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Reviewer #1 

This paper by Skeeter et al. looked at vegetation and environmental conditions influencing greenhouse gas 

exchange in a drained lake basin in the Western Canadian Arctic. I enjoyed the opportunity to review this 

paper and I thank the authors for what is a well written paper overall (but with some tweaks needed). Given 

the lack of studies outside of the Barrow Peninsula, is a worthy addition to the literature.  

  

I will add however, I apologise, I am not an expert on the eddy covariance data cleaning, gapfilling and analyses 

and I am therefore unable to comment fully on those sections.  

 

Introduction: I find this section well written if rather short. I think a little more context could be given for the 

reader. You could include more information from non-DLB work but still relevant arctic tundra literature.  

[Responses] 

We added more context on why thermokarst landscapes are important (spatial extent, significant soil carbon storage) 

to the first paragraph [Lines 32-34]. 

 

Lake thermokarst landscapes are widespread in poorly drained, sedimentary permafrost lowlands with excess ground 

ice volume and constitute about a third of all thermokarst area (French, 2013; Olefeldt et al., 2016). 

 

Further we added another paragraph on Arctic carbon budgets [Lines 40-49].  Including a review of pan-arctic NEE 

chamber studies by Virkkala et al. 2017. 

 

Net ecosystem exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP), where NEE=ER-

GPP are lower in the Arctic than warmer regions but have significant seasonal cycles and variability between 

vegetation types (Virkkala et al., 2018).  Future trajectories in NEE will in large part be governed by ER (Biasi et al., 

2008; Cahoon et al.,2012).  Dominant vegetation types in the Western Canadian Arctic are erect-shrub tundra and 



wetlands (Walker et al., 2005).  Growing season NEE is typically negative across these units throughout the Arctic 

indicating a net CO2 sink as GPP exceeds ER in part due to cold and/or anoxic soil conditions (Virkkala et al., 2018; 

Lafleur et al., 2012).  Annual NEE can be positive or negative with large variation in GPP linked to annual weather 

variability (Virkkala et al., 2018, McGuire et al., 2009).  Arctic net methane exchange (NME) is positive because 

wetland areas are strong methane (CH4) sources while upland areas with better drainage can be net sinks (Whalen and 

Reeburgh, 1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).   

 

Line 54: NEE should be ER – GPP. 

[Responses] 

We corrected the equation to NEE = ER – GPP 

  

Line 85: Can you include somewhere the dominant species found in each vegetation class. It would be 

interesting and useful to know what sort of sedge dominated the sedge class – is it Carex aquatilis or 

Eriophorum angustifolium for example?  

[Responses] 

We added a sentence to mention the specific species [Lines 90-92]. 

 

Current vegetation at Illisarvik is diverse relative to the dwarf-shrub tundra of the surrounding uplands (Table 1); the 

basin hosts a mix of woody shrubs (Salix spp., Betula spp., & Alnus spp), wetland vegetation (Carex aquatilis, 

Arctophila fulva, etc.), and various grasses (Pocacea spp.) (Wilson et al. 2019). 

 

This information was partly available in Table 1.  We made the table more detailed to include the dominant species 

present within each class/subclass where known/applicable (see comment below). 

  

Line 100: Completely an aside but COOL!  

• Yes, it was an amazing thing to see. 

  

Section 2.3: I would remove any mention of N2O – you don’t present the data, so it is unnecessary. 

[Responses] 

We removed mentions of N2O throughout the manuscript. 

  

Line 150: Can you be more explicit with how many collars were used? 2 per site – 10 sites total? I know the 

main focus of this paper is not the collars, but I’m not sure if a replicate of 2 per vegetation type over an 11-

day period is very representative.  

[Responses] 

We updated the text to be more specific about numbers of replications per vegetation type [Lines 176-177]. 

 

There were three replicates (six collars) for the Shrub class, two for the Sedge, Grass, and Upland tundra, and no 

replicates for the Sparse class. 



 

There were 19 collars and 10 sites. The bare ground site only had 1 collar, thus making 2 per sites for the rest. The 

number of collars that could be shipped in via helicopter were limited and there was a high amount of heterogeneity 

in soil and vegetation characteristics within the basin. The chamber study was designed to better understand the 

relationship between soil properties and carbon loss in a situation where permafrost had aggraded within the lake bed 

to potentially protect ‘old’ carbon from mineralization and accumulate ‘new’ carbon since the lake drained.  We 

expected saturated soils (where there were wet sedges) to have higher organic carbon accumulation and be dominated 

by anaerobic respiration processes, which was interesting to us, therefore we chose two different wet sites populated 

by sedges. We also focused on different statures of will (low, tall and dense) as we expected different amounts of 

snow accumulation and different impacts on permafrost at these sites.   

  

Line 152: How soon after installation were the collars fluxed for the first time?  

[Responses] 

Collars were installed on July 11th and first set of measurements was taken on July 12th, so about 24h. 

  

Line 154: Why not use a clear chamber so you could get GPP then cover with a dark sleeve in order to get ER?  

[Responses] 

We appreciate the comment. The chosen chambers were not designed for NEE measurements. Although 

measurements of GPP would have been informative, logistics limited us to use the existing collars, and the number of 

measurements we could make. 

  

Section 2.4 (and subsequently Appendix A): Unfortunately, I do not have the expertise in these methods so I do 

not feel comfortable commenting on it in a reviewer context.  

  

Section 3: I think it would be better to separate this section out into Results and Discussion rather than combine 

them. As it stands, it’s quite hard to follow.  

We have added a discussion (section 4) and rewrote the results to solely contain the objectively retrieved data, so we 

hope the manuscript to be more straightforward and easier to follow with separate “Results” and “Discussion” sections. 

3 Results 

During the 29-day study, half-hourly Ta and Ts ranged between 0.4 and 26.2°C and 4.4 and 11.0°C, respectively (Fig 

2a).  Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6˚ to 35.4˚, but daily 

PPFD was more influenced by variations in cloud cover.  Precipitation (19 mm) fell on 14 of the 28 days with trace 

snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b).  At the onset of the 

study period, VWC was high and soils were saturated with ponding in the sedge areas.  By the end of the study most 

of this surface water had dried up.  On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at Upland, Sedge, 

Grass, Shrub, and Sparse classes, respectively.  By August 6th, average thaw depth had increased to 45, 62 and 66 cm 

at Upland, Sedge and Grass surface classes and over 100 cm at both the Shrub and Sparse classes. 



A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly 

winds to occur much more frequently than is typical for July and August.  The 50%, 80% and 90% flux FClim contours 

are shown in Fig 1a.  Mean source area fractions indicate the EC observations were skewed towards the Grass surface 

class and under-sampled the Shrub class, but the range of surface classes sampled was diverse enough to allow for 

testing of the impact of source area fraction on the fluxes (Table 2).  

3.1 EC Observations  

Half hourly observations of FCO2 and FCH4 along with the NEENN and NMENN used to gap-fill the time series are shown 

in (Fig 2c & d).  Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO2 m-2 d-1 with a mean -1.5 [CI95% ± 0.2] g C-

CO2 m-2 d-1.  Day to day variability was considerable but there was no notable trend in NEE over the peak growing 

season.  The half hourly NEE during the study period reached a minimum of -10.4 μmol CO2 m-2 h-1 just before solar 

noon and peaked at 4.7 μmol CO2 m-2 h-1 around midnight (Fig 2c).  NEENN was used to gap-fill the flux data because 

it was in good agreement with FCO2 observation (r2 = 0.91).  Daily ERNN was estimated to be 2.2 [CI95% ± 0.9] g C-

CO2 m-2 d-1 with corresponding GPP of 3.7 g C-CO2 m-2 d-1.  ERNN was in poor agreement (R2 = 0.35, n= 95) with 

night time FCO2 observations.  For comparison, Eq. 3 provided a better fit (R2 = 0.47) with night-time EC data, and 

ERQ10 was estimated to be 3.0 g C-CO2 m-2 d-1.  However, NEEQ10 did not fit FCO2 as well (r2 = 0.80) as NEENN.   

Gap-filled daily NME was modest and decreased over the study period.  It ranged from 2.0 to 25.1 mg C-CH4 m-2 d-1 

with a mean of 8.7 [CI95% ± 0.4] mg C-CH4 m-2 d-1 (Fig 2d).  NMENN was used to gap-fill the flux data because it 

provided a reasonable fit (r2 = 0.62) to FCH4 observations.  NME did not constitute a significant component of the 

carbon balance and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP 

after accounting for the greater GWP of CH4.  

3.2 Chamber Observations 

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI95% ± 1.2], 5.4 [CI95% 

± 1.2] and 4.9 [CI95% ± 0.7] g C-CO2 m-2 d-1. Shrub ER was significantly less (3.5 [CI95% ± 0.6] g C-CO2 m-2 d-1) than 

the other vegetated classes and Sparse ER was the lowest among the classes (2.0 [CI95% ± 0.3] g C-CO2 m-2 d-1) (fig 

3a).  The Q10 and R10 values also differed between vegetation classes: ER in the Sedge was the most sensitive to 

changes in air temperature and modelled values provided the best fit (R2 = 0.82) to observations.  Upland and Grass 

had the highest base respiration and fit observations moderately well (Table 3). 

NME was more variable between vegetation classes than ER (Fig 3b & c).  Sedge was a very strong CH4 source at 

114.7 [CI95% ± 15.3] mg C-CH4 m-2 d-1.  Shrub and Grass were very weak sources, 0.7 [CI95% ± 0.3] and 0.4 [CI95% ± 

0.3] mg C-CH4 m-2 d-1, respectively. Sparse was neutral.  Upland was a net CH4 sink -1.1 [CI95% ± 0.4] mg C-CH4 m-

2 d-1.  Sedge and Shrub were NME were positively correlated with Ts (r=0.61, p < 0.01; r=0.35, p = 0.04) respectively 

and VWC (r=0.58, p < 0.01; r=0.5, < 0.01) respectively.  They also had a positive correlation with Ta, while Upland 

NME was negatively correlated with Ta.  Grass and Sparse didn’t have any significant correlations. 

Footprint scaled chamber fluxes were 59% and 47% higher than ERNN or gap-filled NME, respectively.  Mean ERFS 

was 3.5 g C-CO2 m-2 d-1 [CI95% ± 0.1], it fit ERQ10 very well (R2 = 0.95) as would be expected and ERNN moderately 



well (R2 = 0.46).  Mean NMEFS was 12.8[CI95% ± 1.3] mg C-CH4 m-2 d-1, it did not fit NNNME well (R2 = 0.30).  At the 

basin scale, ERBS (3.4 [CI95% ± 0.1] g C-CO2 m-2 d-1) was slightly lower than ERFS because of the exclusion of upland 

areas.  NMEBS was higher (15.2 [CI95% ± 0.1] g C-CO2 m-2 d-1) because of the greater sedge fraction in the basin than 

the footprint because the (Table 2).   

3.3 NEE Response to Environmental Factors and Vegetation Type 

NEENN (r2 = 0.91) was estimated using four factors: PPFD, VPD, VWC, and FShrub.  PPFD is the primary control over 

NEE: a NN trained on PPFD alone provided a reasonable fit (r2 = 0.83).  The three additional factors, VPD, VWC, 

and FShrub, helped NNNEE fit a wider variety of conditions.  Examining the partial first derivative of NNNEE under 

different conditions provides interpretation of the modelled light response curves (Fig 4).  The minimum values 

represent the peak light use efficiency and are analogous to α in eq. 5 (Fig 4b).  With increasing PPFD, light use 

becomes less efficient and approaches zeros as the light response nears light saturation (Fig 4b). 

VPD was a secondary control over NEE.  Increasing VPD increased peak light use efficiency and net CO2 uptake until 

a threshold, above which it had a strong limiting effect (Fig 4a & b).  For example, under dry atmospheric conditions 

(e.g. VPD = 1.5 kPa), peak light use is less efficient (-12 nmol CO2 µmol-1 photon) than under more humid conditions 

(-18 nmol CO2 µmol-1 photon).  The value of this VPD threshold was dependent upon soil moisture: from 1 kPa when 

VWC was highest to 0.2 5Pa when VWC was low. Mapping NNNEE and NNER at FShrub = 100%, FShrub = 0%, and FShrub 

= 36% (FClim), shows that VWC and FShrub were the primary controls over ER and thus influenced NEE (Fig 4c & d).  

We can see from the partial first derivates of NNER that increasing VWC increases ER from Shrub areas.  In the absence 

of shrubs, increasing VWC inhibits ER although it is important to note that variations in VWC were subtle ranging 

from 51.7% to 59.0%. The partial first derivative of NNNEE shows that VWC slightly limits NEE from non-Shrub areas 

and significantly reduces it in Shrub areas.   

3.4 NME Response to Environmental Factors and Vegetation Type 

NME was estimated using NMENN (r2 = 0.62) which had five factors: FSedge, FShrub , VWC, TS, and U.  NME was more 

variable and less dependent on any one factor than NEE which is why the NNNME needed an extra factor and had a 

lower r2 score.  Source area had a significant effect on NME, and it was encouraging that the model contained FSedge 

and FShrub since Sedge and Shrub were the strongest CH4 source and largest footprint component, respectively.  These 

two factors can combine to map NME under three general situations: we can extrapolate to FSedge = 100 % and FShrub 

= 0 % or FSedge = 0 % and FShrub 100 %, or represent actual FClim where FSedge = 11% and FShrub = 37% (Table 2).  Some 

upland tundra was included in the FClim estimate, which reduced NME. 

VWC was the primary climatic driver identified by NNNME.  Wetter soils had a consistent positive effect on NME 

which was strongest when FSedge was high (Fig 5a & b).  Between driest and wettest conditions, estimated NME 

increased: by an order of magnitude at FSedge = 100 %, 4-fold at FShrub = 100%, and from neutral to a source at FClim 

(Fig 5a).   Higher Ts generally had a negative effect on NME (Fig 5c & d). The negative correlation between Ts and 

VWC (r = 0.54, < 0.01) may have contributed to this result.  NNNME performance improved less with the addition of 



U indicating the NNNME was near saturation and its effects are less relevant.  Higher U had a weak limiting effect on 

NME when VWC was high and increased NME when VWC was low (not shown). 

4 Discussion 

4.1 Carbon Balance and Controlling Factors 

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season 

CO2 uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant 

and Oechel, 2013; Lara et al. 2015).   These differences may be due to differences in the periods of observation and 

year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at 

Illisarvik.  Mean 1980-2010 Ta at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 

2020).  Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer.  Shrub cover is expected to have a number of 

impacts on the microclimate and carbon cycle of Arctic tundra (eg. Myers-Smith et all, 2011).  Typically, greater 

deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential 

compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018).  GPP was greater at Ilisarvik 

compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010).  It was more similar to Katyk which 

has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007). 

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature 

and thaw depth, among other factors (Sturtevant and Oechel, 2013).  The ‘snow-shrub hypothesis’ (Sturm et al. 2001) 

describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to 

increased decomposition and nutrient availability and promotes further shrub growth.  At Illisarvik, snow blowing in 

off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height 

(Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those 

of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber 

observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as 

the taller shrubs (>40 cm) could not fit inside the chambers.  In another study, chamber ER increased with greater 

shrub cover in upland tundra (Ge et al., 2017).   ER at Illisarvik was greater than the ER observed at both the young 

wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was 

much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007).  The importance of 

FShrub in describing temporal variations in half hourly NEE within the flux footprint at Ilisarvik is further evidence of 

the importance of shrub cover on tundra carbon cycle processes in this environment. 

