Response to the Editor: Vegetation Influence and Environmental Controls on Greenhouse Gas Fluxes from a Drained Thermokarst Lake in the Western Canadian Arctic

The authors would like to thank the Editor for the helpful comments. Below is a point by point response to the Editor’s comments. The comments are in bold, responses are noted below each comment and shown in plain text. Changes to the manuscript are in red. Following that, is a marked-up version of the revised manuscript showing all changes made.

What about winter contribution and indeed the rates may change but in which anticipated direction?

[Response]

Winter contributions are well beyond the scope of this study so we don’t feel comfortable speaking to that in the Abstract. There are likely significant methane emissions during the fall when the active layer is freezing back up (e.g. Zona et al. 2016), but the degree to which this would offset growing season carbon uptake is unknown this is a topic that needs to be addressed by further studies in the future. However, the harsh conditions, remoteness and low light levels present a major logistical challenge when operating EC systems at sites like Illisarvik over the winter.

In regards to the direction of anticipated changes during the growing season, we speak to this in section 4.3 Future Trajectories [Lines 421-441]. As these results are extrapolations to unknown future vegetation conditions, we didn’t feel comfortable making a definitive statement on the direction of changes in the abstract. If the basin’s sedge cover increases and shrub cover decreases, we expect NME to increase significantly. If the opposite occurs, we anticipate NME would be similar to current observations. This is highlighted in Figure 5a.

There is less certainty in regards to NEE as vegetation type wasn’t the dominate control identified by the model. Figure 4c. shows the model suggests that ER and NEE will change with an increase or decrease in shrub cover, but the direction of these changes will be governed by changes in soil moisture. Under wetter conditions at 100% shrub cover to decrease NEE considerably by increasing ER. While the inverse is true under drier conditions. At 0% shrub cover, the difference is less dramatic, but the model suggest higher VWC decreases ER.

To make these projections clearer to the reader, we have added references to fig 4c and 5a in section 4.3.

Figure 5a shows that with extrapolations to full Sedge cover ($F_{\text{Sedge}} = 100\%$), NME would be similar to values on the Barrow Peninsula (Zona et al., 2009). If the basin instead transitions into a shrub dominated DTLB similar to those of Old Crow Flats, Yukon (Lantz et al., 2015), NME$_{\text{NN}}$ would remain similar to current levels meaning the basin would remain a weak source of CH$_4$. These are projections well beyond F_{Clim} fractions observed so confidence in the specific values predicted is low.

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME. Partly because Shrub cover had less overall influence on NEE$_{\text{NN}}$. Figure 4c. shows the model suggests ER decreases and NEE increases with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions.
Thermokarst lakes are a prominent landscape feature of the Western Canadian Arctic (Mackay, 1999; Marsh et al, 2009; Lantz & Turner, 2015). These lakes drain, sometimes catastrophically, forming drained thermokarst lake basins (DTLB) via bank overflow, ice wedge erosion, coastal erosion, and stream migration (Billings and Peterson, 1980; Mackay, 1999).

We don’t feel that our results refute this point. These studies are referencing longer term shifts in NEE which are related to changes in ER due to changing soil moisture and vegetation composition associated with climate change. Yes, NEE is most directly controlled on the half hourly time scale by PPFD directly governing GPP. But our model shows that changes in shrub cover and soil moisture influence ER which in turn influences NEE. These types of changes can have a sustained influence over longer timescales.

We added “during the growing season” to make this comparison more clear.
We changed below to “in section 2.5.1.” to make the reference clearer.

and what was the result of this exercise?

The vials did indeed maintain their integrity. We’ve changed the sentence to:

The integrity of the vials through shipping, storage and analysis was confirmed using a subset filled with helium before the field season began.

Why? bubbles or leakage?

Bubbles, leakage, or other errors. We’ve updated this section to be clearer. Also, further changes are needed to that sentence as we were only reporting the CO2 R2 results. CH4 R2 are never as nice and clean so added that information to be more explicit.

Visual inspection of the linear trend of gas concentrations (dc/dt) was used to identify and remove spurious point measurements associated with analysis errors, leaking chambers (isolated decreases in concentration) and contamination or ebullition events (isolated increases in concentration) (0.3%, 0.7%, and 2.0% of CO2 samples and 2.1%, 0.5%, and 1.1% of CH4 samples, respectively). In all flux measurements, at least three or more gas samples remained so that dc/dt and its coefficient of determination (R2) were determined using least squares linear regression. We did not use R2 as an additional quality control criterion as many of our CH4 fluxes were near zero and tended to have low R2 values due to only small variations in the point sample concentrations (see also Clark et al., 2020). 40% and 32% of the 227 CH4 flux measurements and 97% and 92% of the 227 CO2 flux measurements had R2 over 0.80 and 0.90, respectively.

Rh

[Response]

Fixed

(Aubinet...)
[Response]

We are unsure what this comment means. The name isn’t spelled wrong and the reference appears to be correct?

did not have

[Response]

Fixed
this is unclear. you measured NME and then you estimate NME with NMENN? kindly clarify

[Response]
We revised the sentence to be clearer

NME_{NN} (r^2 = 0.62) was estimated using five factors: F_{Sedge}, F_{Shrub}, VWC, T_S, and U.

sometimes you state NN NME and then NME NN - kindly harmonize

[Response]
We had changed the notation from the original submission. But there were some typos that carried over from the original. We’ve revised the notations to be consistent.

DTLBs
We updated all plural instances of DTLB to reflect this suggestion

gap filled EC estimates

[Response]
Fixed

Wording: no year round studies have yet to be published – (remove the no at the beginning)

[Response]
We changed the wording from “have yet to be” to “have been”. We also moved DTLB up in the sentence to make it clearer we are saying no year round DTLB studies exist.

To our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of DTLB NEE and NME have been published to help evaluate the factors influencing carbon losses through the non-growing season months.

Also are you sure there arent any year round measurements - even not from Siberia?

[Response]
To our knowledge, no there are not any year-round DTLB studies. In Siberia, the only DTLB that has been studied to our knowledge is Katyk, which has only been studied during the growing season. The remoteness, harsh weather, and lack of sunlight make powering EC stations over winter in the arctic very difficult.

Response to Reviews: Vegetation Influence and Environmental Controls on Greenhouse Gas Fluxes from a Drained Thermokarst Lake in the Western Canadian Arctic

The authors would like to thank the reviewers for their valuable comments and criticisms. Point by point responses to both reviewers are included in this document. Reviewer comments are in bold, responses are noted below each
Reviewer #1

This paper by Skeeter et al. looked at vegetation and environmental conditions influencing greenhouse gas exchange in a drained lake basin in the Western Canadian Arctic. I enjoyed the opportunity to review this paper and I thank the authors for what is a well written paper overall (but with some tweaks needed). Given the lack of studies outside of the Barrow Peninsula, is a worthy addition to the literature.

I will add however, I apologise, I am not an expert on the eddy covariance data cleaning, gapfilling and analyses and I am therefore unable to comment fully on those sections.

Introduction: I find this section well written if rather short. I think a little more context could be given for the reader. You could include more information from non-DLB work but still relevant arctic tundra literature.

[Responses]

We added more context on why thermokarst landscapes are important (spatial extent, significant soil carbon storage) to the first paragraph [Lines 32-34].

Lake thermokarst landscapes are widespread in poorly drained, sedimentary permafrost lowlands with excess ground ice volume and constitute about a third of all thermokarst area (French, 2013; Olefeldt et al., 2016).

Further we added another paragraph on Arctic carbon budgets [Lines 40-49]. Including a review of pan-arctic NEE chamber studies by Virkkala et al. 2017.

Net ecosystem exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP), where NEE=ER-GPP are lower in the Arctic than warmer regions but have significant seasonal cycles and variability between vegetation types (Virkkala et al., 2018). Future trajectories in NEE will in large part be governed by ER (Biasi et al., 2008; Cahoon et al., 2012). Dominant vegetation types in the Western Canadian Arctic are erect-shrub tundra and wetlands (Walker et al., 2005). Growing season NEE is typically negative across these units throughout the Arctic indicating a net CO2 sink as GPP exceeds ER in part due to cold and/or anoxic soil conditions (Virkkala et al., 2018; Lafleur et al., 2012). Annual NEE can be positive or negative with large variation in GPP linked to annual weather variability (Virkkala et al., 2018, McGuire et al., 2009). Arctic net methane exchange (NME) is positive because wetland areas are strong methane (CH4) sources while upland areas with better drainage can be net sinks (Whalen and Reeburgh, 1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).

Line 54: NEE should be ER – GPP.

[Responses]
We corrected the equation to \(\text{NEE} = \text{ER} - \text{GPP} \)

Line 85: Can you include somewhere the dominant species found in each vegetation class. It would be interesting and useful to know what sort of sedge dominated the sedge class – is it Carex aquatilis or Eriophorum angustifolium for example?

[Responses]

We added a sentence to mention the specific species [Lines 90-92].

Current vegetation at Illisarvik is diverse relative to the dwarf-shrub tundra of the surrounding uplands (Table 1); the basin hosts a mix of woody shrubs (Salix spp., Betula spp., & Alnus spp), wetland vegetation (Carex aquatilis, Arctophila fulva, etc.), and various grasses (Poa spp.) (Wilson et al. 2019).

This information was partly available in Table 1. We made the table more detailed to include the dominant species present within each class/subclass where known/applicable (see comment below).

Line 100: Completely an aside but COOL!

- Yes, it was an amazing thing to see.

Section 2.3: I would remove any mention of N\(_2\)O – you don’t present the data, so it is unnecessary.

[Responses]

We removed mentions of N\(_2\)O throughout the manuscript.

Line 150: Can you be more explicit with how many collars were used? 2 per site – 10 sites total? I know the main focus of this paper is not the collars, but I’m not sure if a replicate of 2 per vegetation type over an 11-day period is very representative.

[Responses]

We updated the text to be more specific about numbers of replications per vegetation type [Lines 176-177].

There were three replicates (six collars) for the Shrub class, two for the Sedge, Grass, and Upland tundra, and no replicates for the Sparse class.

There were 19 collars and 10 sites. The bare ground site only had 1 collar, thus making 2 per sites for the rest. The number of collars that could be shipped in via helicopter were limited and there was a high amount of heterogeneity in soil and vegetation characteristics within the basin. The chamber study was designed to better understand the relationship between soil properties and carbon loss in a situation where permafrost had aggraded within the lake bed to potentially protect ‘old’ carbon from mineralization and accumulate ‘new’ carbon since the lake drained. We expected saturated soils (where there were wet sedges) to have higher organic carbon accumulation and be dominated by anaerobic respiration processes, which was interesting to us, therefore we chose two different wet sites populated
by sedges. We also focused on different statures of will (low, tall and dense) as we expected different amounts of snow accumulation and different impacts on permafrost at these sites.

Line 152: How soon after installation were the collars fluxed for the first time?

Responses
Collars were installed on July 11th and first set of measurements was taken on July 12th, so about 24h.

Line 154: Why not use a clear chamber so you could get GPP then cover with a dark sleeve in order to get ER?

Responses
We appreciate the comment. The chosen chambers were not designed for NEE measurements. Although measurements of GPP would have been informative, logistics limited us to use the existing collars, and the number of measurements we could make.

Section 2.4 (and subsequently Appendix A): Unfortunately, I do not have the expertise in these methods so I do not feel comfortable commenting on it in a reviewer context.

Section 3: I think it would be better to separate this section out into Results and Discussion rather than combine them. As it stands, it’s quite hard to follow.

We have added a discussion (section 4) and rewrote the results to solely contain the objectively retrieved data, so we hope the manuscript to be more straightforward and easier to follow with separate “Results” and “Discussion” sections.

3 Results

During the 29-day study, half-hourly T_s and T_a ranged between 0.4 and 26.2°C and 4.4 and 11.0°C, respectively (Fig 2a). Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6° to 35.4°, but daily PPFD was more influenced by variations in cloud cover. Precipitation (19 mm) fell on 14 of the 28 days with trace snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b). At the onset of the study period, VWC was high and soils were saturated with ponding in the sedge areas. By the end of the study most of this surface water had dried up. On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at Upland, Sedge, Grass, Shrub, and Sparse classes, respectively. By August 6th, average thaw depth had increased to 45, 62 and 66 cm at Upland, Sedge and Grass surface classes and over 100 cm at both the Shrub and Sparse classes.

A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly winds to occur much more frequently than is typical for July and August. The 50%, 80% and 90% flux F_{Clim} contours are shown in Fig 1a. Mean source area fractions indicate the EC observations were skewed towards the Grass surface class and under-sampled the Shrub class, but the range of surface classes sampled was diverse enough to allow for testing of the impact of source area fraction on the fluxes (Table 2).
3.1 EC Observations

Half hourly observations of F_{CO2} and F_{CH4} along with the NEE$_{NN}$ and NME$_{NN}$ used to gap-fill the time series are shown in (Fig 2c & d). Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO$_2$ m$^{-2}$ d$^{-1}$ with a mean -1.5 [CI$_{95\%} = \pm 0.2$] g C-CO$_2$ m$^{-2}$ d$^{-1}$. Day to day variability was considerable but there was no notable trend in NEE over the peak growing season. The half hourly NEE during the study period reached a minimum of -10.4 μmol CO$_2$ m$^{-2}$ h$^{-1}$ just before solar noon and peaked at 4.7 μmol CO$_2$ m$^{-2}$ h$^{-1}$ around midnight (Fig 2c). NEE$_{NN}$ was used to gap-fill the flux data because it was in good agreement with F_{CO2} observation ($r^2 = 0.91$). Daily ER$_{NN}$ was estimated to be 2.2 [CI$_{95\%} = \pm 0.9$] g C-CO$_2$ m$^{-2}$ d$^{-1}$ with corresponding GPP of 3.7 g C-CO$_2$ m$^{-2}$ d$^{-1}$. ER$_{NN}$ was in poor agreement (R$^2 = 0.35$, n= 95) with night time F_{CO2} observations. For comparison, Eq. 3 provided a better fit ($R^2 = 0.47$) with night-time EC data, and ER$_{Q10}$ was estimated to be 3.0 g C-CO$_2$ m$^{-2}$ d$^{-1}$. However, NEE$_{Q10}$ did not fit F_{CO2} as well ($r^2 = 0.80$) as NEE$_{NN}$.

Gap-filled daily NME was modest and decreased over the study period. It ranged from 2.0 to 25.1 mg C-CH$_4$ m$^{-2}$ d$^{-1}$ with a mean of 8.7 [CI$_{95\%} = \pm 0.4$] mg C-CH$_4$ m$^{-2}$ d$^{-1}$ (Fig 2d). NME$_{NN}$ was used to gap-fill the flux data because it provided a reasonable fit ($r^2 = 0.62$) to F_{CH4} observations. NME did not constitute a significant component of the carbon balance and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP after accounting for the greater GWP of CH$_4$.

3.2 Chamber Observations

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI$_{95\%} = \pm 1.2$], 5.4 [CI$_{95\%} = \pm 1.2$] and 4.9 [CI$_{95\%} = \pm 0.7$] g C-CO$_2$ m$^{-2}$ d$^{-1}$. Shrub ER was significantly less (3.5 [CI$_{95\%} = \pm 0.6$] g C-CO$_2$ m$^{-2}$ d$^{-1}$) than the other vegetated classes and Sparse ER was the lowest among the classes (2.0 [CI$_{95\%} = \pm 0.3$] g C-CO$_2$ m$^{-2}$ d$^{-1}$) (fig 3a). The Q_{10} and R_{10} values also differed between vegetation classes: ER in the Sedge was the most sensitive to changes in air temperature and modelled values provided the best fit ($R^2 = 0.82$) to observations. Upland and Grass had the highest base respiration and fit observations moderately well (Table 3).

