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Abstract. Thermokarst features are widespread in ice-rich regions of the circumpolar Arctic.  The rate of thermokarst 10 

lake formation and drainage is anticipated to accelerate as the climate warms.  However, it is uncertain how these 

dynamic features impact the terrestrial Arctic carbon cycle.  Methane (CH4) and carbon dioxide (CO2) fluxes were 

measured during peak growing season using eddy covariance and chambers at Illisarvik, a 0.16 km2 thermokarst lake 

basin that was experimentally drained in 1978 on Richards Island, Northwest Territories, Canada.  Vegetation in the 

basin differs markedly from the surrounding dwarf-shrub tundra and included patches of tall shrubs, grasses and sedges 15 

with some bare ground and a small pond in the centre.  During the peak growing season, temperature and wind 

conditions were highly variable and soil water content decreased steadily.  Basin-scaled net ecosystem CO2 exchange 

(NEE) measured by eddy covariance was -1.5 [CI95% ± 0.2] g C-CO2 m-2 d-1; NEE followed a marked diurnal pattern 

with no day-to-day trend during the study period.  Variations in half-hourly NEE were primarily controlled by 

photosynthetic photon flux density and influenced by vapor pressure deficit, volumetric water content and the presence 20 

of shrubs within the flux tower footprint, which varied with wind direction.   Net methane exchange (NME) was low 

(8.7 [CI95% ± 0.4] mg CH4 m-2 d-1 and had little impact on the growing season carbon balance of the basin.  NME 

displayed high spatial variability and sedge areas in the basin were the strongest source of CH4 while upland areas 

outside the basin were a net sink.  Soil moisture and temperature were the main environmental factors influencing 

NME.  Presently, Illisarvik is a carbon sink during the peak growing season. However, these results suggest that rates 25 

of growing season CO2 and CH4 exchange rates may change as the basin’s vegetation community continues to evolve.      
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1 Introduction 

The northern permafrost region stores approximately 50% of global organic soil carbon in 16% of the terrestrial land 30 

area (Tarnocai et al. 2009).  Thermokarst landscapes account for approximately 20% of the land area in this region 

and hold about half of its organic soil carbon (Olefeldt et al., 2016).  Lake thermokarst landscapes are widespread in 

poorly drained, sedimentary permafrost lowlands with excess ground ice volume and constitute about a third of all 
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thermokarst area (French, 2013; Olefeldt et al., 2016).  Thermokarst lakes drain, sometimes catastrophically, via bank 

overflow, ice wedge erosion, coastal erosion, and stream migration (Billings and Peterson, 1980; Mackay, 1999).  35 

Thermokarst lakes and drained thermokarst lake basins (DTLB) are prominent landscape features of the Western 

Canadian Arctic (Mackay, 1999; Marsh et al, 2009; Lantz & Turner, 2015).  Lake formation and drainage is a natural 

part of the thaw lake cycle, but it is anticipated that climate change will accelerate or disturb this cycle, potentially 

altering the regional carbon balance (Jones et al., 2018).   

Net ecosystem exchange (NEE), ecosystem respiration (ER) and gross primary productivity (GPP), where NEE =40 

ER − GPP are lower in the Arctic than warmer regions but have significant seasonal cycles and variability between 

vegetation types (Virkkala et al., 2018).  Future trajectories in NEE will in large part be governed by ER (Biasi et al., 

2008; Cahoon et al.,2012).  Dominant vegetation types in the Western Canadian Arctic are erect-shrub tundra and 

wetlands (Walker et al., 2005).  Growing season NEE is typically negative across these units throughout the Arctic 

indicating a net CO2 sink as GPP exceeds ER in part due to cold and/or anoxic soil conditions (Virkkala et al., 2018; 45 

Lafleur et al., 2012).  Annual NEE can be positive or negative with large variation in GPP linked to annual weather 

variability (Virkkala et al., 2018, McGuire et al., 2009).  Arctic net methane exchange (NME) is positive because 

wetland areas are strong methane (CH4) sources while upland areas with better drainage can be net sinks (Whalen and 

Reeburgh, 1990; McGuire et al., 2009; Sturtevant and Oechel, 2013).   

Thermokarst lakes are well recognized sources of CH4 (Walter et al., 2007) which is 28 times as potent as carbon 50 

dioxide (CO2) on a 100-year time scale (IPCC, 2014).  Thermokarst lake formation and expansion is expected to exert 

a positive feedback on climate change and accelerate Arctic warming in the near term, but modelling suggests that 

drainage may limit expansion and result in decreased lake area by the end of the century (van Huissteden et al., 2011).  

Post drainage, DTLB undergo rapid ecological succession.  In colder tundra environments, wet meadows or polygonal 

landscapes dominated by sedges, grasses and rushes will form (Lara et al., 2015).  In slightly warmer, boreal and 55 

transitional regions, DTLB often become dominated by willows and other shrubs (Lantz and Turner, 2015). 

Carbon exchange in DTLB of various ages has been examined in a few studies, almost exclusively focused on the 

Barrow Peninsula in Northern Alaska.  DTLB NEE during the growing season is negative with greatest CO2 uptake 

in younger basins and decreasing net uptake as basins age in this region (Zona et al., 2010; Zulueta et al., 2011; 

Sturtevant and Oechel, 2013; Lara et al., 2015).  DTLB source/sink strength of CH4 was found to be highly variable 60 

depending on vegetation and ground conditions (Lara et al., 2015).  NME is highest in wet meadows and remnant 

ponds but considerably reduced in areas with better drainage (Zona et al., 2009; Zona et al., 2012; Lara et al., 2015).  

There may be regional variations in the carbon balance of DTLB.  For example, a shrub dominated ancient DTLB 

known as Katyk in the Indigirka lowlands of Siberia shows considerably higher growing season carbon uptake than 

young Alaskan DTLB with comparable NME (van der Molen et al., 2007; Parmentier et al. 2011).  Similarly, DTLB 65 

in the Western Canadian Arctic may have different carbon fluxes due to differences in climate and vegetation 

composition.     