PPFD and VPD were the most important factors for predicting half hourly NEE.  This was to be expected as they are 

typically the primary controls over GPP (Aubinet et al., 2012).  The limiting effects of VPD are consistent another 

study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites 

(Euskirchen et al. 2012; López-Blanco et al. 2017).  VWC was also important at Illisarvik.  Zona et al. (2010) found 

VWC could explain 70% of the variability in daily peak season ER in young DTLB.  Similarly, Kittler et al. (2016) 



found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with 

our results at Illisarvik when FShrub was low.   

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with 

greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015).  NME at Katyk was even higher than the Barrow 

DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; 

Parmentier et al., 2011).  In our NN modelling of NME at Illisarvik, FSedge was the most important factor for predicting 

half hourly FCH4.  Sedges are aquatic plant species with arenchymatous tissues that act as conduits for CH4 from below 

the water table to the atmosphere and limits CH4 oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). 

The inclusion of FShrub further refined the model, allowing it to better fit the site-specific distribution of vegetation 

types.  Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on FCH4 at Katyk.  

Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support 

that (Davidson et al., 2016). 

VWC was the second most important factor, which was expected as CH4 production occurs in anaerobic environments 

and has been linked to variability in CH4 emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; 

Olefeldt et al., 2013).  Soil temperature (Ts) was the third most important factor.  Higher Ts increase the oxidation 

potential of methanotrophs (Liu et al., 2016; King and Adamsen, 1992), so this result was expected for the drier 

portions of the basin and upland tundra.  However, this was not expected for the sedge areas because most studies find 

NME in sedges is positively correlated to Ts
 (Olefeldt et al., 2013).  The negative correlation between Ts and VWC 

may partly explain this. 

4.2 Upscaling 

ERFS and NMEFS were about 59% and 47% greater than the EC estimates.  Discrepancies between EC and chamber 

observations are common and have been attributed to differences in measurement techniques, the small sample size 

of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair 

weather (Katayanagi et al., 2005; Chaichana et al., 2018).   Meijide et al. (2011) found that chamber NEE could be up 

to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% 

higher than EC estimates.  Others have been more successful, yielding upscaled chamber NME fluxes within 10% of 

EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017).  A potential reason for the 

disagreement with ERFS may be the lack of direct observations by the EC system under low-light conditions.  Another 

potential source of error for the upscaling is inaccuracies in the vegetation map.   

4.3 Future Trajectories 

Presently, peak growing season carbon uptake at Illisarvik is greater than similarly aged landscape features on the 

Barrow Peninsula, Alaska and more similar to levels observed at Katyk, Siberia.  NME is well below levels observed 

at any other DTLB studied, making this site a stronger GHG sink than other DTLB.  However, the basin at Illisarvik 

will continue to evolve and the trajectory it takes could significantly alter its carbon balance.  Historically, DTLB on 

Richards Island and the Tuktoyaktuk Peninsula evolve into sedge wetlands, as do DTLB on the Barrow Peninsula 



(Ovendend, 1986; Lara et al., 2015).  Active maintenance of the outlet channel at Illisarvik has artificially lowered 

soil moisture and flooding and potentially limited this transition thus far (C. Burn, personal communication 2016).   

If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME 

will increase significantly.  With extrapolations to full Sedge cover (FSedge = 100%), NME would be similar to values 

on the Barrow Peninsula (Zona et al., 2009).  If the basin instead transitions into a shrub dominated DTLB similar to 

those of Old Crow Flats, Yukon (Lantz et al., 2015), NMENN would remain similar to current levels meaning the basin 

would remain a weak source of CH4.  These are projections well beyond FClim fractions observed so confidence in the 

specific values predicted is low.   

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME.  

Partly because Shrub cover had less overall influence on NEENN.  Our model suggests ER decreases and GPP increases 

with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions.   To 

our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet 

to be published to help evaluate the factors influencing DTLB carbon losses through the non-growing season months.  

Further observation year-round is needed to better understand the implications of continued vegetation change on the 

carbon balance of DTLB such as Illisarvik.  

 

  

Line 241: You only mentioned thaw depth twice? Why not measure it on each day chambers were used?  

[Responses] 

Thaw depth tends to increase over time but at different rates at different locations within the basin as a result of varying 

soil and surface properties.  We measured thaw depth at the start and end of the measurement period to highlight these 

differences rather than develop a variable that could be related to the fluxes.  In past studies we found that day to day 

variations in respiration correlate best with near surface soil temperature and moisture rather than thaw depth while 

spatial variations in average fluxes can sometimes correlate to max thaw depth. In the revised manuscript we refer to 

thaw depth more and use it to compare Illisarvik to Katyk Line 384 

 

ER at Illisarvik was greater than the ER observed at both the young wet-sedge DTLB in Barrow (Zona et al., 2010) 

and at the shrub/wet sedge DTLB at Katyk where thaw depth was much shallower (45 to >100 cm at Illisarvik vs. 25 

to 40 cm at Katyk; van der Molen et al. 2007).   

  

Section 3.1: I think this section needs an overhaul unfortunately. Many of the sentences do not make sense in 

their current format. For example: Lines 254-257: ‘NEE was greater than (ie. Less carbon uptake) 255 EC 

observations of from four wetter, sedge dominated DTLB, where peak season NEE was -2.5 g C-CO2 m-2 d-1, 

ER (1.5 g C-CO2 m-2 d-1) was lower than at Illisarvik while GPP (4.0 g C-CO2 m-2 d-1) was slightly higher 

(Zona et al., 2010).’   

[Responses] 

The entire section has been rewritten and the references to other work were moved out from the results to the discussion 

section.  See previous comment response. 

  



I also think it might be useful to separate the EC results and the chamber results into subsections. By referring 

your measured values to other studies in the results, it makes it hard to follow for the reader.  

[Responses] 

We agree and have separated the EC and chamber results into Sections 3.1 and 3.2.  These changes are shown in the 

above comment about section 3. 

  

Further, by combining the results, there is a lack of discussing the results (for example, it feels like only section 

3.4 is really doing this). It sadly reads as a lot of results statements and then suddenly we are at the conclusion. 

[Responses] 

We added a separate “discussion” section (Section 4).  These changes are shown in the above comment about section 

3. 

  

Line 273: Why compare methane to ER here? 

[Responses] 

We thought it is relevant to contextualize the differences. Methane emissions are far more spatially variable than 

ecosystem respiration.  We revised the sentence to get rid of the comparison of the magnitude because that is less 

relevant, but left the point about spatial variability being enhanced [Line 316].  We think it is an important finding to 

show that NME is more influenced by spatial heterogeneity than ER. 

 

NME was more variable between vegetation classes than ER (Fig 3b & c).   

  

Line 286: Although discrepancies do occur between upscaling chamber measurements and EC measurements 

– some studies have done it successfully and I think it would be good to include here as a caveat;  

• Budischev et al. 2014: Evaluation of a plot-scale methane emission model using eddy covariance 

observations and footprint modelling. Biogeosciences 11. 4651-4664  

• Zhang et al. 2012: Upscaling methane fluxes from closed chambers to eddy covariance based on a 

permafrost integrated model. Global Change Biology, 18, 1428-1440.  

• Davidson et al. 2017. Upscaling CH4 fluxes using high-resolution imagery in Arctic  

Tundra Ecosystems. Remote Sensing, 9, 1227; doi:10.3390/rs9121227  

• Sachs et al. 2010 Environmental controls on CH4 emissions from polygonal tundra on the microsite scale 

in the Lena river delta, Siberia. Global Change Biology, 16, 3096-3110  

[Responses] 

We reviewed this literature and added it to the newly separated “discussion” section [Lines 417-418]. 

 

Others have been more successful, yielding upscaled chamber NME fluxes within 10% of EC observations (Zhang et 

al., 2012; Budishchev et al., 2014; Davidson et al., 2017). 

 

We also decided to use the footprint weighted upscaling method discussed in Budishchev et al. (2014) for the chamber 

upscaling [Line 207-208], but it did not make an appreciable difference in the upscaled chamber ER or NME. 

 



Chamber fluxes of ER were upscaled from the plot scale (individual chamber) to the footprint scale using the footprint 

weighted average method and to the basin scale using the area weighted average method (Budishchev et al., 2014).    

  

I think more discussion of the results in the context of other GHG literature from other tundra ecosites would 

be useful. Although this study is focused on drained lake basins, the results are comparable to wet-sedge 

dominated tundra landscapes. I feel this would be a good addition and strengthen what is already a useful 

paper.  

[Responses] 

We added section 4.1 (see above comment) where we discuss NEE and NME observations at Illisarvik relative to 

natural shrub vs. sedge-dominated DTLB to highlight the differences among these environments rather than attempt 

to fully contrast Illisarvik to a myriad of arctic tundra types/sites.  These comparisons are always challenging given 

different years, time periods within a year, instrumentation, and data presentation.  However, we believe we make a 

strong argument that shrub vs. sedge-dominated DTLB have the potential to differ and Illisarvik differs in particular 

from all other DTLB in its low methane emissions. (Table 4).  We now further highlight the important implications 

of vegetation succession on CO2 and CH4 fluxes at our site in the discussion section 4.3 “Future Trajectories”.  This 

is one of the key messages associated with DTLBs – they undergo relatively rapid vegetation change over a number 

of decades that will influence their C budgets. 

 

Table 4: Growing season (gs) daily range in eddy covariance-derived NEE and NME from drained thermokarst lake 

basins (DTLB) and other select wetland/coastal tundra sites across the Arctic.  The period of studies measurements 

for the studies observations are: a) mid-June – end of July b) June 12 – August 28, 2007, Fig 4 c) June 11 – August 

25, 2011 d) upscaled chamber estimates, exact dates not specified, e) mean June 15 –August 31 2003-2006, f) July 5 

– Aug 4, 2009. 

Site Site Characteristics NEE 

g C-CO2 m-2 d-1 

NME 

mg C-CH4 m-2 d-1 

Studies 

Illisarvik  Young DTLB, Low & 

Tall Shrub/Grass/Wet 

Sedge  

-1.5 8.7 (this study) 

Various DTLB, 

Barrow 

Peninsula, Alaska 

Young DTLB, Wet 

Sedge Tundra 

-1.1b, -0.9d, -

0.8c  

 

18.4a, 26.1d, 44.0c 

 

Zona et al. 2009a & 2010b, 

Sturtevant and Oechel, 2013c; 

Lara et al. 2015d 

Medium DTLB, Wet 

Sedge Tundra 

-0.7b, -0.6d, -

0.4c 

27.0d, 41.3c 

Old DTLB, Wet Sedge 

Tundra 

-1.0b, -0.4d, 0.1c 24.2d, 38.7c 

Ancient DTLB, Wet 

Sedge Tundra 

0.4d 

 

21.7d 



Katyky, Indigirka 

lowlands, Siberia 

Ancient DTLB, Dwarf-

Shrub and Wet Sedge 

Tundra 

-1.3e 36.0f Van der Molen et al. 2007e, 

Budishchev et al. 2014f 

 

  

Figure 2a: Could you change the colour of the Ta line? Red on orange is difficult to read.  

[Responses] 

Agreed.  We have changed the bar colour, setting the orange to grey to make it easier to distinguish. 

 

 

  

Figure 3: I will leave this up to the author’s discretion, but I wonder if this figure (and in fact, all figures) would 

benefit from having a plain white background. I find all the lines distracting. Especially when other lines are 

being used to annotate.  

[Responses] 

We agree the grid is distracting for Figure 3 and removed it, but left grids in all the other figures. 

 



 

  

Figure 4c: Please use another three colours for Shrub. It is confusing that they are the same colour as VPD on 

the left-hand panel. 

[Responses] 

We changed the colour scheme to address the concern. 

 

 



Figure 4 and 5: I think these figures would benefit from having a title for each panel – it was not clear to me 

initially the difference between Figure 5a and b. I think just putting VWC above left hand panel and Ts above 

right hand panel, this would make it much clearer.  

[Responses] 

We added subtitles to all panels in Figures 4 and 5. 

  

Tables: Caption should go above the Tables.   

[Responses] 

Captions were all moved above Tables. 

  

I think a table including the dominant vegetation species for each class would be super useful for the reader.  

[Responses] 

We updated Table 1 to be more specific and included additional information where known/applicable.  

 

 Table 1: Dominant species or landscape feature within the vegetation/cover classes.  Unit codes correspond to the 

map Figure 1a. 

Unit Code Vegetation Class Dominant Species/Landscape feature  

1a Shrub Salix alaxnesis (Tall Willow) 

1b Shrub Salix glauca (Low Willow) 

1c Shrub Alnus viridis subsp. crispa (Alder) 

2a Sedge Marsh Carex aquatilis (Sedge) 

2b Sedge Marsh Arctophila fulva (Pendant Grass) 

3 Grass Meadow Pocacea spp. (Grasses), Eriophorum angustifolium (Cotton Grass) 

4a Sparse Cover Sparse Vegetation 

4b Sparse Cover Bare Ground 

5 Ponds Hippuris vulgaris (Mare’s Tail), Open Water 

6a Outside of Basin Dwarf shrub tundra: Salix spp. & Betula nana (Birch) 

6b Outside of Basin Fen 

6c Outside of Basin Ocean 

 

 

 

 

 

 

 

 

 



Reviewer # 2: 

General comments 

The paper "Vegetation Influence and Environmental Controls on Greenhouse Gas Fluxes from a Drained 

Thermokarst Lake in the Western Canadian Arctic" by June Skeeter et al. reports CO2 and CH4 flux 

measurements from a permafrost tundra site in Western Canada. Eddy covariance and chamber flux 

measurements were taken during the growing season 2016, and analysed accounting for the spatial variability 

of vegetation cover. Statistical gap-filling and an analysis of the environmental controls of the fluxes is 

performed using artificial neural networks. I think the chosen methods are properly applied and explained. 

The results are presented clearly and the conclusions are supported by the results. Also, the paper is very well 

written. 

Given the remote and rather special site location, this study should be very valuable for the arctic carbon flux 

community. As the flux time series collected in your study may be used and referred to in future studies, it 

would be nice if you could present the time series in a more raw format than you do in Figure 2. For example, 

a plot of the 30-minute flux time series would help to understand the character of the data. This is also relevant, 

because I guess the performance and output of your NNs could be susceptible to noise or outliers in the EC 

time series. 

[Responses] 

We changed Fig 2 to show the half hourly FCO2 and FCH4 observations, along with the NEENN and NMENN. 

 



Also, several of your results (cf. Line 221 and Line 342) are based on extrapolations into parts of the parameter 

space where the flux response could be governed by processed not captured in your NNs. Perhaps these 

statistical uncertainties could be discussed. 

