see this pattern only in the NO3⁻ treatments and not in the NO₂⁻ treatments is evidence that it is not due to inhibition of the reduction of N₂O to N₂ at higher O₂ because then both treatments would look similar. It further indicates that high N2O production from NO3 in high oxygen treatments is unlikely an effect of anoxic micro-niches. While anoxic micro-niches in batch incubations can never be fully ruled out, there is no reason why they should systematically change N2O production in NO3-545 from NO2⁻ incubations at the same oxygen treatment. We suggest a stimulation of incomplete denitrification, which leads to the accumulation of N_2O in our the serum bottles rather than a stimulation of overall denitrification rates to N2. While NO3 nitrate reduction was inhibited by higher O2 concentrations, N2O production was not, leading to very high yields of N₂O production per NO₂⁻ produced. We hypothesize that there is a direct channeling of reduced NO3- to N2O without exchange of an internal NO2- pool with the surrounding NO2-. Long turnover times for NO₂ have been inferred from δ_1^{18} O of NO₂, which was fully equilibrated with water in the offshore waters 550 (Bourbonnais et al. 2015) and more dynamic in the coastal waters (Hu et al. 2016) supporting our hypothesis. If NO2⁻ does not exchange, our rate estimates for NO3⁻ reduction based on produced ¹⁵N-NO2⁻ are underestimated resulting in high yields. A low NO2⁻ exchange rate has been shown before (Ji et al. 2018b). Based on the assumption that all labelled N₂O from ¹⁵NO₃⁻ has gone through the NO₂⁻ pool, we include the NO₂⁻ pool into calculating f_N -f. 555 In ¹⁵NO₃ incubations the enrichment of the substrate pool was low ($f_N f = 0.05 - 0.1$) and including NO₂ resulted in an underestimation of no more than 5 % depending on the in situ NO2⁻ concentration, and thus does not explain the high rates.

Formatiert: Tiefgestellt
Formatiert: Tiefgestellt
Formatiert: Schriftart: Kursiv
Formatiert: Tiefgestellt
Formatiert: Tiefgestellt
Formatiert: Schriftart: Nicht Fett
Formatiert: Schriftart: Nicht Fett
Formatiert: Schriftart: Nicht Fett
Formatiert: Schriftart: Kursiv
Formatiert: Schriftart: Nicht Fett
Formatiert: Schriftart: Nicht Fett, Kursiv
Formatiert: Schriftart: Nicht Fett
Formatiert: Tiefgestellt
Formatiert: Tiefgestellt

-{	Formatiert: Tiefgestellt
-{	Formatiert: Hochgestellt
	Formatiert: Schriftart: Symbol
X	Formatiert: Hochgestellt
Ì	Formatiert: Tiefgestellt
	Formatiert: Hochgestellt

Formatiert: Schriftfarbe: Automatisch, Englisch (Großbritannien)

One N2O producing process not considered in this study is fungal denitrification, but it deserves mentioning because in soils and coastal sediments it contributes substantially to N2O production (Wankel et al. 2017, Shoun et al. 2012). With ¹⁵N-labelling experiments it is not possible to distinguish between bacterial and fungal denitrification. In ODZs, marine fungal communities show a wide diversity (Jebaraj et al. 2012) and a high adaptive capability is suggested (Richards et al. 2012). Most fungal denitrifiers lack the capability to reduce N₂O to N₂, hence all NO3- nitrate reduction results in N2O production (Richards et al. 2012). In a culture study, the fungus, Fusarium oxysporum, needed O2 exposure before it started to denitrify (Zhou et al. 2001). To what extent marine fungi play a role in denitrification in open ocean ODZs and their O2 sensitivity remains to be investigated. N_2O production from NH_4^+ did not decrease exponentially with increasing O_2 as shown previously for

570

575

565

560

the ETSP (Qin et al. 2017, Ji et al. 2018a, Santoro et al. 2011). N2O production rather increased with increasing in situ oxygen and had an optimum between $1.4 - 6 \mu$ mol O₂ L⁻¹ in manipulated O₂ treatments. A similar optimum curve was observed in cultures of the marine AOA Nitrosopumilus maritimus, where N2O production reached maxima at O₂ concentrations between 2 - 10 µmol L¹ (Hink et al. 2017a). Furthermore, N₂O production by N. viennensis and N. maritimus was not affected by O2 but instead by the rate of AO (Stieglmeier et al. 2014, Hink et al. 2017a). To find out if this is the case in our study, we plotted AO rate against N2O production from NH4+ for natural and manipulated O₂ samples (Figure S $\underline{75}$). The resulting significant linear fit (R² = 0.75, p<0.0001) implies that the rate of AO was the main driver for the intensity of N2O production from NH4+ and oxygen had a secondary effect

Discrepancies in estimates of the O2 sensitivity of N2O production by nitrification and denitrification are likely due to a combination of taxonomic variation as well as differences in sensitivity among the various enzymes of each pathway.

580 4.2 N₂O yields and hybrid N₂O formation from NH₄⁺

N₂O yields of AO were 0.15 - 2.07 % (N₂O-N mol/NO₂⁻-N mol = $1.5 \times 10^{-3} - 20.7 \times 10^{-3}$) which are at the higher end of most marine AOA culture or field studies (Hink et al 2017b, Oin et al. 2017, Santoro et al. 2011, Stieglmeier et al. 2014). Only in 2015 off the coast of Peru a higher maximum yield of 3.14% was reported (Ji et al. 2018a). While high N₂O yields are usually found in low O₂ waters (<6 µmol L₁⁻¹), in this study AO had also high yields at higher oxygen concentrations, 0.9 % at 30 μ mol L⁻¹ O₂ compared to previous studies (0.06% at > 50 µmol L⁻¹ Ji et al. 2018a).Not only high N₂O yields in low O₂ waters (< 6 µmol L⁺), but also higher yields at higher O_2 concentrations, 0.9 % at 30 µmol L⁺ O_2 compared to 0.06% at > 50 µmol L⁺ (Ji et al. 2018a) were found. In near coastal regions, higher N2O yield at higher O2 concentrations expands the overall water volume where N2O production by AO contributes to high N₂O concentration, which is more likely to be emitted to the atmosphere.

590

585

Insights into the production mechanism of N₂O is gained from hybrid-N₂O formation based on differentiating between production of single (45N2O) and double (46N2O) - labelled N2O. If the production of 45N2O is higher than what is expected based on the binomial distribution, then an additional source of ¹⁴N can be assumed. In ¹⁵NH₄⁺ incubations, as potential ¹⁴N substrates (besides NH₄⁺), NO₂⁻, NH₂OH and HNO are most likely. Even though, I_{in} situ NH₄⁺ is below detection in almost all water depths ($f_N f > 0.9$), hence in our incubations this pool 595 is 99% labelled., there remains the potential for 15 NH4+ pool dilution by remineralization and DNRA during the Formatiert: Hochgestellt incubation. Studies have shown fast turnover for NH4⁺, despite low NH4⁺ concentrations (e.g.f.e. Klawonn et al. 2019). Even if hybrid N2O production rates are overestimated, it remains the major N2O production mechanisms offrom AO in this study.- In future ¹⁵N -labelling studies, co-occurrence of NH4+ production by DNRA or

Formatiert: Tiefgestellt Formatiert: Tiefgestellt Formatiert: Hochgestellt

Formatiert: Tiefgestellt Formatiert: Hochgestellt

degradation should be measured along with N2O production to account for pool dilution. As potential ¹⁴N 600 substrates, NO₂-, NH₂OH and HNO are most likely. Whether hybrid N₂O formation is purely abiotic, a mix of biotic and abiotic or biotic reactions, is debatable (Stieglmeier et al. 2014, Kozlowski et al. 2016, Carini et al. 2018, Lancaster et al. 2018, Stein 2019). Hybrid N2O production from NO2- was variable with depth and oxygen, which can be explained by the different proportions of nitrifier versus denitrifier NO2⁻ reduction to N2O. For example, in the interface sample S19 (892, 144 m, 3.69 μ mol L⁻¹ NO₂⁻) N₂O production from NO₂⁻ (0.72 \pm 0.19 605 nmol $L^{-1} d^{-1}$) was 20 times higher than from NH₄⁺ (0.033 ± 0.0004 nmol $L^{-1} d^{-1}$) and no hybrid N₂O formation from NO2⁻ was found (Figure 5d). There, the major N₂O production mechanism seems to be by denitrification rather than nitrification, and even if there was a hybrid production we were not able to detect it within the given error ranges. Hybrid N2O production from NH4+ was independent of the rate at which N2O production took place and independent of the O2 concentration and varied little (70 - 86% of total N2O production) during AO. Therefore, a 610 purely abiotic reaction outside and without the vicinity of the cell can be excluded because concentrations of potential substrates for abiotic N2O production like Fe(II), Mn, NO, NH2OH vary with depth and O2 concentration (Zhu-Barker et al. 2015, Kondo and Moffet 2015, Lutterbeck et al. 2018, Korth et al. 2019). Additionally, at four depths the potential for abiotic N₂O production in ¹⁵NO₂ addition experiments showed variations with depth and no significant impact of HgCl₂ fixation (Figure S9).-Hence, any ¹⁴N which is integrated into N₂O to produce a

615 hybrid/single labelled N₂O has to be passively or actively taken up by the cell first (Figure 9). There, it reacts with an intermediate product (15NO or 15NH2OH) of AO inside the cell. With this set of experiments, it is not possible to disentangle if hybrid production is based on an enzymatic reaction or an abiotic reaction inside the cell. Caranto et al. (2017) showed that the main substrate of NH₂OH oxidation is NO, making NO an obligate intermediate of AO in AOB and suggested the existence of an unknown enzyme that catalyzes NO oxidation to NO2⁻ (further 620 details also in Stein 2019). If NO is an obligate intermediate of AO in AOA (Lancaster et al. 2018), a constant rate of spontaneous abiotic or enzymatic N2O production is very likely, which always depends on the amount of NO produced in the first place. This could explain why we consistently find ~80% hybrid formation at high as well as at low AO rates. Further studies are needed to investigate the full mechanisms.

625 4.3 Effect of particulate organic matter on N₂O production

A positive stimulation of N₂O production from denitrification by particulate organic matter was found, indicating carbon limitation of denitrification in the ETSP. The experimental POM amendments simulated a low POC export flux and represented a flux that happens over 2 - 15 days, assuming an export flux of 3.8 mmol m⁻² d⁻ ¹ and that 8% of the total POC pool is >50 μ m (Boyd et al. 1999, Martin et al. 1987, Haskell et al. 2015). We are 630 aware that the POM collected by in situ pumps is a mix of suspended and sinking particles and hence the flux should be considered a rough estimate. However, the particle size (>50 µm) used in the experiments is indictive of sinking particles. The stimulation of N2 production from denitrification by particulate organic matter has been shown in ODZs before (Ward et al. 2008, Chang et al. 2014), with quantity and quality of organic matter influencing the degree of stimulation (Babbin et al. 2014). In this study, amendments of POM at different 635 degradation stages resulted in variable magnitudes of N2O production from NO2⁻ and NO3⁻ with no significant correlations between magnitude of the rates and amount, origin or quality of POM added. The processing of the particles has reduced the original N/C ratios of POM from the mixed layer more than of the POM from the ODZ, resulting in similar N/C ratios of particles from different depths. This could be one possible explanation for a lack of correlation of N₂O production with origin of the POM. Furthermore, N₂ production was not quantified and

Formatiert: Tiefgestellt	
Formatiert: Hochgestellt	
Formatiert: Tiefgestellt	
Formatiert: Hochgestellt	
Formatiert: Tiefgestellt	

- 640 hence it is not possible to evaluate potential relationships between overall N loss and POM additions or whether the partitioning between N2O and N2 varied among treatments and depths. N2O/N2 production ratio can vary from 0 - 100% (Dalsgaard et al. 2014, Bonaglia et al. 2016). A temporary accumulation of N₂O before further reduction to N2 in the incubations can be ruled out as N2O accumulated linearly over time. The only station, where POM additions did not stimulate N₂O production was in the center of the young eddy (912-S17). There, the highest rates
- 645 of N₂O production from NO₃⁻ (118 nmol L⁻¹ d⁻¹) were found, indicating that denitrification was not carbon limited. This is consistent with previous studies on anti-cyclonic eddies, which have shown high N loss in the core of a young eddy that weakened with aging of the eddy (Stramma et al. 2013, Bourbonnais et al. 2015, Löscher et al. 2016). A direct link between the freshly produced POM fueling N loss on one hand, and decreased N loss with aging due to POM export out of the eddy on the other hand, was proposed (Bourbonnais et al. 2015, Löscher et al. 2016). In this study, the young eddy is a hot spot for N₂O production.
- 650

Besides carbon availability as electron donor for denitrification, copper limitation and high NO3availability may play a role. Copper limitation has been argued to lead to N₂O accumulation by inhibiting the copper-dependent N₂O reductase (Granger and Ward 2003, Bonaglia et al. 2016), but it was not a limiting factor for denitrification in the three major ODZs previously (Ward et al. 2008). Water sampling from Niskin bottles in our study was not trace metal clean and could be contaminated with Copper from the sampling system, making a limitation of trace metals in our incubations unlikely. However, OM fueled N2O production may have become limited by the availability of copper during the incubation.

High NO3⁻ availability increases N₂O production from denitrification in salt marshes (Ji et al. 2015b) and in soils (Weier et al. 1993), systems which are generally not carbon limited. Also, at the oxic - anoxic interface of 660 Chesapeake Bay, the ratio of NO2⁻ to NO3⁻ concentration was identified as a driver for high N2O production from NO3⁻ (Ji et al. 2018b). This study also found higher N₂O production rates from NO3⁻ than NO2⁻, which linearly correlated with the ratio of NO2⁻/NO3⁻ concentrations (Figure S86). Intracellularly produced NO2⁻ does not seem to exchange with the surrounding pool, but ambient NO3- is directly converted to N2O, a process identified as "NO2" shunting" in N2 production studies (de Brabandere et al. 2014, Chang et al. 2014). POM as electron donor 665 is an important regulator for reductive N2O production.

4.4 Effect of abundance of total and active community composition on N2O production rates

The abundances of both amoA and nirS genes found in the ETSP are similar to those reported in earlier studies in the ETSP (Peng et al. 2013, Ji et al. 2015a, Jayakumar et al. 2013). The amoA gene abundances were 670 similar to those reported for the coastal ETSP by Lam et al. (2009), but nirS abundances reported here were higher than the nirS abundances in that study, probably due to the use of different PCR primers. The community composition of AOA did not significantly differ along the O2 gradient as shown previously (Peng et al. 2013), but a significant correlation between archaeal amoA transcript abundance and N2O production was shown in this study. The combination of qPCR and microarray analysis offered a great advantage to relate the total abundances to the 675 production rates and additionally link particular community components to biogeochemical activities. To determine whether a particular archetype drives the correlation of N2O production by AO, a Bray-Curtis dissimilarity matrix revealed archetype AOA3 related to Nitrosopelagicus brevis (CN25) to be significantly correlated with the N2O production by AO. This clade is abundant in the surface ocean and typically found in high abundances in the lower euphotic zone (Santoro et al. 2011, 2015). With the demonstration of high abundances of

680 AOA3 coincident with high nitrification rates and high N2O production rates, we suggest that Nitrosopelagicus brevis related AOA likely play an important role in N2O production in near surface waters in the Eastern Tropical South Pacific.