In this study, fluxes of CO2 and CH4 were measured at Illisarvik, an experimentally drained thermokarst lake basin on 

Richards Island in the Western Canadian Arctic, Northwest Territories, Canada.  Fluxes of CO2 and CH4 were 

measured during the peak growing season using a combination of closed chamber and eddy covariance (EC) 70 
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measurements. NEE was calculated from fluxes and storage change and was separated into ER and GPP. Here we 

report on: 1) the spatial and temporal variability of the NEE and NME, 2) the vegetation and environmental factors 

influencing NEE and NME, 3) how the growing season carbon balance at Illisarvik compares to other DTLB, and 4) 

potential future carbon balance trajectories as Illisarvik’s vegetation communities continue to evolve. 

2 Methods 75 

2.1 Study Site and Data Collection 

The study took place at Illisarvik, a DTLB on Richards Island (69˚28’47.5” N, 134˚35’18.7” W), that was drained 

experimentally in 1978 (Mackay, 1981).  Illisarvik has since served as the focus of studies on permafrost growth, 

active layer development and vegetation succession (Ovenden, 1986; Mackay and Burn, 2002; O’Neil et al., 2012; 

Wilson et al., 2019).  At the nearby Tuktoyaktuk climate station mean annual air temperature (Ta) is -10.1 °C, July is 80 

the warmest month with a mean of 11°C and January is the coldest at -27°C.  Mean annual precipitation is 160.7 mm 

yr-1, the majority falling as rain in the summer and autumn.  Snow cover typically lasts from mid-September or early 

October to late May (Environment Canada. 2016).  Tuktoyaktuk is 60 km east of Illisarvik and in similar proximity 

to the coast so the climatology is expected to be similar at Illisarvik. 

In the 39 years since drainage, Illisarvik has undergone rapid vegetation succession.  After drainage, there were two 85 

remnant ponds.  In the first five years after drainage, vegetation colonized the basin margins and wetter areas 

(Ovenden, 1986).  By 1999, low vegetation had proliferated across most of the basin and taller willows had become 

established along the basin margins (Mackay and Burn; 2002).  By 2010, some of the willows had grown to be 3 m in 

height (O’Neil and Burn; 2012).  Current vegetation at Illisarvik is diverse relative to the dwarf-shrub tundra of the 

surrounding uplands (Table 1); the basin hosts a mix of woody shrubs (Salix spp., Betula spp., & Alnus spp), wetland 90 

vegetation (Carex aquatilis, Arctophila fulva, etc.), and various grasses (Pocacea spp.) (Wilson et al. 2019).  The 

basin is partly ringed by a terrace of peat that formed after a partial drainage event ~ 5000 years BP and supports 

vegetation similar to the uplands (Michel et al., 1989).  An ancient DTLB is located 100 m to the south of the Illisarvik 

basin and the Arctic Ocean is to the west of the basin, separated by a ridge of upland tundra about 50 m wide at its 

narrowest (Fig 1). 95 

A vegetation survey of species composition and abundance was done on a 50 m grid in and around the basin during 

the 2016 study period (Wilson et al., 2019).  A vegetation map was created with ten units based on plant functional 

type and vegetation structure, with sub-units denoting sub-canopy vegetation.  The unit boundaries between grid points 

were estimated visually by traversing the grid lines.  Additional survey data on vegetation units and canopy height 

were collected manually with a GPS in the proximity of the EC station because greater resolution was needed for 100 

footprint modelling.  Aerial imagery was collected on July 23rd over two flights using a Phantom 2 drone (DJI, 

Shenzhen, China).  The GPS points and drone imagery were used to cross reference and modify the map of Wilson et 

al. (2019).  The ten units were then aggregated into six broader surface cover classes (listed from largest to smallest 

areal fraction within the footprint climatology (FClim) see Section 2.3 for definition): shrub, grass, sedge, upland, 

sparse, and water classes (Fig 1 & Table 1). 105 
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2.2 Weather and Soil Measurements 

Weather data were logged on a CR1000 datalogger (Campbell Scientific Inc, Logan, UT, USA; CSI) at 5-minute 

intervals.  Net all-wave radiation (Rn) and photosynthetic photon flux density (PPFD) were measured with a NRLite 

net radiometer (Kipp & Zonen, Delft, Netherlands) and a SQ-110 quantum sensor (Apogee Instruments, Logan, UT, 

USA), respectively 3.2 m above the grass surface on the main EC system tripod (Fig 1).  A shielded HMP35 (CSI) 110 

recorded Ta and relative humidity (RH) 2 m above the surface.  A tipping bucket rain gauge (R.M Young Company, 

Travers City, MI, USA) was placed 3 m to the west of the main tripod.  Soil temperature and moisture were measured 

within soil pits in two different vegetation types near the tripod: Grass (30 m to the east) and Shrub (40 m to the north).  

Measurements were made of ground heat flux (G) with custom heat flux plates, soil temperatures (Ts) with custom 

type-T thermocouples at depths of 0.08 m, and 0-20 cm integrated? volumetric water content (VWC) with CS616 115 

water content reflectometers (CSI).  The soil measurements were recorded at 30-minute intervals on CR10x 

dataloggers (CSI).  The climate and soil stations operated uninterrupted from July 10th (day 192) and July 11th (day 

193), respectively, until August 7th, 2016 (day 220).  On July 11th and August 6th thaw depth was measured at each of 

the 10 chamber sites (see below).  Thaw depth was measured by inserting a graduated steel probe into the ground to 

point of refusal. Each site was probed five times: the median value has been used as the thaw depth at each location.  120 

On July 12th and 15th, a large herd of reindeer (500 + animals) visited Illisarvik.  They mostly avoided the tripod but 

did graze near it for about an hour on July 12th which may have affected greenhouse gas fluxes.   