NME was more variable between vegetation classes than ER (Fig 3b & c). Sedge was a very strong CH$_4$ source at 114.7 [CI$_{95\%} = \pm 15.3$] mg C-CH$_4$ m$^{-2}$ d$^{-1}$. Shrub and Grass were very weak sources, 0.7 [CI$_{95\%} = \pm 0.3$] and 0.4 [CI$_{95\%} = \pm 0.3$] mg C-CH$_4$ m$^{-2}$ d$^{-1}$, respectively. Sparse was neutral. Upland was a net CH$_4$ sink -1.1 [CI$_{95\%} = \pm 0.4$] mg C-CH$_4$ m$^{-2}$ d$^{-1}$. Sedge and Shrub were NME were positively correlated with T_s ($r=0.61$, p < 0.01; r=0.35, p = 0.04) respectively and VWC ($r=0.58$, p < 0.01; r=0.5, p < 0.01) respectively. They also had a positive correlation with T_s, while Upland NME was negatively correlated with T_s. Grass and Sparse didn’t have any significant correlations.

Footprint scaled chamber fluxes were 59% and 47% higher than ER$_{NN}$ or gap-filled NME, respectively. Mean ER$_{FS}$ was 3.5 g C-CO$_2$ m$^{-2}$ d$^{-1}$ [CI$_{95\%} = \pm 0.1$], it fit ER$_{Q10}$ very well (R$^2 = 0.95$) as would be expected and ER$_{NN}$ moderately well (R$^2 = 0.46$). Mean NME$_{FS}$ was 12.8[CI$_{95\%} = \pm 1.3$] mg C-CH$_4$ m$^{-2}$ d$^{-1}$, it did not fit NN$_{NME}$ well (R$^2 = 0.30$). At the basin scale, ER$_{BS}$ (3.4 [CI$_{95\%} = \pm 0.1$] g C-CO$_2$ m$^{-2}$ d$^{-1}$) was slightly lower than ER$_{FS}$ because of the exclusion of upland areas. NME$_{BS}$ was higher (15.2 [CI$_{95\%} = \pm 0.1$] g C-CO$_2$ m$^{-2}$ d$^{-1}$) because of the greater sedge fraction in the basin than the footprint because the (Table 2).
3.3 NEE Response to Environmental Factors and Vegetation Type

NEE (\(r^2 = 0.91\)) was estimated using four factors: PPFD, VPD, VWC, and \(F_{\text{Shrub}}\). PPFD is the primary control over NEE: a NN trained on PPFD alone provided a reasonable fit (\(r^2 = 0.83\)). The three additional factors, VPD, VWC, and \(F_{\text{Shrub}}\), helped NNNEE fit a wider variety of conditions. Examining the partial first derivative of NNNEE under different conditions provides interpretation of the modelled light response curves (Fig 4). The minimum values represent the peak light use efficiency and are analogous to \(\alpha\) in eq. 5 (Fig 4b). With increasing PPFD, light use becomes less efficient and approaches zero as the light response nears light saturation (Fig 4b).

VPD was a secondary control over NEE. Increasing VPD increased peak light use efficiency and net CO\(_2\) uptake until a threshold, above which it had a strong limiting effect (Fig 4a & b). For example, under dry atmospheric conditions (e.g. VPD = 1.5 kPa), peak light use is less efficient (-12 nmol CO\(_2\) µmol\(^{-1}\) photon) than under more humid conditions (-18 nmol CO\(_2\) µmol\(^{-1}\) photon). The value of this VPD threshold was dependent upon soil moisture: from 1 kPa when VWC was highest to 0.2 kPa when VWC was low. Mapping NNNEE and NNER at \(F_{\text{Shrub}} = 100\%\), \(F_{\text{Shrub}} = 0\%\), and \(F_{\text{Shrub}} = 36\%\) (FClim), shows that VWC and \(F_{\text{Shrub}}\) were the primary controls over ER and thus influenced NEE (Fig 4c & d).

We can see from the partial first derivatives of NNER that increasing VWC increases ER from Shrub areas. In the absence of shrubs, increasing VWC inhibits ER although it is important to note that variations in VWC were subtle ranging from 51.7% to 59.0%. The partial first derivative of NNNEE shows that VWC slightly limits NEE from non-Shrub areas and significantly reduces it in Shrub areas.

3.4 NME Response to Environmental Factors and Vegetation Type

NME was estimated using NME (\(r^2 = 0.62\)) which had five factors: \(F_{\text{Sedge}}\), \(F_{\text{Shrub}}\), VWC, \(T_s\), and \(U\). NME was more variable and less dependent on any one factor than NEE which is why the NNNME needed an extra factor and had a lower \(r^2\) score. Source area had a significant effect on NME, and it was encouraging that the model contained \(F_{\text{Sedge}}\) and \(F_{\text{Shrub}}\) since Sedge and Shrub were the strongest CH\(_4\) source and largest footprint component, respectively. These two factors can combine to map NME under three general situations: we can extrapolate to \(F_{\text{Sedge}} = 100\%\) and \(F_{\text{Shrub}} = 0\%\), or \(F_{\text{Sedge}} = 0\%\) and \(F_{\text{Shrub}} = 100\%\), or represent actual FClim where \(F_{\text{Sedge}} = 11\%\) and \(F_{\text{Shrub}} = 37\%\) (Table 2). Some upland tundra was included in the FClim estimate, which reduced NME.

VWC was the primary climatic driver identified by NNNME. Wetter soils had a consistent positive effect on NME which was strongest when \(F_{\text{Sedge}}\) was high (Fig 5a & b). Between driest and wettest conditions, estimated NME increased: by an order of magnitude at \(F_{\text{Sedge}} = 100\%\), 4-fold at \(F_{\text{Shrub}} = 100\%\), and from neutral to a source at FClim (Fig 5a). Higher \(T_s\) generally had a negative effect on NME (Fig 5c & d). The negative correlation between \(T_s\) and VWC (\(r = 0.54, < 0.01\)) may have contributed to this result. NNNME performance improved less with the addition of \(U\) indicating the NNNME was near saturation and its effects are less relevant. Higher \(U\) had a weak limiting effect on NME when VWC was high and increased NME when VWC was low (not shown).
4 Discussion

4.1 Carbon Balance and Controlling Factors

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season CO$_2$ uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant and Oechel, 2013; Lara et al. 2015). These differences may be due to differences in the periods of observation and year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at Illisarvik. Mean 1980-2010 T_a at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 2020). Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer. Shrub cover is expected to have a number of impacts on the microclimate and carbon cycle of Arctic tundra (e.g. Myers-Smith et al, 2011). Typically, greater deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018). GPP was greater at Illisarvik compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010). It was more similar to Katyk which has significant dwarf shrub cover, predominately *Betula nana* and *Salix pulchra* (van der Molen et al. 2007).

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature and thaw depth, among other factors (Sturtevant and Oechel, 2013). The ‘snow-shrub hypothesis’ (Sturm et al. 2001) describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to increased decomposition and nutrient availability and promotes further shrub growth. At Illisarvik, snow blowing in off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height (Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as the taller shrubs (>40 cm) could not fit inside the chambers. In another study, chamber ER increased with greater shrub cover in upland tundra (Ge et al., 2017). ER at Illisarvik was greater than the ER observed at both the young wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007). The importance of F_{Shrub} in describing temporal variations in half hourly NEE within the flux footprint at Illisarvik is further evidence of the importance of shrub cover on tundra carbon cycle processes in this environment.

$PPFD$ and VPD were the most important factors for predicting half hourly NEE. This was to be expected as they are typically the primary controls over GPP (Aubinet et al., 2012). The limiting effects of VPD are consistent another study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites (Euskirchen et al. 2012; López-Blanco et al. 2017). VWC was also important at Illisarvik. Zona et al. (2010) found VWC could explain 70% of the variability in daily peak season ER in young DTLB. Similarly, Kittler et al. (2016) found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with our results at Illisarvik when F_{Shrub} was low.

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015). NME at Katyk was even higher than the Barrow DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007;
Parmentier et al., 2011). In our NN modelling of NME at Illisarvik, F_{Sedge} was the most important factor for predicting half hourly F_{CH_4}. Sedges are aquatic plant species with aerenchymatous tissues that act as conduits for CH_4 from below the water table to the atmosphere and limits CH_4 oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). The inclusion of F_{Shrub} further refined the model, allowing it to better fit the site-specific distribution of vegetation types. Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on F_{CH_4} at Katyk. Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support that (Davidson et al., 2016).

VWC was the second most important factor, which was expected as CH_4 production occurs in anaerobic environments and has been linked to variability in CH_4 emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; Olefeldt et al., 2013). Soil temperature (T_s) was the third most important factor. Higher T_s increase the oxidation potential of methanotrophs (Liu et al., 2016; King and Admansen, 1992), so this result was expected for the drier portions of the basin and upland tundra. However, this was not expected for the sedge areas because most studies find NME in sedges is positively correlated to T_s (Olefeldt et al., 2013). The negative correlation between T_s and VWC may partly explain this.

4.2 Upscaling

ER_{FS} and NME_{FS} were about 59% and 47% greater than the EC estimates. Discrepancies between EC and chamber observations are common and have been attributed to differences in measurement techniques, the small sample size of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair weather (Katayanagi et al., 2005; Chaichana et al., 2018). Meijide et al. (2011) found that chamber NEE could be up to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% higher than EC estimates. Others have been more successful, yielding upscaled chamber NME fluxes within 10% of EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017). A potential reason for the disagreement with ER_{FS} may be the lack of direct observations by the EC system under low-light conditions. Another potential source of error for the upscaling is inaccuracies in the vegetation map.

4.3 Future Trajectories

Presently, peak growing season carbon uptake at Illisarvik is greater than similarly aged landscape features on the Barrow Peninsula, Alaska and more similar to levels observed at Katyk, Siberia. NME is well below levels observed at any other DTLB studied, making this site a stronger GHG sink than other DTLB. However, the basin at Illisarvik will continue to evolve and the trajectory it takes could significantly alter its carbon balance. Historically, DTLB on Richards Island and the Tuktoyaktuk Peninsula evolve into sedge wetlands, as do DTLB on the Barrow Peninsula (Ovendend, 1986; Lara et al., 2015). Active maintenance of the outlet channel at Illisarvik has artificially lowered soil moisture and flooding and potentially limited this transition thus far (C. Burn, personal communication 2016). If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME will increase significantly. With extrapolations to full Sedge cover ($F_{\text{Sedge}} = 100\%$), NME would be similar to values on the Barrow Peninsula (Zona et al., 2009). If the basin instead transitions into a shrub dominated DTLB similar to
those of Old Crow Flats, Yukon (Lantz et al., 2015), NME_{NN} would remain similar to current levels meaning the basin would remain a weak source of CH$_4$. These are projections well beyond F_{Clim} fractions observed so confidence in the specific values predicted is low.

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME. Partly because Shrub cover had less overall influence on NEE_{NN}. Our model suggests ER decreases and GPP increases with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions. To our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet to be published to help evaluate the factors influencing DTLB carbon losses through the non-growing season months. Further observation year-round is needed to better understand the implications of continued vegetation change on the carbon balance of DTLB such as Illisarvik.

Line 241: You only mentioned thaw depth twice? Why not measure it on each day chambers were used?

[Responses]

Thaw depth tends to increase over time but at different rates at different locations within the basin as a result of varying soil and surface properties. We measured thaw depth at the start and end of the measurement period to highlight these differences rather than develop a variable that could be related to the fluxes. In past studies we found that day to day variations in respiration correlate best with near surface soil temperature and moisture rather than thaw depth while spatial variations in average fluxes can sometimes correlate to max thaw depth. In the revised manuscript we refer to thaw depth more and use it to compare Illisarvik to Katyk Line 384

ER at Illisarvik was greater than the ER observed at both the young wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was much shallower (45 to \geq100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007).

Section 3.1: I think this section needs an overhaul unfortunately. Many of the sentences do not make sense in their current format. For example: Lines 254-257: ‘NEE was greater than (ie. Less carbon uptake) 255 EC observations of from four wetter, sedge dominated DTLB, where peak season NEE was -2.5 g C-CO$_2$ m$^{-2}$ d$^{-1}$, ER (1.5 g C-CO$_2$ m$^{-2}$ d$^{-1}$) was lower than at Illisarvik while GPP (4.0 g C-CO$_2$ m$^{-2}$ d$^{-1}$) was slightly higher (Zona et al., 2010).’

[Responses]

The entire section has been rewritten and the references to other work were moved out from the results to the discussion section. See previous comment response.

I also think it might be useful to separate the EC results and the chamber results into subsections. By referring your measured values to other studies in the results, it makes it hard to follow for the reader.

[Responses]

We agree and have separated the EC and chamber results into Sections 3.1 and 3.2. These changes are shown in the above comment about section 3.
Further, by combining the results, there is a lack of discussing the results (for example, it feels like only section 3.4 is really doing this). It sadly reads as a lot of results statements and then suddenly we are at the conclusion.

[Responses]
We added a separate “discussion” section (Section 4). These changes are shown in the above comment about section 3.

Line 273: Why compare methane to ER here?

[Responses]
We thought it is relevant to contextualize the differences. Methane emissions are far more spatially variable than ecosystem respiration. We revised the sentence to get rid of the comparison of the magnitude because that is less relevant, but left the point about spatial variability being enhanced [Line 316]. We think it is an important finding to show that NME is more influenced by spatial heterogeneity than ER.

NME was more variable between vegetation classes than ER (Fig 3b & c).

Line 286: Although discrepancies do occur between upscaling chamber measurements and EC measurements – some studies have done it successfully and I think it would be good to include here as a caveat;

• Davidson et al. 2017. Upscaling CH4 fluxes using high-resolution imagery in Arctic Tundra Ecosystems. Remote Sensing, 9, 1227; doi:10.3390/rs9121227
• Sachs et al. 2010 Environmental controls on CH4 emissions from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Global Change Biology, 16, 3096-3110

[Responses]
We reviewed this literature and added it to the newly separated “discussion” section [Lines 417-418].

Others have been more successful, yielding upscaled chamber NME fluxes within 10% of EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017).

We also decided to use the footprint weighted upscaling method discussed in Budishchev et al. (2014) for the chamber upscaling [Line 207-208], but it did not make an appreciable difference in the upscaled chamber ER or NME.

Chamber fluxes of ER were upscaled from the plot scale (individual chamber) to the footprint scale using the footprint weighted average method and to the basin scale using the area weighted average method (Budishchev et al., 2014).

I think more discussion of the results in the context of other GHG literature from other tundra ecosites would be useful. Although this study is focused on drained lake basins, the results are comparable to wet-sedge
dominated tundra landscapes. I feel this would be a good addition and strengthen what is already a useful paper.

[Responses]

We added section 4.1 (see above comment) where we discuss NEE and NME observations at Illisarvik relative to natural shrub vs. sedge-dominated DTLB to highlight the differences among these environments rather than attempt to fully contrast Illisarvik to a myriad of arctic tundra types/sites. These comparisons are always challenging given different years, time periods within a year, instrumentation, and data presentation. However, we believe we make a strong argument that shrub vs. sedge-dominated DTLB have the potential to differ and Illisarvik differs in particular from all other DTLB in its low methane emissions. (Table 4). We now further highlight the important implications of vegetation succession on CO2 and CH4 fluxes at our site in the discussion section 4.3 “Future Trajectories”. This is one of the key messages associated with DTLBs – they undergo relatively rapid vegetation change over a number of decades that will influence their C budgets.

Table 4: Growing season (gs) daily range in eddy covariance-derived NEE and NME from drained thermokarst lake basins (DTLB) and other select wetland/coastal tundra sites across the Arctic. The period of studies measurements for the studies observations are: a) mid-June – end of July b) June 12 – August 28, 2007, Fig 4 c) June 11 – August 25, 2011 d) upscaled chamber estimates, exact dates not specified, e) mean June 15 –August 31 2003-2006, f) July 5 – Aug 4, 2009.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site Characteristics</th>
<th>NEE g C-CO$_2$ m$^{-2}$ d$^{-1}$</th>
<th>NME mg C-CH$_4$ m$^{-2}$ d$^{-1}$</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illisarvik</td>
<td>Young DTLB, Low & Tall Shrub/Grass/Wet Sedge</td>
<td>-1.5</td>
<td>8.7</td>
<td>(this study)</td>
</tr>
<tr>
<td>Various DTLB, Barrow Peninsula, Alaska</td>
<td>Young DTLB, Wet Sedge Tundra</td>
<td>-1.1b, -0.9d, -0.8c</td>
<td>18.4a, 26.1d, 44.0c</td>
<td>Zona et al. 2009a & 2010b, Sturtevant and Oechel, 2013c; Lara et al. 2015d</td>
</tr>
<tr>
<td></td>
<td>Medium DTLB, Wet Sedge Tundra</td>
<td>-0.7b, -0.6d, -0.4c</td>
<td>27.0a, 41.3c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Old DTLB, Wet Sedge Tundra</td>
<td>-1.0b, -0.4d, 0.1c</td>
<td>24.2a, 38.7c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ancient DTLB, Wet Sedge Tundra</td>
<td>0.4d</td>
<td>21.7d</td>
<td></td>
</tr>
<tr>
<td>Katyky, Indigirka lowlands, Siberia</td>
<td>Ancient DTLB, Dwarf-Shrub and Wet Sedge Tundra</td>
<td>-1.3c</td>
<td>36.0f</td>
<td>Van der Molen et al. 2007c, Budishchev et al. 2014f</td>
</tr>
</tbody>
</table>
Figure 2a: Could you change the colour of the T_a line? Red on orange is difficult to read.