The lack of significant correlation between community composition or single members of the community

685

and reductive N₂O production is consistent with the fact that *nirS* is not the enzyme directly synthesizing N₂O and nirS communities are sources as well as sinks for N2O. Taxonomic analysis of the nirS gene and transcripts suggested that there is high taxonomic diversity among the denitrifiers, which is likely linked to a high variability of the total denitrification gene assembly (including nos, nor, nir). In particular the abundance and diversity of nitric oxide reductase (nor), the enzyme directly synthesizing N2O, would be of interest, but it is present in nitrifiers and denitrifiers (Casciotti and Ward 2005) and one goal of this study was to differentiate among N₂O produced by 690 nitrifiers and denitrifers. However, nirS gene and transcript abundance correlated with N2O production from NO2making it a possible indicator for one part of reductive N₂O production. It is also worth noting that anammox related nirS genes and transcripts (nirS 166, 167) contribute up to 12% of the total copy numbers putting a wrinkle on nirS abundance as marker gene for denitrifiers only. The subtraction of the anammox related nirS genes from total copy numbers did not change the results from Bray-Curtis Analysis. These data indicate that the extent to 695 which gene or transcript abundance patterns or community composition of marker genes of processes can be used as proxies for process rate measurements is variable, likely due to complex factors, including the relative dominance of different community members, the modular nature of denitrification, differences in the level of metabolic regulation (transcriptional, translational, and enzymatic), and the range of environmental conditions being observed.

700

4.5 Summary and conclusion

In this study we used a combined approach of ¹⁵N tracer techniques and molecular techniques in order to investigate the factors that control N2O production within the upper oxycline of the ODZ in the ETSP. Our results suggest that denitrification is a major N₂O source along the oxic - anoxic interface of the upper oxycline. Highest 705 N_2O production rates from NO_2^- and NO_3^- were found at or below the oxic-anoxic interface, whereas highest N_2O production from AO was slightly shallower in the oxycline. Overall, in situ O2 threshold below 8 µmol L-1 favored NO3⁻ nitrate and NO2⁻ reduction to N2O and high N2O yields from AO up to 2.2%. A different pattern was observed for the community response to increasing oxygen, with highest N₂O production from NH₄⁺ and NO₂⁻ between 1.4 - 6 μmol L⁻¹ O₂ and high N₂O production from NO₃⁻ even at O₂ concentrations up to 22 μmol L⁻¹. This study 710 highlights the diversity of N_2O production regulation and the need to conduct further experiments where single community members can be better constrained. Our experiments provide the first insights into N₂O regulation by particulate organic matter in the ETSP with particles greatly enhancing N2O production (up to 5fold). Furthermore, the significant positive correlation between Nitrosopelagicus brevis (CN25) and N₂O produced from AO could indicate its importance in N2O production and points out the great value of combining biogeochemical rate 715 measurements with molecular analysis to investigate multifaceted N2O cycling. This study shows that short term oxygen increase can lead to high N₂O production even from denitrification and extends the existing O₂ thresholds for high reductive N₂O production up to 22 µmol L⁻¹ O₂. Together with high N₂O yields from AO up to O₂ levels of 30 µmol L⁻¹, an expansion of low oxygenated waters around ODZs predicted for the future can significantly increase marine N2O production.

720

Regardless of which processes are responsible for N2O production in the ODZ, high N2O production at the oxic-anoxic interface of the upper oxycline sustains high N₂O concentration peaks with a potential for intense

N₂O emission to the atmosphere <u>during upwelling events</u>. An average total N₂O production rate of 3.1 nmol N₂O L⁻¹ d⁻¹ in a 50 m thick suboxic layer with 0 – 20 µmol L⁻¹ O₂ leads to an annual N₂O efflux of 0.5 Tg N y⁻¹ in the Peruvian upwelling (2.22 ×10⁵ km², Arévalo-Martínez et al. 2015), which is within the estimates based on surface
 N₂O concentration measurements from 2012-2013 (Arévalo-Martínez et al. 2015, Bourbonnais et al. 2017). The importance of the Peru upwelling system for global N₂O emissions (5 – 22% of global marine N₂O emissions) is directly linked to the extreme N₂O accumulations in coastal waters. Coastal N₂O hotspots are well known (Bakker et al. 2014) and this study shows that they can be explained by considering denitrification as a major N₂O source. While this study does not help to resolve temporal variability, manipulation experiments give valuable insights oninto the short-term response of N₂O production to oxygen and <u>-Withparticles</u>. With the further parametrization of POM export as a driver for N₂O production from denitrification, models may be able to better predict N₂O emissions in highly productive coastal upwelling regions and to evaluate how fluxes might change with changing stratification and deoxygenation.

735 **Data availability:** The data presented here were archived in the SFB754 database (<u>www.sfb754.de</u>). The N₂O data are also available from the Marine Methane and Nitrous Oxide (MEMENTO) database (<u>https://memento.geomar.de/de/n2o</u>).

Author contributions: CF, HWB and BW conceptualized the study. CF and MS performed experiment. CF and ELP analyzed samples. RX and EA collected POM. DLAM sampled and measured N₂O concentrations. AJ performed qPCR. SO supported mass spectrometer analysis. <u>XS supported experimental methods and assisted with data analysis.</u> CF analyzed data and led the writing effort, with substantial contributions from all co-authors.

Competing interests: Authors declare no competing interests.

Acknowledgement: The work presented here was made possible by the DFG-funded Joint Collaborative Centre
 SFB754 Phase III (<u>http://www.sfb754.de</u>) and by a fellowship of the German Academic Exchange Service
 (DAAD) program 'Postdoctoral Researchers International Mobility Experience (PRIME, ID 57350888) awarded to CF. MS was supported by the China Scholarship Council (No. 201406330054). E.L-P had a FPU-PhD fellowship (014/02917) from the Spanish Ministry of Education and a PhD International Mobility scholarship from the Universidad de Granada. CRL was funded by a EU H2020 Marie Curie Individual Fellowship

750 (NITROX, Grant #704272) and by the Villum Foundation (Grant# 16518). EA, HWB and RX were funded by the DFG-funded Joint Collaborative Centre SFB754 program. We thank the captain and crew of R/V Meteor. Moreover, we thank the Peruvian authorities for the permission to work in their territorial waters.

755

Formatiert: Tiefgestellt

Feldfunktion geändert

Feldfunktion geändert

Feldfunktion geändert

References

Anderson, J. H. (1964). The metabolism of hydroxylamine to nitrite by Nitrosomonas.	Biochemistry Journal,
91(1948), 8–17. https://doi.org/10.1042/bj0910008	

- 760 Arévalo-Martínez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A., Bange, H. W., Arevalo-Martínez, D., ... Bange, H. W. (2015). Massive nitrous oxide emissions from the tropical South Pacific Ocean. *Nature Geoscience*, 8(7), 530–533. https://doi.org/10.1038/NGEO2469
- Arévalo-Martínez, Damian L., Kock, A., Löscher, C. R., Schmitz, R. A., Stramma, L., & Bange, H. W. (2016). Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific.
 Biogeosciences, *13*(4), 1105–1118. https://doi.org/10.5194/bg-13-1105-2016
 - Babbin, A. R., Bianchi, D., Jayakumar, A., & Ward, B. B. (2015). Rapid nitrous oxide cycling in the suboxic ocean. Science, 348(6239), 1127–1129. https://doi.org/10.1126/science.aaa8380
 - Babbin, A. R., Keil, R. G., Devol, A. H., & Ward, B. B. (2014). Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. *Science (New York, N.Y.)*, 344(6182), 406–408. https://doi.org/10.1126/science.1248364
- 770
 - Bakker, D. C. E., Bange, H. W., Gruber, N., Johannessen, T., Upstill-Goddard, R. C., Borges, A. V., ... Santana-Casiano, J. M. (2014). Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO₂,N₂O, CH₄) in a Changing Climate. In Ocean-Atmosphere Interactions of Gases and Particles (pp. 55–112). https://doi.org/10.1007/978-3-642-25643-1
- 775 Bange, H. W. (2008). Gaseous nitrogen compounds (NO, N₂O, N₂, NH₃) in the ocean. In *Nitrogen in the marine environment* (pp. 51–94). Amsterdam: Elsevier.
 - Battaglia, G., & Joos, F. (2018). Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations. *Global Biogeochemical Cycles*, 32(1), 92–121. https://doi.org/10.1002/2017GB005671
- 780 Beman, J. M., Chow, C., King, A. L., Feng, Y., & Fuhrman, J. a. (2011). Global declines in oceanic nitrification rates as a consequence of ocean acidification. *Proceedings of the National Academy of Sciences of the United States of America*, 108(1), 208–213. https://doi.org/10.1073/pnas.1011053108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1011053108
- Bertagnolli, A. D., & Ulloa, O. (2017). Hydrography shapes community composition and diversity of amoAcontaining Thaumarchaeota in the coastal waters off central Chile. *Environmental Microbiology Reports*, 9(6), 717–728. https://doi.org/10.1111/1758-2229.12579
- Biller, S. J., Mosier, A. C., Wells, G. F., & Francis, C. A. (2012). Global Biodiversity of Aquatic Ammonia-Oxidizing Archaea is Partitioned by Habitat. *Frontiers in Microbiology*, *3*, 252. https://doi.org/10.3389/fmicb.2012.00252
- 790 Blum, J. M., Su, Q., Ma, Y., Valverde-Pérez, B., Domingo-Félez, C., Jensen, M. M., & Smets, B. F. (2018). The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N₂O production. *Environmental Microbiology*, 20(5), 1623–1640. https://doi.org/10.1111/1462-2920.14063
- Bonaglia, S., Klawonn, I., De Brabandere, L., Deutsch, B., Thamdrup, B., & Brüchert, V. (2016). Denitrification and DNRA at the Baltic Sea oxic–anoxic interface: Substrate spectrum and kinetics. *Limnology and Oceanography*, 61(5), 1900–1915. https://doi.org/10.1002/lno.10343
 - Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the Spatial Component of Ecological Variation. *Ecology*, 73(3), 1045–1055. https://doi.org/10.2307/1940179
- Bourbonnais, A., Altabet, M. A., Charoenpong, C. N., Larkum, J., Hu, H., Bange, H. W., & Stramma, L. (2015). N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer
 experiment. *Global Biogeochemical Cycles*, 29, 793-811. https://doi.org/10.1002/2014GB005001
- Bourbonnais, A., Letscher, R. T., Bange, H. W., Échevin, V., Larkum, J., Mohn, J., ... Altabet, M. A. (2017). N₂O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system. *Global Biogeochemical Cycles*, 31(4), 678–698. https://doi.org/10.1002/2016GB005567
- Bouskill, N. J., Eveillard, D., O'Mullan, G., Jackson, G. A., & Ward, B. B. (2011). Seasonal and annual
 reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure. *Environmental Microbiology*, *13*(4), 872–886. https://doi.org/10.1111/j.1462-2920.2010.02362.x
- Boyd, P. W., Sherry, N. D., Berges, J. A., Bishop, J. K. B., Calvert, S. E., Charette, M. A., ... Wong, C. S. (1999). Transformations of biogenic particulates from the pelagic to the deep ocean realm. *Deep Sea Research Part II: Topical Studies in Oceanography*, 46(11–12), 2761–2792.
 https://doi.org/10.1016/S0967-0645(99)00083-1
- Braker, G., Fesefeldt, A., & Witzel, K. P. (1998). Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. *Applied* and Environmental Microbiology, 64(10), 3769–3775.
- Breider, F., Yoshikawa, C., Makabe, A., Toyoda, S., Wakita, M., Matsui, Y., ... Yoshida, N. (2019). Response
 of N2O production rate to ocean acidification in the western North Pacific. *Nature Climate Change*, 9(12), 954–958. https://doi.org/10.1038/s41558-019-0605-7
 - Bristow, L A, Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker, J., Forth, M., ... Canfield, D. E.