2.3 EC Fluxes 

An EC system was placed in the southwestern portion of the basin (69° 28' 47.82", -134° 35' 18.6") and measured 

fluxes of CO2 (FCO2) and CH4 (FCH4) for the full study period between July 10th and Aug 7th, 2016.  The EC system 125 

consisted of an open-path infrared CO2/H2O gas analyser (IRGA)  (model LI-7500, LI-COR Inc., Lincoln, NK, USA; 

LI-COR), an open-path CH4 analyser (model LI-7700, LI-COR) and a CSAT3 sonic anemometer (CSI) mounted on 

a tripod at a measurement height (zm) of 3 m (Fig 2). The EC data and air pressure (Pa) were logged at 10 Hz on the 

LI-7550 Analyzer Interface Unit (LI-COR).  The CSAT3 was oriented to the northeast (40°) because climatology for 

Tuktoyaktuk indicated northerly and easterly winds are typical for July and August (Environment Canada, 2016).  130 

Half-hourly fluxes were calculated with EddyPro V.6.2.0 (LI-COR).  The software performed statistical assessments 

(Vickers and Mart, 1997), low and high frequency spectral corrections (Moncrieff et al., 1997 and 2004), a double 

rotation (Wilczak et al., 2001), applied the WPL correction to account for density fluctuations (Webb et al., 1980), 

and computed quality control (qc) flags (Mauder and Foken, 2004).  Post processing treatments included: storage 

correction (calculating the net flux as the sum of the observed scalar flux and the rate of change in scalar concentration 135 

at zm), filtering fluxes by friction velocities (𝑢∗) below 0.1 m s-1, removing qc flags = 2 (Mauder and Foken, 2004), 

and the mean absolute deviation spike removal algorithm (Papale et al., 2006). Additionally, observations with mean 

winds from 220˚ ± 30˚ were removed to avoid uncertainties associated with the wake of the sonic anemometer, and 

observations were removed during precipitation events and when the open-path analysers indicated there were any 

other obstructions within the path (Aubinet et al., 2012).  The data were gap-filled using neural networks (NN) which 140 
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have been applied to FCO2 and FCH4 in other studies (Moffat et al., 2010; Dengel et al., 2013).  Details of the NN 

methodology are described in Appendix A.    

The flux footprint represents the influence of upwind areas on a measured scalar flux and the footprint climatology is 

the average of individual footprints over a time period. Evaluation of the flux footprints and climatology help evaluate 

the reliability of the dataset and estimate the source area of each individual half-hourly EC flux measurement.  A 145 

scalar flux 𝐹𝑐 sampled at (0,0, 𝑧𝑚), where zm is the height of the EC instrumentation, can be represented as the integral 

of the flux footprint function f(x,y) and the distribution of sources/sinks (𝑄
𝑐
) over a domain D (Kljun et al., 2015):   

𝐹𝑐(0,0, 𝑧𝑚) = ∫ 𝑄𝑐(𝑥, 𝑦)𝑓(𝑥, 𝑦)
𝐷

         (1) 

The flux contribution of upwind source areas increases sharply upwind from the measurement location to a peak then 

decrease gradually with increasing distance (Schmid, 2002).   The empirically derived flux footprint function of Kljun 150 

et al. (2015) was used to estimate the source area of each half hourly flux measurement. 

The model requires boundary layer heights which were not measured onsite.  Half hourly boundary layer heights were 

interpolated from three-hour estimates obtained from the Global Data Assimilation System of the U.S. National 

Oceanic and Atmospheric Administration.  The model also requires the aerodynamic roughness length (𝑧0) which is 

influenced by the canopy height and spacing.  Canopy height (Ch) varied considerably within the basin (from >1 m in 155 

the north to ~0 m in the bare ground areas).  Canopy height variability was lower in the vicinity of the EC tripod but 

ranged from 0.35- 0.55 m with a few taller shrubs approaching 1 m.  Median 𝑧0 was calculated for 30˚ wind sectors 

following Paul-Limoges et al. (2013).  This calculation was performed for near neutral conditions −0.05 ≤
𝑍𝑚

𝐿
≤

0.05 , where L is the Obukhov length.  The 𝑧0  for each wind sector was found to be insensitive to zero-plane 

displacement height, d, as zm >> d, so the mean value of d around the tripod was used, where d = 2/3 Ch. Zero-plane 160 

displacement did not change significantly over the course of the study so 𝑧0 remained fixed over the study period for 

each wind sector. 

For each half-hourly flux observation, f(x,y)i was solved at 1 m2 resolution over a 1 km2 domain centred on the EC 

tripod.  Then, f(x,y)i were intersected with the surface classes to determine the relative contribution of each surface 

type to each flux observation (referred to as FShrub, FSedge, etc.).  The footprint function is technically infinite so a 165 

fraction of each f(x,y)i was not contained within the model domain.  The out-of-domain source fraction ranged from 

1.8% to 4.9% with a mean of 3.2% and was assumed to have minimal impact on the analysis.   The flux footprint 

climatology (FClim) was calculated by averaging the half hourly flux footprints over the study period and is shown in 

Figure 1.  Table 2 shows the flux contribution of each vegetation class. 

2.4 Closed Chamber Measurements 170 

In addition to EC measurements, fluxes of CO2 and CH4 were sampled using a static non-steady state chamber flux 

technique on 11 dates between July 12 and August 5, 2016 (Laforce, 2018).  Nineteen chamber collars were located 

at ten sites, eight sites within and two outside the basin (Fig 1).  Each surface cover class was represented by at least 

one chamber site, except for open water.  At each vegetated site a pair of collars were installed 20 cm apart, except at 
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the ‘sparse’ site where only one collar was installed.  The above ground biomass was removed from one of the collars 175 

at each vegetated site.  There were three replicates (six collars) for the Shrub class, two for the Sedge, Grass, and 

Upland tundra, and no replicates for the Sparse class.  PVC collars 30 cm long and 24.3 cm in diameter were inserted 

to a depth of approximately 15 cm.  The chambers were 34 cm tall and made out of polycarbonate covered in black 

opaque tape to maintain dark conditions inside the chamber (for more details, see Martin et al., 2018).  The chambers 

contained a small vent (10 cm coiled 1/8” diameter copper pipe) to ensure a constant pressure during measurements.  180 

The opaque chambers fluxes of CO2 provided an independent estimation of ER.  This helped characterize ER given 

the challenges with standard NEE partitioning techniques at high latitude sites during the Arctic summer as noted 

below. 