[Responses]
Agreed. We have changed the bar colour, setting the orange to grey to make it easier to distinguish.

Figure 3: I will leave this up to the author’s discretion, but I wonder if this figure (and in fact, all figures) would benefit from having a plain white background. I find all the lines distracting. Especially when other lines are being used to annotate.

[Responses]
We agree the grid is distracting for Figure 3 and removed it, but left grids in all the other figures.
Figure 4c: Please use another three colours for Shrub. It is confusing that they are the same colour as VPD on the left-hand panel.

[Responses]

We changed the colour scheme to address the concern.
Figure 4 and 5: I think these figures would benefit from having a title for each panel – it was not clear to me initially the difference between Figure 5a and b. I think just putting VWC above left hand panel and T, above right hand panel, this would make it much clearer.

[Responses]
We added subtitles to all panels in Figures 4 and 5.

Tables: Caption should go above the Tables.
[Responses]
Captions were all moved above Tables.

I think a table including the dominant vegetation species for each class would be super useful for the reader.
[Responses]
We updated Table 1 to be more specific and included additional information where known/applicable.

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Vegetation Class</th>
<th>Dominant Species/Landscape feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Shrub</td>
<td>Salix alaxnessis (Tall Willow)</td>
</tr>
<tr>
<td>1b</td>
<td>Shrub</td>
<td>Salix glauca (Low Willow)</td>
</tr>
<tr>
<td>1c</td>
<td>Shrub</td>
<td>Alnus viridis subsp. crispa (Alder)</td>
</tr>
<tr>
<td>2a</td>
<td>Sedge Marsh</td>
<td>Carex aquatilis (Sedge)</td>
</tr>
<tr>
<td>2b</td>
<td>Sedge Marsh</td>
<td>Arctophila fulva (Pendant Grass)</td>
</tr>
<tr>
<td>3</td>
<td>Grass Meadow</td>
<td>Pocacea spp.* (Grasses), Eriophorum angustifolium (Cotton Grass)</td>
</tr>
<tr>
<td>4a</td>
<td>Sparse Cover</td>
<td>Sparse Vegetation</td>
</tr>
<tr>
<td>4b</td>
<td>Sparse Cover</td>
<td>Bare Ground</td>
</tr>
<tr>
<td>5</td>
<td>Ponds</td>
<td>Hippuris vulgaris (Mare’s Tail), Open Water</td>
</tr>
<tr>
<td>6a</td>
<td>Outside of Basin</td>
<td>Dwarf shrub tundra: Salix spp. & Betula nana (Birch)</td>
</tr>
<tr>
<td>6b</td>
<td>Outside of Basin</td>
<td>Fen</td>
</tr>
<tr>
<td>6c</td>
<td>Outside of Basin</td>
<td>Ocean</td>
</tr>
</tbody>
</table>
Reviewer # 2:

General comments

The paper "Vegetation Influence and Environmental Controls on Greenhouse Gas Fluxes from a Drained Thermokarst Lake in the Western Canadian Arctic" by June Skeeter et al. reports CO2 and CH4 flux measurements from a permafrost tundra site in Western Canada. Eddy covariance and chamber flux measurements were taken during the growing season 2016, and analysed accounting for the spatial variability of vegetation cover. Statistical gap-filling and an analysis of the environmental controls of the fluxes is performed using artificial neural networks. I think the chosen methods are properly applied and explained. The results are presented clearly and the conclusions are supported by the results. Also, the paper is very well written.

Given the remote and rather special site location, this study should be very valuable for the arctic carbon flux community. As the flux time series collected in your study may be used and referred to in future studies, it would be nice if you could present the time series in a more raw format than you do in Figure 2. For example, a plot of the 30-minute flux time series would help to understand the character of the data. This is also relevant, because I guess the performance and output of your NNs could be susceptible to noise or outliers in the EC time series.

[Responses]

We changed Fig 2 to show the half hourly F_{CO2} and F_{CH4} observations, along with the NEE_{NN} and NME_{NN}.
Also, several of your results (cf. Line 221 and Line 342) are based on extrapolations into parts of the parameter space where the flux response could be governed by processed not captured in your NNs. Perhaps these statistical uncertainties could be discussed.

[Responses]
We added a sentence at the end of section 2.5.1 discussing the impact of calculating ER by extrapolation and its impact on the confidence of ER estimates relative to NEE [Lines 265-267]. We refer the reader to Appendix A for details on the calculation of confidence intervals around NN outputs [Lines 501 -521].

This is a projection outside of the observed parameter space resulting in greater uncertainty and a wider confidence interval around ER_{NN} than NEE_{NN}. Calculation of confidence intervals for NN outputs is discussed in Appendix A.

We also added a sentence to section 4.3 noting that projecting to Sedge = 100% is well outside of parameter space [Lines 433-434].

These are projections well beyond F_{Clim} fractions observed so confidence in the specific values predicted is low.

I understand there is little research from DTLB sites, but it would be good in your discussion to relate your findings to those from other tundra sites with (and without) thermokarst. In this discussion, it would be good to elaborate further on the peculiarities of the artificial draining performed at your site. Given the title of this paper, readers will probably expect more of these aspects discussed.

[Responses]
We split the results into two separate sections “results” (Section 3) and “discussion” (Section 4). In section 4.1 we discuss NEE and NME observations at Illisarvik relative to natural shrub vs. sedge-dominated DTLB to highlight the differences among these environments rather than attempt to fully contrast Illisarvik to a myriad of arctic tundra types/sites. These comparisons are always challenging given different years, time periods within a year, instrumentation, and data presentation. However, we believe we make a strong argument that shrub vs. sedge-dominated DTLB have the potential to differ and Illisarvik differs in particular from all other DTLB in its low methane emissions. (Table 4). We now further highlight the important implications of vegetation succession on CO2 and CH4 fluxes at our site in the discussion section 4.3 “Future Trajectories”. This is one of the key messages associated with DTLBs – they undergo relatively rapid vegetation change over a number of decades that will influence their C budgets.

3 Results

During the 29-day study, half-hourly T_a and T_s ranged between 0.4 and 26.2°C and 4.4 and 11.0°C, respectively (Fig 2a). Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6˚ to 35.4˚, but daily PPFD was more influenced by variations in cloud cover. Precipitation (19 mm) fell on 14 of the 28 days with trace snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b). At the onset of the study period, VWC was high and soils were saturated with ponding in the sedge areas. By the end of the study most of this surface water had dried up. On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at Upland, Sedge,
Grass, Shrub, and Sparse classes, respectively. By August 6th, average thaw depth had increased to 45, 62 and 66 cm at Upland, Sedge and Grass surface classes and over 100 cm at both the Shrub and Sparse classes. A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly winds to occur much more frequently than is typical for July and August. The 50%, 80% and 90% flux F_{clim} contours are shown in Fig 1a. Mean source area fractions indicate the EC observations were skewed towards the Grass surface class and under-sampled the Shrub class, but the range of surface classes sampled was diverse enough to allow for testing of the impact of source area fraction on the fluxes (Table 2).

3.1 EC Observations

Half hourly observations of F_{CO_2} and F_{CH_4} along with the NEE$_{\text{NN}}$ and NME$_{\text{NN}}$ used to gap-fill the time series are shown in (Fig 2c & d). Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO$_2$ m$^{-2}$ d$^{-1}$ with a mean -1.5 [CI$_{95\%}$ ± 0.2] g C-CO$_2$ m$^{-2}$ d$^{-1}$. Day to day variability was considerable but there was no notable trend in NEE over the peak growing season. The half hourly NEE during the study period reached a minimum of -10.4 μmol CO$_2$ m$^{-2}$ h$^{-1}$ just before solar noon and peaked at 4.7 μmol CO$_2$ m$^{-2}$ h$^{-1}$ around midnight (Fig 2c). NEE$_{\text{NN}}$ was used to gap-fill the flux data because it was in good agreement with F_{CO_2} observation ($r^2 = 0.91$). Daily ER$_{\text{NN}}$ was estimated to be 2.2 [CI$_{95\%}$ ± 0.9] g C-CO$_2$ m$^{-2}$ d$^{-1}$ with corresponding GPP of 3.7 g C-CO$_2$ m$^{-2}$ d$^{-1}$. ER$_{\text{NN}}$ was in poor agreement ($R^2 = 0.35$, n= 95) with night time F_{CO_2} observations. For comparison, Eq. 3 provided a better fit ($R^2 = 0.47$) with night-time EC data, and ER$_{\text{Q10}}$ was estimated to be 3.0 g C-CO$_2$ m$^{-2}$ d$^{-1}$. However, NEE$_{\text{Q10}}$ did not fit F_{CO_2} as well ($r^2 = 0.80$) as NEE$_{\text{NN}}$.

Gap-filled daily NME was modest and decreased over the study period. It ranged from 2.0 to 25.1 mg C-CH$_4$ m$^{-2}$ d$^{-1}$ with a mean of 8.7 [CI$_{95\%}$ ± 0.4] mg C-CH$_4$ m$^{-2}$ d$^{-1}$ (Fig 2d). NME$_{\text{NN}}$ was used to gap-fill the flux data because it provided a reasonable fit ($r^2 = 0.62$) to F_{CH_4} observations. NME did not constitute a significant component of the carbon balance and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP after accounting for the greater GWP of CH$_4$.

3.2 Chamber Observations

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI$_{95\%}$ ± 1.2], 5.4 [CI$_{95\%}$ ± 1.2] and 4.9 [CI$_{95\%}$ ± 0.7] g C-CO$_2$ m$^{-2}$ d$^{-1}$. Shrub ER was significantly less (3.5 [CI$_{95\%}$ ± 0.6] g C-CO$_2$ m$^{-2}$ d$^{-1}$) than the other vegetated classes and Sparse ER was the lowest among the classes (2.0 [CI$_{95\%}$ ± 0.3] g C-CO$_2$ m$^{-2}$ d$^{-1}$) (fig 3a). The Q_{10} and R_{10} values also differed between vegetation classes: ER in the Sedge was the most sensitive to changes in air temperature and modelled values provided the best fit ($R^2 = 0.82$) to observations. Upland and Grass had the highest base respiration and fit observations moderately well (Table 3).

NME was more variable between vegetation classes than ER (Fig 3b & c). Sedge was a very strong CH$_4$ source at 114.7 [CI$_{95\%}$ ± 15.3] mg C-CH$_4$ m$^{-2}$ d$^{-1}$. Shrub and Grass were very weak sources, 0.7 [CI$_{95\%}$ ± 0.3] and 0.4 [CI$_{95\%}$ ± 0.3] mg C-CH$_4$ m$^{-2}$ d$^{-1}$, respectively. Sparse was neutral. Upland was a net CH$_4$ sink -1.1 [CI$_{95\%}$ ± 0.4] mg C-CH$_4$ m$^{-2}$ d$^{-1}$. Sedge and Shrub were NME were positively correlated with T_i ($r=0.61$, $p < 0.01$; $r=0.35$, $p = 0.04$) respectively and VWC ($r=0.58$, $p < 0.01$; $r=0.5$, < 0.01) respectively. They also had a positive correlation with T_a, while Upland NME was negatively correlated with T_a. Grass and Sparse didn’t have any significant correlations.
Footprint scaled chamber fluxes were 59% and 47% higher than ER_{FS} or gap-filled NME, respectively. Mean ER_{FS} was 3.5 g C-CO\textsubscript{2} m-2 d-1 [CI\textsubscript{95%} ± 0.1], it fit ER_{Q10} very well (R2 = 0.95) as would be expected and ER_{NN} moderately well (R2 = 0.46). Mean NME_{FS} was 12.8 [CI\textsubscript{95%} ± 1.3] mg C-CH\textsubscript{4} m-2 d-1, it did not fit NNE_{NME} well (R2 = 0.30). At the basin scale, ER_{BS} (3.4 [CI\textsubscript{95%} ± 0.1] g C-CO\textsubscript{2} m-2 d-1) was slightly lower than ER_{FS} because of the exclusion of upland areas. NME_{BS} was higher (15.2 [CI\textsubscript{95%} ± 0.1] g C-CO\textsubscript{2} m-2 d-1) because of the greater sedge fraction in the basin than the footprint because the (Table 2).

3.3 NEE Response to Environmental Factors and Vegetation Type

NEE_{NN} (r2 = 0.91) was estimated using four factors: PPFD, VPD, VWC, and F_{Shrub}. PPFD is the primary control over NEE: a NN trained on PPFD alone provided a reasonable fit (r2 = 0.83). The three additional factors, VPD, VWC, and F_{Shrub}, helped NNE_{NEE} fit a wider variety of conditions. Examining the partial first derivative of NNE_{NEE} under different conditions provides interpretation of the modelled light response curves (Fig 4). The minimum values represent the peak light use efficiency and are analogous to \alpha in eq. 5 (Fig 4b). With increasing PPFD, light use becomes less efficient and approaches zero as the light response nears light saturation (Fig 4b).

VPD was a secondary control over NEE. Increasing VPD increased peak light use efficiency and net CO\textsubscript{2} uptake until a threshold, above which it had a strong limiting effect (Fig 4a & b). For example, under dry atmospheric conditions (e.g. VPD = 1.5 kPa), peak light use is less efficient (-12 nmol CO\textsubscript{2} \mu mol-1 photon) than under more humid conditions (-18 nmol CO\textsubscript{2} \mu mol-1 photon). The value of this VPD threshold was dependent upon soil moisture: from 1 kPa when VWC was highest to 0.25 Pa when VWC was low. Mapping NNE_{NEE} and NNE_{ER} at F_{Shrub} = 100%, F_{Shrub} = 0%, and F_{Shrub} = 36% (F_{Clim}), shows that VWC and F_{Shrub} were the primary controls over ER and thus influenced NEE (Fig 4c & d). We can see from the partial first derivatives of NNE_{ER} that increasing VWC increases ER from Shrub areas. In the absence of shrubs, increasing VWC inhibits ER although it is important to note that variations in VWC were subtle ranging from 51.7% to 59.0%. The partial first derivative of NNE_{NEE} shows that VWC slightly limits NEE from non-Shrub areas and significantly reduces it in Shrub areas.

3.4 NME Response to Environmental Factors and Vegetation Type

NME was estimated using NME_{NN} (r2 = 0.62) which had five factors: F_{Sedge}, F_{Shrub}, VWC, T_s, and U. NME was more variable and less dependent on any one factor than NEE which is why the NN_{NME} needed an extra factor and had a lower r2 score. Source area had a significant effect on NME, and it was encouraging that the model contained F_{Sedge} and F_{Shrub} since Sedge and Shrub were the strongest CH\textsubscript{4} source and largest footprint component, respectively. These two factors can combine to map NME under three general situations: we can extrapolate to F_{Sedge} = 100% and F_{Shrub} = 0% or F_{Sedge} = 0% and F_{Shrub} = 100%, or represent actual F_{Clim} where F_{Sedge} = 11% and F_{Shrub} = 37% (Table 2). Some upland tundra was included in the F_{Clim} estimate, which reduced NME.