[Responses] 

We added a sentence at the end of section 2.5.1 discussing the impact of calculating ER by extrapolation and its impact 

on the confidence of ER estimates relative to NEE [Lines 265-267].  We refer the reader to Appendix A for details on 

the calculation of confidence intervals around NN outputs [Lines 501 -521]. 

This is a projection outside of the observed parameter space resulting in greater uncertainty and a wider confidence 

interval around ERNN than NEENN.  Calculation of confidence intervals for NN outputs is discussed in Appendix A 

 

We also added a sentence to section 4.3 noting that projecting to Sedge = 100% is well outside of parameter space 

[Lines 433-434]. 

These are projections well beyond FClim fractions observed so confidence in the specific values predicted is low.   

I understand there is little research from DTLB sites, but it would be good in your discussion to relate your 

findings to those from other tundra sites with (and without) thermokarst. In this discussion, it would be good 

to elaborate further on the peculiarities of the artificial draining performed at your site. Given the title of this 

paper, readers will probably expect more of these aspects discussed. 

[Responses] 

We split the results into two separate sections “results” (Section 3) and “discussion” (Section 4).  In section 4.1 we 

discuss NEE and NME observations at Illisarvik relative to natural shrub vs. sedge-dominated DTLB to highlight the 

differences among these environments rather than attempt to fully contrast Illisarvik to a myriad of arctic tundra 

types/sites.  These comparisons are always challenging given different years, time periods within a year, 

instrumentation, and data presentation.  However, we believe we make a strong argument that shrub vs. sedge-

dominated DTLB have the potential to differ and Illisarvik differs in particular from all other DTLB in its low methane 

emissions. (Table 4).  We now further highlight the important implications of vegetation succession on CO2 and CH4 

fluxes at our site in the discussion section 4.3 “Future Trajectories”.  This is one of the key messages associated with 

DTLBs – they undergo relatively rapid vegetation change over a number of decades that will influence their C budgets. 

 

3 Results 

During the 29-day study, half-hourly Ta and Ts ranged between 0.4 and 26.2°C and 4.4 and 11.0°C, respectively (Fig 

2a).  Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6˚ to 35.4˚, but daily 

PPFD was more influenced by variations in cloud cover.  Precipitation (19 mm) fell on 14 of the 28 days with trace 

snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b).  At the onset of the 

study period, VWC was high and soils were saturated with ponding in the sedge areas.  By the end of the study most 

of this surface water had dried up.  On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at Upland, Sedge, 



Grass, Shrub, and Sparse classes, respectively.  By August 6th, average thaw depth had increased to 45, 62 and 66 cm 

at Upland, Sedge and Grass surface classes and over 100 cm at both the Shrub and Sparse classes. 

A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly 

winds to occur much more frequently than is typical for July and August.  The 50%, 80% and 90% flux FClim contours 

are shown in Fig 1a.  Mean source area fractions indicate the EC observations were skewed towards the Grass surface 

class and under-sampled the Shrub class, but the range of surface classes sampled was diverse enough to allow for 

testing of the impact of source area fraction on the fluxes (Table 2).  

3.1 EC Observations  

Half hourly observations of FCO2 and FCH4 along with the NEENN and NMENN used to gap-fill the time series are shown 

in (Fig 2c & d).  Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO2 m-2 d-1 with a mean -1.5 [CI95% ± 0.2] g C-

CO2 m-2 d-1.  Day to day variability was considerable but there was no notable trend in NEE over the peak growing 

season.  The half hourly NEE during the study period reached a minimum of -10.4 μmol CO2 m-2 h-1 just before solar 

noon and peaked at 4.7 μmol CO2 m-2 h-1 around midnight (Fig 2c).  NEENN was used to gap-fill the flux data because 

it was in good agreement with FCO2 observation (r2 = 0.91).  Daily ERNN was estimated to be 2.2 [CI95% ± 0.9] g C-

CO2 m-2 d-1 with corresponding GPP of 3.7 g C-CO2 m-2 d-1.  ERNN was in poor agreement (R2 = 0.35, n= 95) with 

night time FCO2 observations.  For comparison, Eq. 3 provided a better fit (R2 = 0.47) with night-time EC data, and 

ERQ10 was estimated to be 3.0 g C-CO2 m-2 d-1.  However, NEEQ10 did not fit FCO2 as well (r2 = 0.80) as NEENN.   

Gap-filled daily NME was modest and decreased over the study period.  It ranged from 2.0 to 25.1 mg C-CH4 m-2 d-1 

with a mean of 8.7 [CI95% ± 0.4] mg C-CH4 m-2 d-1 (Fig 2d).  NMENN was used to gap-fill the flux data because it 

provided a reasonable fit (r2 = 0.62) to FCH4 observations.  NME did not constitute a significant component of the 

carbon balance and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP 

after accounting for the greater GWP of CH4.  

3.2 Chamber Observations 

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI95% ± 1.2], 5.4 [CI95% 

± 1.2] and 4.9 [CI95% ± 0.7] g C-CO2 m-2 d-1. Shrub ER was significantly less (3.5 [CI95% ± 0.6] g C-CO2 m-2 d-1) than 

the other vegetated classes and Sparse ER was the lowest among the classes (2.0 [CI95% ± 0.3] g C-CO2 m-2 d-1) (fig 

3a).  The Q10 and R10 values also differed between vegetation classes: ER in the Sedge was the most sensitive to 

changes in air temperature and modelled values provided the best fit (R2 = 0.82) to observations.  Upland and Grass 

had the highest base respiration and fit observations moderately well (Table 3). 

NME was more variable between vegetation classes than ER (Fig 3b & c).  Sedge was a very strong CH4 source at 

114.7 [CI95% ± 15.3] mg C-CH4 m-2 d-1.  Shrub and Grass were very weak sources, 0.7 [CI95% ± 0.3] and 0.4 [CI95% ± 

0.3] mg C-CH4 m-2 d-1, respectively. Sparse was neutral.  Upland was a net CH4 sink -1.1 [CI95% ± 0.4] mg C-CH4 m-

2 d-1.  Sedge and Shrub were NME were positively correlated with Ts (r=0.61, p < 0.01; r=0.35, p = 0.04) respectively 

and VWC (r=0.58, p < 0.01; r=0.5, < 0.01) respectively.  They also had a positive correlation with Ta, while Upland 

NME was negatively correlated with Ta.  Grass and Sparse didn’t have any significant correlations. 



Footprint scaled chamber fluxes were 59% and 47% higher than ERNN or gap-filled NME, respectively.  Mean ERFS 

was 3.5 g C-CO2 m-2 d-1 [CI95% ± 0.1], it fit ERQ10 very well (R2 = 0.95) as would be expected and ERNN moderately 

well (R2 = 0.46).  Mean NMEFS was 12.8[CI95% ± 1.3] mg C-CH4 m-2 d-1, it did not fit NNNME well (R2 = 0.30).  At the 

basin scale, ERBS (3.4 [CI95% ± 0.1] g C-CO2 m-2 d-1) was slightly lower than ERFS because of the exclusion of upland 

areas.  NMEBS was higher (15.2 [CI95% ± 0.1] g C-CO2 m-2 d-1) because of the greater sedge fraction in the basin than 

the footprint because the (Table 2).   

3.3 NEE Response to Environmental Factors and Vegetation Type 

NEENN (r2 = 0.91) was estimated using four factors: PPFD, VPD, VWC, and FShrub.  PPFD is the primary control over 

NEE: a NN trained on PPFD alone provided a reasonable fit (r2 = 0.83).  The three additional factors, VPD, VWC, 

and FShrub, helped NNNEE fit a wider variety of conditions.  Examining the partial first derivative of NNNEE under 

different conditions provides interpretation of the modelled light response curves (Fig 4).  The minimum values 

represent the peak light use efficiency and are analogous to α in eq. 5 (Fig 4b).  With increasing PPFD, light use 

becomes less efficient and approaches zeros as the light response nears light saturation (Fig 4b). 

VPD was a secondary control over NEE.  Increasing VPD increased peak light use efficiency and net CO2 uptake until 

a threshold, above which it had a strong limiting effect (Fig 4a & b).  For example, under dry atmospheric conditions 

(e.g. VPD = 1.5 kPa), peak light use is less efficient (-12 nmol CO2 µmol-1 photon) than under more humid conditions 

(-18 nmol CO2 µmol-1 photon).  The value of this VPD threshold was dependent upon soil moisture: from 1 kPa when 

VWC was highest to 0.2 5Pa when VWC was low. Mapping NNNEE and NNER at FShrub = 100%, FShrub = 0%, and FShrub 

= 36% (FClim), shows that VWC and FShrub were the primary controls over ER and thus influenced NEE (Fig 4c & d).  

We can see from the partial first derivates of NNER that increasing VWC increases ER from Shrub areas.  In the absence 

of shrubs, increasing VWC inhibits ER although it is important to note that variations in VWC were subtle ranging 

from 51.7% to 59.0%. The partial first derivative of NNNEE shows that VWC slightly limits NEE from non-Shrub areas 

and significantly reduces it in Shrub areas.   

3.4 NME Response to Environmental Factors and Vegetation Type 

NME was estimated using NMENN (r2 = 0.62) which had five factors: FSedge, FShrub , VWC, TS, and U.  NME was more 

variable and less dependent on any one factor than NEE which is why the NNNME needed an extra factor and had a 

lower r2 score.  Source area had a significant effect on NME, and it was encouraging that the model contained FSedge 

and FShrub since Sedge and Shrub were the strongest CH4 source and largest footprint component, respectively.  These 

two factors can combine to map NME under three general situations: we can extrapolate to FSedge = 100 % and FShrub 

= 0 % or FSedge = 0 % and FShrub 100 %, or represent actual FClim where FSedge = 11% and FShrub = 37% (Table 2).  Some 

upland tundra was included in the FClim estimate, which reduced NME. 

VWC was the primary climatic driver identified by NNNME.  Wetter soils had a consistent positive effect on NME 

which was strongest when FSedge was high (Fig 5a & b).  Between driest and wettest conditions, estimated NME 

increased: by an order of magnitude at FSedge = 100 %, 4-fold at FShrub = 100%, and from neutral to a source at FClim 

(Fig 5a).   Higher Ts generally had a negative effect on NME (Fig 5c & d). The negative correlation between Ts and 



VWC (r = 0.54, < 0.01) may have contributed to this result.  NNNME performance improved less with the addition of 

U indicating the NNNME was near saturation and its effects are less relevant.  Higher U had a weak limiting effect on 

NME when VWC was high and increased NME when VWC was low (not shown). 

4 Discussion 

4.1 Carbon Balance and Controlling Factors 

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season 

CO2 uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant 

and Oechel, 2013; Lara et al. 2015).   These differences may be due to differences in the periods of observation and 

year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at 

Illisarvik.  Mean 1980-2010 Ta at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 

2020).  Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer.  Shrub cover is expected to have a number of 

impacts on the microclimate and carbon cycle of Arctic tundra (eg. Myers-Smith et all, 2011).  Typically, greater 

deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential 

compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018).  GPP was greater at Ilisarvik 

compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010).  It was more similar to Katyk which 

has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007). 

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature 

and thaw depth, among other factors (Sturtevant and Oechel, 2013).  The ‘snow-shrub hypothesis’ (Sturm et al. 2001) 

describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to 

increased decomposition and nutrient availability and promotes further shrub growth.  At Illisarvik, snow blowing in 

off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height 

(Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those 

of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber 

observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as 

the taller shrubs (>40 cm) could not fit inside the chambers.  In another study, chamber ER increased with greater 

shrub cover in upland tundra (Ge et al., 2017).   ER at Illisarvik was greater than the ER observed at both the young 

wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was 

much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007).  The importance of 

FShrub in describing temporal variations in half hourly NEE within the flux footprint at Ilisarvik is further evidence of 

the importance of shrub cover on tundra carbon cycle processes in this environment. 

PPFD and VPD were the most important factors for predicting half hourly NEE.  This was to be expected as they are 

typically the primary controls over GPP (Aubinet et al., 2012).  The limiting effects of VPD are consistent another 

study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites 

(Euskirchen et al. 2012; López-Blanco et al. 2017).  VWC was also important at Illisarvik.  Zona et al. (2010) found 

VWC could explain 70% of the variability in daily peak season ER in young DTLB.  Similarly, Kittler et al. (2016) 



found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with 

our results at Illisarvik when FShrub was low.   

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with 

greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015).  NME at Katyk was even higher than the Barrow 

DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; 

Parmentier et al., 2011).  In our NN modelling of NME at Illisarvik, FSedge was the most important factor for predicting 

half hourly FCH4.  Sedges are aquatic plant species with arenchymatous tissues that act as conduits for CH4 from below 

the water table to the atmosphere and limits CH4 oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). 

The inclusion of FShrub further refined the model, allowing it to better fit the site-specific distribution of vegetation 

types.  Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on FCH4 at Katyk.  

Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support 

that (Davidson et al., 2016). 

VWC was the second most important factor, which was expected as CH4 production occurs in anaerobic environments 

and has been linked to variability in CH4 emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; 

Olefeldt et al., 2013).  Soil temperature (Ts) was the third most important factor.  Higher Ts increase the oxidation 

potential of methanotrophs (Liu et al., 2016; King and Adamsen, 1992), so this result was expected for the drier 

portions of the basin and upland tundra.  However, this was not expected for the sedge areas because most studies find 

NME in sedges is positively correlated to Ts
 (Olefeldt et al., 2013).  The negative correlation between Ts and VWC 

may partly explain this. 

4.2 Upscaling 

ERFS and NMEFS were about 59% and 47% greater than the EC estimates.  Discrepancies between EC and chamber 

observations are common and have been attributed to differences in measurement techniques, the small sample size 

of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair 

weather (Katayanagi et al., 2005; Chaichana et al., 2018).   Meijide et al. (2011) found that chamber NEE could be up 

to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% 

higher than EC estimates.  Others have been more successful, yielding upscaled chamber NME fluxes within 10% of 

EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017).  A potential reason for the 

disagreement with ERFS may be the lack of direct observations by the EC system under low-light conditions.  Another 

potential source of error for the upscaling is inaccuracies in the vegetation map.   

4.3 Future Trajectories 

Presently, peak growing season carbon uptake at Illisarvik is greater than similarly aged landscape features on the 

Barrow Peninsula, Alaska and more similar to levels observed at Katyk, Siberia.  NME is well below levels observed 

at any other DTLB studied, making this site a stronger GHG sink than other DTLB.  However, the basin at Illisarvik 

will continue to evolve and the trajectory it takes could significantly alter its carbon balance.  Historically, DTLB on 

Richards Island and the Tuktoyaktuk Peninsula evolve into sedge wetlands, as do DTLB on the Barrow Peninsula 



(Ovendend, 1986; Lara et al., 2015).  Active maintenance of the outlet channel at Illisarvik has artificially lowered 

soil moisture and flooding and potentially limited this transition thus far (C. Burn, personal communication 2016).   

If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME 

will increase significantly.  With extrapolations to full Sedge cover (FSedge = 100%), NME would be similar to values 

on the Barrow Peninsula (Zona et al., 2009).  If the basin instead transitions into a shrub dominated DTLB similar to 

those of Old Crow Flats, Yukon (Lantz et al., 2015), NMENN would remain similar to current levels meaning the basin 

would remain a weak source of CH4.  These are projections well beyond FClim fractions observed so confidence in the 

specific values predicted is low.   