I	(2016a). N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone.	
	Nature Geosci, advance on(December). https://doi.org/10.1038/ngeo2847	
820	Bristow, Laura A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D., Wright, J. J., Thamdrup, B. (2016b). Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone	
	waters. Proceedings of the National Academy of Sciences, 113(38), 201600359.	
1	Buitenhuis, E. T., Suntharalingam, P., & Le Quéré, C. (2018). Constraints on global oceanic emissions of N ₂ O	
	from observations and models. Biogeosciences, 15(7), 2161-2175. https://doi.org/10.5194/bg-15-2161-	
825		
	<u>Callbeck, C. M., Lavik, G., Ferdelman, T. G., Fuchs, B., Gruber-Vodicka, H. R., Hach, P. F., Kuypers, M. M.</u> <u>M. (2018). Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur</u>	Formatiert: Englisch (USA)
	oxidizing bacteria. <i>Nature Communications</i> , 9(1), 1–11. https://doi.org/10.1038/s41467-018-04041-x,	Formatiert: Englisch (Großbritannien)
ļ	Capone, D. G., & Hutchins, D. A. (2013). Microbial biogeochemistry of coastal upwelling regimes in a changing	
830	ocean. Nature Geoscience, 6(9), 711-717. https://doi.org/10.1038/ngeo1916	
	Caranto, J. D., Lancaster, K. M., Ma, C., Jensen, M. M., Smets, B. F., Thamdrup, B., Lancaster, K. M.	
	(2017). Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine	
	oxidoreductase. <i>Proceedings of the National Academy of Sciences</i> , 114(31), 8217–8222. https://doi.org/10.1073/pnas.1704504114	
835	Carini, P., Dupont, C. L., & Santoro, A. E. (2018). Patterns of thaumarchaeal gene expression in culture and	
000	diverse marine environments. <i>Environmental Microbiology</i> . https://doi.org/10.1111/1462-2920.14107	
	Carrasco, C., Karstensen, J., & Farias, L. (2017). On the Nitrous Oxide Accumulation in Intermediate Waters of	
	the Eastern South Pacific Ocean. Frontiers in Marine Science, 4, 24.	
0.40	https://doi.org/10.3389/fmars.2017.00024	
840	Casciotti, L., & Ward, B. (2005). Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic	
	ammonia-oxidizing bacteria. <i>FEMS Microbiology Ecology</i> , 52(2), 197–205. http://dx.doi.org/10.1016/j.femsec.2004.11.002	
	Casciotti, K. L., Forbes, M., Vedamati, J., Peters, B., Martin, T., & Mordy, C. W. (2018). Nitrous oxide cycling	
	in the Eastern Tropical South Pacific as inferred from isotopic and isotopomeric data. Deep Sea Research	
845	Part II: Topical Studies in Oceanography, (xxxx), 1–13. https://doi.org/10.1016/J.DSR2.2018.07.014	
	Chang, B. X., Rich, J. R., Jayakumar, A., Naik, H., Pratihary, A., Keil, R. G., Devol, A. H. (2014). The effect	
	of organic carbon on fixed nitrogen loss in the eastern tropical South Pacific and Arabian Sea oxygen deficient zones. <i>Limnology and Oceanography</i> , 59(4), 1267–1274.	
1	https://doi.org/10.4319/lo.2014.59.4.1267	
850	Charpentier, J., Farias, L., Yoshida, N., Boontanon, N., & Raimbault, P. (2007). Nitrous oxide distribution and	
	its origin in the central and eastern South Pacific Subtropical Gyre. <i>Biogeosciences</i> , 4(5), 729–741.	
	https://doi.org/10.5194/bg-4-729-2007 Chavez, F. P., & Messié, M. (2009). A comparison of Eastern Boundary Upwelling Ecosystems. <i>Progress in</i>	Formatiert: Englisch (Großbritannien)
	Oceanography, 83(1–4), 80–96. https://doi.org/10.1016/j.pocean.2009.07.032	
855	Codispoti, L. A. (2010). Interesting Times for Marine N2O. Science, 332, 1339–1340.	
	Cohen, Y., & Gordon, L. (1978). Nitrous oxide in the oxygen minimum of eastern tropical North Pacific:	
	evidence for its consumption during denitrification and possble mechanisms for its production. <i>Deep Sea</i>	
	Research, 25(1977), 509–524. Cornejo DOttone, M., Bravo, L., Ramos, M., Pizarro, O., Karstensen, J., Gallegos, M., Karp-Boss, L. (2016).	
000	Cone o Dottone, m., Dravo, E., Ramos, m., 1 izano, O., Ramsensen, S., Canegos, m., Raip-Doss, E. (2010).	
860		
000	Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i> , 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016	
000	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of</i> 	
000	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. Biogeosciences, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320–325. https://doi.org/10.1002/qj.49709640815 	
	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, 96(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. 	
865	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. Biogeosciences, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320–325. https://doi.org/10.1002/qj.49709640815 	
	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, 96(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, 5(6), e01966. https://doi.org/10.1128/mBio.01966-14 	
	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and 	
865	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, 13(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, 96(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, 5(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, 	
	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 	
865	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Linnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. 	
865	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 	
865 870	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. (2014). Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. <i>Environmental Microbiology</i>, <i>16</i>(10), 3041–3054. https://doi.org/10.1111/1462-2920.12255 	
865	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.419/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. (2014). Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. <i>Environmental Microbiology</i>, <i>16</i>(10), 3041–3054. https://doi.org/10.1111/1462-2920.12255 Farías, L., Castro-González, M., Cornejo, M., Charpentier, J. J., Faúndez, J., Boontanon, N., Yoshida, N. 	
865 870	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. (2014). Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. <i>Environmental Microbiology</i>, <i>16</i>(10), 3041–3054. https://doi.org/10.1111/1462-2920.12255 Farías, L., Castro-González, M., Cornejo, M., Charpentier, J. J., Faúndez, J., Boontanon, N., Yoshida, N. (2009). Denitrification and nitrous oxide cycling within the upper oxycline of the eastern tropical South 	
865 870	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.419/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. (2014). Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. <i>Environmental Microbiology</i>, <i>16</i>(10), 3041–3054. https://doi.org/10.1111/1462-2920.12255 Farías, L., Castro-González, M., Cornejo, M., Charpentier, J. J., Faúndez, J., Boontanon, N., Yoshida, N. 	
865 870	 Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. <i>Biogeosciences</i>, <i>13</i>(10), 2971–2979. https://doi.org/10.5194/bg-13-2971-2016 Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. <i>Quarterly Journal of the Royal Meteorological Society</i>, <i>96</i>(408), 320–325. https://doi.org/10.1002/qj.49709640815 Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N. P., Ulloa, O., Delong, E. F. (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. <i>MBio</i>, <i>5</i>(6), e01966. https://doi.org/10.1128/mBio.01966-14 Dalsgaard, T., Thamdrup, B., Farías, L., Peter Revsbech, N., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. <i>Limnology and Oceanography</i>, <i>57</i>(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331 De Brabandere, L., Canfield, D. E., Dalsgaard, T., Friederich, G. E., Revsbech, N. P., Ulloa, O., & Thamdrup, B. (2014). Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. <i>Environmental Microbiology</i>, <i>16</i>(10), 3041–3054. https://doi.org/10.1111/1462-2920.12255 Farías, L., Castro-González, M., Cornejo, M., Charpentier, J. J., Faúndez, J., Boontanon, N., Yoshida, N. (2009). Denitrification and nitrous oxide cycling within the upper oxycline of the eastern tropical South Pacific oxygen minimum zone. <i>Limnology and Oceanography</i>, <i>54</i>(1), 132–144. 	

880	production by a marine ammonia-oxidizing bacterium. Biogeosciences, 7, 3019-3059.		
	https://doi.org/10.5194/bg-7-2695-2010 Frame, C. H., Lau, E., Nolan, E. J., Goepfert, T. J., & Lehmann, M. F. (2017). Acidification Enhances Hybrid		
	N ₂ O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms. <i>Frontiers in</i>		
	Microbiology, 7(January), 2104. https://doi.org/10.3389/fmicb.2016.02104		
885	Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., & Oakley, B. B. (2005). Ubiquity and diversity of		
1	ammonia-oxidizing archaea in water columns and sediments of the ocean. <i>Proceedings of the National Academy of Sciences</i> , 102(41), 14683–14688. https://doi.org/10.1073/pnas.0506625102		
	Ganesh, S., Parris, D. J., Delong, E. F., & Stewart, F. J. (2014). Metagenomic analysis of size-fractionated		
	picoplankton in a marine oxygen minimum zone. ISME Journal, 8(1), 187-211.		
890	https://doi.org/10.1038/ismej.2013.144 Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., & Watson, S. W. (1980). Production	 Formatiert: Englisch (Großbritannien)	
	of NO ₂ ⁻ and N ₂ O by Nitrifying Bacteria at Reduced Concentrations of Oxygen. Appl. Envir. Microbiol.,		
	40(3), 526–532.		
005	Goréguès, C., Michotey, V., & Bonin, P. (2004). Isolation of hydrocarbonoclastic denitrifying bacteria from		
895	berre microbial mats. <i>Ophelia</i> , 58(3), 263–270. https://doi.org/10.1080/00785236.2004.10410234 Granger, J., & Ward, B. B. (2003). Accumulation of nitrogen oxides in copper-limited cultures of denitrifying		
	bacteria. Limnology and Oceanography, 48(1), 313–318. https://doi.org/10.4319/10.2003.48.1.0313		
	Hamdan, L. J., Coffin, R. B., Sikaroodi, M., Greinert, J., Treude, T., & Gillevet, P. M. (2012). Ocean currents		
900	shape the microbiome of Arctic marine sediments. <i>The ISME Journal</i> , 7(4), 685–696.		
900	https://doi.org/10.1038/ismej.2012.143 Hammer, Ø., HARPER, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package.		
	Palaeontologia Electronica, 4(1), 1–9. https://doi.org/10.1016/j.bcp.2008.05.025		
	Haskell, W. Z., Kadko, D., Hammond, D. E., Knapp, A. N., Prokopenko, M. G., Berelson, W. M., & Capone, D.		
905	G. (2015). Upwelling velocity and eddy diffusivity from 7Be measurements used to compare vertical nutrient flux to export POC flux in the Eastern Tropical South Pacific. <i>Marine Chemistry</i> , <i>168</i> , 140–150.		
505	https://doi.org/10.1016/J.MARCHEM.2014.10.004		
	Hink, L., Lycus, P., Gubry-Rangin, C., Frostegård, Å., Nicol, G. W., Prosser, J. I., & Bakken, L. R. (2017)a.		
	Kinetics of NH ₃ -oxidation, NO-turnover, N ₂ O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. <i>Environmental Microbiology</i> , 19(12), 4882–4896.		
910	https://doi.org/10.1111/1462-2920.13914		
	Hink, L., Nicol, G. W., & Prosser, J. I. (2017)b. Archaea produce lower yields of N2O than bacteria during		
	aerobic ammonia oxidation in soil. <i>Environmental Microbiology</i> , 19(12), 4829–4837.		
	https://doi.org/10.1111/1462-2920.13282 Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., & Peterson, B. J. (1999). A simple and precise method		
915	for measuring ammonium in marine and freshwater ecosystems. <i>Canadian Journal of Fisheries and</i>		
	Aquatic Sciences, 56, 1802–1808.		
	Hu, H., Bourbonnais, A., Larkum, J., Bange, H. W., & Altabet, M. A. (2016). Nitrogen cycling in shallow low- oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes. <i>Biogeosciences</i> ,	 Formatiert: Englisch (USA)	$ \longrightarrow $
	<u>13(5), 1453–1468. https://doi.org/10.5194/bg-13-1453-2016</u>	Formatiert: Deutsch (Schweiz)	
920	Hu, Z., Wessels, H. J. C. T., Alen, T., Jetten, M. S. M., & Kartal, B. (2019). Nitric oxide-dependent anaerobic		
	ammonium oxidation. Nature Communications, 10(1244), 1–7. https://doi.org/10.1038/s41467-019-09268- w		
	Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Zhang, J. Z. (2010). Determination		
0.25	of dissolved nutrients (N, P, Si) in seawater with high precision and inter-comparability using gas-		
925	segmented continuous flow analysers. <i>The GO-SHIP Repeat Hydrography Manual IOCCP Report</i> , 134(14), 1–87.		
	IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth		
	Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK and New York,		
930	USA: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.010 Jayakumar, A., Peng, X., & Ward, B. (2013). Community composition of bacteria involved in fixed nitrogen loss		
930	in the water column of two major oxygen minimum zones in the ocean. Aquatic Microbial Ecology, 70(3),		
	245–259. https://doi.org/10.3354/ame01654		
	Jayakumar, D. A., Naqvi, S. W. A., & Ward, B. B. (2009). Distribution and relative quantification of key genes		
935	involved in fixed nitrogen loss from the Arabian Sea oxygen minimum zone. <i>Indian Ocean Biogeochemcal</i> <i>Processes and Ecological Variability</i> , 187–203.		
	Jebaraj, C. S., Forster, D., Kauff, F., & Stoeck, T. (2012). Molecular Diversity of Fungi from Marine Oxygen-		
	Deficient Environments (ODEs) (pp. 189–208). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-		
	3-642-23342-5_10 Jetten, M. S. M., Ward, B. B., & Jensen, M. M. (2008). The microbial nitrogen cycle. <i>Environmental</i>		
940	<i>Microbiology</i> , 10(11), 2903–2909. https://doi.org/10.1111/j.1462-2920.2008.01786.x		

Ji, Q., Babbin, A. R., Jayakumar, A., & Ward, B. B. (2015a). Nitrous oxide production by nitrification and

denitrification in the Eastern Tropical South Pacific oxygen minimum zone. *Geophysical Research Letters*. https://doi.org/10.1002/2015GL066853

- Ji, Q., Babbin, A. R., Peng, X., Bowen, J. L., Ward, B. B., & Ji, Q. (2015b). Nitrogen substrate-dependent nitrous oxide cycling in salt marsh sediments. *Journal of Marine Research*, 7373, 71–92.
- Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., & Ward, B. B. (2018). Global nitrous oxide production determined by oxygen sensitivity of nitrification and denitrification. https://doi.org/10.1029/2018GB005887
- Ji, Q., Frey, C., Sun, X., Jackson, M., Lee, Y., Jayakumar, A., ... Ward, B. B. (2018). Nitrogen and oxygen availabilities control water column nitrous oxide production during seasonal anoxia in the Chesapeake Bay, (March), 6127–6138.
- Johnston, H. (1971). Reduction of Stratospheric Ozone by Nitrogen.Oxide Catalysts from Supersonic Transport Exhaust. *Science (New York, N.Y.), 173,* 517–522.
- Jr., D. J. M., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., ... Steinberg, D. K.
 (2007). Eddy / Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. *Science*, *316*, 1021–1026. https://doi.org/10.1126/science.1136256
 - Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P., Günter, M., ... Kuypers, M. M. M. M. (2011). Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. *PLoS ONE*, 6(12), e29299. https://doi.org/10.1371/journal.pone.0029299
- 960 Kalvelage, T., Lavik, G., Jensen, M. M., Revsbech, N. P., Loescher, C., Schunck, H., ... Kuypers, M. M. M. (2015). Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones. *Plos One*, 10(7). https://doi.org/e013352610.1371/journal.pone.0133526
- Kartal, B., Kuypers, M. M. M., Lavik, G., Schalk, J., Op den Camp, H. J. M., Jetten, M. S. M., & Strous, M. (2007). Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. *Environmental Microbiology*, 9(3), 635–642. https://doi.org/10.1111/j.1462-2920.2006.01183.x
- <u>Klawonn, I., Bonaglia, S., Whitehouse, M. J., Littmann, S., Tienken, D., Kuypers, M. M. M., ... Ploug, H.</u> (2019). Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. *The ISME Journal*. https://doi.org/10.1038/s41396-019-0386-z,
 - Kock, A., Arévalo-Martínez, D. L., Löscher, C. R., & Bange, H. W. (2016). Extreme N₂O accumulation in the coastal oxygen minimum zone off Peru. *Biogeosciences*, 13(3), 827–840. https://doi.org/10.5194/bg-13-827-2016
- Kondo, Y., & Moffett, J. W. (2015). Iron redox cycling and subsurface offshore transport in the eastern tropical South Pacific oxygen minimum zone. *Marine Chemistry*, 168, 95–103. https://doi.org/10.1016/J.MARCHEM.2014.11.007
 - Körner, H., & Zumft, W. G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. *Applied and Environmental Microbiology*, 55(7), 1670–1676.
- 980 Korth, F., Kock, A., Arévalo-Martínez, D. L., & Bange, H. W. (2019). Hydroxylamine as a Potential Indicator of Nitrification in the Open Ocean. *Geophysical Research Letters*, 46(4), 2158–2166. https://doi.org/10.1029/2018GL080466
- Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G., & Stein, L. Y. (2016). Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. *The ISME Journal*, *10*(8), 1–10. https://doi.org/10.1038/ismej.2016.2
- Lam, Lavik, G., Jensen, M. M., Vossenberg, J. van de, Schmid, M., Woebken, D., ... Kuypers, M. M. M. (2009). Revising the nitrogen cycle in the Peruvian oxygen minimum zone. *Proceedings of the National Academy* of Sciences, 106(12), 4752–4757.
- Lancaster, K. M., Caranto, J. D., Majer, S. H., & Smith, M. A. (2018). Alternative Bioenergy : Updates to and Challenges in Nitrification Metalloenzymology. *Joule*, 2(3), 421–441. https://doi.org/10.1016/j.joule.2018.01.018
 - Landolfi, A., Somes, C. J., Koeve, W., Zamora, L. M., & Oschlies, A. (2017). Oceanic nitrogen cycling and N₂O flux perturbations in the Anthropocene. *Global Biogeochemical Cycles*, 31(8), 1236–1255. https://doi.org/10.1002/2017GB005633
- 995 Larsen, M., Lehner, P., Borisov, S. M., Klimant, I., Fischer, J. P., Stewart, F. J., ... Glud, R. N. (2016). In situ quantification of ultra-low O₂ concentrations in oxygen minimum zones: Application of novel optodes. *Limnology and Oceanography: Methods*, 14(12), 784–800. https://doi.org/10.1002/lom3.10126 Legendre, P., & Legendre, L. (2012). *Numerical ecology*. New York, NY, USA: Elsevier.
- Liu, Z., Stewart, G., Kirk Cochran, J., Lee, C., Armstrong, R. A., Hirschberg, D. J., ... Miquel, J.-C. (2005).
 Why do POC concentrations measured using Niskin bottle collections sometimes differ from those using in-situ pumps? *Deep Sea Research Part I: Oceanographic Research Papers*, 52(7), 1324–1344. https://doi.org/10.1016/J.DSR.2005.02.005

Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., & Schmitz, R. A. (2012). Production of

Formatiert: Englisch (USA)

Formatiert: Englisch (Großbritannien)

Formatiert: Englisch (Großbritannien)

945

oceanic nitrous oxide by ammonia-oxidizing archaea. *Biogeosciences*, 9(7), 2419–2429. https://doi.org/10.5194/bg-9-2419-2012

1005

- Löscher, Carolin R., Bange, H. W., Schmitz, R. A., Callbeck, C. M., Engel, A., Hauss, H., ... Wagner, H. (2016). Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical South Pacific oceans. *Biogeosciences*, 13(12), 3585–3606. https://doi.org/10.5194/bg-13-3585-2016
- 1010 Lutterbeck, H. E., Arévalo-Martínez, D. L., Löscher, C. R., & Bange, H. W. (2018). Nitric oxide (NO) in the oxygen minimum zone off Peru. Deep Sea Research Part II: Topical Studies in Oceanography, (xxxx), 0– 1. https://doi.org/10.1016/j.dsr2.2017.12.023
- Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: carbon cycling in the northeast Pacific. *Deep Sea Research Part A. Oceanographic Research Papers*, 34(2), 267–285.
 https://doi.org/10.1016/0198-0149(87)90086-0
- Martinez-Rey, J., Bopp, L., Gehlen, M., Tagliabue, A., & Gruber, N. (2015). Projections of oceanic N₂O emissions in the 21st century using the IPSL Earth system model. *Biogeosciences*, *12*(13), 4133–4148. https://doi.org/10.5194/bg-12-4133-2015
- McIlvin, M. R., & Altabet, M. A. (2005). Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for
 Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater. *Analytical Chemistry*, 77(17), 5589–5595.
 - McKenney, D. J., Drury, C. F., Findlay, W. I., Mutus, B., McDonnell, T., & Gajda, C. (1994). Kinetics of denitrification by Pseudomonas fluorescens: Oxygen effects. *Soil Biology and Biochemistry*, 26(7), 901– 908
- 1025 Messié, M., & Chavez, F. P. (2015). Seasonal regulation of primary production in eastern boundary upwelling systems. *Progress in Oceanography*, 134, 1–18. https://doi.org/10.1016/j.pocean.2014.10.011
 Minery, T. L. Church, M. L. Tarder, L. T. Parette, C. Keel, D. M. & Delland, E. (2007). Ouestitution
- Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., & DeLong, E. F. (2007). Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. *Environmental Microbiology*, 9(5), 1162–1175. https://doi.org/10.1111/j.1462-2920.2007.01239.x
- Murdock, S. A., & Juniper, S. K. (2017). Capturing Compositional Variation in Denitrifying Communities: a Multiple- Primer Approach That Includes Epsilonproteobacteria. Applied and Environmental Microbiology, 83(6), 1–16.

 Newell, S. E., Babbin, A. R., Jayakumar, A., & Ward, B. B. (2011). Ammonia oxidation rates and nitrification in the Arabian Sea. *Global Biogeochemical Cycles*, 25(4), 1–10. https://doi.org/10.1029/2010gb003940
 Nicholls, J. C., Davies, C. A., & Trimmer, M. (2007). High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central

Arabian Sea. Limnology and Oceanography, 52(1), 156–168. https://doi.org/10.4319/lo.2007.52.1.0156
 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., ... Maintainer, H. W. (2019).
 Package "vegan" Title Community Ecology Package. Community Ecology Package, 2(9), 1–297.

- Peng, X., Jayakumar, A., & Ward, B. B. (2013). Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones. *Frontiers in Microbiology*, 4(JUL), 1–12. https://doi.org/10.3389/fmicb.2013.00177
- Pietri, A., Testor, P., Echevin, V., Chaigneau, A., Mortier, L., Eldin, G., ... Grados, C. (2013). Finescale Vertical Structure of the Upwelling System off Southern Peru as Observed from Glider Data. *Journal of Physical Oceanography*, 43(3), 631–646. https://doi.org/10.1175/JPO-D-12-035.1
 - Qin, W., Meinhardt, K. A., Moffett, J. W., Devol, A. H., Armbrust, E. V., Ingalls, A. E., & Stahl, D. A. (2017). Influence of Oxygen Availability on the Activities of Ammonia-oxidizing Archaea. *Environmental Microbiology Reports*. https://doi.org/10.1111/1758-2229.12525
- 1050 Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N₂O): the dominant ozonedepleting substance emitted in the 21st century. *Science (New York, N.Y.)*, 326(5949), 123–125. https://doi.org/10.1126/science.1176985
- Richards, T. A., Jones, M. D. M., Leonard, G., & Bass, D. (2012). Marine Fungi: Their Ecology and Molecular Diversity. *Annual Review of Marine Science*, 4(1), 495–522. https://doi.org/10.1146/annurev-marine-120710-100802
- Ryabenko, E., Kock, a., Bange, H. W., Altabet, M. a., & Wallace, D. W. R. (2011). Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones. *Biogeosciences Discussions*, 8(4), 8001–8039. https://doi.org/10.5194/bgd-8-8001-2011
- Santoro, A. E., Buchwald, C., McIlvin, M. R., & Casciotti, K. L. (2011). Isotopic Signature of N₂O Produced by Marine Ammonia-Oxidizing Archaea. *Science*, 333, 1282–1285. https://doi.org/10.1126/science.1208239
 Santoro, A. E., & Casciotti, K. L. (2011). Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. *The ISME Journal*, 5(11), 1796– 1808. https://doi.org/10.1038/ismej.2011.58

Santoro, A. E., Casciotti, K. L., & Francis, C. A. (2010). Activity, abundance and diversity of nitrifying archaea

Formatiert: Englisch (USA)

Formatiert: Schriftart: (Standard) Calibri

1065	and bacteria in the central California Current. Environmental Microbiology, 12(7), 1989–2006.	
	https://doi.org/10.1111/j.1462-2920.2010.02205.x	
	Santoro, A. E., Dupont, C. L., Richter, R. A., Craig, M. T., Carini, P., McIlvin, M. R., Saito, M. A. (2015).	
	Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": An ammonia-oxidizing	
	archaeon from the open ocean. Proceedings of the National Academy of Sciences, 112(4), 1173–1178.	
1070	https://doi.org/10.1073/PNAS.1416223112	
	Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past	
	five decades. <i>Nature</i> , 542(7641), 335–339. https://doi.org/10.1038/nature21399	Formatiert: Deutsch (Schweiz)
	Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T., Löscher, C. R., Laroche, J. (2013). Giant	
	hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PloS One,	
1075	8(8), e68661. https://doi.org/10.1371/journal.pone.0068661	Formatiert: Englisch (Großbritannien)
	Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011).	
	Metagenomic biomarker discovery and explanation. <i>Genome Biology</i> , 12(6), R60.	
	https://doi.org/10.1186/gb-2011-12-6-r60	
4000	Shoun, H., Fushinobu, S., Jiang, L., Kim, S. W., & Wakagi, T. (2012). Fungal denitrification and nitric oxide	
1080	reductase cytochrome P450nor, Philosophical Transactions of the Royal Society B: Biological Sciences,	
	367(1593), 1186–1194. https://doi.org/10.1098/rstb.2011.0335	
	Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A Bacterial	
	Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Analytical Chemistry,	
	73, 4145–4153.	
1085	Stein, L. Y. (2019). Insights into the physiology of ammonia-oxidizing microorganisms. <i>Current Opinion in</i>	
	Chemical Biology, 49, 9–15. https://doi.org/10.1016/J.CBPA.2018.09.003	
	Stewart, F. J., Ulloa, O., & Delong, E. F. (2011). Microbial metatranscriptomics in a permanent marine oxygen	
	minimum zone. Environmental Microbiology, 14(1), 23-40. https://doi.org/10.1111/j.1462-	
1000	<u>2920.2010.02400.x</u>	Formatiert: Englisch (Großbritannien)
1090	Stewart, F. J., Dalsgaard, T., Young, C. R., Thamdrup, B., Revsbech, N. P., Ulloa, O., Delong, E. F. (2012).	
	Experimental incubations elicit profound changes in community transcription in OMZ bacterioplankton.	
I	<u>PloS One</u> , 7(5), e37118. https://doi.org/10.1371/journal.pone.0037118	Formatiert: Deutsch (Schweiz)
	Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., &	
1095	Schleper, C. (2014). Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia oxidizing archeea. <i>The ISME Journal</i> 8(5), 1125–1146. https://doi.org/10.1038/jempi.2013.220	
1095	ammonia-oxidizing archaea. <i>The ISME Journal</i> , 8(5), 1135–1146. https://doi.org/10.1038/ismej.2013.220 Stramma, L., Bange, H. W., Czeschel, R., Lorenzo, A., & Frank, M. (2013). On the role of mesoscale eddies for	
	the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru.	
	Biogeosciences, 10(11), 7293–7306. https://doi.org/10.5194/bg-10-7293-2013	
	Stramma, Lothar, Johnson, G. C., Sprintall, J., & Mohrholz, V. (2008). Expanding Oxygen-Minimum Zones in	
1100	the Tropical Oceans. Science, 320, 655–659.	
1100	Sun, X., Ji, Q., Jayakumar, A., & Ward, B. B. (2017). Dependence of nitrite oxidation on nitrite and oxygen in	
	low-oxygen seawater. Geophysical Research Letters, 44(15), 7883–7891.	
	https://doi.org/10.1002/2017GL074355	
	Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Stepanauskas, R.	
1105	(2011). Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science,	
	333(6047), 1296–1300. https://doi.org/10.1126/science.1203690	
	Thamdrup, B., & Dalsgaard, T. (2002). Production of N ₂ through Anaerobic Ammonium Oxidation Coupled to	
	Nitrate Reduction in Marine Sediments. Applied and Environmental Microbiology, 68(3), 1312–1318.	
	https://doi.org/10.1128/aem.68.3.1312-1318.2002	
1110	Thomsen, J. K., Geest, T., & Cox, R. P. (1994). Mass Spectrometric Studies of the Effect of pH on the	
	Accumulation of Intermediates in Denitrification by Paracoccus denitrificans. Applied and Environmental	
	Microbiology, 60(2), 536–541.	
	Tiano, L., Garcia-Robledo, E., Dalsgaard, T., Devol, A. H., Ward, B. B., Ulloa, O., Peter Revsbech, N.	
	(2014). Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen	
1115	minimum zones. Deep-Sea Research Part I: Oceanographic Research Papers, 94, 173–183.	
	https://doi.org/10.1016/j.dsr.2014.10.001	
	Torres-Beltrán, M., Mueller, A., Scofield, M., Pachiadaki, M. G., Taylor, C., Tyshchenko, K., Hallam, S. J.	
	(2019). Sampling and processing methods impact microbial community structure and potential activity in a	
	seasonally anoxic fjord: Saanich inlet, British Columbia. Frontiers in Marine Science, 6(MAR), 1-16.	
1120	https://doi.org/10.3389/fmars.2019.00132	
	Trimmer, M., Chronopoulou, PM., Maanoja, S. T., Upstill-Goddard, R. C., Kitidis, V., & Purdy, K. J. (2016).	
	Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific. <i>Nature</i>	
	Communications, 7, 13451. https://doi.org/10.1038/ncomms13451	
4425	Vajrala, N., Martens-Habbena, W., Sayavedra-Soto, L. A., Schauer, A., Bottomley, P. J., Stahl, D. A., & Arp, D.	
1125	J. (2013). Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea.	
	Proceedings of the National Academy of Sciences, 110(3), 1006–1011.	

https://doi.org/10.1073/pnas.1214272110

- Van Der Star, W. R. L., Van De Graaf, M. J., Kartal, B., Picioreanu, C., Jetten, M. S. M., & Van Loosdrecht, M. C. M. (2008). Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine. *Applied and Environmental Microbiology*, 74(14), 4417–4426. https://doi.org/10.1128/AEM.00042-08
 - Wankel, S. D., Ziebis, W., Buchwald, C., Charoenpong, C., De Beer, Di., Dentinger, J., ... Zengler, K. (2017). Evidence for fungal and chemodenitrification based N₂O flux from nitrogen impacted coastal sediments. *Nature Communications*, 8, 1–11. https://doi.org/10.1038/ncomms15595
- Ward, B. B., Tuit, C. B., Jayakumar, A., Rich, J. J., Moffett, J., & Naqvi, S. W. a. (2008). Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. *Deep-Sea Research Part I: Oceanographic Research Papers*, 55(12), 1672–1683. https://doi.org/10.1016/j.dsr.2008.07.005
 - Weier, K. L., Doran, J. W., Power, J. F., & Walters, D. T. (1993). Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. Soil Science Society of America Journal, 57(1), 66. https://doi.org/10.2136/sssaj1993.03615995005700010013x
- Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., & Sigman, D. M. (2016). Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. *Rapid Communications in Mass Spectrometry*, *30*(12), 1365–1383. https://doi.org/10.1002/rcm.7570
 Wright, J. J., Konwar, K. M., & Hallam, S. J. (2012). Microbial ecology of expanding oxygen minimum zones.
 - Nature Reviews Microbiology, 10(6), 381–394. https://doi.org/10.1038/nrmicro2778
- 1145 Wuchter, C., Abbas, B., Coolen, M. J. L., Herfort, L., van Bleijswijk, J., Timmers, P., ... Sinninghe Damsté, J. S. (2006). Archaeal nitrification in the ocean. *Proceedings of the National Academy of Sciences of the United States of America*, 103(33), 12317–12322. https://doi.org/10.1073/pnas.0600756103
- Yang, S., Gruber, N., Long, M. C., & Vogt, M. (2017). High ENSO driven variability of denitrification and suboxia in the Eastern Pacific Ocean. *Global Biogeochemical Cycles* 31(10) 1470-1487.
 https://doi.org/10.1002/2016GB005596
 - Yoshida, N. (1988). ¹⁵N-depleted N₂O as a product of nitrification. *Nature*, 335(6190), 528–529. https://doi.org/10.1038/335528a0
- Zhou, Z., Takaya, N., Sakairi, M. A. C., & Shoun, H. (2001). Oxygen requirement for denitrification by the fungus Fusarium oxysporum. *Archives of Microbiology*, *175*(1), 19–25.
 https://doi.org/10.1007/s002030000231
- Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R., & Glass, J. B. (2015). The importance of abiotic reactions for nitrous oxide production. *Biogeochemistry*, 126(3), 251–267. https://doi.org/10.1007/s10533-015-0166-4
- Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. *Microbiology and Molecular Biology Reviews*, 61(4), 533–616.