VWC was the primary climatic driver identified by NN_{NME}. Wetter soils had a consistent positive effect on NME which was strongest when F_{Sedge} was high (Fig 5a & b). Between driest and wettest conditions, estimated NME increased: by an order of magnitude at F_{Sedge} = 100%, 4-fold at F_{Shrub} = 100%, and from neutral to a source at F_{Clim} (Fig 5a). Higher T_s generally had a negative effect on NME (Fig 5c & d). The negative correlation between T_s and
VWC ($r = 0.54, < 0.01$) may have contributed to this result. NN$_{NME}$ performance improved less with the addition of U indicating the NN$_{NME}$ was near saturation and its effects are less relevant. Higher U had a weak limiting effect on NME when VWC was high and increased NME when VWC was low (not shown).

4 Discussion

4.1 Carbon Balance and Controlling Factors

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season CO$_2$ uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant and Oechel, 2013; Lara et al. 2015). These differences may be due to differences in the periods of observation and year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at Illisarvik. Mean 1980-2010 T_a at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 2020). Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer. Shrub cover is expected to have a number of impacts on the microclimate and carbon cycle of Arctic tundra (eg. Myers-Smith et all, 2011). Typically, greater deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018). GPP was greater at Illisarvik compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010). It was more similar to Katyk which has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007).

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature and thaw depth, among other factors (Sturtevant and Oechel, 2013). The ‘snow-shrub hypothesis’ (Sturm et al. 2001) describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to increased decomposition and nutrient availability and promotes further shrub growth. At Illisarvik, snow blowing in off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height (Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as the taller shrubs (>40 cm) could not fit inside the chambers. In another study, chamber ER increased with greater shrub cover in upland tundra (Ge et al., 2017). ER at Illisarvik was greater than the ER observed at both the young wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007). The importance of F_{Shrub} in describing temporal variations in half hourly NEE within the flux footprint at Illisarvik is further evidence of the importance of shrub cover on tundra carbon cycle processes in this environment.

PPFD and VPD were the most important factors for predicting half hourly NEE. This was to be expected as they are typically the primary controls over GPP (Aubinet et al., 2012). The limiting effects of VPD are consistent another study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites (Euskirchen et al. 2012; López-Blanco et al. 2017). VWC was also important at Illisarvik. Zona et al. (2010) found VWC could explain 70% of the variability in daily peak season ER in young DTLB. Similarly, Kittler et al. (2016)
found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with our results at Illisarvik when F_{Shrub} was low.

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015). NME at Katyk was even higher than the Barrow DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; Parmentier et al., 2011). In our NN modelling of NME at Illisarvik, F_{Sedge} was the most important factor for predicting half hourly F_{CH4}. Sedges are aquatic plant species with aerenchymatous tissues that act as conduits for CH$_4$ from below the water table to the atmosphere and limits CH$_4$ oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). The inclusion of F_{Shrub} further refined the model, allowing it to better fit the site-specific distribution of vegetation types. Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on F_{CH4} at Katyk. Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support that (Davidson et al., 2016).

VWC was the second most important factor, which was expected as CH$_4$ production occurs in anaerobic environments and has been linked to variability in CH$_4$ emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; Olefeldt et al., 2013). Soil temperature (T_s) was the third most important factor. Higher T_s increase the oxidation potential of methanotrophs (Liu et al., 2016; King and Adamsen, 1992), so this result was expected for the drier portions of the basin and upland tundra. However, this was not expected for the sedge areas because most studies find NME in sedges is positively correlated to T_s (Olefeldt et al., 2013). The negative correlation between T_s and VWC may partly explain this.

4.2 Upscaling

ER_{FS} and NME_{FS} were about 59% and 47% greater than the EC estimates. Discrepancies between EC and chamber observations are common and have been attributed to differences in measurement techniques, the small sample size of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair weather (Katayanagi et al., 2005; Chaichana et al., 2018). Meijide et al. (2011) found that chamber NEE could be up to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% higher than EC estimates. Others have been more successful, yielding upscaled chamber NME fluxes within 10% of EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017). A potential reason for the disagreement with ER$_{FS}$ may be the lack of direct observations by the EC system under low-light conditions. Another potential source of error for the upscaling is inaccuracies in the vegetation map.

4.3 Future Trajectories

Presently, peak growing season carbon uptake at Illisarvik is greater than similarly aged landscape features on the Barrow Peninsula, Alaska and more similar to levels observed at Katyk, Siberia. NME is well below levels observed at any other DTLB studied, making this site a stronger GHG sink than other DTLB. However, the basin at Illisarvik will continue to evolve and the trajectory it takes could significantly alter its carbon balance. Historically, DTLB on Richards Island and the Tuktoyaktuk Peninsula evolve into sedge wetlands, as do DTLB on the Barrow Peninsula
(Ovendend, 1986; Lara et al., 2015). Active maintenance of the outlet channel at Illisarvik has artificially lowered soil moisture and flooding and potentially limited this transition thus far (C. Burn, personal communication 2016). If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME will increase significantly. With extrapolations to full Sedge cover ($F_{Sedge} = 100\%$), NME would be similar to values on the Barrow Peninsula (Zona et al., 2009). If the basin instead transitions into a shrub dominated DTLB similar to those of Old Crow Flats, Yukon (Lantz et al., 2015), NME_{NN} would remain similar to current levels meaning the basin would remain a weak source of CH_4. These are projections well beyond F_{Clim} fractions observed so confidence in the specific values predicted is low.

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME. Partly because Shrub cover had less overall influence on NEE_{NN}. Our model suggests ER decreases and GPP increases with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions. To our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet to be published to help evaluate the factors influencing DTLB carbon losses through the non-growing season months. Further observation year-round is needed to better understand the implications of continued vegetation change on the carbon balance of DTLB such as Illisarvik.

Specific comments

Line 16: "During the study period". Please be more specific here, because the upscaled average fluxes you mention in lines 18 and 20/21 don’t tell much if you don’t know the study period.

[Responses]

Changed wording to “peak growing season” Line 16

Line 24: Your abstract lacks a broader conclusion

[Responses]

We added another sentence to make a broader conclusion about plant succession and Illisarvik’s carbon balance, Lines 25-26

Presently, Illisarvik is a carbon sink during the peak growing season. However, these results suggest that rates of growing season CO2 and CH4 exchange rates may change as the basin’s vegetation community continues to evolve.

Line 100: Could the grazing have a measurable effect on e.g. NEE? It could be a point to add to your discussion.

[Responses]

Good point, we added a few words to mention that grazing may have affected GHG Fluxes [Lines 121-122]. which may have affected greenhouse gas fluxes.

It is possible that grazing had some impact, but we cannot answer this based on the data collected. According to images from a fish eye camera mounted on the tripod (taken at 5-minute intervals), the animals spent about an hour gazing within the footprint of the eddy-covariance tower. In other areas of the basin where they stayed for longer, there was definitely a more significant impact. They were only spotted within the footprint the morning of July 12th. In addition
to the fish eye camera images, we were present at the field site during the full campaign and observed the reindeer’s movements.

Line 116: You discarded a sector because its flow could be disturbed by the tower.

But did you see this effect in any of your quality checks? Maybe it’s not necessary to discard this data.

[Responses]

It is standard practice to discard winds affected in the wake of the tower and sensor head. We have added a reference to Aubinet et al., 2012 to support this choice. During light winds, windspeeds can be reduced as much as 50% in the wake of a tower/instrument mount and turbulent eddies are artificially created, significantly violating the assumptions that go into eddy-covariance flux calculations. We oriented the tower such that this wind sector was the least frequent (according to climatology from Tuktoyaktuk). It only resulted in 6.7% (86 of 1279) half hourly observations being discarded.

Line 146: Maybe be more specific about the Python modules you used, otherwise this sentence adds very little to the understanding of your analysis.

[Responses]

We removed this portion of the manuscript. Most of the code was written specifically for the project by the first author, the footprint model of Kljun et al. 2015 is available in multiple programming languages, and we mention the python module for the neural networks on Line 243 and discuss the procedures in more in the appendix.

Line 182: Shouldn’t there be five times more vials than flux estimates, if you used 5 gas samples per flux measurement?

[Responses]

Yes, that is correct. The sentence has been corrected [Lines 202-203].

Line 292: "Random forest regression tree". Did you use only one decision tree, or the ensemble mean of several?

[Responses]

It was the ensemble mean of 100 trees. We removed this from the text however. In retrospect, it was beyond the scope/point of the paper. Discussing the choices made for the random forest (RF) analysis would have required a new section in the methods. But since we didn’t use it in the results (beyond this one comparison), this didn’t seem necessary. Instead, we added a paragraph to the appendix [Lines 522-532] discussing why we RF weren’t the best choice for this analysis and we added Figure A2 to support this.

Random forests (RF) are said to be among the best performing gap filling methods for NME (Kim et al., 2020). and it has been claimed that aggregating many regression trees in a RF prevents overfitting (Breiman, 2001). We did not find this to be the case. Following the methods outlined in Kim et al. (2020): a RF with 400 trees and no restrictions on tree size fit FCH4 nearly perfectly (R2 = 0.98). Without considerable limitations on tree size, the RF will just learn
The dataset rather than the relationships present. It is our view that this tree is extremely overfit, as highlighted by the example in Figure A2. Further, RF do not allow for straightforward visualization functional relationships in a dataset. Plotting FCH4 against VWC, which is the dominant environmental control identified does not reveal a meaningful relationship like Figure 5 a & c. You can look at an individual decision tree within the RF, but those are difficult to interpret beyond the first few splits, and each tree will be different. Lastly, RF are incapable of projecting beyond the parameter space observed which limited their applicability for this study (Fig A2). This presents an issue because may gaps in EC data arise from data filtering (e.g. clear calm nights, precipitation events) and are by definition outside the parameter space observed.

![Graph showing CH4 concentrations against m^-3 m^-1](image)

Line 296: Maybe refer to an equation defining alpha.

[Responses]

Alpha in this context is analogous to the minimum of the first derivative of the neural network output; which was calculated numerically. We added a new equation (Eq. 5) in section 2.5.1 [Line 258] to show a light response curve

\[NEE = \frac{1}{2c} (\alpha PPFD + \beta - \sqrt{(\alpha PPFD + \beta)^2 - 4\alpha \beta c PPFD}) + ER \]

and clarified section 3.3 to better describe this [Line 332-334].

The minimum values represent the peak light use efficiency and are analogous to \(\alpha \) in eq. 5 (Fig 4b).

Technical corrections

Line 75: Did you really mean 100 m, or maybe km?

[Responses]

Yes, the antient basin, is just 100m to the south, it can be seen in Figure 1a (labeled 6b) and 1c in the top left of the drone image.

Lines 302/303: Pa, with a capital P Line 310: "both"?

[Responses]

Corrected, we also decided to use kPa instead.

Please check and correct the names of your references in the text, as several have spelling mistakes ("Whalen and Reedburgh", "Merbould", "Meyer-Smith")

[Responses]
Thank you. We corrected these spelling mistakes.

Figure 3b: Can you add a little bit of horizontal white space between the the Sedge plot and the rest? I think this could prevent confusion and make it clear that the y-axis for this box has a different scale

[Responses]

We added the requested horizontal space and put “Sedge” into a separate subplot of the same figure.
Vegetation Influence and Environmental Controls on Greenhouse Gas Fluxes from a Drained Thermokarst Lake in the Western Canadian Arctic

June Skeeter1, Andreas Christen2, André-Anne Laforce3, Elyn Humphreys3, Greg Henry1

1Department of Geography, The University of British Columbia, Vancouver, V6T1Z2, Canada
2Environmental Meteorology, Faculty of Environment and Natural Resources, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
3Department of Geography and Environmental Studies, Carleton University, Ottawa, K1S5B6, Canada

Correspondence to: June B. Skeeter (skeeter1@mail.ubc.ca)

Abstract. Thermokarst features are widespread in ice-rich regions of the circumpolar Arctic. The rate of thermokarst lake formation and drainage is anticipated to accelerate as the climate warms. However, it is uncertain how these dynamic features impact the terrestrial Arctic carbon cycle. Methane (CH4) and carbon dioxide (CO2) fluxes were measured during peak growing season using eddy covariance and chambers at Illisarvik, a 0.16 km² thermokarst lake basin that was experimentally drained in 1978 on Richards Island, Northwest Territories, Canada. Vegetation in the basin differed markedly from the surrounding dwarf-shrub tundra and included patches of tall shrubs, grasses and sedges with some bare ground and a small pond in the centre. During the peak growing season, temperature and wind conditions were highly variable and soil water content decreased steadily. Basin-scaled net ecosystem CO2 exchange (NEE) measured by eddy covariance was -1.5 ± 0.2 g C-CO2 m⁻² d⁻¹; NEE followed a marked diurnal pattern with no day-to-day trend during the study period. Variations in half-hourly NEE were primarily controlled by photosynthetic photon flux density and influenced by vapor pressure deficit, volumetric water content and the presence of shrubs. By contrast, net within the flux tower footprint, which varied with wind direction, had little impact on the growing season carbon balance of the basin. Net methane exchange (NME) was low (8.7 ± 0.4 mg CH4 m⁻² d⁻¹) and had little impact on the growing season carbon balance of the basin. NME displayed high spatial variability, and edge areas in the basin were the strongest source of CH4 while upland areas outside the basin were a net sink. Soil moisture and temperature were the main environmental factors influencing NME, having a positive and negative effect respectively. Presently, Illisarvik is a carbon sink during the peak growing season. However, these results suggest that rates of growing season CO2 and CH4 exchange rates may change as the basin’s vegetation community continues to evolve.

Keywords: Climate Change, Arctic, Permafrost, Thermokarst, Carbon Dioxide, Methane

1 Introduction

The northern permafrost region stores approximately 50% of global organic soil carbon in 16% of the terrestrial land area (Tarnocai et al. 2009). Thermokarst lake landscapes account for approximately 20% of the land area in this...
region and hold about half of its organic soil carbon (Olefeldt et al., 2016). Lake thermokarst landscapes are a widespread feature in poorly drained, sedimentary permafrost lowlands with excess ground ice volume and constitute about a third of all thermokarst area (French, 2013; Thoide, Olefeldt et al., 2016). Thermokarst lakes are a prominent landscape feature of the Western Canadian Arctic (Mackay, 1999; Marsh et al., 2009; Lantz & Turner, 2015). These lakes drain, sometimes catastrophically, forming drained thermokarst lake basins (DTLB) via bank overflow, ice wedge erosion, coastal erosion, and stream migration (Billings and Peterson, 1980; Mackay, 1999). Lakes drain, sometimes catastrophically, via bank overflow, ice wedge erosion, coastal erosion, and stream migration (Billings and Peterson, 1980; Mackay, 1999). Thermokarst lakes and drained thermokarst lake basins (DTLB) are prominent landscape features of the western Canadian Arctic (Mackay, 1999; Marsh et al., 2009; Lantz & Turner, 2015). Lake formation and drainage is a natural part of the thaw lake cycle, but it is anticipated that climate change will accelerate or disturb this cycle resulting in more lake formation and drainage, potentially altering the regional carbon balance (Jones et al., 2018).

Net ecosystem exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP), where NEE = ER – GPP, are lower in the Arctic than warmer regions but have significant seasonal cycles and variability between vegetation types (Virkkala et al., 2018). Future trajectories in NEE will in large part be governed by ER (Biasi et al., 2008; Cahoon et al., 2012). Dominant vegetation types in the Western Canadian Arctic are erect-shrub tundra and wetlands (Walker et al., 2005). Growing season NEE is typically negative across these units throughout the Arctic, indicating a net CO₂ sink as GPP exceeds ER in part due to cold and/or anoxic soil conditions (Virkkala et al., 2018; Lafleur et al., 2012). Annual NEE can be positive or negative with large variation in GPP linked to annual weather variability (Virkkala et al., 2018, McGuire et al., 2009). Arctic net methane exchange (NME) is positive because wetland areas are strong methane (CH₄) sources while upland areas with better drainage can be net sinks (Whalen and Reeburgh, 1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).

Thermokarst lakes are well recognized sources of methane (CH₄) (Walter et al., 2007) which is 28 times as potent as carbon dioxide (CO₂) on a 100-year time scale (Walter et al., 2007; IPCC, 2014). Thermokarst lake formation and expansion is expected to exert a positive feedback on climate change and accelerate Arctic warming in the near term, but one-modelling study suggests that drainage may limit expansion and result in decreased lake area by the end of the century (van Huissteden et al., 2011). Post drainage, DTLB undergo rapid ecological succession. In colder tundra environments, wet meadows or polygonal landscapes dominated by sedges, grasses and rushes will form (Lara et al., 2015). In slightly warmer, boreal transitional regions, DTLB often become dominated by willows and other shrubs (Lantz and Turner, 2015).