Chamber flux measurements were made between 9:00 and 17:00 starting at a different collar set each day to randomize 

the sampling order to avoid a bias due to diurnal patterns.  During gas flux measurements, the chambers were sealed 185 

to the top of the collars within a groove filled with water and five 24 mL air samples were collected into evacuated 12 

mL vials sealed with doubled septa. Each vial contained a small amount of magnesium perchlorate to dry the air 

sample. Samples were collected at 0, 5, 10, 15 and 20 minutes after the chambers were set on the collars.  Air within 

the chamber was mixed with a 60 mL syringe attached to a three-way stopcock before each air sample was taken.  

Samples were stored until analysis one month later at Carleton University.  To monitor the integrity of the vials through 190 

shipping, storage and analysis, a number of the evacuated vials were filled with helium in the lab before the field 

season began.    

Concentrations of CO2, CH4 and N2O were determined using a CP 3800 gas chromatograph (Varian Inc., Pao Alto, 

CA, USA) as described by Wilson and Humphreys (2010). Three replicates of five CO2/ CH4 standards varying from 

383.1 to 15212.6 ppm CO2 and from 1.08 to 22.11 ppm CH4 were included in every set of measurements to create a 195 

linear relationship between gas concentration and chromatogram area.  The chamber fluxes of CO2 and CH4 (FC) were 

calculated as follows: 

𝐹𝐶 =  
𝑉𝑃

𝐴𝑅𝑇

𝑑𝑐

𝑑𝑡
            (2) 

where (dc/dt) is the linear rate of change in the mixing ratio of the gas, A is the chamber area (0.0464 m3), V is the 

chamber volume (between 0.0182 and 0.0242 m3  adjusted for collar depth at each collar location), R is the ideal gas 200 

constant, P is pressure in Pa and T is the air temperature in Kelvin.  P and T values corresponding to the time of each 

measurement were obtained from the EC station.  After removal of spurious point measurements (72 vial samples 

were rejected out of 1135 vials), dc/dt was determined using three or more gas sample concentrations resulting in 

coefficients of determination that ranged from 0.71 to 0.99.  No flux measurements were removed from the analysis. 

Positive fluxes indicate emissions of gases to the atmosphere and negative fluxes indicate uptake by the surface. 205 

2.4.1 Upscaling 

Chamber fluxes of ER were upscaled from the plot scale (individual chamber) to the footprint scale using the footprint 

weighted average method and to the basin scale using the area weighted average method (Budishchev et al., 2014).   

The chamber ER and air temperature from the EC tripod (Ta) were used to determine R10, the base respiration at 10 



7 

 

C˚, and Q10, the temperature sensitivity coefficient, using eq 3 for five of the six surface classes (Fig 1) (Laforce, 2018) 210 

(Table 3).   

ER =  𝑅10𝑄10

(𝑇𝑎−10)

10            (3) 

Half hourly footprint scale estimates (ERFS) were calculated by multiplying ER derived from eq. 3 for each surface 

class by the footprint source area fraction and summing over classes.  Basin scale estimates (ERBS) were estimated the 

same way but using the mean source area fractions of the basin (Table 2). As there were no open water class ER 215 

estimates, ER from open water was assumed to be zero. 

In contrast to ER, there are no standard empirical functions to estimate temporal variations in NME.  Instead, we used 

ordinary least squares regression (OLS) to estimate NME.  The most important environmental controls over FCH4 were 

VWC and Ts (discussed below).  Continuous observations of these factors at the flux chambers were not available, 

instead chamber NME were grouped by vegetation class and fit to VWC and Ts measured in the soil pits near the EC 220 

station.  Half hourly footprint scale (NMEFS) and basin scale (NMEBS) estimates were then estimated using the OLS 

parameters for each surface class using the same procedures for ERFS and ERBS.  

2.5 Factor Selection and Gap Filling 

We used an exploratory approach to identify the smallest set of factors that best predicted half hourly EC-derived NEE 

and NME without overfitting the dataset using a series of neural networks (NN). We started with 10 factors: four 225 

meteorological variables [ (PPFD), Ta, vapor pressure deficit (VPD) computed using the Ta and RH data, three-

dimensional wind speed (U) measured using the CSAT3 sonic anemometer], two soil variables [(VWC) and Ts 

averaged between the two soil pits near the EC tripod], and four source area fractions [Shrub (FShrub), Grass (FShrub), 

Sedge (FSedge), and Upland, (FUpland)].  The four source area variables correspond to surface classes sampled by the 

chambers.  We excluded Water (FWater) and Sparse (FSparse) fractions because its average contribution to the EC 230 

observations was only 0.2% and 2.2%, respectively, and there were no chamber measurements for the Water class 

while chamber measurements indicated ER was low and NME was not significantly different from zero for the Sparse 

class.  A number of these prediction factors were highly correlated but it was necessary to include them so the model 

could account for source area heterogeneity.   

The NNs were trained iteratively on bootstrapped datasets.  First NN were trained on each factor individually and the 235 

one with the lowest MSE was selected.  Next, NN were trained on that factor in combination with one of the remaining 

nine.  The best performing additional factor was again selected and this process was repeated until MSE failed to 

improve.  The most parsimonious model was identified using the one standard error (SE) rule.  Dybowski and Roberts 

(2001) give the standard error of a bootstrap estimate of a given error metric (e.g., 𝜃 = 𝑀𝑆𝐸) to be  

𝑆𝐸𝑏𝑜𝑜𝑡(𝜃) = √
1

𝐵−1
∑ (𝜃𝑏 − 𝜃𝑏𝑜𝑜𝑡)2𝐵

𝑏=1         (4) 240 

where 𝜃𝑏𝑜𝑜𝑡 is the mean of the bootstrapped samples.  The smallest set of factors where 𝜃𝑏𝑜𝑜𝑡 was within one 𝑆𝐸𝑏𝑜𝑜𝑡 

of the minimum 𝜃𝑏𝑜𝑜𝑡 for both NEE and NME were selected for further analysis.  The outputs from the selected models 

are referred to as NEENN and NMENN, respectively.  NN modelling was done using the Keras Python library (Chollet 

et al., 2015), see the Appendix A for a more detailed explanation of the NN analysis.  