Formatiert: Englisch (Großbritannien)

ID	Stat #	Coordin ates/ position	bottom depth (m)	sampling depth (m)	water column feature	Tem. (°C)	Sal.	Ο ₂ (μM) seabird	NO3- (μM)	NO2- (μM)	NH4 + (μM)	¹⁵ N incubation	Tracer added	nirS	amoA
S2	882	10.95W 78.56N	1075	352	anoxic core	11.4	34.82	bd	32.51	0.68	0.01	depth profile	NH4*, NO2 ⁻ , NO3 ⁻	x	x
S1	882		1075	299	below interface	12.1	34.86	bd	30.21	0.52	0.00	depth profile	NH4*, NO2 ⁻ , NO3 ⁻	x	x
S 3	882		1075	259	oxic- anoxic interface	13.0	34.92	bd	29.39	1.63	0.01	depth profile	NH4*, NO2 ⁻ , NO3 ⁻	x	x
S4	882		1075	219	above interface	13.7	34.96	6.06	31.65	0.13	0.01	depth profile	NH4*, NO2 [*] , NO3 [*]	x	x
S5	882		1075	74	oxycline	15.4	35.05	15.04	30.00	0.02	0.00	depth profile	NH4*, NO2 [*] , NO3 [*]	x	x
S 6	883	10.78W 78.27N	305	305	anoxic core	12.2	34.87	bd	27.27	1.72	0	depth profile	NH4*, NO2 [*] , NO3 [*]	x	x
S 7	883		305	268	below interface	12.8	34.91	bd	26.61	2.05	0	depth profile	NH4*, NO2 [°] , NO3 [°]	x	x
S 8	883		305	250	oxic- anoxic interface	13.1	34.92	bd	28.06	1.66	0	depth profile	NH4*, NO2 [°] , NO3 [°]	x	x
S 9	883		305	189	above interface	13.8	34.97	bd	30.47	0.00	0	depth profile	NH4*, NO2 [*] , NO3 [*]	x	x
S10	883		305	28	oxycline	16.4	35.09	30.06	26.81	0.04	0	depth profile	NH4*, NO2 [*] , NO3 [*]	x	x
S19	892	12.41W 77.81N /	1099	144	below oxic- anoxic interface	13.51	34.91	bd	19.01	3.69	0.13	O2 manipulation	NH4*, NO2 [*] , NO3 [*]	x	x
S11	894	12.32W 77.62N/	502	120	oxic- anoxic interface	14.21	34.98	bd	28.92	0.01	0.00	O2 manipulation	NH4*, NO2 ⁻ , NO3 ⁻	x	x
S12	904	13.99W 76.66N	560	179	below interface	13.46	34.94	bd	25.54	1.25	0.00	POM addition (from 898)	NO ₂ ⁻ , NO ₃ ⁻	x	x*
S13	904		560	124	oxic- anoxic interface	14.40	35.00	bd	27.57	0.09	0.00	POM addition (from 898)	NO ₂ ', NO ₃ '	x	x*
S14	906	14.28W 77.17N	4761	149	below interface	13.70	34.96	bd	25.80	0.90	0.04	POM addition (from 904)	NO ₂ ', NO ₃ '	x	x*
S20	906		4761	92	oxic- anoxic interface	14.50	35.00	bd	20.03	3.87	0.33	POM addition (from 904)	NO ₂ ', NO ₃ '	x	x*
S15	907	15.43W 75.43N	800	130	below interface	14.21	34.98	bd	14.63	5.23	0.03	POM addition (from 904)	NO ₂ ', NO ₃ '	x	x
S16	907		800	9.9	surface	17.82	35.13	208.3	16.09	0.99	0.16	POM addition (from 904)	NO ₂ ', NO ₃ '	x	x
S17	912	15.86W 76.11N	3680	90	below interface	15.09	35.03	bd	19.38	2.85	0.03	POM addition (from 906)	NO ₂ ', NO ₃ '	x	x
S18	912		3680	5	surface	18.05	35.18	206.0	8.31	0.47	0.12	POM addition (from 906)	NO ₂ , NO ₃	x	х
S21	917	14.78W 78.04N/	4128	140	Interface	13.1	34.86	bd	17.3	3.9	0.0	POM addition (from 906)	NO ₂ ', NO ₃ '	x	x*

Table 1: Overview of characteristics of samples. bd - below detection limit of Winkler method and seabird sensor

 $\label{eq:linear} 1165 \qquad (2\ \mu\text{mol}\ L^{\text{-}1}), x\ \text{-}\ analysis\ includes\ qPCR\ and\ microarray\ with\ qPCR\ products, x^*\ \text{-}\ only\ qPCR, no\ microarray\ analysis\ ananalysis\ analysis\ analysis\ analysis\$

Tables

РОМ	Feature	Station	Depth (m)	Addition (µmol L ⁻¹)	N/C of autoclaved POM	N/C of non- autoclaved POM	NH₄⁺ (µM) after autoclaving
POM 1	mixed layer depth	898	60	0.55	0.10	0.15	0.7
		904	20	0.17	0.09	0.17	1.56
		906	50	0.48	0.07	0.11	0.57
POM 2	oxycline	898	100	1.37	0.06	0.13	0.85
		904	50	0.38	0.09	0.12	0.46
		906	100	0.44	0.08	0.10	0.55
POM 3	anoxic zone	898	300	0.43	0.09	0.10	0.15
		904	150	0.19	0.10	0.10	0.20

 $\label{eq:addition} \begin{array}{l} \mbox{Table 2: Quality (N/C), quantity (Addition μmol L^{-1}) and origin (station and depth) of added, autoclaved and non-autoclaved particulate organic matter (POM) and increase in NH_4^+ concentration after autoclaving. \end{array}$

Figure Legends:

1175 Figure 1: Study area with the distribution of near-surface chlorophyll concentrations (monthly averaged for June 2017) from MODIS satellite obtained from the NASA Ocean Color Web site at 4-km resolution. Study site showing transect and station numbers, in the Eastern Tropical South Pacific during cruise M138. Figure 2: Depth profiles of O2, nutrients and N2O in the upper 400 m for all stations. Panel numbers 1 - 4) refer to the transect numbers. Figure 3: (I) Profiles of AO, (a, e, I), N₂O production rates from NH4⁺ (b, f, j), archaeal amoA gene (c, g, k) and 1180 transcript copy numbers mL⁻¹ (d, h, l). (II) Profiles of NO3- nitrate reduction rates (a, f, k, o), N2O production rates from NO3⁻ (b, g, l, p) and NO2⁻ (c, h, m, q) and nirS gene (d, I, n, r) and transcript copy numbers mL⁻¹ (e, j, m, s). In (I) and (II), the panel numbers 1-4 correspond to transect numbers. Negative values on the y-axis represent shallower, oxic depths and the positive values represent deeper, anoxic depth (0 = interface). Shaded area indicates 1185 the anoxic zone. Note different scale for N2O production rates. Figure 4: O₂ dependence of N₂O production rates from NH₄⁺ (a, d), NO₂⁻ (b, e) and NO₃⁻ (c, f). Upper panel (a-c) is N₂O production along natural O₂ gradient from all stations. Figure 4 (b, c) are additionally zoomed upin to oxygen concentrations below 5µmol L^{-1} . Lower panel (d-f) is N₂O production in manipulated O₂ experiments with water from oxic - anoxic interface from slope station 892 (S11, 0 µmol L⁻¹ O₂, 145m) and shelf station 894 (S19, 1190 0 µmol L-1, 120 m). Note different scale for N₂O production rates from NH₄⁺. Vertical error bars represent ± Standard error (n = 5 per time course). Horizontal error bars represent \pm Standard error of measured O₂ over the time of incubations (n = 6). Figure 5: O₂ dependency of hybrid N₂O formation from NH₄⁺ (a, c) and NO₂⁻ (b, d) along the natural O₂ gradient (a, b) and for the O_2 manipulations (c, d) from sample S11 (0 μ mol L⁻¹ O_2 , 145m) and S19 (894, 0 μ mol L⁻¹, 120 1195 m) Figure 6: Yields (%) of N₂O production during NH₄⁺ oxidation (a, c) and during NO_{3^-} nitrate reduction (b, d) along the natural O_2 gradient (a, b) and for the O_2 manipulations (c, d) from sample S11 (892, 0 μ mol L⁻¹ O_2 , 145m) and S19 (894, 0 µmol L⁻¹, 120 m). Error bars present ± SD calculated as error propagation. Figure 7: Bar plots of N2O production after additions of autoclaved suspended and sinking particles >50 µm 1200 (See Table 2). POM1 = mixed layer depth, POM2 = oxycline, POM3 = ODZ. Error Bars represent ± SE of linear regression. * indicates significant difference to control rate (p < 0.05) Figure 8: Stacked bar plot of community composition of AOA amoA archetypes (a, b) and nirS archetypes (c, d). Only archetypes over 1% contribution are shown. (a, c) total community composition (DNA). (b, d) active community composition (cDNA).

1205 Figure 9: Scheme illustrating the possible reactions for hybrid N₂O formation. The ellipse represents an AOA cell.

Formatiert: Hochgestellt

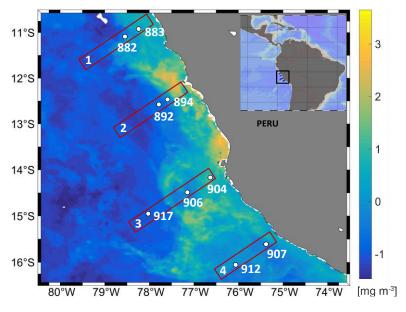
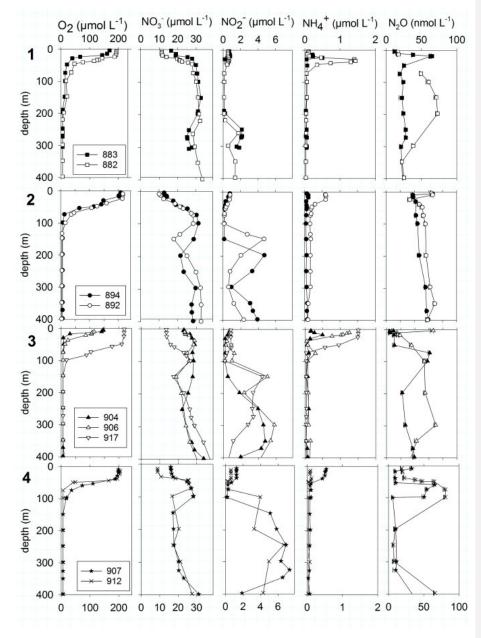
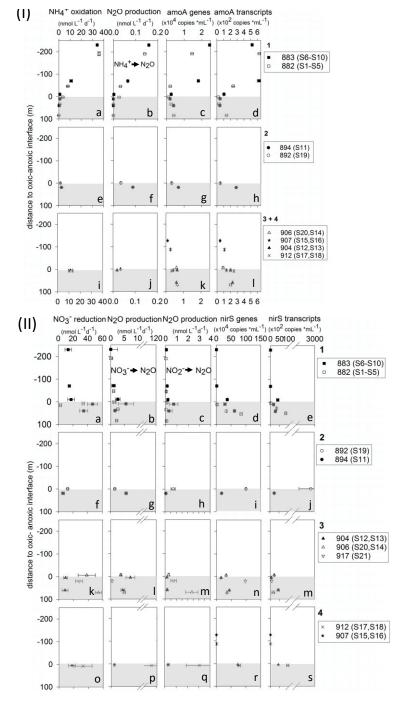
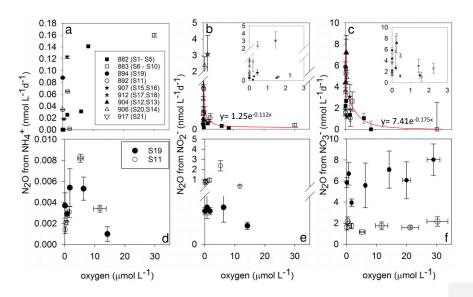




Figure 1



1215 Figure 4

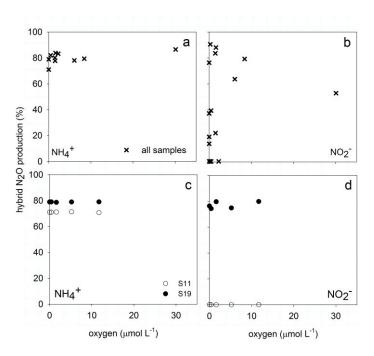


Figure 5

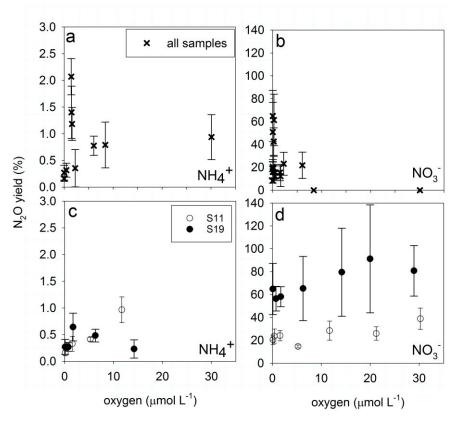
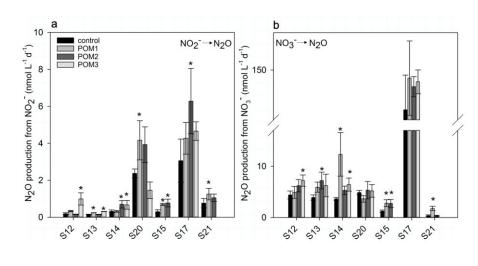



Figure 6

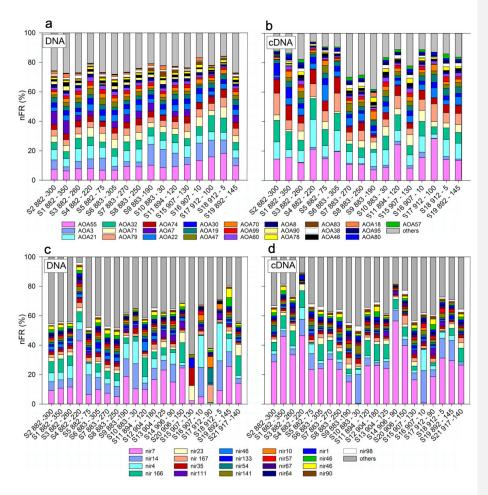
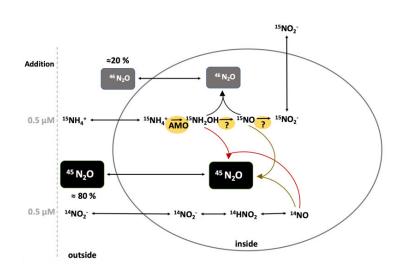



Figure 8

Supplements

Regulation of nitrous oxide production in low oxygen waters off the coast of Peru

1

5 Claudia Frey^{1,2,*},Hermann W. Bange², Eric P. Achterberg³, Amal Jayakumar¹, Carolin R. Löscher⁴, Damian L. Arévalo-Martínez², Elizabeth León-Palmero⁵, Mingshuang Sun², Xin <u>Sun¹</u>, Ruifang C. Xie³, Sergey Oleynik¹, Bess <u>B.</u>Ward¹

	nirS	amoA
DNA	3.8 ± 0.4	3.6 ± 0.1
cDNA	3.4 ± 0.5	3.2 ± 0.3

X		x x x	DNA	nir4 nir14 nir23 nir46	x		x
X				nir23			X
		x		nir46	х		
				nir166	x		
		х	cDNA	nir4			x
	x			nir14			x
		x		nir23	x		_
				nir141			x
				nir166	x		
		X			x nir23 nir141	x nir23 x nir141	x nir23 x nir141

Table S2: Overview of abundant archetypes (> 1%) that are significantly enriched in respective O_2 levels (Lefse analysis). O_2 levels were split in 3 categories: anoxic (<1 μ mol L⁻¹ O_2 , Seabird O_2 and Winkler titration detection limits), hypoxic (1 – 10 μ mol L⁻¹ O_2), oxic (> 10 μ mol L⁻¹ O_2).