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME.  

Partly because Shrub cover had less overall influence on NEENN.  Our model suggests ER decreases and GPP increases 

with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions.   To 

our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet 

to be published to help evaluate the factors influencing DTLB carbon losses through the non-growing season months.  

Further observation year-round is needed to better understand the implications of continued vegetation change on the 

carbon balance of DTLB such as Illisarvik.  

 

Specific comments 

Line 16: "During the study period". Please be more specific here, because the upscaled average fluxes you 

mention in lines 18 and 20/21 don’t tell much if you don’t know the study period. 

[Responses] 

Changed wording to “peak growing season” Line 16 

Line 24: Your abstract lacks a broader conclusion 

[Responses] 

We added another sentence to make a broader conclusion about plant succession and Illisarvik’s carbon balance, Lines 

25-26 

Presently, Illisarvik is a carbon sink during the peak growing season. However, these results suggest that rates of 

growing season CO2 and CH4 exchange rates may change as the basin’s vegetation community continues to evolve. 

 

Line 100: Could the grazing have a measurable effect on e.g. NEE? It could be a point to add to your discussion. 

[Responses] 

Good point, we added a few words to mention that grazing may have affected GHG Fluxes [Lines 121-122]. 

which may have affected greenhouse gas fluxes.   

It is possible that grazing had some impact, but we cannot answer this based on the data collected. According to images 

from a fish eye camera mounted on the tripod (taken at 5-minute intervals), the animals spent about an hour gazing 

within the footprint of the eddy-covariance tower.  In other areas of the basin where they stayed for longer, there was 

definitely a more significant impact.  They were only spotted within the footprint the morning of July 12th.  In addition 



to the fish eye camera images, we were present at the field site during the full campaign and observed the reindeer’s 

movements. 

Line 116: You discarded a sector because its flow could be disturbed by the tower. 

But did you see this effect in any of your quality checks? Maybe it’s not necessary to discard this data. 

[Responses] 

It is standard practice to discard winds affected in the wake of the tower and sensor head. We have added a reference 

to Aubinet et al., 2012 to support this choice.  During light winds, windspeeds can be reduced as much as 50% in the 

wake of a tower/instrument mount and turbulent eddies are artificially created, significantly violating the assumptions 

that go into eddy-covariance flux calculations.  We oriented the tower such that this wind sector was the least frequent 

(according to climatology from Tuktoyaktuk).  It only resulted in 6.7% (86 of 1279) half hourly observations being 

discarded. 

Line 146: Maybe be more specific about the Python modules you used, otherwise this sentence adds very little 

to the understanding of your analysis. 

[Responses] 

We removed this portion of the manuscript. Most of the code was written specifically for the project by the first author, 

the footprint model of Kljun et al. 2015 is available in multiple programming languages, and we mention the python 

module for the neural networks on Line 243 and discuss the procedures in more in the appendix. 

Line 182: Shouldn’t there be five times more vials than flux estimates, if you used 5 gas samples per flux 

measurement? 

[Responses] 

Yes, that is correct.  The sentence has been corrected [Lines 202-203].   

After removal of spurious point measurements (72 vial samples were rejected out of 1135 vials), dc/dt was determined 

using three or more gas sample concentrations resulting in coefficients of determination that ranged from 0.71 to 0.99 

The ‘681 flux measurements’ referred to the three different gas fluxes each measurement produced (CO2, CH4, and 

N2O).  For clarity, we have removed this number (681) and we now only refer to CO2 and CH4 flux measurements 

(see also reply to reviewer #1) 

Line 292: "Random forest regression tree". Did you use only one decision tree, or the ensemble mean of several? 

[Responses] 

It was the ensemble mean of 100 trees. We removed this from the text however.  In retrospect, it was beyond the 

scope/point of the paper.  Discussing the choices made for the random forest (RF) analysis would have required a new 

section in the methods.  But since we didn’t use it in the results (beyond this one comparison), this didn’t seem 

necessary.  Instead, we added a paragraph to the appendix [Lines 522-532] discussing why we RF weren’t the best 

choice for this analysis and we added Figure A2 to support this. 

Random forests (RF) are said to be among the best performing gap filling methods for NME (Kim et al., 2020).   and 

it has been claimed that aggregating many regression trees in a RF prevents overfitting (Breiman, 2001;).  We did not 

find this to be the case.  Following the methods outlined in Kim et al. (2020): a RF with 400 trees and no restrictions 

on tree size fit FCH4 nearly perfectly (R2 = 0.98).  Without considerable limitations on tree size, the RF will just learn 



the dataset rather than the relationships present.  It is our view that this tree is extremely overfit, as highlighted by the 

example in Figure A2.  Further, RF do not allow for straightforward visualization functional relationships in a dataset.  

Plotting FCH4 against VWC, which is the dominant environmental control identified does not reveal a meaningful 

relationship like Figure 5 a & c.  You can look at an individual decision tree within the RF, but those are difficult to 

interpret beyond the first few splits, and each tree will be different.  Lastly, RF are incapable of projecting beyond the 

parameter space observed which limited their applicability for this study (Fig A2).  This presents an issue because 

may gaps in EC data arise from data filtering (e.g. clear calm nights, precipitation events) and are by definition outside 

the parameter space observed. 

 

 

Line 296: Maybe refer to an equation defining alpha. 

[Responses] 

Alpha in this context is analogous to the minimum of the first derivative of the neural network output; which was 

calculated numerically.  We added a new equation (Eq. 5) in section 2.5.1 [Line 258] to show a light response curve  

𝑁𝐸𝐸 =  
1

2𝑐
(𝛼PPFD + 𝛽 − √(𝛼PPFD + 𝛽)2 − 4𝛼𝛽𝑐PPFD) + ER  

and clarified section 3.3 to better describe this [Line 332-334]. 

The minimum values represent the peak light use efficiency and are analogous to α in eq. 5 (Fig 4b).   

Technical corrections 

Line 75: Did you really mean 100 m, or maybe km?  

[Responses] 

Yes, the antient basin, is just 100m to the south, it can be seen in Figure 1a (labeled 6b) and 1c in the top left of the 

drone image. 

Lines 302/303: Pa, with a capital P Line 310: "both"? 

[Responses] 

Corrected, we also decided to use kPa instead 

Please check and correct the names of your references in the text, as several have spelling mistakes ("Whalen 

and Reedburgh", "Merbould", "Meyer-Smith")  

[Responses] 



Thank you. We corrected these spelling mistakes. 

 

Figure 3b: Can you add a little bit of horizontal white space between the the Sedge plot and the rest? I think 

this could prevent confusion and make it clear that the y-axis for this box has a different scale 

[Responses] 

We added the requested horizontal space and put “Sedge” into a separate subplot of the same figure. 
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Abstract. Thermokarst features are widespread in ice-rich regions of the circumpolar Arctic.  The rate of thermokarst 10 

lake formation and drainage is anticipated to accelerate as the climate warms.  However, it is uncertain how these 

dynamic features impact the terrestrial Arctic carbon cycle.  Methane (CH4) and carbon dioxide (CO2) fluxes were 

measured during peak growing season using eddy covariance and chambers at Illisarvik, a 0.16 km2 thermokarst lake 

basin that was experimentally drained in 1978 on Richards Island, Northwest Territories, Canada.  Vegetation in the 

basin differesdiffers markedly from the surrounding dwarf-shrub tundra and included patches of tall shrubs, grasses 15 

and sedges with some bare ground and a small pond in the centre.  During the study periodpeak growing season, 

temperature and wind conditions were highly variable and soil water content decreased steadily.  Basin -scaled net 

ecosystem CO2 exchange (NEE) measured by eddy covariance was -1.5 [ CI95% ± 0.2] g C-CO2 m-2 d-1; NEE followed 

a marked diurnal pattern with no day-to-day trend during the study period.  Variations in half-hourly NEE was 

primarywere primarily controlled by photosynthetic photon flux density and influenced by vapor pressure deficit, 20 

volumetric water content and the presence of shrubs.  By contrast, net within the flux tower footprint, which varied 

with wind direction.   Net methane exchange (NME) was low (8.7 [CI95% ± 0.4] mg CH4 m-2 d-1and1 and had little 

impact on the growing season carbon balance of the basin during the study period..  NME displayed high spatial 

variability, and sedge areas in the basin were the strongest source of CH4 while upland areas outside the basin were a 

net sink.  Soil moisture and temperature were the main environmental factors influencing NME, having a positive and 25 

negative effect respectively..  Presently, Illisarvik is a carbon sink during the peak growing season. However, these 

results suggest that rates of growing season CO2 and CH4 exchange rates may change as the basin’s vegetation 

community continues to evolve.      

 

Keywords: Climate Change, Arctic, Permafrost, Thermokarst, Carbon Dioxide, Methane 30 

1 Introduction 

The northern permafrost region stores approximately 50% of global organic soil carbon in 16% of the terrestrial land 

area (Tarnocai et al. 2009).  Thermokarst lakeslandscapes account for approximately 20% of the land area in this 
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region and hold about half of its organic soil carbon (Olefeldt et al., 2016).  Lake thermokarst landscapes are a 

widespread feature in poorly drained, sedimentary permafrost lowlands with excess ground ice volume and constitute 35 

about a third of all thermokarst area (French, 2013).  These; Olefeldt et al., 2016).  Thermokarst lakes drain, sometimes 

catastrophically, via bank overflow, ice wedge erosion, coastal erosion, and stream migration (Billings and 

PetersonsPeterson, 1980; Mackay, 1999).  Thermokarst lakes and drained thermokarst lake basins (DTLB) are 

prominent landscape features of the westernWestern Canadian Arctic (Mackay, 1999; Marsh et al, 2009; Lantz & 

Turner, 2015).  Lake formation and drainage is a natural part of the thaw lake cycle, but it is anticipated that climate 40 

change will accelerate or disturb this cycle resulting in more lake formation and drainage, potentially altering the 

regional carbon balance (Jones et al., 2018).   

Net ecosystem exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP), where NEE =

ER − GPP are lower in the Arctic than warmer regions but have significant seasonal cycles and variability between 

vegetation types (Virkkala et al., 2018).  Future trajectories in NEE will in large part be governed by ER (Biasi et al., 45 

2008; Cahoon et al.,2012).  Dominant vegetation types in the Western Canadian Arctic are erect-shrub tundra and 

wetlands (Walker et al., 2005).  Growing season NEE is typically negative across these units throughout the Arctic 

indicating a net CO2 sink as GPP exceeds ER in part due to cold and/or anoxic soil conditions (Virkkala et al., 2018; 

Lafleur et al., 2012).  Annual NEE can be positive or negative with large variation in GPP linked to annual weather 

variability (Virkkala et al., 2018, McGuire et al., 2009).  Arctic net methane exchange (NME) is positive because 50 

wetland areas are strong methane (CH4) sources while upland areas with better drainage can be net sinks (Whalen and 

Reeburgh, 1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).   

Thermokarst lakes are well recognized sources of methane (CH4 (Walter et al., 2007) which is 28 times as potent as 

carbon dioxide (CO2) on a 100-year time scale (Walter et al., 2007IPCC, 2014).  Thermokarst lake formation and 

expansion is expected to exert a positive feedback on climate change and accelerate Arctic warming in the near term, 55 

but one modelling study suggests that drainage may limit expansion and result in decreased lake area by the end of 

the century (van Huissteden et al., 2011).  Post drainage, DTLB undergo rapid ecological succession.  In colder tundra 

environments, wet meadows or polygonal landscapes dominated by sedges, grasses and rushes will form (Lara et al., 

2015).   In slightly warmer, boreal orand transitional regions, DTLB often become dominated by willows and other 

shrubs (Lantz and Turner, 2015).   60 

Carbon exchange in DTLB of various ages has been examined byin a few studies, all of whichalmost exclusively 

focused on the Barrow Peninsula in Northern Alaska.  In general, DTLB are net sinks for CO2NEE during the growing 

season is negative with greatest CO2 uptake in younger basins and decreasing net uptake of CO2 as the basin agesas 

basins age in this region (Zona et al., 2010; Zulueta et al., 2011; Sturtevant and Oechel, 2013; Lara et al., 2015).  

DTLB source/sink strength of CH4 was found to be highly variable depending on vegetation and ground conditions 65 

(Lara et al., 2015).  Net methane exchange (NME) is highest in wet or flooded meadows and remnant ponds while 

upland tundra surrounding DTLB can be a methane sinkbut considerably reduced in areas with better drainage (Zona 

et al., 2009; Zona et al., 2012; Lara et al., 2015).  There may be regional variations in the carbon balance of DTLB.  

For example, a shrub dominated ancient DTLB known as Katyk in the Indigirka lowlands of Siberia shows 

considerably higher growing season carbon uptake than young Alaskan DTLB with comparable NME (van der Molen 70 
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et al., 2007; Parmentier et al. 2011).; Sturtevant  Similarly, DTLB in the Western Canadian Arctic may have different 

carbon fluxes due to differences in climate and Oechel, 2013).vegetation composition.     

In this study, fluxes of CO2 and CH4 were measured at Illisarvik, an experimentally drained thermokarst lake bedbasin 

on Richard’sRichards Island in the westernWestern Canadian Arctic, Northwest Territories, Canada.  Fluxes of CO2 

and CH4 were measured during the peak growing season using a combination of closed chamber and eddy covariance 75 

(EC) measurements. Net ecosystem exchange (NEE) of CO2 was calculated from fluxes and storage change and NEE 

was separated into ecosystem respiration (ER) and gross primary productivity (GPP), 𝑁𝐸𝐸 = 𝐸𝑅 + 𝐺𝑃𝑃. Here we 

report on: 1) the spatial and temporal variability of the NEE and NME, 2) the vegetation and environmental factors 

influencing NEE and NME, 3) how the growing season carbon balance at Illisarvik compares to other DTLB, and 4) 

potential future carbon balance trajectories as Illisarvik continuesIllisarvik’s vegetation communities continue to 80 

evolve. 

2 Methods 

2.1 Study Site and Data Collection 

The study took place at Illisarvik, a DTLB on Richards Island (69˚28’47.5” N, 134˚35’18.7” W), that was drained 

experimentally in 1978 (Mackay, 1981).  Illisarvik has since served as the focus of studies on permafrost growth, 85 

active layer development and vegetation succession (Ovenden, 1986; Mackay and Burn, 2002; O’Neil et al., 2012; 

Wilson et al., 2019).  At the nearby Tuktoyaktuk climate station mean annual air temperature (Ta) is -10.1 °C, July is 

the warmest month with a mean of 11°C and January is the coldest at -27°C.  Mean annual precipitation is 160.7 mm 

yr-1, the majority falling as rain in the summer and autumn.  Snow cover typically lasts from mid-September or early 

October to late May (Environment Canada. 2016).  Tuktoyaktuk is 60 km east of Illisarvik and in similar proximity 90 

to the coast so the climatology is expected to be similar at Illisarvik. 