8 

 

Multiple Imputation (MI) was then used to gap fill the NEE and NME with the NEENN and NMENN, respectively 245 

(Vitale et al., 2018).  Of the 1296 half hourly flux observations 28.9% of FCO2 and 31.3% of FCH4 were missing or 

filtered out.  There were a few gaps in the source area fractions needed to gap-fill the flux time series because the 

footprint function is not valid when 𝑢∗ < 0.1 m s-1.  When source area fractions were missing, they were gap-filled by 

using the mean source are fraction observed for winds within ± 5˚of the observed wind direction.  The meteorological 

and soil data were continuous and did not need to be gap-filled. 250 

2.5.1 Flux Partitioning 

NEE is negative when there is net uptake of CO2 by the ecosystem and positive when there is net emission. ER and 

GPP are always positive, ER represents the sum of heterotrophic and autotrophic respiration and GPP represents 

photosynthetic uptake of CO2.  Night-time NEE observations (e.g., PPFD <= 10 µmol m-2 s-1) are typically used to 

quantify ER because GPP ~ 0 (Aubinet et al., 2012).  We fit the limited night-time EC observations available (n=95) 255 

to equation 3 for comparison with the ER measured using the chambers.  We used the fitted values to model daytime 

ER and approximate NEE by fitting the daytime data to a light response curve Aubinet et al. (2012). 

𝑁𝐸𝐸 =  
1

2𝑐
(𝛼PPFD + 𝛽 − √(𝛼PPFD + 𝛽)2 − 4𝛼𝛽𝑐PPFD) + ER     (5) 

where 𝛼 is the initial slope of the light response curve, 𝛽 is GPP at saturation, and c is a curvature parameter.  These 

estimates are referred to as ERQ10 and NEEQ10. 260 

Some NN analyses of NEE have trained separate models for night-time and daytime conditions for partitioning 

purposes (Papale & Valentini, 2003).  However, these methods are not practical during the Arctic summer as the sun 

did not set at Illisarvik until July 28th, over halfway through the study period.  There were not enough night-time 

samples to train a separate NN.  Instead, we estimated ER by calculating NEENN at PPFD = 0 µmol m-2 s-1 for all 

observations, henceforth referred to as ERNN.  This is a projection outside of the observed parameter space resulting 265 

in greater uncertainty and a wider confidence interval around ERNN than NEENN.  Calculation of confidence intervals 

for NN outputs is discussed in Appendix A. 

 

2.5.2 Factor Analysis 

The trained NNs were used to investigate how individual factors influenced NEE and NME.  The partial first derivative 270 

of the model response to one controlling factor was calculated while keeping all other inputs fixed.  For example, the 

partial first derivative, 
∂NEE

∂PPFD
 , is an approximation of the NEE light response curve under a specific set of conditions.  

Similarly, NNNME can be used to approximate NME response to controls like VWC or Ts.  For both fluxes, the selected 

models contained at least one source area fraction variable, indicating the vegetation type(s) which had significant 

influence over NEE and NME.  Additionally, we mapped NNNEE and NNNME to 100% coverage for individual surface 275 

classes to see how fluxes at Illisarvik may change as vegetation succession continues.  For example, to project to 100% 

Sedge coverage, we set the other surface classes to 0% and left the other environmental factors unchanged.  This 
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allows for an estimation of how carbon fluxes may change if vegetation succession leads Illisarvik to look more like 

the DTLB studied in Alaska.  

3 Results 280 

During the 29-day study, half-hourly Ta and Ts ranged between 0.4 and 26.2°C and 4.4 and 11.0°C, respectively (Fig 

2a).  Day length and maximum solar altitude decreased from 24 hours to 19.25 hours and 41.6˚ to 35.4˚, but daily 

PPFD was more influenced by variations in cloud cover.  Precipitation (19 mm) fell on 14 of the 28 days with trace 

snowfall on three of those days, but VWC of the soils decreased throughout the period (Fig 2b).  At the onset of the 

study period, VWC was high and soils were saturated with ponding in the sedge areas.  By the end of the study most 285 

of this surface water had dried up.  On July 11th average thaw depth (cm) was 37, 45, 51, 64, 81 at Upland, Sedge, 

Grass, Shrub, and Sparse classes, respectively.  By August 6th, average thaw depth had increased to 45, 62 and 66 cm 

at Upland, Sedge and Grass surface classes and over 100 cm at both the Shrub and Sparse classes. 

A strong low-pressure system stalled off the coast between day of year (DOY) 199 and 204. This caused westerly 

winds to occur much more frequently than is typical for July and August.  The 50%, 80% and 90% flux FClim contours 290 

are shown in Fig 1a.  Mean source area fractions indicate the EC observations were skewed towards the Grass surface 

class and under-sampled the Shrub class, but the range of surface classes sampled was diverse enough to allow for 

testing of the impact of source area fraction on the fluxes (Table 2).  

3.1 EC Observations  

Half hourly observations of FCO2 and FCH4 along with the NEENN and NMENN used to gap-fill the time series are shown 295 

in (Fig 2c & d).  Gap-filled daily NEE ranged from -3.7 to -0.2 g C-CO2 m-2 d-1 with a mean -1.5 [CI95% ± 0.2] g C-

CO2 m-2 d-1.  Day to day variability was considerable but there was no notable trend in NEE over the peak growing 

season.  The half hourly NEE during the study period reached a minimum of -10.4 μmol CO2 m-2 h-1 just before solar 

noon and peaked at 4.7 μmol CO2 m-2 h-1 around midnight (Fig 2c).  NEENN was used to gap-fill the flux data because 

it was in good agreement with FCO2 observation (r2 = 0.91).  Daily ERNN was estimated to be 2.2 [CI95% ± 0.9] g C-300 

CO2 m-2 d-1 with corresponding GPP of 3.7 g C-CO2 m-2 d-1.  ERNN was in poor agreement (R2 = 0.35, n= 95) with 

night time FCO2 observations.  For comparison, Eq. 3 provided a better fit (R2 = 0.47) with night-time EC data, and 

ERQ10 was estimated to be 3.0 g C-CO2 m-2 d-1.  However, NEEQ10 did not fit FCO2 as well (r2 = 0.80) as NEENN.   