Carbon exchange in DTLB of various ages has been examined in a few studies, all of which almost exclusively focused on the Barrow Peninsula in Northern Alaska. In general, DTLB are net sinks for CO₂ NEE during the growing season, with greatest CO₂ uptake in younger basins and decreasing net uptake of CO₂ as the basin ages in this region (Zona et al., 2010; Zulueta et al., 2011; Sturtevant and Oechel, 2013; Lara et al., 2015). DTLB source/sink strength of CH₄ was found to be highly variable depending on vegetation and ground conditions (Lara et al., 2015). Net methane exchange (NME) is highest in wet or flooded meadows and remnant ponds while upland tundra surrounding DTLB can be a methane sink but considerably reduced in areas with better drainage (Zona et al., 2010; Zulueta et al., 2011; Sturtevant and Oechel, 2013; Lara et al., 2015).
et al., 2009; Zona et al., 2012; Lara et al., 2015). There may be regional variations in the carbon balance of DTLB. For example, a shrub dominated ancient DTLB known as Katyk in the Indigirka lowlands of Siberia shows considerably higher growing season carbon uptake than young Alaskan DTLB with comparable NME (van der Molen et al., 2007; Parmentier et al., 2011; Sturtevant). Similarly, DTLB in the Western Canadian Arctic may have different carbon fluxes than Alaskan DTLB due to differences in climate and vegetation composition.

In this study, fluxes of CO₂ and CH₄ were measured at Illisarvik, an experimentally drained thermokarst lake basin on Richards Island, Canadian Arctic, Northwest Territories, Canada. Fluxes of CO₂ and CH₄ were measured during the peak growing season using a combination of closed chamber and eddy covariance (EC) measurements. Net ecosystem exchange (NEE) of CO₂ was calculated from fluxes and storage change and NEE was separated into ecosystem respiration (ER) and gross primary productivity (GPP). NEE = ER + GPP. Here we report on: 1) the spatial and temporal variability of the NEE and NME during the growing season, 2) the vegetation and environmental factors influencing NEE and NME, 3) how the growing season carbon balance at Illisarvik compares to other DTLB, and 4) potential future carbon balance trajectories as Illisarvik continues to evolve.

2 Methods

2.1 Study Site and Data Collection

The study took place at Illisarvik, a DTLB on Richards Island (69°28′47.5″ N, 134°35′18.7″ W), that was drained experimentally in 1978 (Mackay, 1981). Illisarvik has since served as the focus of studies on permafrost growth, active layer development and vegetation succession (Ovenden, 1986; Mackay and Burn, 2002; O’Neil et al., 2012; Wilson et al., 2019). At the nearby Tuktoyaktuk climate station mean annual air temperature (T_a) is -10.1°C, July is the warmest month with a mean of 11°C and January is the coldest at -27°C. Mean annual precipitation is 160.7 mm yr⁻¹, the majority falling as rain in the summer and autumn. Snow cover typically lasts from mid-September or early October to late May (Environment Canada, 2016). Tuktoyaktuk is 60 km east of Illisarvik and in similar proximity to the coast so the climatology is expected to be similar at Illisarvik.

In the 39 years since drainage, Illisarvik has undergone rapid vegetation succession. After drainage, there were two remnant ponds. In the first five years after drainage, vegetation colonized the basin margins and wetter areas (Ovenden, 1986). By 1999, low vegetation had proliferated across most of the basin and taller willows had become established along the basin margins (Mackay and Burn, 2002). By 2010, some of the willows had grown to be 3 m in height (O’Neil and Burn, 2012). Current vegetation at Illisarvik is diverse relative to the dwarf-shrub tundra of the surrounding uplands (Table 1): the basin hosts a mix of woody shrubs (Salix spp., Betula spp., & Alnus spp), wetland vegetation (Carex spp., aquatilis, Arctophila fulva, etc.), and various grasses (Poa spp., etc.) (Wilson et al., 2019). The basin is partly ringed by a terrace of peat that formed after a partial drainage event ~20000 years BP and supports vegetation similar to the uplands (C.Burn, personal communication 2016 Michel et al., 1989). An ancient DTLB is located 100 m to the south of the Illisarvik basin and the Arctic Ocean is to the west of the basin, separated by a ridge of upland tundra about 50 m wide at its narrowest (Fig 1).
2.2 Weather and Soil Measurements

Weather data were logged on a CR1000 datalogger (Campbell Scientific Inc., Logan, UT, USA; CSI) at 5-minute intervals. Net all-wave radiation \((R_n) \) and photosynthetic photon flux density \((PPFD) \) were measured with a NRLite net radiometer (Kipp & Zonen, Delft, Netherlands) measured net all-wave radiation \((R_n) \) and a SQ-110 quantum sensor (Apogee Instruments, Logan, UT, USA) measured photosynthetic photon flux density \((PPFD) \), and a shielded HMP35 (CSI) measured recorded \(T_e \) and relative humidity \((RH_e) \) 2 m above the surface. A tipping bucket rain gauge (R.M Young Company, Traverse City, MI, USA) was placed 3 m to the west of the main tripod. Soil temperature and moisture data were recorded at 30-minute intervals on CR10x dataloggers (CSI) measured within two soil pits within two different vegetation types near the tripod: Grass (30 m to the east) and Shrub (40 m to the north). Each system measured ground heat flux \((G) \) with custom made heat flux plates, soil temperatures \((T_s) \) with custom made type-

T thermocouples at depths of 0.08 m, and 0-20 cm integrated volumetric water content \((VWC) \) with CS616 water content reflectometers (CSI). There was one repetition of each observation per pit. The soil measurements were recorded at 30-minute intervals on CR10x dataloggers (CSI). The climate and soil stations operated uninterrupted from July 10th (day 192) and July 11th (day 193) respectively, until August 7th, 2016 (day 220). On July 11th and August 6th thaw depth was measured at each of the 10 chamber sites, (see below). Thaw depth was measured by inserting a graduated steel probe into the ground to point of refusal. Each site was probed five times: the median value has been used as the thaw depth at each location. Between day 192 and July 12th, and between August 15th, a large herd of reindeer (500 + animals) visited Illisarvik. They mostly avoided the tripod but did graze near it on a few occasions for about an hour on July 12th which may have affected greenhouse gas fluxes.

2.3 EC Fluxes

An EC system was placed in the southwestern portion of the basin (69° 28’ 47.82", -134° 35’ 18.6") and measured fluxes of \(CO_2 \) \((F_{CO2}) \) and \(CH_4 \) \((F_{CH4}) \) for the full study period, between July 10th and Aug 7th, 2016. The EC system consisted of an open-path infrared \(CO_2/H_2O \) gas analyser (IRGA) (model LI-7500, LI-COR Inc., Lincoln, NK, USA; LI-COR), an open-path \(CH_4 \) analyser (model LI-7700, LI-COR) and a CSAT3 sonic anemometer (CSI) mounted on...
a tripod at a measurement height \((z_m)\) of 3 m (Fig 2.2). The EC data and air pressure \((P_a)\) were logged at 10 Hz on the LI-7500 Analyzer Interface Unit (LI-COR). The CSAT3 was oriented to the northeast (40°) because climatology for Tuktoyaktuk indicated northerly and easterly winds are typical for July and August (Environment Canada, 2016). Half-hourly fluxes were calculated with EddyPro V.6.2.0 (LI-COR). The software performed statistical assessments (Vickers and Mart, 1997), low and high frequency spectral corrections (Moncrieff et al., 1997 and 2004), a double rotation (Wilczak et al., 2001), applied the WPL correction to account for density fluctuations (Webb et al., 1980), and computed quality control (qc) flags (Mauder and Foken, 2004). Post processing treatments included: storage correction (calculating the net flux as the sum of the observed scalar flux and the rate of change in scalar concentration at \(z_m\)), filtering fluxes by friction velocities \((u^*)\) below 0.1 m s\(^{-1}\), and removing spurious half hourly measurements \((qc\ flags = 2\) (Mauder and Foken, 2004), and the mean absolute deviation spike removal algorithm (Papale et al., 2006).

Additionally, observations with mean winds from 220° ± 30° were removed as these to avoid uncertainties associated with the wake of the sonic anemometer, and observations were removed during precipitation events and when the open-path analyzers indicated there were any other obstructions within the path. (Aubinet et al., 2012). The data were gap-filled using neural networks (NN) which have been applied to \(F_{CO_2}\) and \(F_{CH_4}\) in other studies (Moffat et al., 2010; Dengel et al., 2013). Details of the NN methodology are described in Appendix A.

The flux footprint represents the influence of upwind areas on a measured scalar flux and the footprint climatology is the average of individual footprints over a time period. Evaluation of the flux footprints and climatology help evaluate the reliability of the dataset and estimate the source area of each individual datapoint of the half-hourly EC flux measurement. A scalar flux \(F_s\) sampled at \((0,0,z_m)\), where \(z_m\) is the height of the EC instrumentation, can be represented as the integral of the flux footprint function \(f(x,y)\) and the distribution of sources/sinks \((Q_s)\) over a domain \(D\) (Kljun et al., 2015):

\[
F_s(0,0,z_m) = \int_D Q_s(x,y)f(x,y)
\]

The flux contribution of upwind source areas increases sharply upward from the measurement location to a peak then decrease gradually with increasing distance (Schmid, 2002). The empirically derived flux footprint function of Kljun et al. (2015) was used to estimate the source area of each half-hourly flux measurement.

The model requires boundary layer heights which were not measured onsite. Half-hourly boundary layer heights were interpolated from three-hour estimates obtained from the Global Data Assimilation System of the U.S. National Oceanic and Atmospheric Administration. The model also requires the aerodynamic roughness length \((z_0)\) which is influenced by the canopy height and spacing. Canopy height \((C_h)\) varied considerably within the basin (from \(>1\) m in the north to \(~0\) m in the bare ground areas). Canopy height variability was lower in the vicinity of the EC tripod but ranged from 0.35- 0.55 m with a few taller shrubs approaching 1 m. Median \(z_0\) was calculated for 30° wind sectors following Paul-Limoges et al. (2013). This calculation was performed for near neutral conditions \(-0.05 \leq \frac{z_m}{L} \leq 0.05\), where \(L\) is the Obukhov length. The \(z_0\) for each wind sector was found to be insensitive to changes in the zero-plane displacement height, \(d\), as \(z_m \gg d\), so the mean value of \(d\) around the tripod was used, where \(d = 2/3 C_h\) Zero-
plane displacement did not change significantly over the course of the study so z_0 remained fixed over the study period for each wind sector.

For each 20 minute (half-hourly) flux observation, $f(x,y)$, was solved at one meter m^2 resolution over a 1 km2 domain centered on the EC tripod. Then, $f(x,y)$, were intersected with the surface classes to determine the relative contribution of each surface type to each flux observation (referred to as $S_{Sedge}, S_{Sedge}, F_{Shrub}, F_{Shrub}$, etc.). The footprint function is technically infinite so a fraction of each $f(x,y)$, was not contained within the model domain. The out-of-domain source fraction ranged from 1.8% to 4.9% with a mean of 3.2% and was assumed to have minimal impact on the analysis. The flux footprint climatology (F_{clim}) was calculated by averaging the half hourly flux footprints were then averaged over the study to calculate the flux footprint climatology. All post-processing period and footprint modelling were carried out using Python, as shown in Figure 1. Table 2 shows the flux contribution of each vegetation class.

2.3.4 Closed Chamber Measurements

In addition to EC measurements, fluxes of CO$_2$, CH$_4$, and nitrous oxide (N$_2$O) were sampled using a static non-steady state chamber flux technique on 11 dates between July 12 and August 5, 2016 (Laforce, 2018). Only the bare ground was a significant source of N$_2$O so those results are not shown here. Chamber Nineteen chamber collars were located at ten sites, eight sites within and two outside the basin (Figure 1). Each surface cover class was represented by at least one chamber site, except for open water. At each vegetated site a pair of collars were installed 20 cm apart and the, except at the ‘sparse’ site where only one collar was installed. The above ground biomass was removed from one of the collars, with at each vegetated site. There were three replicates (six collars) for the exception of the ‘sparse’ class. Sedge, Shrub class where only one collar was installed, two for the Sedge, Grass, and Upland tundra, and no replicates for the Sparse class. PVC collars 30 cm long and 24.3 cm in diameter were inserted to a depth of approximately 15 cm. The chambers were 34 cm tall and made out of polycarbonate covered in black opaque tape to maintain dark conditions inside the chamber (for more details, see Martin et al., 2018). The chambers contained a small vent (10 cm coiled 1/8 diameter copper pipe) to ensure a constant pressure during measurements. The use of opaque chambers means that F_{clim} represents only ER. The fluxes of CO$_2$ provided an independent estimation of ER. This helped characterize ER as important as it is difficult to estimate ER using given the challenges with standard ECNEE partitioning techniques at high latitude sites during the Arctic summer at this latitude. Standard approaches require night-time data, a condition which was only found during a small fraction of the study period as noted in section 2.3.1.

Measurements Chamber flux measurements were made between 9:00 and 17:00 starting at a different collar set each day to randomize the sampling order to avoid a bias due to diurnal ranges on the 11 days when performing chamber measurements. During gas flux measurements, the chambers were sealed to the top of the collars within a groove filled with water and five 24 mL air samples were collected into evacuated 12 mL vials sealed with doubled septa. Each vial contained a small amount of magnesium perchlorate to dry the air sample. Samples were collected at 0, 5, 10, 15 and 20 minutes after the chambers were set on the collars. Air within the chamber was mixed with a 60 mL syringe attached to a three-way stopcock before each air sample was taken. Samples were stored until analysis the following fall one month later at Carleton University. The integrity of the vials through shipping, storage
and analysis was confirmed using a subset filled with helium before the field season began. To monitor the integrity of the vials through shipping, storage and analysis, a number of the evacuated vials were filled with helium in the lab before the field season began.

Concentrations of CO₂, CH₄, and N₂O were determined at Carleton University using a CP 3800 gas chromatograph (Varian Inc., Pao Alto, CA, USA) as described by Wilson and Humphreys (2010). Three replicates of five CO₂ CH₄ standards varying from 383.1 to 15212.6 ppm CO₂ and from 1.08 to 22.11 ppm CH₄ were included in every set of measurements to create a linear relationship between gas concentration and chromatogram area. The chamber fluxes of CO₂ and CH₄ (FC) were calculated as follows:

\[F_C = \frac{V_P A_R T \Delta C}{A V T} \]

where \((dc/dt)\) is the linear rate of change in the mixing ratio of the gas, \(A\) is the chamber area (0.0464 m³), \(V\) is the chamber volume (between 0.0182 and 0.0242 m³ adjusted for mm depth at each collar location), \(R\) is the ideal gas constant, \(P\) is pressure in Pa and \(T\) is the air temperature in Kelvin.

Visual inspection of the linear trend of gas concentrations \((dc/dt)\) was used to identify and remove spurious point measurements associated with analysis errors, leaking chambers (isolated decreases in concentration) and contamination or ebullition events (isolated increases in concentration) (0.3%, 0.7%, and 2.0% of CO₂ samples and 2.1%, 0.5%, and 1.1% of CH₄ samples, respectively). In all flux measurements, at least three or more gas samples remained so that \((dc/dt)\) and its coefficient of determination \(R^2\) were determined using least squares linear regression. We did not use \(R^2\) as an additional quality control criterion as many of our CH₄ fluxes were near zero and tended to have low \(R^2\) values due to only small variations in the point sample concentrations (see also Clark et al., 2020). 40% and 32% of the 227 CH₄ flux measurements and 97% and 92% of the 227 CO₂ flux measurements had \(R^2\) over 0.80 and 0.90, respectively. Positive fluxes indicate emissions of gases to the atmosphere and negative fluxes indicate uptake by the surface. After removal of spurious point measurements (if more than 2 points were rejected, the flux measurement was rejected), \(dc/dt\) coefficients of determination ranged from 0.71 to 0.99. Overall, 72 vial samples were rejected out of 1135 vials and no flux measurements were rejected out of 681.