In the 39 years since drainage, Illisarvik has undergone rapid vegetation succession.  After drainage, there were two 

remnant ponds.  In the first five years after drainage, vegetation colonized the basin margins and wetter areas 

(Ovenden, 1986).  By 1999, low vegetation had proliferated across most of the basin and taller willows had become 

established along the basin margins (Mackay and Burn; 2002).  By 2010, some of the willows had grown to be 3 m in 95 

height (O’Neil and Burn; 2012).  Current vegetation at Illisarvik is diverse relative to the dwarf-shrub tundra of the 

surrounding uplands; (Table 1); the basin hosts a mix of woody shrubs (Salix spp., Betula spp., & Alnus spp), wetland 

vegetation (Carex spp.,aquatilis, Arctophila fulva, etc.), and various grasses (Pocacea spp.)..) (Wilson et al. 2019).  

The basin is partly ringed by a terrace of peat that formed after a partial drainage event ~ 20005000 years BP and 

supports vegetation similar to the uplands (C Burn, personal communication 2016Michel et al., 1989).  An ancient 100 

DTLB is located 100 m to the south of the Illisarvik basin and the Arctic Ocean is to the west of the basin, separated 

by a ridge of upland tundra about 50 m wide at its narrowest (Fig 1). 

A vegetation survey of species presencecomposition and percent coverabundance was done on a 50 m grid in and 

around the basin during the 2016 study period (Wilson, et al., 2019).  A vegetation map was created with ten units 

based on plant functional type and vegetation structure, with sub-units denoting sub-canopy vegetation.  The unit 105 
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boundaries between grid points were estimated visually by traversing the grid lines.  Additional survey data on 

vegetation units &and canopy height were collected manually with a GPS in the proximity of the EC station because 

greater resolution was needed for footprint modelling.  DroneAerial imagery was collected on July 23rd over two 

flights using a Phantom 2 drone (DJI, Shenzhen, China).  The GPS points and drone imagery were used to cross 

reference and modify the map of Wilson et al. (2019).  The ten units were then aggregated into 6six broader surface 110 

cover classes (listed from largest to smallest areal fraction within the footprint climatology (FClim) see Section 2.3 for 

definition): shrub, grass, sedge, upland, sparse, and water classes (Fig 1 & Table 1). 

2.2 Weather and Soil Measurements 

Weather data were logged on a CR1000 datalogger (Campbell Scientific Inc, Logan, UT, USA; CSI) at 5-minute 

intervals. A Net all-wave radiation (Rn) and photosynthetic photon flux density (PPFD) were measured with a NRLite 115 

net radiometer (Kipp & Zonen, Delft, Netherlands) measured net all-wave radiation (Rn),and a SQ-110 quantum sensor 

(Apogee Instruments, Logan, UT, USA) measured photosynthetic photon flux density (PPFD), and a), respectively 

3.2 m above the grass surface on the main EC system tripod (Fig 1).  A shielded HMP35 (CSI) measuredrecorded Ta 

and relative humidity (RH).) 2 m above the surface.  A tipping bucket rain gauge (R.M Young Company, Travers 

City, MI, USA) was placed 3 m to the west of the main tripod.  Soil temperature and moisture data were recorded at 120 

30-minute intervals on CR10x dataloggers (CSI)measured within two soil pits within two different vegetation types 

near the tripod: Grass (30 m to the east) and Shrub (40 m to the north).  Each system measuredMeasurements were 

made of ground heat flux (G) with custom made heat flux plates, soil temperatures (Ts) with custom made type-T 

thermocouples at depths of 0.08 m, and 0-20 cm integrated? volumetric water content (𝜃𝑤)VWC) with CS616 water 

content reflectometers (CSI).  There was one repetition of each observation per pit.The soil measurements were 125 

recorded at 30-minute intervals on CR10x dataloggers (CSI).  The climate and soil stations operated uninterrupted 

from July 10th (day 192) and July 11th (day 193)), respectively, until August 7th, 2016 (day 220).  On July 11th and 

August 6th thaw depth was measured at each of the 10 chamber sites. (see below).  Thaw depth was measured by 

inserting a graduated steel probe into the ground to point of refusal. Each site was probed five times: the median value 

has been used as the thaw depth at each location.  Between day 193On July 12th and 19715th, a large herd of reindeer 130 

(500 + animals) visited Illisarvik.  They mostly avoided the tripod but did graze near it on a few occasions.for about 

an hour on July 12th which may have affected greenhouse gas fluxes.   

2.3 EC Fluxes 

An EC system was placed in the southwestern portion of the basin (69° 28' 47.82", -134° 35' 18.6") and measured 

fluxes of CO2 (FCO2) and CH4 (FCH4) for the full study period. between July 10th and Aug 7th, 2016.  The EC system 135 

consisted of an open-path infrared CO2/H2O gas analyser (IRGA)  (model LI-7500, LI-COR Inc., Lincoln, NK, USA; 

LI-COR), an open-path CH4 analyser (model LI-7700, LI-COR) and a CSAT3 sonic anemometer (CSI) mounted on 

a tripod at a measurement height (zm) of 3 m (Fig 2.).). The EC data and air pressure (Pa) were logged at 10 Hz on the 

LI-7550 Analyzer Interface Unit (LI-COR).  The CSAT3 was oriented to the northeast (40°) because climatology for 

Tuktoyaktuk indicated northerly and easterly winds are typical for July and August (Environment Canada, 2016).  140 
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Half-hourly fluxes were calculated with EddyPro V.6.2.0 (LI-COR).  The software performed statistical assessments 

(Vickers and Mart, 1997), low and high frequency spectral corrections (Moncrieff et al., 1997 and 2004), a double 

rotation (Wilczak et al., 2001), applied the WPL correction to account for density fluctuations (Webb et al., 1980), 

and computed quality control (qc) flags (Mauder and Foken, 2004).  Post processing treatments included: storage 

correction (calculating the net flux as the sum of the observed scalar flux and the rate of change in scalar concentration 145 

at zm), filtering fluxes by friction velocities (𝑢∗) below 0.1 m s-1, and removing spurious half hourly measurementsqc 

flags = 2 (Mauder and Foken, 2004), and the mean absolute deviation spike removal algorithm (Papale et al., 2006). 

Additionally, observations with mean winds from 220˚ ± 30˚ were removed as these to avoid uncertainties associated 

with the wake of the sonic anemometer, and observations were removed during precipitation events and when the 

open-path analyzersanalysers indicated there were any other obstructions within the path. (Aubinet et al., 2012).  The 150 

data were gap-filled using neural networks (NN) which have been applied to FCO2 and FCH4 in other studies (Moffat et 

al., 2010; Dengel et al., 2013).  Details of the NN methodology are discusseddescribed in Appendix A.  

     

The flux footprint represents the influence of upwind areas on a measured scalar flux and the footprint climatology is 

the average of individual footprints over a time period. Evaluation of the flux footprints and climatology help evaluate 155 

the reliability of the dataset and estimate the source area of each individual datapoint of thehalf-hourly EC flux 

measurement.  A scalar flux 𝐹𝑐  sampled at (0,0, 𝑧𝑚), where zm is the height of the EC instrumentation, can be 

represented as the integral of the flux footprint function f(x,y) and the distribution of sources/sinks (𝑄
𝑐
) over a domain 

D (Kljun et al., 2015):   

𝐹𝑐(0,0, 𝑧𝑚) = ∫ 𝑄𝑐(𝑥, 𝑦)𝑓(𝑥, 𝑦)
𝐷

         (1) 160 

The flux contribution of upwind source areas increases sharply upwind from the measurement location to a peak then 

decrease gradually with increasing distance (Schmid, 2002).   The empirically derived flux footprint function of 

KlujnKljun et al.,. (2015) was used to estimate the source area of each half hourly flux measurement. 

The model requires boundary layer heights which were not measured onsite.  Half hourly boundary layer heights were 

interpolated from three-hour estimates obtained from the Global Data Assimilation System of the U.S. National 165 

Oceanic and Atmospheric Administration.  The model also requires the aerodynamic roughness length (𝑧0) which is 

influenced by the canopy height and spacing.  Canopy height (Ch) varied considerably within the basin (from >1 m in 

the north to ~0 m in the bare ground areas).  Canopy height variability was lower in the vicinity of the EC tripod but 

ranged from 0.35- 0.55 m with a few taller shrubs approaching 1 m.  Median 𝑧0 was calculated for 30˚ wind sectors 

following Paul-Limoges et al. (2013).  This calculation was performed for near neutral conditions −0.05 ≤
𝑍𝑚

𝐿
≤170 

0.05, where L is the Obukhov length.  The 𝑧0 for each wind sector was found to be insensitive to changes in the zero-

plane displacement height, d, as zm >> d, so the mean value of d around the tripod was used, where d = 2/3 Ch. Zero-

plane displacement did not change significantly over the course of the study so 𝑧0 remained fixed over the study period 

for each wind sector. 
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For each 30-minutehalf-hourly flux observation, f(x,y)i was solved at one-meter1 m2 resolution over a 1 km2 domain 175 

centred on the EC tripod.  Then, f(x,y)i were intersected with the surface classes to determine theirthe relative 

contribution of each surface type to each flux observation (referred to as Shrub%, Sedge%,FShrub, FSedge, etc.).  The 

footprint function is technically infinite so a fraction of each f(x,y)i was not contained within the model domain.  The 

out-of-domain source fraction ranged from 1.8% -to 4.9% with a mean of 3.2% and was assumed to have minimal 

impact on the analysis.   The flux footprint climatology (FClim) was calculated by averaging the half hourly flux 180 

footprints were then averaged over the study to calculate the flux footprint climatology.  All post-processingperiod 

and footprint modelling were carried out using Pythonis shown in Figure 1.  Table 2 shows the flux contribution of 

each vegetation class. 

2.34 Closed Chamber Measurements 

In addition to EC measurements, fluxes of CO2, CH4, and nitrous oxide (N2O)CH4 were sampled using a static non-185 

steady state chamber flux technique on 11 dates between July 12 and August 5, 2016 (Laforce, 2018).  Only the bare 

ground was a significant source of N2O, so those results are not shown here.  ChamberNineteen chamber collars were 

located at ten sites, eight sites within and two outside the basin (FigureFig 1).  Each surface cover class was represented 

by at least one chamber site, except for open water.  At each vegetated site a pair of collars were installed 20 cm apart 

and the, except at the ‘sparse’ site where only one collar was installed.  The above ground biomass was removed from 190 

one of the collars, with at each vegetated site.  There were three replicates (six collars) for the exception of the ‘sparse’ 

coverShrub class where only one collar was installed. , two for the Sedge, Grass, and Upland tundra, and no replicates 

for the Sparse class.  PVC collars 30 cm long and 24.3 cm in diameter were inserted to a depth of approximately 15 

cm.  The chambers were 34 cm tall and made out of polycarbonate covered in black opaque tape to maintain dark 

conditions inside the chamber (for more details, see Martin et al., 2018).  The chambers contained a small vent (10 195 

cm coiled 1/8” diameter copper pipe) to ensure a constant pressure during measurements.  The use of opaque chambers 

means that FCO2 represents only ER.  Thefluxes of CO2 provided an independent estimation of ER.  This helped 

characterize ER is important as it is difficult to estimate ER usinggiven the challenges with standard ECNEE 

partitioning techniques at high latitude sites during the Arctic summer at this latitude. Standard approaches require 

night-time data, a condition which was only found during a small fraction of the study periodas noted below. 200 

MeasurementsChamber flux measurements were made between 9:00 and 17:00 starting at a different sitecollar set 

each day to randomize the sampling order to avoid a bias due to diurnal ranges on the 11 days when performing 

chamber measurementspatterns.  During gas flux measurements, the chambers were sealed to the top of the collars 

within a groove filled with water and five 24 mL air samples were collected into evacuated 12 mL vials sealed with 

doubled septa. Each vial contained a small amount of magnesium perchlorate to dry the air sample. Samples were 205 

collected at 0, 5, 10, 15 and 20 minutes after the chambers were set on the collars.  Air within the chamber was mixed 

with a 60 mL syringe attached to a three-way stopcock before each air sample was taken.  Samples were stored until 

analysis the following fallone month later at Carleton University.  To monitor the integrity of the vials through 

shipping, storage and analysis, a number of the evacuated vials were filled with helium in the lab before the field 

season began.    210 
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Concentrations of CO2, CH4 and N2O were determined at Carleton University, using a CP 3800 gas chromatograph 

(Varian Inc., Pao Alto, CA, USA) as described by Wilson and Humphreys (2010). Three replicates of five CO2/ CH4 

standards varying from 383.1 to 15212.6 ppm CO2 and from 1.08 to 22.11 ppm CH4 were included in every set of 

measurements to create a linear relationship between gas concentration and chromatogram area.  The chamber fluxes 

of CO2 and CH4 (FC) were calculated as follows: 215 

𝐹𝐶 =  
𝑉𝑃

𝐴𝑅𝑇

𝑑𝑐

𝑑𝑡
            (2) 

where (dc/dt) is the linear rate of change in the mixing ratio of the gas, A is the chamber area (0.0464 m3), V is the 

chamber volume (between 0.0182 and 0.0242 m3  adjusted for  m2  collar depth at each collar location), R is the ideal 

gas constant, P is pressure in Pa and T is the air temperature in Kelvin.  P and T values corresponding to the time of 

each measurement were obtained from the EC station.  After removal of spurious point measurements (72 vial samples 220 

were rejected out of 1135 vials), dc/dt was determined using three or more gas sample concentrations resulting in 

coefficients of determination that ranged from 0.71 to 0.99.  No flux measurements were removed from the analysis. 

Positive fluxes indicate emissions of gases to the atmosphere and negative fluxes indicate uptake by the surface.  After 

removal of spurious point measurements (if more than 2 points were rejected, the flux measurement was rejected), 

dc/dt coefficients of determination ranged from 0.71 to 0.999. Overall, 72 vial samples were rejected out of 1135 vials 225 

and no flux measurements were rejected out of 681. 

2.4.1 Upscaling 

Chamber measurementsfluxes of ER were upscaled from the plot scale (individual chamber) to the footprint scale 

using the footprint weighted average method and to the basin scale using the area weighted average method 

(Budishchev et al., 2014).   The chamber ER and air temperature from the EC tripod (Ta) were used to determine R10, 230 

the base respiration at 10 C˚, and Q10, the temperature sensitivity coefficient, using eq 3 for five of the six surface 

classes (Fig 1) (Laforce, 2018) (Table 3).   

ER =  𝑅10𝑄10

(𝑇𝑎−10)

10           

 (comparison to EC observations.  ER was 3) 

Half hourly footprint scale estimates (ERFS) were calculated using eq. 4 and the Q10 and R10 coefficientsby multiplying 235 

ER derived by Laforce (2018) explained in section 2.4.1.  ER was calculatedfrom eq. 3 for each surface class separately 

and then weighted by footprint climatology (see the footprint source area fraction and summing over classes.  Basin 

scale estimates (ERBS) were estimated the same way but using the mean source area fractions of the basin (Table 2).  

For NMEAs there were no open water class ER estimates, ER from open water was assumed to be zero. 