Gap-filled daily NME was modest and decreased over the study period.  It ranged from 2.0 to 25.1 mg C-CH4 m-2 d-1 

with a mean of 8.7 [CI95% ± 0.4] mg C-CH4 m-2 d-1 (Fig 2d).  NMENN was used to gap-fill the flux data because it 305 

provided a reasonable fit (r2 = 0.62) to FCH4 observations.  NME did not constitute a significant component of the 

carbon balance and thus the flux footprint area was a carbon sink during the peak growing season with negative GWP 

after accounting for the greater GWP of CH4.  

3.2 Chamber Observations 

ER was highest in the Sedge, Upland, and Grass classes where fluxes were very similar at 5.5 [CI95% ± 1.2], 5.4 [CI95% 310 

± 1.2] and 4.9 [CI95% ± 0.7] g C-CO2 m-2 d-1. Shrub ER was significantly less (3.5 [CI95% ± 0.6] g C-CO2 m-2 d-1) than 
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the other vegetated classes and Sparse ER was the lowest among the classes (2.0 [CI95% ± 0.3] g C-CO2 m-2 d-1) (fig 

3a).  The Q10 and R10 values also differed between vegetation classes: ER in the Sedge was the most sensitive to 

changes in air temperature and modelled values provided the best fit (R2 = 0.82) to observations.  Upland and Grass 

had the highest base respiration and fit observations moderately well (Table 3). 315 

NME was more variable between vegetation classes than ER (Fig 3b & c).  Sedge was a very strong CH4 source at 

114.7 [CI95% ± 15.3] mg C-CH4 m-2 d-1.  Shrub and Grass were very weak sources, 0.7 [CI95% ± 0.3] and 0.4 [CI95% ± 

0.3] mg C-CH4 m-2 d-1, respectively. Sparse was neutral.  Upland was a net CH4 sink -1.1 [CI95% ± 0.4] mg C-CH4 m-

2 d-1.  Sedge and Shrub were NME were positively correlated with Ts (r=0.61, p < 0.01; r=0.35, p = 0.04) respectively 

and VWC (r=0.58, p < 0.01; r=0.5, < 0.01) respectively.  They also had a positive correlation with Ta, while Upland 320 

NME was negatively correlated with Ta.  Grass and Sparse didn’t have any significant correlations. 

Footprint scaled chamber fluxes were 59% and 47% higher than ERNN or gap-filled NME, respectively.  Mean ERFS 

was 3.5 g C-CO2 m-2 d-1 [CI95% ± 0.1], it fit ERQ10 very well (R2 = 0.95) as would be expected and ERNN moderately 

well (R2 = 0.46).  Mean NMEFS was 12.8[CI95% ± 1.3] mg C-CH4 m-2 d-1, it did not fit NNNME well (R2 = 0.30).  At the 

basin scale, ERBS (3.4 [CI95% ± 0.1] g C-CO2 m-2 d-1) was slightly lower than ERFS because of the exclusion of upland 325 

areas.  NMEBS was higher (15.2 [CI95% ± 0.1] g C-CO2 m-2 d-1) because of the greater sedge fraction in the basin than 

the footprint because the (Table 2).   

3.3 NEE Response to Environmental Factors and Vegetation Type 

NEENN (r2 = 0.91) was estimated using four factors: PPFD, VPD, VWC, and FShrub.  PPFD is the primary control over 

NEE: a NN trained on PPFD alone provided a reasonable fit (r2 = 0.83).  The three additional factors, VPD, VWC, 330 

and FShrub, helped NNNEE fit a wider variety of conditions.  Examining the partial first derivative of NNNEE under 

different conditions provides interpretation of the modelled light response curves (Fig 4).  The minimum values 

represent the peak light use efficiency and are analogous to α in eq. 5 (Fig 4b).  With increasing PPFD, light use 

becomes less efficient and approaches zeros as the light response nears light saturation (Fig 4b). 

VPD was a secondary control over NEE.  Increasing VPD increased peak light use efficiency and net CO2 uptake until 335 

a threshold, above which it had a strong limiting effect (Fig 4a & b).  For example, under dry atmospheric conditions 

(e.g. VPD = 1.5 kPa), peak light use is less efficient (-12 nmol CO2 µmol-1 photon) than under more humid conditions 

(-18 nmol CO2 µmol-1 photon).  The value of this VPD threshold was dependent upon soil moisture: from 1 kPa when 

VWC was highest to 0.2 5Pa when VWC was low. Mapping NNNEE and NNER at FShrub = 100%, FShrub = 0%, and FShrub 

= 36% (FClim), shows that VWC and FShrub were the primary controls over ER and thus influenced NEE (Fig 4c & d).  340 

We can see from the partial first derivates of NNER that increasing VWC increases ER from Shrub areas.  In the absence 

of shrubs, increasing VWC inhibits ER although it is important to note that variations in VWC were subtle ranging 

from 51.7% to 59.0%. The partial first derivative of NNNEE shows that VWC slightly limits NEE from non-Shrub areas 

and significantly reduces it in Shrub areas.   
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3.4 NME Response to Environmental Factors and Vegetation Type 345 

NME was estimated using NMENN (r2 = 0.62) which had five factors: FSedge, FShrub , VWC, TS, and U.  NME was more 

variable and less dependent on any one factor than NEE which is why the NNNME needed an extra factor and had a 

lower r2 score.  Source area had a significant effect on NME, and it was encouraging that the model contained FSedge 

and FShrub since Sedge and Shrub were the strongest CH4 source and largest footprint component, respectively.  These 

two factors can combine to map NME under three general situations: we can extrapolate to FSedge = 100 % and FShrub 350 

= 0 % or FSedge = 0 % and FShrub 100 %, or represent actual FClim where FSedge = 11% and FShrub = 37% (Table 2).  Some 

upland tundra was included in the FClim estimate, which reduced NME. 