2.4.1 Upscaling

Chamber measurements fluxes of ER were upscaled from the plot scale (individual chamber) to the footprint scale using the footprint weighted average method and to the basin scale using the area weighted average method (Budishchev et al., 2014). The chamber ER and air temperature from the EC tripod \(T_a\) were used to determine \(R_{10}\), the base respiration at 10 C˚, and \(Q_{10}\), the temperature sensitivity coefficient, using eq 3 for five of the six surface classes (Fig 1) (Laforce, 2018) (Table 3).

\[ER = \frac{R_{10} Q_{10} (T_a-10)}{T_a} \]

(comparison to EC observations... ER was 3)

Half hourly footprint scale estimates (ERFS3) were calculated using eq 4 and the \(Q_{10}\) and \(R_{10}\) coefficients by multiplying ER derived by Laforce (2018) explained in section 2.4.1. ER was calculated from eq 3 for each surface class separately.
and then weighted by footprint climatology (e.g., the footprint source area fraction and summing over classes. Basin scale estimates (ERBS) were estimated the same way but using the mean source area fractions of the basin (Table 2). For NME, as there were no open water class ER estimates, ER from open water was assumed to be zero.

In contrast to ER, there are no standard empirical functions to mean NME to estimate temporal variations in NME. Instead, we used ordinary least squares regression (OLS) to estimate NME. The most important environmental controls over FNEE were VWC and Td (discussed below). Continuous observations of these factors at the flux chambers were not available, instead chamber NME were grouped by vegetation class and fit to VWC and Td measured in the soil pits near the EC station. Half hourly footprint scale (NMEFS) and basin scale (NMEBS) estimates were then estimated using the OLS parameters for each class weighted by the footprint climatology instead. The weighted estimates were compared to EC observations and to help verify our findings—surface class using the same procedures for ERBS and ERFS.

2.45 Factor Selection and Gap Filling

We used an exploratory approach to identify the smallest set of factors that best predicted half hourly EC-derived NEE and NME without overfitting the dataset, using a series of neural networks (NN). We started with 10 factors: four meteorological variables (PPFD), Td, vapor pressure deficit (VPD), and four dimensional wind speed (Ua) computed using the Td and Rh data. Three-dimensional wind speed (Ua) measured using the CSAT3 sonic anemometer; two soil variables (volumetric water content (VWC) and Tes averaged between the two soil temperature (Tt) pits near the EC tripod; and four source area fractions ([shrub, sedge, Sedge], Grassy, [FGrass], [FShrub], [FSedge], [Fupland], [FUpland]). The four source area variables correspond to surface classes sampled by the chamber sample chambers. We excluded sparse Water (F Sparse) and Sparse (FSparse) fractions because its average contribution to the EC observations was only 0.21% and 0.2%, respectively, and there were no chamber measurements for the Water class while chamber sample measurements indicated ER was low and NME was not significantly different from zero for the Sparse class. A number of these variables—prediction factors were highly correlated but it was necessary to include them so the model could account for source area heterogeneity.

A series of neural networks (NN) were trained iteratively on bootstrapped datasets. First NN were trained on each factor individually and the one with the lowest MSE was selected. Next, NN were trained on that factor in combination with one of the remaining nine. The best performing additional factor was again selected and this process was repeated until MSE failed to improve. The most parsimonious model was identified using the one standard error (SE) rule. Dybowsk and Roberts (2001) give the standard error of a bootstrap estimate of a given error metric (e.g.,

θ = MSE) to be

\[
SE_{\text{boot}}(\theta) = \frac{1}{\sqrt{B}} \sum_{b=1}^{B} (\theta_b - \theta_{\text{boot}})^2
\]

where \(\theta_{\text{boot}}\) is the mean of the bootstrapped samples. The smallest set of factors where \(\theta_{\text{boot}}\) was within one \(SE_{\text{boot}}\) of the minimum \(\theta_{\text{boot}}\) for both NEE and NME were selected for further analysis. The outputs from the selected models trained on those factor sets are referred to as \(\widehat{\text{NEE}}_{\text{NN}}\) and \(\widehat{\text{NME}}_{\text{NN}}\) respectively. NN modelling was done
using the Keras Python library (Chollet et al., 2015), see the Appendix A for a more detailed explanation of the NN analysis.

Multiple Imputation (MI) was then used to gap fill the NEE and NME with the output from NNNEE and NNNME, respectively (Vitale et al., 2018). Of the 1296 half hourly flux observations, 28.9% of FCO2 and 31.3% of FCH4 were missing or filtered out. There were a few gaps in the source area fractions needed to gap-fill the flux time series because the footprint function is not valid when $u_* < 0.1$ m s$^{-1}$. When source area fractions were missing, they were gap-filled by using the mean source fraction observed for winds within ± 5° of the observed wind direction. The meteorological and soil data were continuous and did not need to be gap-filled.

2.4.3 Flux Partitioning

NEE is negative when there is net uptake of CO$_2$ by the ecosystem and positive when there is net emission. ER and GPP are always positive, ER represents the sum of heterotrophic and autotrophic respiration and GPP represents photosynthetic uptake of CO$_2$. Night-time NEE observations ($\text{ppFD} \leq 10$ μmol m$^{-2}$ s$^{-1}$) are typically used to quantify ER because GPP ≈ 0 (Aubinet et al., 2012). Some NN analyses of NEE have trained separate models for night-time and daytime conditions (Papale & Valentini, 2003). However, these methods are not practical during the Arctic summer, as the sun did not set at Illisarvik until July 28th, over half way through the study period. There were not enough night-time samples (n=100) to be worth training a separate NN. Instead, we estimated ER by calculating the intercept of NNEE at PPFD = 0 μmol m$^{-2}$ s$^{-1}$ for all observations. This estimate is referred to as NNEE-Lafont (2018) for a Q_{10} equation to the chamber ER observations (2012). We fit the limited night-time EC observations available (n=95) to equation 3 for comparison with the ER measured using the chambers. We used the fitted values to model daytime ER and approximate NEE by fitting the daytime data to a light response curve Aubinet et al. (2012).

$$\text{ER}_{\text{NEE}} = \frac{1}{2c} \left(a \text{PPFD} + \beta - \sqrt{(a \text{PPFD} + \beta)^2 - 4a\beta c \text{PPFD}} \right) + \text{ER}$$

$$= \frac{B_\alpha Q_{\alpha\text{(sat)}}}{\text{PPFD} (10^c - 1)} \quad (5)$$

where B_α is the base respiration, initial slope of the light response curve, β is GPP at 10°C saturation, and $Q_{\alpha\text{(sat)}}$ is the temperature sensitivity coefficient. We fit the c is a curvature parameter. These estimates are referred to as ER$_{\text{NEE}}$ and NEE$_{\text{sat}}$.

Some NN analyses of NEE have trained separate models for night-time EC and daytime conditions for partitioning purposes (Papale & Valentini, 2003). However, these methods are not practical during the Arctic summer as the sun did not set at Illisarvik until July 28th, over halfway through the study period. There were not enough night-time samples to train a separate NN. Instead, we estimated ER by calculating NEE$_{\text{sat}}$ at PPFD = 0 μmol m$^{-2}$ s$^{-1}$ for all observations available (n=100) to the Q_{10} equation for comparison (Aubinet et al., 2012), henceforth referred to as ER$_{\text{NEE}}$. This is a projection outside of the observed parameter space resulting in greater uncertainty and a wider confidence interval around ER$_{\text{NEE}}$ than NEE$_{\text{sat}}$. Calculation of confidence intervals for NN outputs is discussed in Appendix A.
2.4 Factor Analysis and Upscaling

The trained NNs were used to investigate how individual factors influenced NEE and NME. The partial first derivative of the model response to one controlling factor was calculated while keeping all other inputs fixed. For example, the partial first derivative \(\frac{\partial NEE}{\partial \text{PPFD}} \), is an approximation of the NEE light response curve under a specific set of conditions. Similarly, \(\frac{\partial NME}{\partial \text{PPFD}} \) can be used to approximate NME response to controls like VWC or \(T_r \). For both fluxes, the selected models contained at least one source area fraction variable, indicating the vegetation type(s) which had significant influence over both NEE and NME. Additionally, we mapped \(\frac{\partial NEE}{\partial \text{PPFD}} \) and \(\frac{\partial NME}{\partial \text{PPFD}} \) to full 100% coverage for the individual surface classes to approximate the change in fluxes at Illisarvik. We also mapped \(\frac{\partial NEE}{\partial \text{PPFD}} \) to examine how fluxes at Illisarvik may change as vegetation succession continues. For example, to project to 100% Sedge coverage, we set the other surface classes to 0% and compare with left chamber observations other environmental factors unchanged. This allows for an estimation of how carbon fluxes may change if vegetation succession leads Illisarvik to look more like the DTLB studied in Alaska.

3 Results & Discussion

During the 29-day study, half-hourly \(T_r \) and \(T_s \) ranged between 0.4 and 26.2 C and 4.4 and 11.0 C, respectively (Fig 2a). Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6° to 35.4°, but daily PPFD was more influenced by variations in cloud cover. Precipitation (19 mm) fell on 14 of the 28 days with trace snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b). At the onset of the study period, VWC was high and soils were saturated with ponding in the sedge areas. By the end of the study most of this surface water had dried up. On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at upland, sedge, shrub, upland, Sedge, Grass, Shrub, and sparse classes, respectively. By August 6th, average thaw depth had increased to 45, 62 and 66 cm at upland, sedge, and grass classes and over 100 cm at both the shrub and sparse classes.

A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly winds to occur much more frequently than is typical for July and August. The 50%, 80% and 90% flux footprint climatology contours are shown in Fig 1a. Mean source area fractions indicate the EC observations were skewed towards the grass surface class and under-sampled the shrub class, but the range of surface classes sampled was diverse enough to allow for testing of the impact of source area fraction on the fluxes (Table 2).

3.1 EC & Chamber Observations

Half hourly observations indicate that \(F_{CH4} \) and \(F_{CO2} \), along with the flux footprint area, was a carbon sink during NEE and NME used to gap-fill the peak growing season, but fluxes varied considerably from day to day time series are shown in (Fig 2c & d). Gap-filled daily NEE ranged from -3.7 to -0.2 g C CO2 m-2 d-1 with a mean of -1.5 (CI 95% ± 0.2) g C CO2 m-2 d-1 (Figure 2c). Estimated ER was Day to day variability was considerable but there was no notable trend in NEE over the peak growing season. The half hourly NEE during the study period reached a minimum of -10.4 μmol CO2 m-2 h-1 just before solar noon and peaked at 4.7 μmol CO2 m-2 h-1 around midnight (Fig 2d).
Daily ER was estimated to be 2.2 \([\text{Cl}_{199} \pm 0.9] \) g C-CO\(_2\) m\(^{-2}\) d\(^{-1}\) with corresponding GPP of 3.7 g C-CO\(_2\) m\(^{-2}\) d\(^{-1}\). There were no notable trends in NEE or ER over the study period. Our ER\(_{NN}\) was in poor agreement \((R^2 = 0.35, n = 95)\) with night-time \(F_{\text{CO2}}\) observations are within ranges observed from young DTLB on the Barrow Peninsula. NEE was greater than (i.e. less carbon uptake) EC observations from four wetter, sedge dominated DTLB, where peak season NEE was 2.5 g C-CO\(_2\) m\(^{-2}\) d\(^{-1}\). ER \((1.5 g C-CO_2 m^{-2} d^{-1})\) was lower than at Illisarvik while GPP \((4.4 \text{ mg} C \text{ m}^{-2} \text{ d}^{-1})\) was slightly higher (Zulueta et al. 2010). But NEE was less than (i.e. more carbon uptake) upscaled chamber estimates for wet meadows DTLB \((0.9 g C-CO_2 m^{-2} d^{-1})\), while ER \((2.7 g C-CO_2 m^{-2} d^{-1})\) and GPP \((5.3 g C-CO_2 m^{-2} d^{-1})\) were higher and lower than Illisarvik (Lara et al.). However, NEE\(_{EC}\) did not fit \(F_{\text{CO2}}\) as well \((r^2 = 0.80)\) as NEE\(_{NN}\). Mid-day NEE at was comparable to aircraft observations from young DTLB (Zulueta et al. 2010). Gap-filled daily NME was modest, ranging from \(-0.8\) and decreased over the study period. It ranged from 2.0 to 25.1 mg C-CH\(_4\) m\(^{-2}\) d\(^{-1}\) with a mean of 8.7 \([\text{CI}_{199} \pm 0.4] \) mg C-CH\(_4\) m\(^{-2}\) d\(^{-1}\) (Fig 2d). Even accounting for the greater GWP of CH\(_4\), NME\(_{NN}\) was used to gap-fill the flux data because it provided a reasonable fit \((r^2 = 0.62)\) to \(F_{\text{CO2}}\) observations. NME did not constitute a significant component of the carbon balance. Daily NME decreased over the study period as soils in the basin dried. NME at Illisarvik was much less than EC observations from a wet sedge dominated DTLB \((18.4 \text{ mg} C-\text{CH}_4 \text{ m}^{-2} \text{ d}^{-1})\) and chamber observations from DTLB \((26.1 \text{ mg} C-\text{CH}_4 \text{ m}^{-2} \text{ d}^{-1})\) on the Barrow Peninsula (Zulueta et al., 2011; Lara et al., 2015) and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP after accounting for the greater GWP of CH\(_4\).

Chamber ER was higher than EC estimates and showed modest variability among vegetation classes (Fig 3a). Greatest ER was observed.

3.2 Chamber Observations

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 \([\text{Cl}_{199} \pm 1.2] \), 5.4 \([\text{Cl}_{199} \pm 1.2] \) and 4.9 \([\text{Cl}_{199} \pm 0.7] \) g C-CO\(_2\) m\(^{-2}\) d\(^{-1}\). Shrub ER was significantly less \((3.5 g C-CO_2 m^{-2} d^{-1})\) than the other vegetated classes and Sparse had ER was the lowest ER among the classes \((2.0 [C_{199} \pm 0.3]) g C-CO_2 m^{-2} d^{-1}\). There were values were generally higher than chamber observations from DTLB or tundra sampled by Lara et al. (Fig 3a). The \(Q_{15} \) and \(R_{15} \) values also differed between vegetation classes. ER in the Sedge was the most sensitive to changes in air temperature, while modelled values provided the best fit \((R^2 = 0.82)\) to observations. Upland and Grass had the highest base respiration and fit observations moderately well (Table 3). EC estimated \(Q_{15} \) and \(R_{15} \) \((r^2 = 0.47)\) were generally lower than the vegetated chambers, but most similar to Shrub, which was the largest component of the footprint.

Chamber NME was much smaller than ER but there was significantly more variability among variable between vegetation classes than ER (Fig 3b & c). Sedge was a very strong CH\(_4\) source at 114.7 \([\text{Cl}_{199} \pm 15.3] \) mg C-CH\(_4\) m\(^{-2}\) d\(^{-1}\), which is comparable to chamber observations from vegetated ponds on the Barrow Peninsula (Lara et al., 2015). Sites across the arctic with sedge have higher NME than sites without sedge (Olefeldt et al., 2013). Shrub and Grass were very weak sources, 0.7 \([\text{Cl}_{199} \pm 0.3] \) and 0.4 \([\text{Cl}_{199} \pm 0.3] \) mg C-CH\(_4\) m\(^{-2}\) d\(^{-1}\), respectively and Sparse was neutral. Upland was a net CH\(_4\) sink \((1.1 [C_{199} \pm 0.4])\) mg C-CH\(_4\) m\(^{-2}\) d\(^{-1}\). Lara et al. (2015) did not find upland areas on the Barrow Peninsula to be CH\(_4\) sinks, but upland tundra is known to be a globally significant methane sink.
Footprint scaled chamber estimates of ER and NME were about 32% and 31% greater than the EC estimates. Mean estimated ER estimated was 3.2 μmol CO₂ m⁻² s⁻¹ and NME was 12.9 [CI₉⁵ = 8.1] μmol C m⁻² d⁻¹. The discrepancies between the EC and chamber observations is often observed and has been attributed to differences in measurement techniques, the small sample size of chamber observations, and footprint-scaled chamber fluxes were 59% and 47% higher than ER₃₅ or gap-filled NME, respectively. Mean ER₃₅ was 3.5 μmol CO₂ m⁻² s⁻¹ [CI₉⁵ = ±0.1], it fit ER₃₅ very well (R² = 0.95) as would be expected and ER₃₅ moderately well (R² = 0.46). Mean NME₃₅ was 12.8 [CI₉⁵ = ±1.3] μmol C m⁻² d⁻¹, it did not fit NME₃₅ well (R² = 0.30). At the basin scale, ER₃₅ (3.4 [CI₉⁵ = ±0.1] μmol CO₂ m⁻² s⁻¹) was slightly lower than ER₃₅ because of the exclusion of upland areas. NME₃₅ was higher (15.2 [CI₉⁵ = ±0.1] μmol C m⁻² d⁻¹) because of the greater sedge fraction in the basin than the footprint because the chamber cross sections (Table 2).