In contrast to ER, there are no standard empirical functions, so mean NME to estimate temporal variations in NME.  240 

Instead, we used ordinary least squares regression (OLS) to estimate NME.  The most important environmental 

controls over FCH4 were VWC and Ts (discussed below).  Continuous observations of these factors at the flux chambers 

were not available, instead chamber NME were grouped by vegetation class and fit to VWC and Ts measured in the 

soil pits near the EC station.  Half hourly footprint scale (NMEFS) and basin scale (NMEBS) estimates were then 

estimated using the OLS parameters for each class was weighted by the footprint climatology instead. The weighted 245 
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estimates were compared to EC observations and to help verify our findings.surface class using the same procedures 

for ERFS and ERBS.  

2.45 Factor Selection and Gap Filling 

We used an exploratory approach to identify the smallest set of factors that best predicted half hourly EC-derived NEE 

and NME without overfitting the dataset. using a series of neural networks (NN). We started with 10 factors: four 250 

meteorological variables [ (PPFD), Ta, vapor pressure deficit (VPD),) computed using the Ta and RH data, three-

dimensional wind speed (U)],) measured using the CSAT3 sonic anemometer], two soil variables [volumetric water 

content ([(VWC) and Ts averaged between the two soil temperature (Ts)],pits near the EC tripod], and four source area 

fractions [shrubShrub (FShrub), grassGrass (FShrub), sedgeSedge (FSedge), and uplandUpland, (FUpland)].  The four source 

area variables correspond to surface classes sampled by the chamber samples.chambers.  We excluded sparseWater 255 

(FWater) and Sparse (FSparse) fractions because its average contribution to the EC observations was only 0.2.1% and % 

and 2.2%, respectively, and there were no chamber measurements for the Water class while chamber 

samplesmeasurements indicated ER was low and NME was not significantly different from zero. for the Sparse class.  

A number of these variables areprediction factors were highly correlated but it was necessary to include them so the 

model could account for source area heterogeneity.   260 

A series of neural networks (NN)The NNs were trained iteratively on bootstrapped datasets.  First NN were trained 

on each factor individually and the one with the lowest MSE was selected.  Next, NN were trained on that factor in 

combination with one of the remaining nine.  The best performing additional factor was again selected and this process 

was repeated until MSE failed to improve.  The most parsimonious model was identified using the one standard error 

(SE) rule.  Dybowski and Roberts (2001) give the standard error of a bootstrap estimate of a given error metric (eg.e.g., 265 

𝜃 = 𝑀𝑆𝐸) to be  

𝑆𝐸𝑏𝑜𝑜𝑡(𝜃) = √
1

𝐵−1
∑ (𝜃𝑏 − 𝜃𝑏𝑜𝑜𝑡)2𝐵

𝑏=1         (34) 

where 𝜃𝑏𝑜𝑜𝑡 is the mean of the bootstrapped samples.  The smallest set of factors where 𝜃𝑏𝑜𝑜𝑡 was within one 𝑆𝐸𝑏𝑜𝑜𝑡 

of the minimum 𝜃𝑏𝑜𝑜𝑡 for both NEE and NME were selected for further analysis.  The outputs from the selected models 

trained on those factor sets are referred to as NNNEENEENN and NNNMENMENN, respectively.  NN modelling was done 270 

using the Keras Python library (Chollet et al., 2015), see the Appendix A for a more detailed explanation of the NN 

analysis.  

Multiple Imputation (MI) was then used to gap fill the NEE and NME with the outputs from NNNEENEENN and 

NNNMENMENN, respectively (Vitale et al., 2018).  Of the 1296 half hourly flux observations 28.9% of FCO2 and 31.3% 

of FCH4 were missing or filtered out.  There were a few gaps in the source area fractions needed to gap-fill the flux 275 

time series because the footprint function is not valid when 𝑢∗ < 0.1 m s-1.  When source area fractions were missing, 

they were gap-filled by using the mean source are fraction observed for winds within ± 5˚of the observed wind 

direction.  The meteorological and soil data were continuous and did not need to be gap-filled. 
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2.45.1 Flux Partitioning 

NEE is negative when there is net uptake of CO2 by the ecosystem and positive when there is net emission. ER and 280 

GPP are always positive, ER represents the sum of heterotrophic and autotrophic respiration and GPP represents 

photosynthetic uptake of CO2.  Night-time NEE observations (eg.e.g., PPFD <= 10 µmol m-2 s-1) are typically used 

to quantify ER because GPP ~ 0 (Aubinet et al., 2012).  Some NN analyses of NEE have trained separate models for 

night-time and daytime conditions (Papale & Valenini, 2003).  However, these methods are not practical during the 

Arcitc summer, the sun did not set at Illisarvik until July 28th, over half way through the study period.  There were not 285 

enough night-time samples (n=100) to be worth training a separate NN.  Instead, we estimated ER by calculating the 

intercept of NNNEE at PPFD = 0 µmol m-2 s-1 for all observations.  This estimate is referred to as NNER.  Laforce (2018) 

fit a Q10 equation to the chamber ER observations: 2012).  We fit the limited night-time EC observations available 

(n=95) to equation 3 for comparison with the ER measured using the chambers.  We used the fitted values to model 

daytime ER and approximate NEE by fitting the daytime data to a light response curve Aubinet et al. (2012). 290 

𝐸𝑅𝑁𝐸𝐸 =  
1

2𝑐
(𝛼PPFD + 𝛽 − √(𝛼PPFD + 𝛽)2 − 4𝛼𝛽𝑐PPFD) + ER     (5) 

=  𝑅10𝑄10

(𝑇𝑎−10)

10            (4) 

where R10𝛼 is the base respirationinitial slope of the light response curve, 𝛽 is GPP at 10 C˚saturation, and Q10 is the 

temperature sensitivity coefficient.  We fit the c is a curvature parameter.  These estimates are referred to as ERQ10 

and NEEQ10. 295 

Some NN analyses of NEE have trained separate models for night-time ECand daytime conditions for partitioning 

purposes (Papale & Valentini, 2003).  However, these methods are not practical during the Arctic summer as the sun 

did not set at Illisarvik until July 28th, over halfway through the study period.  There were not enough night-time 

samples to train a separate NN.  Instead, we estimated ER by calculating NEENN at PPFD = 0 µmol m-2 s-1 for all 

observations available (n=100) to this Q10 equation for comparison (Aubinet et al., 2012)., henceforth referred to as 300 

ERNN.  This is a projection outside of the observed parameter space resulting in greater uncertainty and a wider 

confidence interval around ERNN than NEENN.  Calculation of confidence intervals for NN outputs is discussed in 

Appendix A. 

 

2.4.15.2 Factor Analysis and Upscaling 305 

The trained NNs were used to investigate how individual factors influenced NEE and NME.  The partial first derivative 

of the model response to one controlling factor was calculated while keeping all other inputs fixed.  For example, the 

partial first derivative, 
∂𝑁𝐸𝐸

∂PPFD

∂NEE

∂PPFD
 , is an approximation of the NEE light response curve under a specific set of 

conditions.  Similarly, NNNME can be used to approximate NME response to controls like VWC or Ts.  For both fluxes, 

the selected modelmodels contained at least one source area fraction variable, indicating the vegetation type(s) which 310 

had significant influence over both NEE and NME.  WeAdditionally, we mapped NNNEE and NNNME to full100% 

coverage for theindividual surface classes to approximate theirsee how fluxes at Illisarvik may change as vegetation 

succession continues.  For example, to project to 100% Sedge coverage, we set the other surface classes to 0% and 
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compare withleft the chamber observations.other environmental factors unchanged.  This allows for an estimation of 

how carbon fluxes may change if vegetation succession leads Illisarvik to look more like the DTLB studied in Alaska.  315 

3 Results & Discussion 

During the 29-day study, half-hourly Ta and Ts ranged between 0.4 and 26.2 C˚°C and 4.4 and 11.0 C˚°C, respectively 

(Fig 2a).  Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6˚ to 35.4˚, but daily 

PPFD was more influenced by variations in cloud cover.  Precipitation (19 mm) fell on 14 of the 28 days with trace 

snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b).  At the onset of the 320 

study period, VWC was high and soils were saturated with ponding in the sedge areas.  By the end of the study most 

of this surface water had dried up.  On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at upland, sedge, 

grass, shrubUpland, Sedge, Grass, Shrub, and sparseSparse classes, respectively.  By August 6th, average thaw depth 

washad increased to 45, 62 and 66 cm at upland, sedgeUpland, Sedge and grassGrass surface classes and over 100 cm 

at both the shrubShrub and sparseSparse classes. 325 

A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly 

winds to occur much more frequently than is typical for July and August.  The 50%, 80% and 90% flux footprint 

climatologyFClim contours are shown in Fig 1a.  Mean source area fractions indicate the EC observations were skewed 

towards the grassGrass surface class and under-sampled the shrubShrub class, but the range of surface classes sampled 

was diverse enough to allow for testing of the impact of source area fraction on the fluxes (Table 2).  330 

3.1 EC & Chamber Observations  

ECHalf hourly observations indicate thatof FCO2 and FCH4 along with the flux footprint area was a carbon sink 

duringNEENN and NMENN used to gap-fill the peak growing season, but fluxes varied considerably from day to 

day.time series are shown in (Fig 2c & d).  Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO2 m-2 d-1 with a mean 

-1.5 [CI95% ± 0.2] g C-CO2 m-2 d-1 (Figure 2c).  Estimated ER was .  Day to day variability was considerable but there 335 

was no notable trend in NEE over the peak growing season.  The half hourly NEE during the study period reached a 

minimum of -10.4 μmol CO2 m-2 h-1 just before solar noon and peaked at 4.7 μmol CO2 m-2 h-1 around midnight (Fig 

2c).  NEENN was used to gap-fill the flux data because it was in good agreement with FCO2 observation (r2 = 0.91).  

Daily ERNN was estimated to be 2.2 [CI95% ± 0.9] g C-CO2 m-2 d-1 with corresponding GPP of 3.7 g C-CO2 m-2 d-1.  

There were no notable trends in NEE or ER over the study period.  OurERNN was in poor agreement (R2 = 0.35, n= 340 

95) with night time FCO2 observations are within ranges observed from young DTLB on the Barrow Peninsula. NEE 

was greater than (ie. less carbon uptake) EC observations of from four wetter, sedge dominated DTLB, where peak 

season NEE was -2.5 g C-CO2 m-2 d-1,  ER (1.5 g C-CO2 m-2 d-1)  was lower than at Illisarvik while GPP (4.  For 

comparison, Eq. 3 provided a better fit (R2 = 0.47) with night-time EC data, and ERQ10 was estimated to be 3.0 g C-

CO2 m-2 d-1) was slightly higher (Zona et al., 2010).  But NEE was less than (ie. more carbon uptake) upscaled chamber 345 

estimates for wet meadow DTLB (-0.9 g C-CO2 m-2 d-1), while ER (2.7 g C-CO2 m-2 d-) and GPP (3.5 g C-CO2 m-2 d-

) were higher and lower than Illisarvik (Lara et al., .  However, NEEQ10 did not fit FCO2 as well (r2 = 0.80) as NEENN.  

2015).  Mid-day NEE at was comparable to aircraft observations from young DTLB (Zulueta et al., 2011). 
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Gap-filled daily NME was modest, ranging from  and decreased over the study period.  It ranged from 2.0 to 25.1 mg 

C-CH4 m-2 d-1 with a mean of 8.7 [CI95% ± 0.4] mg C-CH4 m-2 d-1 (Fig 3d).  Even accounting for the greater GWP of 350 

CH4,2d).  NMENN was used to gap-fill the flux data because it provided a reasonable fit (r2 = 0.62) to FCH4 observations.  

NME did not constitute a significant component of the carbon balance.  Daily NME decreased over the study period 

as soils in the basin dried.  NME at Illisarvik was much less than EC observations from in a wet sedge dominated 

DTLB (18.4 mg C-CH4 m-2 d-1) and chamber observations from DTLB (26.1 mg C-CH4 m-2 d-) on the Barrow 

Peninsula (Zona et al., 2009; Lara et al., 2015).  and thus the flux footprint area was a carbon sink during the peak 355 

growing season with negative GWP after accounting for the greater GWP of CH4.  

Chamber ER was higher than EC estimates and showed modest variability among vegetation classes (Fig 3a).  

Greatest ER was observed3.2 Chamber Observations 

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI95% ± 1.2], 5.4 [CI95% 

± 1.2] and 4.9 [CI95% ± 0.7] g C-CO2 m-2 d-1,. Shrub ER was significantly less (3.5 [CI95% ± 0.6] g C-CO2 m-2 d-1) than 360 

the other vegetated classes and Sparse hadER was the lowest ERamong the classes (2.0 [CI95% ± 0.3] g C-CO2 m-2 d-

1).  These values were generally higher than chamber observations from DTLB or tundra sampled by Lara et al. () (fig 

3a).  The2015).  Q10 and R10 values also differed between vegetation classes,: ER in the Sedge werewas the most 

sensitive to changes in air temperature, while and modelled values provided the best fit (R2 = 0.82) to observations.  

Upland and Grass had the highest base respiration and fit observations moderately well (Table 3).  EC estimated Q10 365 

and R10 (r2 = 0.47) were generally lower than the vegetated chambers, but most similar to Shrub, which was the largest 

component of the footprint.   

Chamber NME was much smaller than ER but there was significantly more variability among variable between 

vegetation classes than ER (Fig 3b & c).  Sedge was a very strong CH4 source at 114.7 [CI95% ± 15.3] mg C-CH4 m-2 

d-1, which is comparable to chamber observations from vegetated ponds on the Barrow Peninsula (Lara et al., 2015).  370 

Sites across the arctic with sedges have higher NME than sites without sedges (Olefeldt et al., 2013)..  Shrub and 

Grass were very weak sources, 0.7 [CI95% ± 0.3] and 0.4 [CI95% ± 0.3] mg C-CH4 m-2 d-1, respectively and. Sparse was 

neutral.  Upland was a net CH4 sink for CH4 -1.1 [CI95% ± 0.4] mg C-CH4 m-2 d-1.  Lara et al. (2015) did not find upland 

areas on the Barrow Peninsula to be CH4 sinks, but upland tundra is known to be a globally significant methane sink 

(Whalen and Reedburgh, 1990; Whalen et al., 1996)  Upland fluxes were Sedge and Shrub were NME were positively 375 

correlated with Ts (r=0.61, p < 0.01; r=0.35, p = 0.04) respectively and VWC (r=0.58, p < 0.01; r=0.5, < 0.01) 

respectively.  They also had a positive correlation with Ta, while Upland NME was negatively correlated with Ts, Ta.  

Grass and Sparse and Grass had no clear relationships, while Shrub and Sedge haddidn’t have any significant positive 

correlations with VWC and Ts, but there were no straightforward empirical functions to model NME like there is for 

ER. . 380 

Footprint scaled chamber estimates of ER and NME were about 32% and 31% greater than the EC estimates.  Mean 

estimated ER estimated was 3.2 g C-CO2 m-2 d-1 and NME was 12.9 [CI95% ± 8.1] mg C-CH4 m-2 d-1  The discrepancies 

between the EC and chamber observations is often observed and hasFootprint scaled chamber fluxes were 59% and 

47% higher than ERNN or gap-filled NME, respectively.  Mean ERFS was 3.5 g C-CO2 m-2 d-1 [CI95% ± 0.1], it fit ERQ10 

very well (R2 = 0.95) as would be expected and ERNN moderately well (R2 = 0.46).  Mean NMEFS was 12.8[CI95% ± 385 
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1.3] mg C-CH4 m-2 d-1, it did not fit NNNME well (R2 = 0.30).  At the basin scale, ERBS (3.4 [CI95% ± 0.1] g C-CO2 m-

2 d-1) was slightly lower than ERFS because of the exclusion of upland areas.  NMEBS was higher (15.2 [CI95% ± 0.1] g 

C-CO2 m-2 d-1) because of the greater sedge fraction in the basin than the footprint because the (Table 2).   