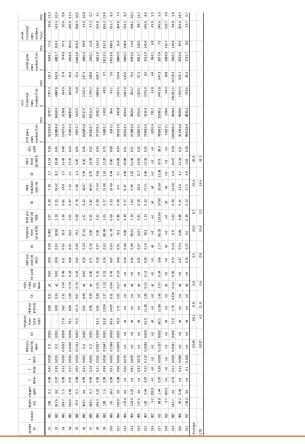


Table S3: All samples with rates, standard errors, fraction label (f_N) , yields, copy numbers mL⁻¹ of *nirS* and *amoA* genes and transcripts.

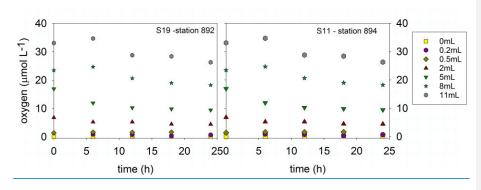
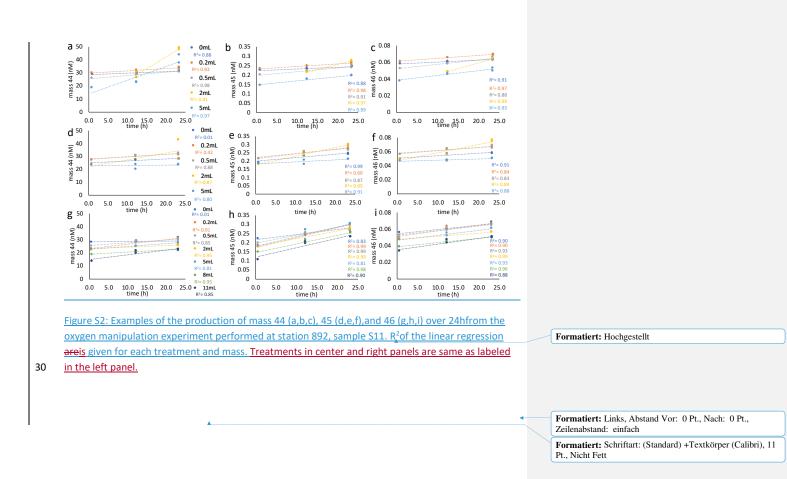
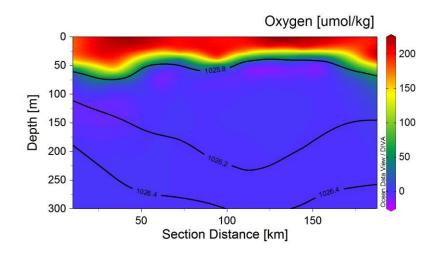
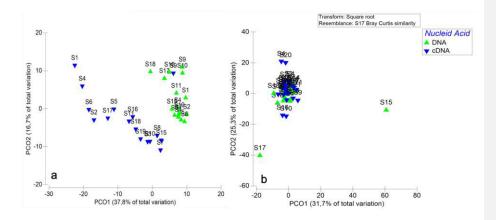
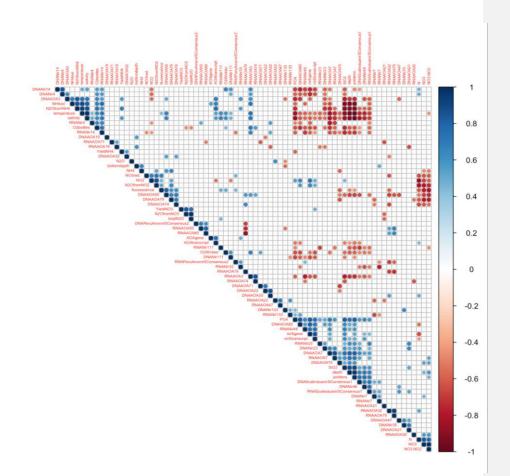



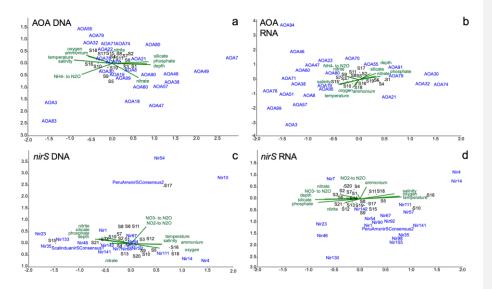
Figure S1: Dissolved oxygen concentrations inside the serum bottles during the 24h incubations of the oxygen manipulation experiments at station 892 and 894. No tracer was added to the these bottles. Only the ¹⁵NO₂ incubations received 8mL and 11mL additions of saturated site water.

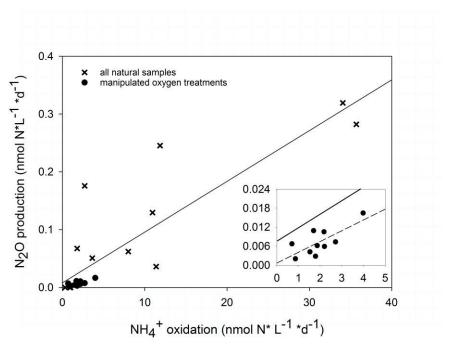
 Formatiert: Hochgestellt

 Formatiert: Tiefgestellt

 Formatiert: Hochgestellt


Figure S34: Oxygen and density contours plot from CTD data across the eddy transect 4.


Figure S42: Principle component analysis of amoA DNA and cDNA (a) and *nirS* DNA and cDNA (b).

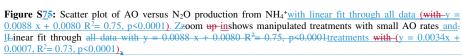
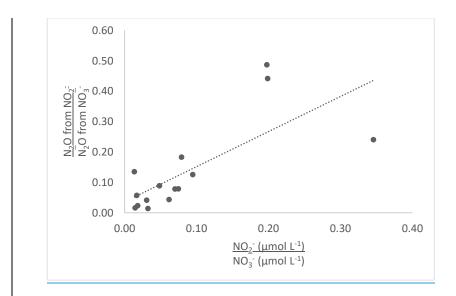
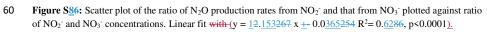


Figure S<u>5</u>3: Heat map of significant positive (blue) or negative (red) correlations (p<0.05) based on a Spearman Rank correlation analysis.




Figure S64:Triplot of Canonical Correspondence Analysis showing the archetype composition as a response to the environmental parameters. Upper panel <u>shows</u> amoAarchetypes(a,b) and lower panel *nirS* archetypes (c,d). On the right is the DNA (a,c) and on the left is the cDNA (b,d).

Formatiert: Schriftart: 10 Pt.

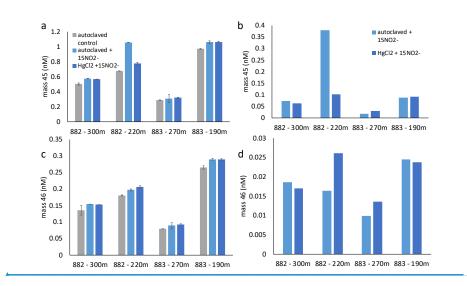


Figure S9: Abiotic N₂O Production of mass 45 (a) and mass 46 (c)from ¹⁵NO₂; for 4 depths. The control did not receive tracer addition.-The bottles incubated for 65 - 80 days from simultaneous tracer and HgCl₂ addition or autoclaving until the measurement in the lab. Figure b) and d) show offset between control and the treatments. Error bars are from duplicates. There is little abiotic production from both masses, between 0.018 - 0.37 for mass 45 and 0.009 - 0.026 for mass 46. There was no significant difference between addition of HgCl₂ and autoclaving to stop biological activity. Only at station 882, depth 220m mass 45 and 46 responded very
 differently.

Formatiert: Schriftart: (Standard) Arial, 10 Pt., Fett

Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt., Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt., Hochgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt., Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt., Hochgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.
Formatiert: Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt., Tiefgestellt
Formatiert: Schriftart: (Standard) Times New Roman, 10 Pt.

Formatiert: Englisch (USA)

Interactive comment "Regulation of nitrous oxide production in low oxygen waters off the coast of Peru"

Response to Referee #1:

We are grateful to the reviewer for the positive feedback and constructive suggestions which greatly helped us in preparing a revised manuscript. We addressed the specific suggestions below (our replies in bold).

Abstract: Another important finding is that hybrid N₂O formation represented 70-86% of the N₂O production during ammonium oxidation, regardless of the ammonium oxidation rate or O₂ concentrations. One sentence about this should be added to the abstract.

We added: "Hybrid N₂O formation (i.e. N₂O getting one N atom from NH₄⁺ and the other from other substrates such as NO₂⁻) was the dominant species, comprising 70 – 86 % of total produced N₂O from NH₄⁺, regardless of the ammonium oxidation rate or O₂ concentrations."

Introduction Lines 70-75: The distinction between hybrid N₂O production by ammonia oxidizing archaea and chemodenitrification (e.g. nitrite reduction coupled to iron II oxidation) should be better made. Hybrid N₂O formation (mediated by AOA) has been observed in the ODZ water-column, but not chemodenitrification (also referred to as abiotic N₂O production; Wankel et al., 2017), likely due to substrate limitation (Fe, Mn).

In line 74, we added: Abiotic N_2O production, also known as chemodenitrification, from intermediates like NH_2OH , NO or NO_2^- can occur under acidic conditions (Frame et al. 2017), or in the presence of reduced metals like Fe or Mn and catalyzing surfaces (Zhu-Barker et al. 2015, Wankel et al. 2017), but the evidence of abiotic N_2O production (chemodenitrification) in ODZs is still lacking.

line 78: Correct nitrifier-denitrifiaction for denitrification.

We added (line 80) denitrification, but did not replace nitrifier-denitrification because this is what the paragraph is about.

Lines 79-81: It should be noted that Frame and Casciotti (2010) only observed higher yields at decreasing O₂ concentrations for high starting cell densities. At lower cell densities (closer to values found in ODZs), the impact of decreasing O₂ on N₂O yield was much lower than observed in other studies.

We re-wrote the sentence as follow (line 83-87): Overall, the yield of N_2O per NO_2^- generated from AO is lower in AOA then AOB (Hink et al. 2017, 2018) but it should be noted that the degree to which N_2O yield increases with decreasing O_2 concentrations is variable with cell densities in cultures or field sites, (Cohen & Gordon 1978; Yoshida 1988; Goreau et al. 1980; Frame & Casciotti 2010, Santoro et al. 2011, Löscher et al. 2012, Ji et al. 2015a, 2018a).

Lines 102-104: Charpentier et al (2007) also suggested that nitrifier-denitrification is enhanced by high concentration of organic particles, which creates high NO₂- and low-O₂ microenvironments.

We added a sentence in line 81-83. "It has also been suggested that high concentration of organic particles create high NO_2^- and low- O_2 microenvironments enhancing nitrifier-denitrification (Charpentier et al. 2007)."

Lines 113-114: It would also be relevant to look at *nor* genes which are encoding nitric oxide reductase.

The reviewer is correct, but the goal here was to distinguish between nitrifiers and denitrifiers and for that the *nor* gene is not ideal as it is present in both. Furthermore, in Fuchsmann et al. (2017) (doi10.3389/fmicb.2017.02384) the canonical forms of the gene *norB* and *qnorB* were very low abundant, suggesting that there might be other genes encoding enzymes mediating NO reduction to N_2O .

Materials and methods:

Line 136: It is not clear why a 3 mL He helium headspace is created before incubating, since it will impact in-situ O₂ concentrations.

The headspace was added for several reasons: 1) to avoid diffusion of oxygen from the septum into the liquid directly, headspace provided an additional barrier, 2) to be able to purge the serum bottles and 3) to avoid artificial differences by different treatments, all bottles received a headspace. We added (line 148 – 150): "He purging removed dissolved oxygen contamination which is likely introduced during sampling and the headspace prevents direct oxygen leakage from the rubber seals (DeBrabandere et al. 2012)."

Line136-137: I assume purging is done to avoid O₂ contamination? What is the O₂ threshold defining anoxia here? One potential problem with purging is that it also removes other gases (e.g., H₂S) involved in autotrophic denitrification (for instance, see Callbeck *et al.,* 2018).

Yes, purging was done to decrease oxygen contamination during sampling. We rewrote the sentence as such (line 147-148): A 3 mL helium (He) headspace was created and samples from anoxic (O_2 < below detection) water depths were He purged for 15min. We also added line 148 – 150, as written as answer to your previous comment. The point of H2S removal during purging is added into the discussion section line 511- 521: "In addition, sampling with Niskin bottles and purging can induce stress responses (Stewart et al. 2012) and shift the richness and structure of the microbial community from the *in situ* community (Torres-Beltran et al. 2019), which can be one potential explanation for the different responses between manipulated O_2 and *in situ* O_2 experiments. The removal of other gases like H₂S during purging introduces another potential artefact. However, this is unlikely because measurable H₂S concentrations have mostly been found at very shallow coastal stations (< 100 m deep) (Callbeck et al. 2018), which have not been sampled in this study. On the contrary, high abundances (up to 12 %) of sulfur oxidizing gamma proteobacteria, like SUP05 can be found in eddy-transported offshore waters where they

actively contributed to autotrophic denitrification (Callbeck et al. 2018). This study cannot differentiate between autotrophic or organotrophic denitrification, but a contribution of autotrophic denitrification in the eddy center is likely."