VWC was the primary climatic driver identified by NNNME.  Wetter soils had a consistent positive effect on NME 

which was strongest when FSedge was high (Fig 5a & b).  Between driest and wettest conditions, estimated NME 

increased: by an order of magnitude at FSedge = 100 %, 4-fold at FShrub = 100%, and from neutral to a source at FClim 355 

(Fig 5a).   Higher Ts generally had a negative effect on NME (Fig 5c & d). The negative correlation between Ts and 

VWC (r = 0.54, < 0.01) may have contributed to this result.  NNNME performance improved less with the addition of 

U indicating the NNNME was near saturation and its effects are less relevant.  Higher U had a weak limiting effect on 

NME when VWC was high and increased NME when VWC was low (not shown). 

4 Discussion 360 

4.1 Carbon Balance and Controlling Factors 

Compared to other DTLB, Illisarvik has drier soils and greater shrub and grass cover (Table 4). Peak growing season 

CO2 uptake at Illisarvik was greater than at most wet sedge-dominated DTLB (Table 4; Zona et al. 2010, Sturtevant 

and Oechel, 2013; Lara et al. 2015).   These differences may be due to differences in the periods of observation and 

year to year variability but may also be due to the presence of more productive shrubs and slightly warmer climate at 365 

Illisarvik.  Mean 1980-2010 Ta at Utqiagvik (formerly Barrow, AK) is -11.2 °C (US National Climate Data Centre, 

2020).  Tuktoyaktuk, the closest station to Illisarvik is 1.1° warmer.  Shrub cover is expected to have a number of 

impacts on the microclimate and carbon cycle of Arctic tundra (eg. Myers-Smith et all, 2011).  Typically, greater 

deciduous shrub cover is expected to increase GPP as a result of greater leaf area and photosynthetic potential 

compared to graminoid-dominated tundra (Sweet et al. 2015; Street et al., 2018).  GPP was greater at Ilisarvik 370 

compared to the young wet-sedge dominated DTLB in Alaska (Zona et al., 2010).  It was more similar to Katyk which 

has significant dwarf shrub cover, predominately Betula nana and Salix pulchra (van der Molen et al. 2007). 

Differences in ER among tundra environments can be related to substrate availability, soil moisture and temperature 

and thaw depth, among other factors (Sturtevant and Oechel, 2013).  The ‘snow-shrub hypothesis’ (Sturm et al. 2001) 

describes the potential for greater snow trapping in shrub communities which insulates soils in winter, leads to 375 

increased decomposition and nutrient availability and promotes further shrub growth.  At Illisarvik, snow blowing in 

off the Arctic Ocean results in large snow drifts within the basin where snow depth correlates with vegetation height 

(Wilson et al., 2019). Wilson et al. (2019) concluded that the soils within the Illisarvik basin were warmer than those 

of the surrounding dwarf-shrub tundra in part through these snow-shrub interactions. Although our chamber 
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observations suggested Shrub ER is lower than ER from other vegetation classes, this may have been an artifact as 380 

the taller shrubs (>40 cm) could not fit inside the chambers.  In another study, chamber ER increased with greater 

shrub cover in upland tundra (Ge et al., 2017).   ER at Illisarvik was greater than the ER observed at both the young 

wet-sedge DTLB in Barrow (Zona et al., 2010) and at the shrub/wet sedge DTLB at Katyk where thaw depth was 

much shallower (45 to >100 cm at Illisarvik vs. 25 to 40 cm at Katyk; van der Molen et al. 2007).  The importance of 

FShrub in describing temporal variations in half hourly NEE within the flux footprint at Ilisarvik is further evidence of 385 

the importance of shrub cover on tundra carbon cycle processes in this environment. 

PPFD and VPD were the most important factors for predicting half hourly NEE.  This was to be expected as they are 

typically the primary controls over GPP (Aubinet et al., 2012).  The limiting effects of VPD are consistent another 

study using NN to analyse NEE at a deciduous forest site (Moffat et al., 2012) and has been found at other tundra sites 

(Euskirchen et al. 2012; López-Blanco et al. 2017).  VWC was also important at Illisarvik.  Zona et al. (2010) found 390 

VWC could explain 70% of the variability in daily peak season ER in young DTLB.  Similarly, Kittler et al. (2016) 

found drier soils increased ER and decreased NEE after a wet tundra drainage experiment in Siberia, consistent with 

our results at Illisarvik when FShrub was low.   

As expected, NME at Illisarvik was about half that observed at the Alaskan DTLB sites where soils were wetter with 

greater sedge cover (Table 4, Zona et al., 2009; Lara et al. 2015).  NME at Katyk was even higher than the Barrow 395 

DTLB and had a significant impact on the greenhouse gas (GHG) balance for this site (van der Molen et al. 2007; 

Parmentier et al., 2011).  In our NN modelling of NME at Illisarvik, FSedge was the most important factor for predicting 

half hourly FCH4.  Sedges are aquatic plant species with arenchymatous tissues that act as conduits for CH4 from below 

the water table to the atmosphere and limits CH4 oxidation by methanotrophs in aerobic surface soils (Lai et al. 2009). 

The inclusion of FShrub further refined the model, allowing it to better fit the site-specific distribution of vegetation 400 

types.  Budishchev et al. (2014) found shrub and sedge fraction had a significant influence on FCH4 at Katyk.  

Vegetation type is the dominant control over NME across multiple tundra landscapes and our results further support 

that (Davidson et al., 2016). 