3.3 been attributed to differences in measurement techniques, the small sample size of chamber observations, and 

sampling bias since all chamber measurements were taken during the day with fair weather (Katayanagi et al., 2005; 390 

Chaichana et al., 2018).   Meijide et al. (2011) found that chamber NEE could be up to twice as large as EC 

observations and Riederer et al. (2014) also found chamber NME estimates were about 30% higher than EC estimates.   

3.2 NEE Response to Environmental Factors and Vegetation Type 

NNNEENEENN (r2 = 0.91) had was estimated using four factors: PPFD, VPD, VWC, and Shrub.  For comparison, NEE 

estimated using the Q10 paired with a light response curve (r2 = 0.8) or a random forest regression tree (r2 = 0.86) 395 

trained with the factors selected by NNNEE were not as accurate as NNNEE.FShrub.  PPFD is the primary control over 

NEE,: a NN trained on PPFD alone provided a reasonable fit (r2 = 0.83).  The three additional factors:, VPD, VWC, 

and ShrubFShrub, helped NNNEE fit a wider variety of conditions.  Looking atExamining the partial first derivative of 

NNNEE under different conditions, we can inspect  provides interpretation of the modelled light response curves (αFig 

4).  The minimum of α isvalues represent the peak light use efficiency. and are analogous to α in eq. 5 (Fig 4b).  With 400 

increasing PPFD, light use becomes less efficient and α approaches zeros as the light response nears light saturation. 

(Fig 4b). 

VPD was a secondary control over NEE, which is consistent with the findings of another study using NN to analyse 

NEE (Moffat et al., 2012)..  Increasing VPD increased peak light use efficiency and net CCO2 uptake until a threshold, 

above which it had a strong limiting effect (figFig 4a & b).  For example, under dry atmospheric conditions (ege.g. 405 

VPD = 1500 Pa1.5 kPa), peak light use is less efficient (-12 nmol CO2 µmol-1 photon) than under optimalmore humid 

conditions (-18 nmol CO2 µmol-1 photon).  The value of this VPD threshold was dependent upon soil moisture: from 

1000 pa1 kPa when VWC was highest to 200 pa0.2 5Pa when VWC was low.  

Mapping NNNEE and NNER at Shrub%FShrub = 100%, Shrub%FShrub = 0%, and Shrub%FShrub = 36% (footprint 

climatologyFClim), shows that VWC and Shrub%FShrub were the primary controls over ER and thus influenced NEE 410 

(figFig 4c & d).  We can see from the partial first derivates of NNER that increasing VWC increases ER from 

shrubShrub areas.  In the absence of shrubs, increasing VWC inhibits ER. although it is important to note that variations 

in VWC were subtle ranging from 51.7% to 59.0%. The partial first derivative of NNNEE shows that VWC slightly 

limits NEE from non-Shrub areas and significantly reduces it in Shrub areas.  The VWC relationships support Zona et 

al. (2010) who found VWC explained 70% of the variability in daily peak season NEE and ER and Kittler et al. (2016) 415 

who found drier soils increased both NEE after a wet tundra drainage experiment in Siberia.  The chamber data 

supports the inclusion of Shrub% because Shrub ER was significantly lower than the other vegetation classes.   

3.34 NME Response to Environmental Factors and Vegetation Type 

NNNMENME was estimated using NMENN (r2 = 0.62) which had five factors: Sedge%, Shrub%FSedge, FShrub , VWC, TS, 

VPD, and U.  A random forest regression tree (r2 = 0.51) and a GLM (r2 = 0.25) trained on the factors selected by 420 
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NNNME were not as accurate as NNNME.  NME was more chaoticvariable and less dependent on any one factor than 

NEE which is why the NNNME needed an extra factor and had a lower r2 score.  Source area had a significant effect on 

NME, and it iswas encouraging that the model contains Sedge%contained FSedge and Shrub%FShrub since Sedge and 

Shrub were the strongest CH4 source and largest footprint component, respectively.  These two factors can combine 

to map NME under three general situations: we can extrapolate to Sedge%FSedge = 100 % & Shrub%and FShrub = 0 % or 425 

Sedge%FSedge = 0 % & Shrub%and FShrub 100 %, or to footprint climatologyrepresent actual FClim where FSedge = 11% 

and FShrub = 37% (Table 2).  The footprint climatology means that someSome upland tundra is alsowas included in the 

FClim estimate, which bringsreduced NME down. 

VWC was the primary climatic driver identified by NNNME.  Wetter soils had a consistent positive effect on NME 

which was strongest when Sedge%FSedge was high (Fig 5a & b).  Between driest and wettest conditions, estimated NME 430 

increased: by an order of magnitude at Sedge%FSedge = 100 %, 4-fold at Shrub%FShrub = 100%, and from neutral to a 

source at footprint climatology.   The FClim (Fig 5a).   Higher Ts generally had a negative effect of soil moisture on 

CH4 productionNME (Fig 5c & d). The negative correlation between Ts and VWC (r = 0.54, < 0.01) may have 

contributed to this result.  NNNME performance improved less with the addition of U indicating the NNNME was near 

saturation and its effects are less relevant.  emission has been noted in many other studies (e.g. Higher U had a weak 435 

limiting effect on NME when VWC was high and increased NME when VWC was low (not shown).Zona et al., 2009; 

Nadeau et al., 2013; Olefeldt et al., 2013).   

4 Discussion 

4.1 Carbon Balance and Controlling Factors 

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season 440 

CO2 uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant 

and Oechel, 2013; Lara et al. 2015).   These differences may be due to differences in the periods of observation and 

year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at 

Illisarvik.  Mean 1980-2010 Ta at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 

2020).  Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer.  Shrub cover is expected to have a number of 445 

impacts on the microclimate and carbon cycle of Arctic tundra (eg. Myers-Smith et all, 2011).  Typically, greater 

deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential 

compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018).  GPP was greater at Ilisarvik 

compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010).  It was more similar to Katyk which 

has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007). 450 

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature 

and thaw depth, among other factors (Sturtevant and Oechel, 2013).  The ‘snow-shrub hypothesis’ (Sturm et al. 2001) 

describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to 

increased decomposition and nutrient availability and promotes further shrub growth.  At Illisarvik, snow blowing in 

off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height 455 
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(Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those 

of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber 

observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as 

the taller shrubs (>40 cm) could not fit inside the chambers.  In another study, chamber ER increased with greater 

shrub cover in upland tundra (Ge et al., 2017).   ER at Illisarvik was greater than the ER observed at both the young 460 

wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was 

much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007).  The importance of 

FShrub in describing temporal variations in half hourly NEE within the flux footprint at Ilisarvik is further evidence of 

the importance of shrub cover on tundra carbon cycle processes in this environment. 

PPFD and VPD were the most important factors for predicting half hourly NEE.  This was to be expected as they are 465 

typically the primary controls over GPP (Aubinet et al., 2012).  The limiting effects of VPD are consistent another 

study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites 

(Euskirchen et al. 2012; López-Blanco et al. 2017).  VWC was also important at Illisarvik.  Zona et al. (2010) found 

VWC could explain 70% of the variability in daily peak season ER in young DTLB.  Similarly, Kittler et al. (2016) 

found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with 470 

our results at Illisarvik when FShrub was low.   

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with 

greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015).  NME at Katyk was even higher than the Barrow 

DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; 

Parmentier et al., 2011).  In our NN modelling of NME at Illisarvik, FSedge was the most important factor for predicting 475 

half hourly FCH4.  Sedges are aquatic plant species with arenchymatous tissues that act as conduits for CH4 from below 

the water table to the atmosphere and limits CH4 oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). 

The inclusion of FShrub further refined the model, allowing it to better fit the site-specific distribution of vegetation 

types.  Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on FCH4 at Katyk.  

Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support 480 

that (Davidson et al., 2016). 

VWC was the second most important factor, which was expected as CH4 production occurs in anaerobic environments 

and has been linked to variability in CH4 emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; 

Olefeldt et al., 2013).  Higher Ts generally had a negative effect on NME (Fig 5c & d).  Higher soil temperaturesSoil 

temperature (Ts) was the third most important factor.  Higher Ts increase the oxidation potential of methanotrophs (Liu 485 

et al., 2016; King and Adamsen, 1992), so this result was expected for the drier portions of the basin and upland 

tundra.  However, this wasn’twas not expected for the sedge areas because most studies find NME in sedges is 

positively correlated to Ts
 (Olefeldt et al., 2013).  There was diurnal cycle in NME with NME peaking in the morning 

when Ts was at its daily minimum, which supports this finding2013).  The negative correlation between Ts and VWC 

may partly explain this.  NNNME performance improved less with the addition of U indicating the NNNME was near 490 

saturation and its effects are less relevant.  Higher wind speed had a weak limiting effect on NME when VWC was 
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high and increased NME when VWC was low (not shown).  High winds were mainly associated with two strong storm 

events.  In order to better resolve this relationship a longer dataset would be needed. 

3.4.2 Upscaling 

ERFS and NMEFS were about 59% and 47% greater than the EC estimates.  Discrepancies between EC and chamber 495 

observations are common and have been attributed to differences in measurement techniques, the small sample size 

of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair 

weather (Katayanagi et al., 2005; Chaichana et al., 2018).   Meijide et al. (2011) found that chamber NEE could be up 

to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% 

higher than EC estimates.  Others have been more successful, yielding upscaled chamber NME fluxes within 10% of 500 

EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017).  A potential reason for the 

disagreement with ERFS may be the lack of direct observations by the EC system under low-light conditions.  Another 

potential source of error for the upscaling is inaccuracies in the vegetation map.   

4.3 Future Trajectories 

Presently, NEE and ER peak growing season carbon uptake at Illisarvik are within ranges observed within similar is 505 

greater than similarly aged landscape features on the Barrow Peninsula but NME was considerably lower., Alaska and 

more similar to levels observed at Katyk, Siberia.  NME is well below levels observed at any other DTLB studied, 

making this site a stronger GHG sink than other DTLB.  However, the basin at Illisarvik will continue to evolve and 

the trajectory it takes could significantly alter theits carbon balance.  MostHistorically, DTLB on Richards Island and 

the Tuktoyaktuk Peninsula evolve into wet sedge-moss peatlands (Ovendend, 1986).  Assedge wetlands, as do DTLB 510 

on the Barrow Peninsula (Ovendend, 1986; Lara et al., 2015).  This would cause NME to Active maintenance of the 

outlet channel at Illisarvik has artificially lowered soil moisture and flooding and potentially limited this transition 

thus far (C. Burn, personal communication 2016).   

If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME 

will increase significantly.  NNNME estimated that at With extrapolations to full Sedge% cover (FSedge = 100% mean%), 515 

NME would be 17.9 [CI95% ± 10.6] mg C-CH4 m-2 d-1, which is comparablesimilar to EC observations from a wet 

sedge DTLBvalues on the Barrow Peninsula (Zona et al., 2009).  If the basin becomes wetter and the shrubs are 

displaced by sedges and grasses net carbon uptake may increase.  NNNEE and NNER estimated that at Shrub% = 0% 

NEE and ER over the study period would be -1.9 [CI95% ± 0.5] g C-CO2 m-2 d-1 and 1.8 [CI95% ± 1.1] g C-CO2 m-2 d-1 

respectivelyIf the basin instead transitions into a shrub dominated DTLB similar to those of Old Crow Flats, Yukon 520 

(Lantz et al., 2015), NMENN would remain similar to current levels meaning the basin would remain a weak source of 

CH4.  These are projections well beyond FClim fractions observed so confidence in the specific values predicted is low.   

However, active maintenance of the basin’s outlet channel (C. Burn, personal communication 2016) has artificially 

lowered soil moisture and potentially limited this transition.  This coupled with climate change will promote shrub 

expansion and Illisarvik could end up more like the shrub dominated DTLB of Old Crow Flats, Yukon (Lantz et al., 525 

2015).  NNNEE and NNER estimated that at Shrub% = 100% NEE and ER over the study period would be -0.9 [CI95% ± 
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1.5] g C-CO2 m-2 d-1 and 2.4 [CI95% ± 1.6] g C-CO2 m-2 d-1 respectively.  Other studies have also suggested that shrub 

expansion could influence NEE by increasing ER (Merbould et al., 2009; Meyer-Smith et The effects of changing 

shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME.  Partly because Shrub 

cover had less overall influence on NEENN.  Our model suggests ER decreases and GPP increases with increasing 530 

shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions.   To our knowledge, 

only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet to be published 

to help evaluate the factors influencing DTLB carbon losses through the non-growing season months.  Further 

observation year-round is needed to better understand the implications of continued vegetation change on the carbon 

balance of DTLB such as Illisarvik.  535 

5al., 2011).  NNNME estimated NME would be 13.1 [CI95% ± 9.4] mg C-CH4 m-2 d-1 at Shrub% = 100%, meaning the 

basin will likely remain a net source of CH4. 

4 Conclusions 

This study investigated NEE, GPP, ER and NME in the Illisarvik experimental DTLB using EC and chamber data.  

To our knowledge this is the first such study conducted in a DTLB outside of the Barrow Peninsula.  Our observations 540 

were generally in agreement with other studies but show how Illisarvik differs from the colder, wetter DTLB on the 

Barrow Peninsula.   or Siberia.  Illisarvik is a carbon sink during the growing season with NME only having a small 

positive effect on the net carbon balance.  Illisarvik NEE was similar to young Our flux observations were generally 

in agreement with other studies but show how shrub-dominated DTLB such as Illisarvik and Katyk in Siberia differ 

from sedge-dominated DTLB on the Barrow Peninsula.  Illisarvik’s growing season net carbon uptake was greater 545 

than young and ancient DTLB on the Barrow Peninsula, while and more similar to the shrub dominated ancient DTLB 

in Siberia.  NME at Illisarvik was lower than all published DTLB studies likely due to better drainage, drier conditions, 

and more diverse vegetation. However, higher NME in early July indicated we likely missed a key period of CH4 

emissions earlier in the season. A longer, more comprehensive study would be needed to resolve the annual carbon 

budget for Illisarvik. 550 

Chamber measurements of ER and NME from different land cover classes within and outside the Illisarvik basin 

added context to the EC observations.  Vegetation class (and associated difference in terrain and soil properties) had 

only a slightsmall but significant impact on NEE and ER but was one of the dominant controls over NME.  Sedge 

areas were a strong source of CH4, other vegetation types in the basin were weak sources, and upland areas were a net 

sink.  These results suggest that NME in particular is expected to shiftwill change as both the terrain and the vegetation 555 

of the Illisarvik DTLB continuesvegetation communities continue to evolve.    