3.2 NEE Response to Environmental Factors and Vegetation Type

NN₂₀₀₂[NNEE] (r² = 0.91) had was estimated using four factors: PPFD, VPD, VWC, and Shrub. For comparison, NEE estimated using the Qₐₚ-paired with a light response curve (r² = 0.8) or a random forest regression tree (r² = 0.86) trained with the factors selected by NN₂₀₀₂ were not as accurate as NN₂₀₀₂. PPFD is the primary control over NEE, and a NN trained on PPFD alone provided a reasonable fit (r² = 0.83). The three additional factors, VPD, VWC, and Shrub, helped NN₂₀₀₂ fit a wider variety of conditions. Looking Examining the partial first derivative of NN₂₀₀₂ under different conditions, we can inspect provides interpretation of the modelled light response curves (Fig 4). The minimum of α values represent the peak light use efficiency, and are analogous to a in eq 5 (Fig 4b). With increasing PPFD, light use becomes less efficient and α approaches zero as the light response nears light saturation (Fig 4b).

VPD was a secondary control over NEE, which is consistent with the findings of another study using NN to analyse NEE (Moffat et al., 2012). Increasing VPD increased peak light use efficiency and net CO₂ uptake until a threshold, above which it had a strong limiting effect (Fig 4a & b). For example, under dry atmospheric conditions (e.g., VPD = 1500 Pa, 1.5 kPa), peak light use is less efficient (-12 nmol CO₂ μmol⁻¹ photon) than under conditions (18 nmol CO₂ μmol⁻¹ photon). The value of this VPD threshold was dependent upon soil moisture; from 1400 Pa to 5 kPa when VWC was highest to 200 Pa to 0.5 kPa when VWC was low.

Mapping NN₂₀₀₂[NNEE] and NN₂₀₀₂[ER₃₅] at Shrub = 100%, Shrub = 0%, and Shrub = 36% (footprint climatology FC₃₅) shows that VWC and Shrub were the primary controls over ER and thus influenced
NEE (Fig 4c & d). We can see from the partial first derivatives of \(NN_{\text{ER}} \) that increasing VWC increases ER from Shrub areas. In the absence of shrubs, increasing VWC inhibits ER, although it is important to note that variations in VWC were subtle ranging from 51.7% to 59.0%. The partial first derivative of \(NN_{\text{ER}} \) shows that VWC slightly limits NEE from non-Shrub areas and significantly reduces it in Shrub areas. These VWC relationships support Zona et al. (2010) who found VWC explained 70% of the variability in dry peak season NEE and ER and Kittler et al. (2016) who found drier soils increased both NEE after a wet tundra drainage experiment in Siberia. The chamber data support the inclusion of Shrub because Shrub ER was significantly lower than the other vegetation classes.

3.4 NME Response to Environmental Factors and Vegetation Type

\(NME_{\text{ER}} \) \((r^2 = 0.62) \) was estimated using \(NN_{\text{ER}} \) \((r^2 = 0.62) \) had five factors: Sedge, Shrub, F\(_{\text{TDL}}\), F\(_{\text{Shrub}}\), VWC, T\(_{\text{a}}\), U\(_{\text{PD}}\), and U. A random forest regression tree \((r^2 = 0.51) \) and a GLM \((r^2 = 0.25) \) trained on the factors selected by \(NN_{\text{ER}} \) were not as accurate as \(NN_{\text{ER}} \). NME was more chaotic and less dependent on any one factor than NEE which is why the \(NME_{\text{ER}} \) needed an extra factor and had a lower \(r^2 \) score. Source area had a significant effect on NME, and it was encouraging that the model contained Sedge, contained F\(_{\text{TDL}}\), and Sedge, F\(_{\text{Shrub}}\), since Sedge and Shrub were the strongest CH\(_4\) source and largest footprint component, respectively. These two factors can combine to map NME under three general situations: we can extrapolate to Sedge, F\(_{\text{TDL}}\) = 100% & Shrub, F\(_{\text{Shrub}}\) = 0% or Sedge, F\(_{\text{TDL}}\) = 0% & Shrub, F\(_{\text{Shrub}}\) = 100%, or to footprint climatology represent actual F\(_{\text{TDL}}\), where F\(_{\text{TDL}}\) = 11% and F\(_{\text{Shrub}}\) = 37% (Table 2). The footprint climatology means that some upland tundra is also assumed in the F\(_{\text{TDL}}\) estimate, which brings reduced NME down.

VWC was the primary climatic driver identified by \(NN_{\text{ER}} \). Wetter soils had a consistent positive effect on NME which was strongest when Sedge, F\(_{\text{TDL}}\) was high (Fig 5a & b). Between driest and wettest conditions, estimated NME increased by an order of magnitude at Sedge, F\(_{\text{TDL}}\) = 100%, 4-fold at Sedge, F\(_{\text{Shrub}}\) = 100%, and from neutral to a source at footprint climatology. The F\(_{\text{TDL}}\) (Fig 5a). Higher T\(_{\text{a}}\) generally had a negative effect of soil moisture on CH\(_4\) production NME (Fig 5c & d). The negative correlation between T\(_{\text{a}}\) and VWC \((r = 0.54, < 0.01) \) may have contributed to this result. \(NN_{\text{ER}} \) performance improved less with the addition of U indicating the \(NN_{\text{ER}} \) was near saturation and its effects are less relevant. Emission has been noted in many other studies (e.g., Kittler et al. 2016) that higher U had a weak limiting effect on NME when VWC was high and increased NME when VWC was low (not shown) Zona et al. 2009, Olefeldt et al. 2013).

4 Discussion

4.1 Carbon Balance and Controlling Factors

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season CO\(_2\) uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant and Oechel, 2013; Lara et al. 2015). These differences may be due to differences in the periods of observation and year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at Illisarvik. Mean 1980-2010 T\(_{\text{a}}\) at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre.
Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer. Shrub cover is expected to have a number of impacts on the microclimate and carbon cycle of Arctic tundra (Myers-Smith et al., 2011). Typically, greater deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential compared to graminoid-dominated tundra (Sweet et al., 2015; Street et al., 2018). GPP was greater at Illisarvik compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010). It was more similar to Katyk which has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007). Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature and thaw depth, among other factors (Sturtevant and Oechel, 2013). The ‘snow-shrub hypothesis’ (Sturm et al. 2001) describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to increased decomposition and nutrient availability and promotes further shrub growth. At Illisarvik, snow blowing in off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height (Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as the taller shrubs (>40 cm) could not fit inside the chambers. In another study, chamber ER increased with greater shrub cover in upland tundra (Ge et al., 2017). ER at Illisarvik was greater than the ER observed at both the young wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007). The importance of F_{Shrub} in describing temporal variations in half hourly NEE within the flux footprint at Illisarvik is further evidence of the importance of shrub cover on tundra carbon cycle processes in this environment.

PPFD and VPD were the most important factors for predicting half hourly NEE. This was to be expected as they are typically the primary controls over GPP (Aubinet et al., 2012). The limiting effects of VPD are consistent another study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites (Euskirchen et al. 2012; López-Blanco et al. 2017). VWC was also important at Illisarvik. Zona et al. (2010) found VWC could explain 70% of the variability in daily peak season ER in young DTLB. Similarly, Kittler et al. (2016) found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with our results at Illisarvik when F_{Shrub} was low. As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015). NME at Katyk was even higher than the Barrow DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; Parmentier et al., 2011). In our NN modelling of NME at Illisarvik, \(F_{\text{sedge}} \) was the most important factor for predicting half hourly \(F_{\text{CH}_4} \). Sedges are aquatic plant species with aerenchymatous tissues that act as conduits for \(\text{CH}_4 \) from below the water table to the atmosphere and limits \(\text{CH}_4 \) oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). The inclusion of \(F_{\text{sedge}} \) further refined the model, allowing it to better fit the site-specific distribution of vegetation types. Budischchev et al. (2014) found shrub and sedge fraction had a significant influence on \(F_{\text{CH}_4} \) at Katyk. Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support that (Davidson et al., 2016).
VWC was the second most important factor, which was expected as CH$_4$ production occurs in anaerobic environments and has been linked to variability in CH$_4$ emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; Olefeldt et al., 2013). Higher T_s generally had a negative effect on NME (Fig 5c & d). Higher soil temperatures (T_s) was the third most important factor. Higher T_s increase the oxidation potential of methanotrophs (Liu et al., 2016; King and Adamsen, 1992), so this result was expected for the drier portions of the basin and upland tundra. However, this was not expected for the sedge areas because most studies find NME in sedges is positively correlated to T_s (Olefeldt et al., 2013). There was a diurnal cycle in NME with NME peaking in the morning when T_s was at its daily minimum, which supports this finding (2013). The negative correlation between T_s and VWC may partly explain this. NN NME performance improved less with the addition of U indicating the NN was near saturation and its effects are less relevant. Higher wind speed had a weak limiting effect on NME when VWC was high and increased NME when VWC was low (not shown). High winds were mainly associated with two strong storm events. In order to better resolve this relationship a longer dataset would be needed.

3.4.2 Upscaling

ER_{FS} and NME_{FS} were about 59% and 47% greater than the gap filled EC estimates. Discrepancies between EC and chamber observations are common and have been attributed to differences in measurement techniques, the small sample size of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair weather (Katayanagi et al., 2005; Chaichana et al., 2018). Meijide et al. (2011) found that chamber NEE could be up to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% higher than EC estimates. Others have been more successful, yielding upscaled chamber NME fluxes within 10% of EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017). A potential reason for the disagreement with ER_{FS} may be the lack of direct observations by the EC system under low-light conditions. Another potential source of error for the upsampling is inaccuracies in the vegetation map.

4.3 Future Trajectories

Presently, NEE and ER peak growing season carbon uptake at Illisarvik are within ranges observed within similar is greater than similarly aged landscape features on the Barrow Peninsula but NME was considerably lower, Alaska and more similar to levels observed at Katyk, Siberia. NME is well below levels observed at any other DTLB studied, making this site a stronger GHG sink than other DTLB. However, the basin at Illisarvik will continue to evolve and the trajectory it takes could significantly alter its carbon balance. Historically, DTLB on Richards Island and the Tuktoyaktuk Peninsula evolve into wet sedge-moss peatlands (Ovendend, 1986). As sedge wetlands, as do DTLB on the Barrow Peninsula (Ovendend, 1986; Lara et al., 2015). This would cause NME to Active maintenance of the outlet channel at Illisarvik has artificially lowered soil moisture and flooding and potentially limited this transition thus far (C. Barn, personal communication 2016).

If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME will increase significantly. NME_{est} estimated that at Figure 5a shows that with extrapolations to full Sedge cover ($F_{Sedge} = 100\%$) NME would be 17.9 (CI = 10.6) mg C CH$_4$ m$^{-2}$ d$^{-1}$, which is comparable to EC.
observations from a wet sedge DTLB values on the Barrow Peninsula (Zona et al., 2009). If the basin becomes wetter and the shrubs are displaced by sedges and grasses net carbon uptake may increase.

NNER and NNNC estimated that at Shrub s = 0% NEE and ER over the study period would be 1.9 (CI\pm0.5) g C CO$_2$ m$^{-2}$ d$^{-1}$ and 1.8 (CI\pm1.1) g C CO$_2$ m$^{-2}$ d$^{-1}$ respectively. If the basin instead transitions into a shrub dominated DTLB similar to those of Old Crow Flats, Yukon (Lantz et al., 2015), NNEδ would remain similar to current levels meaning the basin would remain a weak source of CH$_4$. These are projections well beyond F_{C180} fractions observed so confidence in the specific values predicted is low.

However, active maintenance of the basin’s outlet channel (C. Burns, personal communication 2016) has artificially lowered soil moisture and potentially limited this transition. This coupled with climate change will promote shrub expansion and Illisarvik could end up more like the shrub dominated DTLB of Old Crow Flats, Yukon (Lantz et al., 2015). NNNC and NN$_{d}$ estimated that at Shrub s = 100% NEE and ER over the study period would be 0.9 (CI\pm1.5) g C CO$_2$ m$^{-2}$ d$^{-1}$ and 2.4 (CI\pm1.6) g C CO$_2$ m$^{-2}$ d$^{-1}$ respectively. Other studies have also suggested that shrub expansion could influence NEE by increasing ER (Merbold et al., 2009). Mayer-Smith et al. The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME. Partly because Shrub cover had less overall influence on NEEδ. Figure 4c. shows the model suggests ER decreases and GPP increases with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions. To our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of DTLB NEE and NME have been published to help evaluate the factors influencing carbon losses through the non-growing season months. Further observation year-round is needed to better understand the implications of continued vegetation change on the carbon balance of DTLB such as Illisarvik.

Lantz et al. (2014) NN$_{d}$ estimated NME would be 13.1 (CI\pm9.4) mg C CH$_4$ m$^{-2}$ d$^{-1}$ at Shrub s = 100%, meaning the basin will likely remain a net source of CH$_4$.

4 Conclusions

This study investigated NEE, GPP, ER and NME in the Illisarvik experimental DTLB using EC and chamber data. To our knowledge this is the first such study conducted in a DTLB outside of the Barrow Peninsula. Our observations were generally in agreement with other studies but show how Illisarvik differs from the colder, wetter DTLB on the Barrow Peninsula, or Siberia. Illisarvik is a carbon sink during the growing season with NME only having a small positive-effect on the net carbon balance. Illisarvik NEE was similar to young. Our flux observations were generally in agreement with other studies but show how shrub-dominated DTLB such as Illisarvik and Katyk in Siberia differ from sedge-dominated DTLB on the Barrow Peninsula. Illisarvik’s growing season net carbon uptake was greater than young and ancient DTLB on the Barrow Peninsula, while more and more similar to the shrub dominated ancient DTLB in Siberia. NME at Illisarvik was lower than all published DTLB studies likely due to better drainage, drier conditions, and more diverse vegetation. However, higher NME in early July indicated we likely missed a key period of CH$_4$ emissions earlier in the season. A longer, more comprehensive study would be needed to resolve the annual carbon budget for Illisarvik.
Chamber measurements of ER and NME from different land cover classes within and outside the Illisarvik basin added context to the EC observations. Vegetation class (and associated difference in terrain and soil properties) had only a slight small but significant impact on NEE and ER but was one of the dominant controls over NME. Sedge areas were a strong source of CH\textsubscript{4}, other vegetation types in the basin were weak sources, and upland areas were a net sink. These results suggest that NME in particular is expected to shift as both the terrain and the vegetation of the Illisarvik DTLB continue to evolve.

Appendix A: Neural Networks analysis and uncertainty calculations

Typically, NEE is gap-filled using flux-partitioning algorithms that model ER and GPP separately using \(T_s \) and PPFD, respectively (e.g. Lee et al., 2017; Aubinet, 2012). However, this method requires night-time observations and thus does not perform well for Arctic summertime measurements due to the limited number of samples available during low light conditions. There are no widely agreed upon functional relationships for gap-filling NME since CH\textsubscript{4} production and consumption vary considerably both between different land cover types and environmental conditions.

Some methods that have been used include: classification and regression trees (CART) (Nadeau et al., 2013; Sachs et al., 2008), general linear models (GLM) (Zona et al., 2009), and mean diurnal variation (Nadeau et al., 2014), and classification and regression trees (CART) (Nadeau et al., 2013; Sachs et al., 2008). We attempted to use a GLM, CART, and random forest regression trees but they were not flexible enough to account for source area variability.