Lines 150-153: How did O₂ vary during the incubations? These data should perhaps be included as part of the supplementary materials.

The oxygen concentrations stayed constant in the low oxygen treatments, while it decreased in higher oxic treatments. That explains the higher standard deviation in higher treatments. Oxygen concentrations over time are added to the supplements Figure S1.

Line 153: Explain the rationale for using particles >50 μ m.

It is the fraction that is sinking. This is stated in line 607-608: "However, the particle size (>50 μ m) used in the experiments is indictive of sinking particles."

Lines 192-219: Plots showing increase in 15N labeled products over time should be included in the supplementary materials. Were the relationships always linear?

Linear relationships were used to calculate the slopes and only significant slopes were included as written in line 233-235. We added example time plots from the oxygen manipulation experiments into the supplements. See Figure S2.

Lines 228-229: These nirS primers exclude epsilon-proteobacteria (Murdock, et al., 2017). Epsilon proteobacteria are often the dominant portion of autotrophic sulfur oxidizers in sulfidic waters (e.g., Grote et al., 2008), thus this aspect should be discussed.

We added a statement in the methods that we are aware that epsilonproteobacteria are not captured with the Primer we used. Line 260 - 263: "The *nirS* Primers are not specific for epsilon-proteobacteria (Murdock et al. 2017), but in previous metagenomes from the ETSP epsilon-proteobacteria where below 3-4% or not found, except in very sulfidic, coastal stations (Stewart et al. 2011, Wright et al. 2012, Ganesh et al. 2012, Schunck et al. 2013, Kavelage et al. 2015)."

Line 256: Add accession number.

Added. GEO Accession No GSE142806

Results:

Lines 282-283: Could a contour plot of chlorophyll concentration added to the supplementary material for reference?

We added surface Chlorophyll data to the station map. See Figure 1.

Lines 334-335: This result is a bit puzzling as previous studies (e.g., Dalsgaard et al., 2014), observed fifty percent inhibition of N2O production by denitrification at about 300nM O2. These observations are also unlike results from their *in situ* O2 gradient experiment.

This is not contradictory to Dalsgaard et al. 2014. They were in depths with high NO2- concentration indicative for the core of the anoxic zone, whereas this study took place at the upper part of the anoxic zone and in the oxycline.

Lines 349-350: It is also surprising to observe the highest yield for N₂O production at highest O₂ concentrations, for which N₂O production should be inhibited (Dalsgaard et al., 2014).

This is not to be confused with the N2O yield/N2. The yields are for NO3- and not like in Dalsgaard with 15NO2- which apparently makes a large difference as we can show in this study!!!

Discussion:

Lines 421-426: Some of these are likely causal relationships.

Yes, absolutely.

Lines 425-426: This suggest that when NO₃- is abundant, denitrifying bacteria are less likely to use NO₂- (either from their internal pool or outside the cell) for N₂O production during denitrification.

This comment is added to the text line 460 - 461.

Line 441: What is the detection limit for $[N_2O]$?

The detection limits is 2nM. We added that information into the method section 2.1. line 137.

Lines 441-444: Bourbonnais et al. (2017) used biogeochemical tracers (N₂O concentrations and isotopes) that integrates over longer timescales compared to 15N-labeled incubations, which are more like taking a snapshot in time. Therefore, discrepancies between N₂O production rate is expected and should be discussed in this context.

We rewrote that section: "Previously reported maximum rates were up to 86 nmol $L^{-1} d^{-1}$ (Dalsgaard et al. 2012) based on ^{15}N tracer incubations. Much smaller maximum rates, 49 nmol $L^{-1} d^{-1}$ (Bourbonnais et al. 2017) and 50 nmol $L^{-1} d^{-1}$ (Farias et al. 2009), were obtained using N₂O isotope and isotopomer approaches which provide time and process integrated signals. Hence, the deviation of maximum rates can be explained by 1) the different approaches and 2) the sampling of the core of the eddy. "

Line 451: Cite Fassbender et al. (2018) that discusses impacts of eddies on biogeochemical processes at different scales.

We did not add Fassbender here, because the recommended paper does not contain information on impact of eddy age on the N2O distribution, which is the point we are trying to make here.

Lines 443: The error on this higher rate estimate seems rather large (in Figure 3, p).

We added the exact rate with the standard deviation.

Lines 458-460: This part is confusing. The O₂ threshold for reductive N₂O production should be higher than for N₂O consumption, not the converse. In other words, nitric oxide reductase should be more O₂ tolerant than nitrous oxide reductase (Dalsgaard et al., 2014). Otherwise, N₂O would not accumulate.

This is exactly my point. There is a discrepancy between the thresholds in rates we find and the N2O concentration maxima we measure between 1 – 8uM O2. If N2O production is so sensitive from denitrification then where is all the N2O coming from? Just NH4+ oxidation is unlikely based on the N2O production rates we find from NH4+ oxidation. There might be a higher threshold for N2O production from denitrification?

Lines 445-446: I do not understand this statement.

We did not measure N2 production rates, so we cannot say anything about the N2O/N2 yield during denitrification. This yield is subject to changes and not constant, Because of that, we have no chance to make an estimate on the N2 production rate. Maybe in the Eddy incomplete denitrification to N2O was favored and that is what we measured or complete denitrification was fueled and this is what we measured. We rephrased the sentence (line 481- 485) to "N₂ production measurements were not performed in this study, so it cannot be determined whether the eddy only stimulated N₂O production but not N₂ production from denitrification (i.e. increasing the N₂O/N₂ yield) or if the eddy also increased complete denitrification to N₂ by 10 times compared to stations outside of the eddy. "

Lines 479-481: This hypothesis is also supported by a rather long turnover time for NO₂- as inferred from the δ_{18} O of NO₂-, which is generally fully equilibrated with water in offshore waters (Bourbonnais et al., 2015). This is not the case in coastal waters, where NO₂- seems to be more dynamic (see and cite Hu et al., 2016).

We added this statement into the manuscript as follow (line 532 - 534): "Long turnover times for NO₂⁻ have been inferred from d¹⁸O of NO₂⁻, which was fully equilibrated with water in the offshore waters (Bourbonnais et al. 2015) and more dynamic in the coastal waters (Hu et al. 2016) supporting our hypothesis. "

Lines 495-496: How can these contrasting results be reconciled?

We attribute this to the intensity of the ammonium oxidation rate which exerts a first order control on the N2O production rate. Meaning if the NH4+ oxidation rates would exponential decrease with O2 concentration then we would find that relationship in the N2O production rates. We discuss this further down in line 554 – 556.

Lines 522-524: If hybrid N₂O formation during AOA is purely (or even partly) abiotic, then measured rates would be overestimated as HgCl₂ would not stop N₂O production at the end of the incubations. For how long were these samples stored before being measured? This point should be better discussed.

The samples were stored between 2 – 5 month. Abiotic N2O production would take place and continue until we measure the samples, indeed. But it also goes on in all samples raising the N2O baseline (in mass 44,45,46) for all and not just in specific ones. This impact will likely vary with depth, but then all the timepoints are affected by the same abiotic production. The rates are calculated from the increase over time making them independent of the baseline. We added a figure to the supplements S9, where results for abiotic production from 15NO2- tracer are shown from 4 depths from 2 stations. The addition of 15NO2- tracer results in little abiotic production; 0.018 – 0.37 nM 45N2O and 0.009 – 0.026 nM 46N2O up to the point of mass spec analysis, but independent HgCl2 addition. We added this point into the discussion line 281. However, we did not test abiotic N2O from NH4+ tracer, hence this can not be fully ruled out. We added that point in line 588-590: "Additionally, at four depths the potential for abiotic N₂O production in ¹⁵NO₂⁻ addition (Figure S9)."

Lines 565-566: What was the chlorophyll concentration in the center of the eddy?

Low, below 1mg/m3. We added a map with surface Chlorophyll, see Figure 1.

Lines 641-643: N₂O emission to the atmosphere are possible only if the water is upwelled.

We rephrased the sentence to (line 698): "Regardless of which processes are responsible for N₂O production in the ODZ, high N₂O production at the oxic-anoxic interface of the upper oxycline sustains high N₂O concentration peaks with a potential for intense N₂O emission to the atmosphere during upwelling events."

Lines 649-652: Temporal variability is particularly not well captured in observational studies.

We added a sentence to pick up on that comment (line 705 – 706): "While this study does not help to resolve temporal variability, manipulation experiments give valuable insights on the short-term response of N_2O production to oxygen and particles."

Figure legends: Rename Figure 7: N₂O production after additions of... **The figure was renamed accordingly.**

Figures 2 and 3 are too small. Legend (station #) is almost impossible to read.

The figure Legend and axis label were adjusted.

Figure 5: Samples impacted by denitrification should be more clearly indicated (by a circle or rectangle and in the Figure legend) in Figure 5b.

In all samples in Figure 5b, N_2O production from 15NO3- was found. If that is what the reviewer means. There was no adjustment done to the figure.

Supplements:

Figures S1: I recommend expanding the scale at lower O₂ concentrations since this is the focus of the paper.

We did not expand the scale here as the focus is the shallowing of the oxycline in the center of the eddy , which is nicely visible in this figure.

Figure S5: Add linear regression and r-square for natural samples in the zoom up plot.

Linear regressions and equations were added to the Figure S7.

Figure S6: Since there are only a few data points for [NO₂-]/[NO₃-] higher than 0.10, I don't think the outlier (light gray dot) can be removed. There is much more scatter in Figure 5 in Ji et al. (2018) for the same relationship.

The point was included into the regression.

Response to Referee #2: We thank to reviewer for the positive feedback and valuable suggestions which greatly improved the quality of the manuscript. We addressed the specific suggestions below (our replies in bold).

General comments:

Check nitrite/NO⁻ throughout manuscript 2

We checked for consistency and changed all nitrites to NO2⁻.

You note differences in process rates and between the communities exposed *in situ* to O2 gradients and in the O2 manipulation experiments (e.g. Line 463-4). I think at least some discussion is needed as to the potential effects of purging the samples with gas as described in refs below (e.g. Dalsgaard et al, deBrabandere et al, Holtappels et al, Stewart et al.)

We added a sentence to the method section, line 148-151: "He purging removed dissolved oxygen contamination which is likely introduced during sampling and the headspace prevents possible oxygen leakage from the rubber seals (DeBrabandere et al. 2012)" and in line 158/159: "Total incubation times were adjusted to prevent bottle effects, which become significant after 20 h based on respiration rate measurements (Tiano et al. 2014). "

Furthermore, we added a part in the discussion line 508-521. "Different responses of N₂O production rates to O₂ between *in situ* assemblages and incubation were not unexpected because different rates at different depths were likely not only due to O₂ differences but also other factors such as different organic matter fluxes and different amounts and types of N₂O producers at different depths. In addition, sampling with Niskin bottles and purging can induce stress responses (Stewart et al. 2012) and shift the richness and structure of the microbial community from the *in situ* community (Torres-Beltran et al. 2019), which can be one potential explanation for the different responses between manipulated oxygen and *in situ* oxygen experiments. The removal of other gases like H₂S during purging introduces another potential artefact. However, it is unlikely as measurable H₂S concentrations have mostly been found at very shallow coastal stations (< 100 m deep) (Callbeck et al. 2018), which was not the case in this study. On the contrary, high abundances (up to 12%) of sulfur oxidizing gamma proteobacteria, like SUP05 can be found in eddy-transported offshore waters where they actively contributed to autotrophic denitrification (Calbeck et al. 2018). In this study, it cannot differentiate between autotrophic or organotrophic denitrification, but a contribution of autotrophic denitrification in the eddy center is likely."

Can you be sure that there is no DNRA occurring in your experiments – in particular given the Lam et al. 2009 'Revising the N cycle...' paper also off the Peruvian coast. The presence of DNRA would complicate your isotope pairing experiments with 15NO3- and 15NO2- by transferring 15N into the NH4+ pool and you would get 'hybrid'N2O' of 15nh4+ and 15no2forming 46N2O and be wrongly assigned. DNRA would also potentially dilute your 15NH4+ pool with 14N from background NO3- and alter the assumed 99% labelling in these experiments. I realise the contribution of AO to N2O production is small relative to denit, but the artefacts of DNRA on the rates/data should be discussed as it could lead to some N2O from AO being 'hidden'.

The reviewer raises a very important point and no, we cannot be sure that the occurrence of DNRA is impacting our results. We added this consideration to the manuscript in line 216 - 232. "Nevertheless, this assumption brings some initial considerations which need to be accounted for. There is a potential for overestimating hybrid N₂O production in ¹⁵NO₂⁻ incubations by 5% in samples with high NO₃⁻ reduction rates. But in incubations from anoxic depths with high NO₃⁻ reduction rates, no hybrid N₂O production is found at all. For example, accounting for a decrease in f_N of the NO₃⁻ pool by active NO₂⁻ oxidation, the process with highest rates (Sun et al. 2017), had an effect of only \pm 0.2 % on the final rate estimate. The presence of DNRA complicates ¹⁵N-labelling incubations because it can change f in all three tracer experiments. In the vicinity of DNRA in ¹⁵NO₃⁻ incubations, ¹⁵NO₂⁻ and ¹⁵NH₄⁺ can be produced from ¹⁵NO₃ which can contribute to ⁴⁶N₂O production by AO. Even when a maximum DNRA rate (20 nM d⁻¹ in Lam et al. 2009) is assumed to produce 0.02 nM ¹⁵NH₄⁺ in 24 h with all of it being oxidized to N₂O (max. N₂O production from AO 0.16 nM d⁻¹, this study), its contribution to ⁴⁶N₂O production is likely minor and within the standard error of N₂O production rates from NO₃⁻. Hence an overestimation of the N₂O production rates is unlikely. The same applies in incubations with ¹⁵N-NO₂⁻ when DNRA produces ¹⁵NH₄⁺, additional ⁴⁶N₂O can be produced with a hybrid mechanism by AO not accounted for in the present rate calculations. In ¹⁵NO₂⁻ incubations with high starting f (>0.7) the production of ${}^{14}NO_2^{-}$ by NO₃⁻ reduction (which decreases f) leads to an underestimation by max. 9%, whereas in incubations with a low f (<0.3) the effect is less with max. 3 % underestimation of N₂O production rates. In ¹⁵NH₄⁺ incubations (f >0.9), max. DNRA rate would lead to an underestimation of 3.5 %. "

Specific comments:

Section 2.1: As with other papers with many sites, sampling points and manipulation experiments a written methods text quickly becomes very complicated with different additions, concentrations, replicates, time points etc. I think as a result of the text being quite confusing some information has been missed/is unclear. Adding a table of experiments, stations, variables, sampling routine (e.g. time points), number of replicates, other factors (e.g. whether O2 was measured in vials) would be informative/helpful to readers who are interested in comparing/replicating experiments.