Appendix A: Neural Networks analysis and uncertainty calculations  

Typically, NEE is gap-filled using flux-partitioning algorithms that model ER and GPP separately using TS and PPFD, 

respectively (e.g. Lee et al., 2017; Aubinet, 2012).  However, this method requires night-time observations and thus 

does not perform well for Arctic summertime measurements due to the limited number of samples available during 560 
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low light conditions.  There are no widely agreed upon functional relationships for gap-filling NME since CH4 

production and consumption vary considerably both between different landcover types and environmental conditions.  

Some methods that have been used include: classification and regression trees (CART) (Nadeau et al., 2013; Sachs et 

al., 2008), general linear models (GLM) (Zona et al., 2009), and mean diurnal variation (Nadeau et al., 2014), and 

classification and regression trees (CART) (Nadeau et al., 2013; Sachs et al., ).2008).  We attempted to use a GLM, 565 

CART, and random forest regression treesCART but they were not flexible enough to account for source area 

variability. 

Neural networks (NN) are flexible machine learning methods that are ideally suited to perform non-linear, multivariate 

regression.  They make no a priori assumptions about the functional relationships between the factors and responses. 

(Melesse and Hanley, 2005; Desai et al., 2008).  NN are universal approximators; given enough hidden nodes a NN 570 

is capable of mapping any continuous function to an arbitrary degree of accuracy (Hornik et al., 1991).  If all relevant 

climate and ecosystem information are available to a network, the remaining variability can be attributed to noise in 

the measurement (Moffat et al., 2010). 

NN have been shown to be among the best performing methods for gap-filling NEE data for temperate forest and 

wetland sites in Europe ((Papale et al., 2003; Moffat et al., 2007; Knox et al., 2016).  They have also been used to gap-575 

fill NME time series in sub-arctic wetlands, tundra sites, and wet sedge tundra (Dengel et al., 2013).  NN have been 

used to identify and model factors influencing NEE and to partition NEE into ER and GPP (Moffat et al., 2010).  NNs 

have even been used to upscale fluxes from the ecosystem level to the continental scale (Dou and Yang, 2018; Papale 

et al, 2003).  

A NN approximates a true regression function 𝐹(𝑋):  580 

𝐹(𝑋) = 𝑡(𝑋) −  𝜀(𝑋)          (A1) 

where 𝑡(𝑋) is the target function and 𝜀(𝑋) the noise (Khosravi and Nahavandi, 2010).  𝑋 = [𝑥0, 𝑥1, … , 𝑥𝑀 ] where 

𝑥0 = 1 is a bias term and [𝑥1, … , 𝑥𝑀  ] are the independent variables.  M denotes the number of independent variables. 

The network approximates 𝐹(𝑋) as 𝑓(𝑋, 𝑤) by mapping the relationship between 𝑋 and the target.  Here we used 

feed-forward dense NN with a single hidden layer:  585 

𝑓(𝑋, 𝑤) =  ∑ 𝛽ℎ𝑔(∑ 𝛾ℎ𝑚𝑥𝑚
𝑀
𝑚=0 )𝐻

ℎ=1         (A2) 

𝑔(∙) is a non-linear transfer function, here we used the rectified linear activation unit (ReLu) (Anders and Korn, 1999).  

𝐻 denotes the number of hidden nodes in the network and must be assigned before training. Too many hidden nodes 

and the NN will overfit the training data, too few and it will underfit.  Early stopping will prevent NN from overfitting 

training sets (Weigend, 1993; Sarle, 1995; Tetko et al., 1995).  Therefore, it is more important to ensure a NN has 590 

enough hidden nodes to adequately map the target function (Smith, 1994).  We set H to a function M, the number of 

training samples (N), and the number of targets (1): 

𝐻 =
𝑁

𝑎∗(𝑀+1)
           (A3) 

This rule of thumb ensures a NN has sufficient flexibility to approximate the target response.  The weights  𝑤 =

[𝛽1 … 𝛽𝑁 , 𝛾10 … 𝛾𝑁𝑀 ] are randomly initialized and after each model iteration is updated by backpropagating the error 595 

through the network.  N denotes the number of observations or targets.  The error metric most commonly used is the 

mean squared error, MSE: 
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𝑀𝑆𝐸 =  ∑ (𝑓(𝑋𝑖) − 𝑡𝑖)
2𝑁

𝑖=1          (A4) 

The weights are adjusted in the direction that will decrease the error and training continues until a stopping criterion 

is reached.  We chose to set aside 20% of the training data as a test set to be used for early stopping, and terminated 600 

training when the MSE of the test set failed to improve for 10 consecutive iterations. 

Bootstrapping is used to account for model variability and estimate confidence and prediction intervals by training 

NN on B different realizations of the dataset, where B is the number of bootstrapped samples, we used B = 30 (Heskes, 

1997; Khosravi & Nahavandi, 2010).  An individual NN generates point outputs approximating a target function with 

no information on the confidence in those estimates (Khosravi & Nahavandi, 2010).  However, there are usually 605 

multiple 𝑓(𝑋, 𝑤) that approximate 𝐹(𝑋) because of the random weight initializations (Weigend & LeBaron, 1994).  

As such, there are two sources of error we are concerned with, the accuracy of our estimation of 𝐹(𝑋) and the accuracy 

of our estimates with respect to the target.  A confidence interval describes the first (e.g. 𝐹(𝑋) −  𝑓(𝑋, 𝑤)) while a 

prediction interval describes the latter (eg. 𝑡(𝑋) − 𝑓(𝑋, 𝑤)) (Heskes, 1997).  By definition, a prediction interval 

contains the confidence interval because: 610 

𝑡(𝑋) − 𝑓(𝑋, 𝑤) = [𝐹(𝑋) −  𝑓(𝑋, 𝑤)] + 𝜀(𝑋)       (A5) 

For b = 1 … B, a random sample with replacement of size p is drawn from the original dataset.  Setting p equal to the 

size of the original dataset yields a set of B training sets each containing approximately 67% of the original dataset.  

The 33% leftover from each bootstrap sampled can be used for model validation (Heskes, 1997).  The average of our 

ensemble of networks can then serve as our approximation of F(X): 615 

𝐹(𝑋) =  
1

𝐵
∑ 𝑓𝑏(𝑋, 𝑊)𝐵

𝑏=1           (A6) 

The variance of the model outputs is: 

𝜎2(𝑋) =  
1

𝐵−1
∑ (𝑓

𝑏
(𝑋, 𝑊) − 𝐹(𝑋))

2
𝐵
𝑏=1         (A7) 

A confidence interval (CI) for 𝐹(𝑋) can be calculated as 𝐹(𝑋) ± 𝑡(1−∝,𝑑𝑓)𝜎(𝑋), where tscore is the students t-score, 

1-α is the desired confidence level, and df are the degrees of freedom which are set to the number of bootstrapped 620 

samples B.  NN performance can be seen to improve with the inclusion of more factors, until the model saturates and 

becomes over-parametrized (FigureFig A1). 

Random forests (RF) are said to be among the best performing gap filling methods for NME (Kim et al., 2020).   and 

it has been claimed that aggregating many regression trees in a RF prevents overfitting (Breiman, 2001;).  We did not 

find this to be the case.  Following the methods outlined in Kim et al. (2020): a RF with 400 trees and no restrictions 625 

on tree size fit FCH4 nearly perfectly (R2 = 0.98).  Without considerable limitations on tree size, the RF will just learn 

the dataset rather than the relationships present.  It is our view that this tree is extremely overfit, as highlighted by the 

example in Figure A2.  Further, RF do not allow for straightforward visualization functional relationships in a dataset.  

Plotting FCH4 against VWC, which is the dominant environmental control identified does not reveal a meaningful 

relationship like Figure 5 a & c.  You can look at an individual decision tree within the RF, but those are difficult to 630 

interpret beyond the first few splits, and each tree will be different.  Lastly, RF are incapable of projecting beyond the 

parameter space observed which limited their applicability for this study (Fig A2).  This presents an issue because 
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may gaps in EC data arise from data filtering (e.g. clear calm nights, precipitation events) and are by definition outside 

the parameter space observed. 
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Figure 1: a) Map of the distribution of vegetation classes at Illisarvik, with the footprint climatology (FClim) over the study 905 
period, the locations of the chambers and the eddy covariance (EC) system.  The alphanumeric labels correspond to the 

unit codes in Table 1. b) Legend for the map in a. c) Oblique drone image of Illisarvik, take at 16:40 July 23rd 2016 view 

from E of DTLB towards W.  The Basin and EC system are shown on the image using the same symbology as a). 
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Figure 2: a) Half hourly air and soil temperatures, displayed along with photosynthetic photon flux density (PPFD).  b) 

Hourly soil volumetric water content and daily total precipitation. c)Gap-filled daily total NEE (dark c) Half hourly FCO2 

(green), ER) and NEENN (grey), and d) half hourly FCH4 (red) and d) daily total NME. NMENN (grey). 915 



 

31 

 

 



 

32 

 

 

Figure 3: Boxplot of a) ER, b) NME and c) NME fluxes measured using closed chambers, grouped by vegetation class.  The 

orange lines represent the median, blue stars represent means, the boxes indicate the interquartile range (Q3-Q3), the 

whiskers indicate Q1 –(1.5*IQR) and Q3+(1.5*IQR), and the circles represent outliers extending beyond the whiskers.  Note 920 
the scale for c) Sedge in b is different. 
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Figure 4: a. Modelled NEE response to PPFD under different VPD conditions and b. the partial first derivatives of NEE 

with respect to PPFD.  c. Modelled ER (dashed line) and NEE (solid line) response to VWC at different Shrub% and d. the 925 
partial first derivatives of ER (dashed lined) and NEE (solid line) with respect to VWC.  NEE in c was calculated at PPFD 

= 600 umolμmol m2
 s-1.  The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.   
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Figure 5: a. Modelled NME response to VWC at different source area fractions and b. the partial first derivatives of NME 930 
with respect to VWC.  c. Modelled NME response to Ts at different source area fractions and d. the partial first derivatives 

of NME with respect to Ts.  The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.   



 

37 

 

 

 



 

38 

 

 935 

Figure A1A2: The averaged mean squared error (θ) of the bootstrapped Neural Network model validation datasets, with 

error bars showing one standard error (SE).  The x axis shows models of increasing size from left to right (1-9 factors), and 

the label indicates the factor added to the model at each step.  The blue line indicates the 1-SE rule threshold and the red 

bar indicates the model selected by the 1-SE rule. 
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 940 

Figure A2: FCH4 estimated by a RF using the same factors as the NN model.  The colours correspond to the scenarios in Fig 

5a.  VWC was estimated over the range 0.45 to 0.65. 
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Table 1: Dominant species or landscape feature within the vegetation/cover classes.  Unit codes correspond to the map 

Figure 1a. 965 
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Unit Code Vegetation Class VegetationDominant Species/Landscape feature  

1a Shrub Salix alaxnesis (Tall Willow) 

1b Shrub Salix spp.glauca (Low WillowsWillow) 

1c Shrub Alnus spp.viridis subsp. crispa (Alder) 

2a Sedge Marsh Carex spp.aquatilis (Sedge) 

2b Sedge Marsh Arctophila fulva (Pendant Grass) 

3 Grass Meadow Pocacea spp. (GrassGrasses), Eriophorum angustifolium (Cotton 

Grass) 

4a Sparse Cover Sparse Vegetation 

4b Sparse Cover Bare Ground 

5 Ponds Hippuris vulgaris (Mare’s Tail), Open Water 

6a Outside of Basin Upland TundraDwarf shrub tundra: Salix spp. & Betula nana (Birch) 

6b Outside of Basin Fen 

6c Outside of Basin Ocean 

Table 1: Primary species and notable landscape feature present within the vegetation/cover classes.  

Table 2: The surface cover class fractions of the basin, along with the mean source area fractions of the footprint climatology 

(FClim) and the range of source area fractions for individual half hourly observations shown in brackets. 

  Unit codes correspond to the map Figure 1a. 

Surface Class Basin FootprintFClim 

Shrub 48.3 % 36.0 % [0.0 – 79.0%] 

Grass 27.9 % 39.0 % [1.1-78.1%] 

Sedge 12.3 % 10.9 % [0.0 – 55.6%] 

Sparse 8.4 % 2.2% [0.0 – 33.6%] 

Water 3.1 % 0.2% [0.0 – 4.4%] 

Upland 0% 6.2% [0.6 – 15.0%] 

Outside Basin 0% 12.3% [0.2 - 28.0%] 

Table 2: The surface cover class fractions of the basin, along with the mean source area fractions of the footprint climatology 975 
and the range of source area fractions for individual observations shown in brackets. 

 Q10 R10 μmol m-2 s-1 

Sedge 2.1 3.7 

Upland 1.9 4.1 
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Grass 1.7 3.8 

Shrub 1.7 2.7 

Sparse 1.0 1.9 

Night-time EC observations (n=100) 1.6 2.8 

 

Table 3: The ER temperature sensitivity (Q10) and base respiration (R10) estimated by Laforce (2018) and estimated from 

nighttime EC footprint observations. 

 Q10 R10 μmol m-2 s-1 R2 

Sedge 2.1 3.8 0.82 

Upland 1.9 4.1 0.55 

Grass 1.6 4.0 0.55 

Shrub 1.8 2.7 0.46 

Sparse 1.0 1.9 0.01 

Night-time EC observations (n=100) 1.6 2.9 0.47 

 980 

Table 4: Growing season (gs) daily range in eddy covariance-derived NEE and NME from drained thermokarst lake basins 

(DTLB) and other select wetland/coastal tundra sites across the Arctic.  The period of studies measurements for the studies 

observations are: a) mid-June – end of July b) June 12 – August 28, 2007, Fig 4 c) June 11 – August 25, 2011 d) upscaled 

chamber estimates, exact dates not specified, e) mean June 15 –August 31 2003-2006, f) July 5 – Aug 4, 2009. 

Site Site Characteristics NEE 

g C-CO2 m-2 d-1 

NME 

mg C-CH4 m-2 d-1 

Studies 

Illisarvik  Young DTLB, Low & 

Tall Shrub/Grass/Wet 

Sedge  

-1.5 8.7 (this study) 

Various DTLB, 

Barrow 

Peninsula, Alaska 

Young DTLB, Wet 

Sedge Tundra 

-1.1b, -0.9d, -

0.8c  

 

18.4a, 26.1d, 44.0c 

 

Zona et al. 2009a & 2010b, 

Sturtevant and Oechel, 2013c; 

Lara et al. 2015d 

Medium DTLB, Wet 

Sedge Tundra 

-0.7b, -0.6d, -

0.4c 

27.0d, 41.3c 

Old DTLB, Wet Sedge 

Tundra 

-1.0b, -0.4d, 0.1c 24.2d, 38.7c 

Ancient DTLB, Wet 

Sedge Tundra 

0.4d 

 

21.7d 

Katyky, Indigirka 

lowlands, Siberia 

Ancient DTLB, Dwarf-

Shrub and Wet Sedge 

Tundra 

-1.3e 36.0f Van der Molen et al. 2007e, 

Budishchev et al. 2014f 
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