Neural networks (NN) are flexible machine learning methods that are ideally suited to perform non-linear, multivariate regression. They make no a priori assumptions about the functional relationships between the factors and responses. (Melesse and Hanley, 2005; Desai et al., 2008). NN are universal approximators; given enough hidden nodes a NN is capable of mapping any continuous function to an arbitrary degree of accuracy (Hornik et al., 1991). If all relevant climate and ecosystem information are available to a network, the remaining variability can be attributed to noise in the measurement (Moffat et al., 2010).

NN have been shown to be among the best performing methods for gap-filling NEE data for temperate forest and wetland sites in Europe (Papale et al., 2003; Moffat et al., 2007; Knox et al., 2016). They have also been used to gap-fill NME time series in sub-arctic wetlands, tundra sites, and wet sedge tundra (Dengel et al., 2013). NN have been used to identify and model factors influencing NEE and to partition NEE into ER and GPP (Moffat et al., 2010). NNs have even been used to upscale fluxes from the ecosystem level to the continental scale (Dou and Yang, 2018; Papale et al, 2003).

A NN approximates a true regression function \(F(X) \):

\[
F(X) = t(X) - \varepsilon(X)
\]

(A1)

where \(t(X) \) is the target function and \(\varepsilon(X) \) the noise (Khosravi and Nahavandi, 2010). \(X = [x_0, x_1, ..., x_M] \) where \(x_0 = 1 \) is a bias term and \([x_1, ..., x_M] \) are the independent variables. \(M \) denotes the number of independent variables. The network approximates \(F(X) \) as \(f(X, w) \) by mapping the relationship between \(X \) and the target. Here we used feed-forward dense NN with a single hidden layer.
\[f(X, w) = \sum_{n=0}^{N} \beta_n g(\sum_{m=0}^{M} \gamma_{mn} x_m) \]

\(g(\cdot) \) is a non-linear transfer function, here we used the rectified linear activation unit (ReLU) (Anders and Korn, 1999).

\(H \) denotes the number of hidden nodes in the network and must be assigned before training. Too many hidden nodes and the NN will overfit the training data, too few and it will underfit. Early stopping will prevent NN from overfitting training sets (Weigend, 1993; Sarle, 1995; Tettö et al., 1995). Therefore, it is more important to ensure a NN has enough hidden nodes to adequately map the target function (Smith, 1994). We set \(H \) to a function \(M \), the number of training samples \(N \), and the number of targets \(1 \):

\[H = \frac{N}{\alpha(M + 1)} \]

This rule of thumb ensures a NN has sufficient flexibility to approximate the target response. The weights \(w = [\beta_1 ... \beta_n ... \gamma_{1m} ... \gamma_{nm}] \) are randomly initialized and after each model iteration is updated by backpropagating the error through the network. \(N \) denotes the number of observations or targets. The error metric most commonly used is the mean squared error, MSE:

\[MSE = \sum_{i=1}^{B} (f(X_i) - t_i)^2 \]

The weights are adjusted in the direction that will decrease the error and training continues until a stopping criterion is reached. We chose to set aside 20% of the training data as a test set to be used for early stopping, and terminated training when the MSE of the test set failed to improve for 10 consecutive iterations.

Bootstrap is used to account for model variability and estimate confidence and prediction intervals by training NN on \(B \) different realizations of the dataset, where \(B \) is the number of bootstrapped samples, we used \(B = 30 \) (Heskes, 1997; Khosravi & Nahavandi, 2010). An individual NN generates point outputs approximating a target function with no information on the confidence in those estimates (Khosravi & Nahavandi, 2010). However, there are usually multiple \(f(X, w) \) that approximate \(F(X) \) because of the random weight initializations (Weigend & LeBaron, 1994). As such, there are two sources of error we are concerned with, the accuracy of our estimation of \(F(X) \) and the accuracy of our estimates with respect to the target. A confidence interval describes the first (e.g. \(F(X) - f(X, w) \)) while a prediction interval describes the latter (e.g. \(t(X) - f(X, w) \)) (Heskes, 1997). By definition, a prediction interval contains the confidence interval because:

\[t(X) - f(X, w) = [F(X) - f(X, w)] + \varepsilon(X) \]

For \(b = 1 ... B \), a random sample with replacement of size \(p \) is drawn from the original dataset. Setting \(p \) equal to the size of the original dataset yields a set of \(B \) training sets each containing approximately 67% of the original dataset. The 33% leftover from each bootstrap sampled can be used for model validation (Heskes, 1997). The average of our ensemble of networks can then serve as our approximation of \(F(X) \):

\[F(X) = \frac{1}{B} \sum_{b=1}^{B} f_b(X, W) \]

The variance of the model outputs is:

\[\sigma^2(X) = \frac{1}{B-1} \sum_{b=1}^{B} \left(f_b(X, W) - F(X) \right)^2 \]

A confidence interval (CI) for \(F(X) \) can be calculated as \(F(X) \pm t_{1-\alpha, df} \sigma(X) \), where \(tscore \) is the students t-score, \(1-\alpha \) is the desired confidence level, and \(df \) are the degrees of freedom which are set to the number of bootstrapped
NN performance can be seen to improve with the inclusion of more factors, until the model saturates and becomes over-parametrized (Fig A1).

Random forests (RF) are said to be among the best performing gap filling methods for NME (Kim et al., 2020). It has been claimed that aggregating many regression trees in a RF prevents overfitting (Breiman, 2001). We did not find this to be the case. Following the methods outlined in Kim et al. (2020): a RF with 400 trees and no restrictions on tree size fit F_{CH4} nearly perfectly ($R^2 = 0.98$). Without considerable limitations on tree size, the RF will just learn the dataset rather than the relationships present. It is our view that this tree is extremely overfit, as highlighted by the example in Figure A2. Further, RF do not allow for straightforward visualization functional relationships in a dataset. Plotting F_{CH4} against VWC, which is the dominant environmental control identified does not reveal a meaningful relationship like Figure 5 a & c. You can look at an individual decision tree within the RF, but those are difficult to interpret beyond the first few splits, and each tree will be different. Lastly, RF are incapable of projecting beyond the parameter space observed which limited their applicability for this study (Fig A2). This presents an issue because gaps in EC data arise from data filtering (e.g. clear calm nights, precipitation events) and are by definition outside the parameter space observed.

Data & Code availability

Our data and code are available on github: https://github.com/June-Spaceboots/Illisarvik_CFluxes

Author Contribution

JS, AC, and GH designed the EC study. AL and EH designed the chamber study. JS collected, processed, and analysed the EC data. AL and EH collected the chamber data with help from JS. AL and EH processed the chamber data. JS designed and conducted the NN analysis. JS prepared the manuscript with input from all co-authors.

Competing interests

The authors declare they have no competing interests.

Acknowledgements

We would like to thank: the staff at the Aurora Research Institute in Inuvik for providing logistical support, Chris Burn for allowing us to work at Illisarvik and the knowledge he shared, Alice Wilson for sharing vegetation survey data, and Tony Lewkowicz for collecting and sharing the drone images. and Rick Ketler for providing logistical support. Funding for this study was provided by the Canada Foundation for Innovation and the National Science Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Polar Continental Shelf Program, Natural Resources Canada.
References

Clark MG, Humphreys ER, Carey SK. Low methane emissions from a boreal wetland constructed on oil sand mine tailings, Biogeosciences. 2020;17: 667–682.

Figures & Tables

b. Flux Contribution
- 50% Contour Water
- 70% Contour Shrub
- 90% Contour Sedge
- Basin Grass
- Flux chambers Upland
- EC System Sparse
Figure 1: a) Map of the distribution of vegetation classes at Illisarvik, with the footprint climatology (FClim) over the study period, the locations of the chambers and the eddy covariance (EC) system. The alphanumeric labels correspond to the unit codes in Table 1. b) Legend for the map in a. c) Oblique drone image of Illisarvik, take at 16:40 July 23rd 2016 view from E of DTLB towards W. The Basin and EC system are shown on the image using the same symbology as a.
Figure 2: a) Half hourly air and soil temperatures, displayed along with photosynthetic photon flux density (PPFD). b) Hourly soil volumetric water content and daily total precipitation. c) Gap-filling daily total NEE (dark), Half hourly F_{CO2} (green), ER and NEE_{gr} (grey), and d) Half hourly F_{CH4} (red) and d daily total NME, NME_{gr} (grey).
Figure 3: Boxplot of a) ER, b) NME, and c) NME fluxes measured using closed chambers, grouped by vegetation class. The orange lines represent the median, blue stars represent means, the boxes indicate the interquartile range (Q3-Q1), the whiskers indicate Q1−(1.5*IQR) and Q3+(1.5*IQR), and the circles represent outliers extending beyond the whiskers. Note the scale for c) Sedge in b is different.
Figure 4: a. Modelled NEE response to PPFD under different VPD conditions and b. the partial first derivatives of NEE with respect to PPFD. c. Modelled ER (dashed line) and NEE (solid line) response to VWC at different Shrub% and d. the partial first derivatives of ER (dashed line) and NEE (solid line) with respect to VWC. NEE in c was calculated at PPFD = 600 μmol m⁻² s⁻¹. The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.
Figure 5: a. Modelled NME response to VWC at different source area fractions and b. the partial first derivatives of NME with respect to VWC. c. Modelled NME response to T_s at different source area fractions and d. the partial first derivatives of NME with respect to T_s. The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.
Figure A1.1: The averaged mean squared error (θ) of the bootstrapped Neural Network model validation datasets, with error bars showing one standard error (SE). The x-axis shows models of increasing size from left to right (1-9 factors), and the label indicates the factor added to the model at each step. The blue line indicates the 1-SE rule threshold and the red bar indicates the model selected by the 1-SE rule.
Figure A2: F_{CH4} estimated by a RF using the same factors as the NN model. The colours correspond to the scenarios in Fig 5a. VWC was estimated over the range 0.45 to 0.65.

Table 1: Dominant species or landscape feature within the vegetation/cover classes. Unit codes correspond to the map in Figure 1a.
<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Vegetation Class</th>
<th>Dominant Species/Landscape feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Shrub</td>
<td>Salix alaxness (Tall Willow)</td>
</tr>
<tr>
<td>1b</td>
<td>Shrub</td>
<td>Salix spp. glauca (Low Willow)</td>
</tr>
<tr>
<td>1c</td>
<td>Shrub</td>
<td>Alnus spp. viridis subsp. crispa (Alder)</td>
</tr>
<tr>
<td>2a</td>
<td>Sedge Marsh</td>
<td>Carex spp. gymnata (Sedge)</td>
</tr>
<tr>
<td>2b</td>
<td>Sedge Marsh</td>
<td>Arctophila fulva (Pendant Grass)</td>
</tr>
<tr>
<td>3</td>
<td>Grass Meadow</td>
<td>Pocacea spp. (Grasses), Eriophorum angustifolium (Cotton Grass)</td>
</tr>
<tr>
<td>4a</td>
<td>Sparse Cover</td>
<td>Sparse Vegetation</td>
</tr>
<tr>
<td>4b</td>
<td>Sparse Cover</td>
<td>Bare Ground</td>
</tr>
<tr>
<td>5</td>
<td>Ponds</td>
<td>Hippuris vulgaris (Mare’s Tail), Open Water</td>
</tr>
<tr>
<td>6a</td>
<td>Outside of Basin</td>
<td>Upland Tundra (Dwarf shrub tundra: Salix spp. & Betula nana (Birch))</td>
</tr>
<tr>
<td>6b</td>
<td>Outside of Basin</td>
<td>Fen</td>
</tr>
<tr>
<td>6c</td>
<td>Outside of Basin</td>
<td>Ocean</td>
</tr>
</tbody>
</table>

Table 1: Primary species and notable landscape feature present within the vegetation/cover classes.

Table 2: The surface cover class fractions of the basin, along with the mean source area fractions of the footprint climatology (F_Clim) and the range of source area fractions for individual half hourly observations shown in brackets.

<table>
<thead>
<tr>
<th>Surface Class</th>
<th>Basin</th>
<th>Footprint/F_Clim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrub</td>
<td>48.3%</td>
<td>36.0% [0.0 – 79.0%]</td>
</tr>
<tr>
<td>Grass</td>
<td>27.9%</td>
<td>39.0% [1.1-78.1%]</td>
</tr>
<tr>
<td>Sedge</td>
<td>12.3%</td>
<td>10.9% [0.0 – 55.6%]</td>
</tr>
<tr>
<td>Sparse</td>
<td>8.4%</td>
<td>2.2% [0.0 – 33.6%]</td>
</tr>
<tr>
<td>Water</td>
<td>3.1%</td>
<td>0.2% [0.0 – 4.4%]</td>
</tr>
<tr>
<td>Upland</td>
<td>0%</td>
<td>6.2% [0.6 – 15.6%]</td>
</tr>
<tr>
<td>Outside Basin</td>
<td>0%</td>
<td>12.3% [0.2 - 28.0%]</td>
</tr>
</tbody>
</table>

Table 3: The surface cover class fractions of the basin, along with the mean source area fractions of the footprint climatology and the range of source area fractions for individual observations shown in brackets.
Table 3: The ER temperature sensitivity (Q_{10}) and base respiration (R_{10}) estimated by Laforce (2018) and estimated from nighttime EC footprint observations.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Q_{10}</th>
<th>R_{10} μmol m$^{-2}$ s$^{-1}$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedge</td>
<td>1.1</td>
<td>3.8</td>
<td>0.85</td>
</tr>
<tr>
<td>Upland</td>
<td>1.9</td>
<td>4.1</td>
<td>0.55</td>
</tr>
<tr>
<td>Grass</td>
<td>1.6</td>
<td>4.0</td>
<td>0.55</td>
</tr>
<tr>
<td>Shrub</td>
<td>1.8</td>
<td>2.7</td>
<td>0.46</td>
</tr>
<tr>
<td>Sparse</td>
<td>1.0</td>
<td>1.9</td>
<td>0.01</td>
</tr>
<tr>
<td>Night-time EC observations (n=100)</td>
<td>1.6</td>
<td>2.9</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 4: Growing season (gs) daily range in eddy covariance-derived NEE and NME from drained thermokarst lake basins (DTLB) and other select wetland/coastal tundra sites across the Arctic. The period of studies measurements for the studies observations are: a) mid-June – end of July b) June 12 - August 28, 2007, Fig 4 c) June 11 – August 25, 2011 d) upscaled chamber estimates, exact dates not specified, e) mean June 15 - August 31 2003-2006, f) July 5 – Aug 4, 2009.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site Characteristics</th>
<th>NEE: g C-CO$_2$ m$^{-2}$ d$^{-1}$</th>
<th>NME: mg C-CH$_4$ m$^{-2}$ d$^{-1}$</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilisarvik</td>
<td>Young DTLB, Low & Tall Shrub/Grass/Wet Sedge</td>
<td>-1.5</td>
<td>8.7</td>
<td>(this study)</td>
</tr>
<tr>
<td>Various DTLB, Barrow Peninsula, Alaska</td>
<td>Young DTLB, Wet Sedge Tundra</td>
<td>-1.1a, -0.9a, -0.8b</td>
<td>18.4c, 26.1c, 44.0c</td>
<td>Zona et al. 2009$^a & 2010^b$, Sturtevant and Oechel, 2013c; Lara et al. 2015d</td>
</tr>
<tr>
<td>Medium DTLB, Wet Sedge Tundra</td>
<td>-0.7a, -0.6a, -0.4b</td>
<td>27.0c, 41.3c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old DTLB, Wet Sedge Tundra</td>
<td>-1.0a, -0.4a, 0.1b</td>
<td>24.2c, 38.7c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancient DTLB, Wet Sedge Tundra</td>
<td>0.4d</td>
<td>21.7d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katvy, Indigirka lowlands, Siberia</td>
<td>Ancient DTLB, Dwarf-Shrub and Wet Sedge Tundra</td>
<td>-1.3e</td>
<td>36.0f</td>
<td>Van der Molen et al. 2007g, Budishchev et al. 2014h</td>
</tr>
</tbody>
</table>