It is correct, that such set ups can get confusing very quickly, but in table 1 stations, depths, measured variables and the kind of experiment performed are given. However, we added one column with the kind of tracer addition we did. The replicates and time points did not vary between experiments and hence is only stated in the test. We only measured oxygen in one bottle with each incubation per depth or treatment, which was also consistent and written in the text line 168/169.

Also Section 2.1: Missing info on NO3- and NO2- analyses (e.g. shown in Fig 2).

The measurement of nitrite and nitrate concentrations is given in line 130-132.

Line 145 (O2 manipulation experiments): Why was such a 'coarse' O2 range used compared to previous studies which use O2 manipulations generally below $1-2\mu M$ (e.g. Dalsgaard et al 2014, Bristow et al 2016)?

In Bristow et al. 2016 a and b the maximal oxygen concentration in their manipulation experiments was 10uM and 20uM dissolved oxygen, so we are not quite sure what the referee means. Dalsgaard et al 2014 performed a really nice microcosm experiment, where oxygen concentrations were monitored online in the flask they subsampled. In our case, each time point was a separate bottle making it impossible to use such an approach. For the experimental design in this study, it was important to choose oxygen levels where we can be sure that oxygen concentrations are different enough from each other that we can differentiate the two treatments (f.e. 100nM and 200nM would be tricky to tell apart with our standard deviations of 180nM and 240nM over 24h). We added a plot of oxygen over time into the supplements Figure S1.

Line 145 (O2 manipulation experiments): This is a bit confusing: '...headspace volume was adjusted depending on the amount of site water added...'. Do you mean that after the addition of different oxygenated water volumes you also wanted to end up with a 3mL headspace as in the 'natural gradient' O2 experiment? Please rephrase and explain more clearly.

Yes, that is exactly what we were trying to do. The sentence was rephrased (line 163 - 164) to "For the O₂ manipulation experiments, all serum bottles were He purged and after the addition of different amounts of air saturated site water a final headspace volume of 3 mL was achieved."

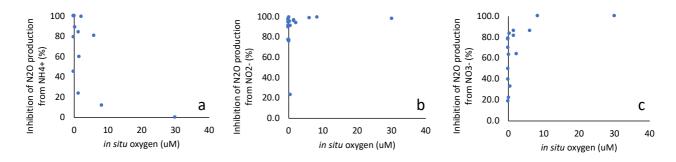
Line 153 (OM experiments): So only total N2O was measured in the OM experiments? Or were 15N substrates also added. Unclear as it is written now.

¹⁵N substrates were also added in the organic matter addition experiments. We changed the text to : "For all experiments,..." in line 151 and adjusted line 174 as followed: "200μL of POC solution were added to each serum bottle before ¹⁵N-NO₃⁻ or ¹⁴N-NO₂⁻ tracer injection."

Line 166: Do you mean 'Ascarite' instead of Ascarid?

Yes, we mean "Ascarite" and it was changed.

Line 186-8: Rephrase to: 'If more single labelled N2O is produced than expected (...), a hyrid formation of one nitrogen atom from nh4+ and one from no2- (...) is assumed to be taking place se found in archaeal ammonia oxidizers'


The sentence was rephrased as recommended.

Line 191: What about 45N2O formed from dilution from background 14NO3- and 14NO2- in samples? Then you will get 45N2O from 15NOx + 14NOx ... You note earlier (ca Line 140) that there is likely substantial 14NO3- (at least in some samples/depths) which will be reduced to 14NO2- and dilute your 15NO2- pool. Perhaps there is something I have missed in the text but this doesn't make sense to assume all 45N2O in incubations with 15NO2, especially in anoxic/low O2 manipulations where NOx can be respired.

Indeed, there is a potential for overestimating hybrid N2O production in 15NO2incubations by 5% in samples with high NO3- reduction rates. But in incubations from anoxic depths with high NO3- reduction rates, no hybrid N2O production is found at

all. We added all potential problems which come with the assumption of a costant f into that section, starting line 217.

Section 3.3: Could the % inhibition of processes be plotted to help comparison to other relevant studies on O2 manipulation on AO/no2- ox/denit (e.g. Kalvelage et al 2011, Dalsgaard et al 2014, Bristow et al 2016). I think at least some short discussion is warranted in relation to O2 effects on processes in these previous papers.

We added the inhibition curves along the natural O2 gradient here, but we stay with the same figures in the main text as we want to show absolute rates. Section 3.3 is a results section, so we do not refer to papers there. However, in the discussion part 4.1 we cited Kalvelage et al. 2011 (line 525) and Dalsgaard et al. 2014 (line 522). Bristow et al. 2016 is added to the section 4.1. Out of these papers, only Dalsgaard et al. 2014 measured N2O production, hence the focus in the discussion is on their paper.

Section 3.4: This is a little confusing, additional 14NH4+ was also added along with the POC to experiments? Or was the POC filtered/rinsed after autoclaving?

The particles were in 0.2um filtered low nutrient seawater and during autoclaving some nitrogen from the particles was liberated into that solution. By adding 200uL of that concentrated POM solution with max. 1.56 μ M of NH4+ means we added minor amounts of NH4+ into our incubation bottles (0.3nM NH4+), which is neglectable form that perspective. It may be more important with respect to the change in N/C ratios. We adjusted the text, which reads now (line 386 – 389): "The autoclaving of the concentrated POM solution liberated NH4⁺ from the particles, reducing the N/C ratio of the particles compared to non-autoclaved particles (Table 2). The highest NH4⁺ accumulation is found in samples with the largest difference in N/C ratios between autoclaved and non-autoclaved particles (Table 2, 904-20m, 898-100 m)."

Line 466: In relation to the 'Unchanged N2O production with higher O2 levels in NO3treatments...' sentence: Can anoxic niches be ruled out in these experiments? You do note the sampling being during low upwelling and chl period but the settling of small particulates during experiments may create anoxic/low O2 zones to sustain anaerobic processes.

Anoxic micro niches can never be fully ruled out, if not investigated. The Chlorophyll concentrations were in deed low for an upwelling area, max 5mg/m3, but on average 1mg/m3 and less. Figure 1, map of the study site was adjusted with Chlorophyll concentrations. The treatment was identical between depth profile samples and manipulation samples, so if the particles settle, they would settle in all of the bottles and create microniches in the samples from the depth profile as well. There is no

plausible explanation why more anoxic micro niches should be in the oxygen manipulations compared to the others.

Sentence line 470-472 Bristow et al 2016 should also be a ref here in relation to kinetics of multi-step processes

Bristow et al. 2016a and b were added.

Line 477: How can you be sure none of the N2O was consumed without further measurements (e.g. 15N-N2)? Production may just be much faster than consumption.

We are not able to say anything about N2 production, we can only assume. We added sufficient amounts of 44N2O carrier prior to the incubation to trap 15N-labelled N2O. If N2O reduction is taking place at high rates, we would see a decrease in the N2O pool over time. A plot with the mass 44, 45 and 46 over time was added to the supplements (Figure S2).

Line 512-515: Confusing sentences, consider rephrasing.

Sentence was rephrased (line 565 – 567): "While high N₂O yields are usually found in low O₂ waters (<6 μ mol L⁻¹), in this study AO had also high yields at higher oxygen concentrations, 0.9 % at 30 μ mol L⁻¹ O₂ compared to previous studies (0.06% at > 50 μ mol L⁻¹ Ji et al. 2018a)."

Line 521: This is a bit of an oversimplification - because something is below detection doesn't necessarily mean nothing is happening, more likely a tight coupling between consumption and production (e.g. see Figure 4 in Klawonn et al 2019 and Figure 3 in Olofsson et al 2019 references). Could there be a dilution of your 15NH4+ pool to consider due to rapid cryptic cycling on shorter scales than your experiments? Ideally 15NH4+ and total NH4+ would be followed through the time series to check for dilution effects. Both show very rapid NH4+ turnover (within ~5h) in oligotrophic waters

The 15NH4+ substrate was not measured on the GC-IRMS because high ¹⁵N label/ almost pure tracer is always problematic to analyze. We added the possibility of an overestimation of hybrid production to the method section line 217 and rephrased the wording here to (line 573-575) "Even though, *in situ* NH₄⁺ is below detection in almost all water depths (f > 0.9), there remains the potential for ¹⁵NH₄⁺ pool dilution by remineralization and DNRA during during the incubation. Despite below detection limit studies have shown fast turnover for NH₄⁺ (Klawonn et al. 2019)."

Line 532: If measured, the accumulation and consumption of intermediates (e.g. NO2-) could also be used to imply biotic vs abiotic mechanisms (e.g. Betlach and Tiedje 1981 reference).

We measured NO2- concentrations and isotopic composition in the 15NH4+ treatments, but not other intermediates like NH2OH or NO. The change in concentration was below our detection limit 50nM. Abiotic N2O production was seen in the 15NO2- treatments in the anoxic depth. A supplementary figure was added Figure S9. Line 560-3: Could a 15N recovery/inventory be calculated for the experiments (e.g. 15N recovery from initial substrate, measured intermediates and 15N-N2O?) This could help infer a % N2O production from denitrification which is important for putting the N2O production from denit in context – i.e. how do variations in O2 impact the proportion of N2O produced by denit relative to N2?

The reviewers make a good point, having both the N2 and N2O production from the same flask at low rates would be very nice. We do not think that there is a way we can come to a N2O /N2 yield without measuring N₂. The biological variations in the NO3- pool were so big that the little change in 15NO3- was too small to be detected. Therefore, the yield of N2O/NO2- was calculated.

Fig 4 b, c & Fig 6 b: consider zoomed-in insert of x-axis (e.g. similar to Fig S5)

Zoom ups are added into the figures.

Figure S5: Seems to be two different slopes here from manipulated vs natural O2 gradients – could also be discussed in relation to purging artefacts.

Both slopes are indicated in figure S7 now. Yes, this could be a purging artefact, but the scatter at the lower range is very high.

Response to second round of Referee #2 suggestions:

Dear Referee,

we appreciate your additional suggestions to our first response and integrated them into our current manuscript. We outlined our point to point reply below (in bold).

General comments:

Thanks, I realise it will be a small % but important to acknowledge. It would also be good to add a sentence in the discussion to suggest that DNRA(& anammox) are measured in addition in future work to rule out potential artefacts – there are now several (sediment) papers on the artefacts of the coocurrence of NO3- reducing processes on the IPT assumptions.

We added the importance of measuring N2 production in future studies in the discussion: Line 574: "In future ¹⁵N -labelling studies, DNRA should be measured to rule out potential pool dilution by the co-occurrence of NH₄⁺ production. "

Line 482- 485: "N₂ production measurements (from anammox and denitrification) were not performed in this study, but should be carried out in future studies to account for potential artefacts by co-occurring NO₃⁻ reduction processes."

I think you just need to change "In the vicinity of DNRA in 15NO3- incubations…" to "In relation to DNRA in 15NO3- incubations…"

We rephrased the whole sentence in the results section to: "In ${}^{15}NO_3^-$ incubations, active DNRA produces ${}^{15}NO_2^-$ and ${}^{15}NH_4^+$ from ${}^{15}NO_3^-$ which can contribute to ${}^{46}N_2O$ production by AO."

I meant that in Bristow et al. and Dalsgaard et al that a lot of their measurements are concentratedbelow 1-2 uM oxygen and fewer concentrations in the 'higher' 10-20uM range... i.e. focusing on theconcentrations where the inhibition/regulation really 'happens'. But I understand the reasons youdescribe above given the standard deviations of O2 measurements and without more sensitive sensorsit would be difficult to designate concentrations, I agree. I appreciate that Dalsgaard et al do have anice reactor/microcosm set up which I realise is very specialised for precisely these experiments and with larger volumes than the serum vials – also that it is a lot of work with these types of experiments. I think it would still be good to add a sentence/statement as to why 'your' oxygen concentrations werechosen (e.g. given the reasons above, SD in measurements etc) if possible.

We think that the standard deviations of the different oxygen levels explain why we did not resolve the lower end better and did not add anything there. However, we agree with the referee that it does not become clear why a larger range was applied for the 15NO3treatments, so we explained that better:

Line 167-169: "For the ¹⁵N-NO₃⁻ incubations two more O₂ treatments with 21.5 ± 2.8 and 30.2 ± 3.35 μ M O₂ were carried out to extend the range of a previous study in which N₂O production from ¹⁵NO₃⁻ did not decrease up to O₂ concentration of 7 μ M (Ji et al. 2018)."

But if there is the same amount of particles in all vials/O2 manipulations then there is potential for some anoxic processes to be 'unaffected' by O2 additions - with some changes in anoxic microsite volume with O2 diffusion into particles. I realise this is hard to rule out – especially as you collect small particles from the water column to use, indicating that they are there. I think it would be important to write something shortly about why you consider it unlikely that any (significant) anoxic niches occur.

We do not consider it unlikely that anoxic niches occur, but we do think that anoxic niches do not explain the large difference in response of N2O production at high oxygen levels in the depth profiles (no to little N2O production) compared to the manipulated oxygen treatments (very high N2O production), because the potential for anaerobic microsites is given in all incubations. We added the potential for anaerobic processes inside microniches in line 530 - 534: "It further indicates that high N₂O production from NO₃⁻ in high oxygen treatments is unlikely an effect of anoxic micro niches. While anoxic micro niches in batch incubations can never be fully ruled out, there is no reason why they should systematically change N2O production in NO₃⁻ from NO₂⁻ incubations at the same oxygen treatment. "

Shortly suggest/indicate benefits of also measuring other end products (e.g. 15N-N2 and maybe also 15NH4+ from DNRA) in the text (i.e. how does the 'efficiency' of denit change with changing O2)

We added the advantage of measuring several potential end products in line 574 about DNRA and in line 482- 485 about anammox and denitrification (see first comment). The advantage of having production rates of N2O and N2 together is already discussed starting in line 485, and also starting in line 532, where we highlight the value of having the N2O yields. The different responses/efficiency of denitrification to oxygen is extensively discussed in lines 523 onwards.

Some kind of 'conclusion' is needed at the end of the last sentence in relation to your study. Papers referring to 'cryptic' biogeochemical cycling in ODZ waters would also be nice to include in relating to 'hidden' processes.

As suggested, we added a conclusion to in line 581: "Even if hybrid N₂O production rates are overestimated, it remains the major N₂O production mechanisms of AO in this study."

In this paragraph we want to explain the occurrence of hybrid N2O formation rather than hidden process – so we did not add papers on cryptic cycling there.