VWC was the second most important factor, which was expected as CH4 production occurs in anaerobic environments 

and has been linked to variability in CH4 emission in many other studies (e.g. Zona et al., 2009; Nadeau et al., 2013; 405 

Olefeldt et al., 2013).  Soil temperature (Ts) was the third most important factor.  Higher Ts increase the oxidation 

potential of methanotrophs (Liu et al., 2016; King and Adamsen, 1992), so this result was expected for the drier 

portions of the basin and upland tundra.  However, this was not expected for the sedge areas because most studies find 

NME in sedges is positively correlated to Ts
 (Olefeldt et al., 2013).  The negative correlation between Ts and VWC 

may partly explain this. 410 

4.2 Upscaling 

ERFS and NMEFS were about 59% and 47% greater than the EC estimates.  Discrepancies between EC and chamber 

observations are common and have been attributed to differences in measurement techniques, the small sample size 

of chamber observations, and sampling bias since all chamber measurements were taken during the day with fair 

weather (Katayanagi et al., 2005; Chaichana et al., 2018).   Meijide et al. (2011) found that chamber NEE could be up 415 
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to twice as large as EC observations and Riederer et al. (2014) also found chamber NME estimates were about 30% 

higher than EC estimates.  Others have been more successful, yielding upscaled chamber NME fluxes within 10% of 

EC observations (Zhang et al., 2012; Budishchev et al., 2014; Davidson et al., 2017).  A potential reason for the 

disagreement with ERFS may be the lack of direct observations by the EC system under low-light conditions.  Another 

potential source of error for the upscaling is inaccuracies in the vegetation map.   420 

4.3 Future Trajectories 

Presently, peak growing season carbon uptake at Illisarvik is greater than similarly aged landscape features on the 

Barrow Peninsula, Alaska and more similar to levels observed at Katyk, Siberia.  NME is well below levels observed 

at any other DTLB studied, making this site a stronger GHG sink than other DTLB.  However, the basin at Illisarvik 

will continue to evolve and the trajectory it takes could significantly alter its carbon balance.  Historically, DTLB on 425 

Richards Island and the Tuktoyaktuk Peninsula evolve into sedge wetlands, as do DTLB on the Barrow Peninsula 

(Ovendend, 1986; Lara et al., 2015).  Active maintenance of the outlet channel at Illisarvik has artificially lowered 

soil moisture and flooding and potentially limited this transition thus far (C. Burn, personal communication 2016).   

If Illisarvik follows the same trajectory as older DTLB in the area and becomes dominated by sedge wetlands, NME 

will increase significantly.  With extrapolations to full Sedge cover (FSedge = 100%), NME would be similar to values 430 

on the Barrow Peninsula (Zona et al., 2009).  If the basin instead transitions into a shrub dominated DTLB similar to 

those of Old Crow Flats, Yukon (Lantz et al., 2015), NMENN would remain similar to current levels meaning the basin 

would remain a weak source of CH4.  These are projections well beyond FClim fractions observed so confidence in the 

specific values predicted is low.   

The effects of changing shrub/sedge cover on Illisarvik’s growing season NEE are less straightforward than on NME.  435 

Partly because Shrub cover had less overall influence on NEENN.  Our model suggests ER decreases and GPP increases 

with increasing shrub coverage when soils are slightly drier, but has the opposite effect under wetter conditions.   To 

our knowledge, only few winter season (e.g. Zona et al. 2016) and no year-round studies of NEE and NME have yet 

to be published to help evaluate the factors influencing DTLB carbon losses through the non-growing season months.  

Further observation year-round is needed to better understand the implications of continued vegetation change on the 440 

carbon balance of DTLB such as Illisarvik.  

5 Conclusions 

This study investigated NEE, GPP, ER and NME in the Illisarvik experimental DTLB using EC and chamber data.  

To our knowledge this is the first such study conducted in a DTLB outside of the Barrow Peninsula or Siberia.  

Illisarvik is a carbon sink during the growing season with NME only having a small effect on the net carbon balance.  445 

Our flux observations were generally in agreement with other studies but show how shrub-dominated DTLB such as 

Illisarvik and Katyk in Siberia differ from sedge-dominated DTLB on the Barrow Peninsula.  Illisarvik’s growing 

season net carbon uptake was greater than young and ancient DTLB on the Barrow Peninsula and more similar to the 

shrub dominated ancient DTLB in Siberia.  NME at Illisarvik was lower than all published DTLB studies likely due 
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to better drainage and more diverse vegetation. A longer, more comprehensive study would be needed to resolve the 450 

annual carbon budget for Illisarvik. 

Chamber measurements of ER and NME from different land cover classes within and outside the Illisarvik basin 

added context to the EC observations.  Vegetation class (and associated difference in terrain and soil properties) had 

only a small but significant impact on NEE and ER but was one of the dominant controls over NME.  Sedge areas 

were a strong source of CH4, other vegetation types in the basin were weak sources, and upland areas were a net sink.  455 

These results suggest that NME in particular will change as the Illisarvik DTLB vegetation communities continue to 

evolve.    

Appendix A: Neural Networks analysis and uncertainty calculations  

Typically, NEE is gap-filled using flux-partitioning algorithms that model ER and GPP separately using TS and PPFD, 

respectively (e.g. Lee et al., 2017; Aubinet, 2012).  However, this method requires night-time observations and thus 460 

does not perform well for Arctic summertime measurements due to the limited number of samples available during 

low light conditions.  There are no widely agreed upon functional relationships for gap-filling NME since CH4 

production and consumption vary considerably both between different landcover types and environmental conditions.  

Some methods that have been used include: general linear models (GLM) (Zona et al., 2009), mean diurnal variation 

(Nadeau et al., 2014), and classification and regression trees (CART) (Nadeau et al., 2013; Sachs et al., 2008).  We 465 

attempted to use a GLM and CART but they were not flexible enough to account for source area variability. 

Neural networks (NN) are flexible machine learning methods that are ideally suited to perform non-linear, multivariate 

regression.  They make no a priori assumptions about the functional relationships between the factors and responses. 

(Melesse and Hanley, 2005; Desai et al., 2008).  NN are universal approximators; given enough hidden nodes a NN 

is capable of mapping any continuous function to an arbitrary degree of accuracy (Hornik et al., 1991).  If all relevant 470 

climate and ecosystem information are available to a network, the remaining variability can be attributed to noise in 

the measurement (Moffat et al., 2010). 

NN have been shown to be among the best performing methods for gap-filling NEE data for temperate forest and 

wetland sites (Papale et al., 2003; Moffat et al., 2007; Knox et al., 2016).  They have also been used to gap-fill NME 

time series in sub-arctic wetlands, tundra sites, and wet sedge tundra (Dengel et al., 2013).  NN have been used to 475 

identify and model factors influencing NEE and to partition NEE into ER and GPP (Moffat et al., 2010).  NNs have 

even been used to upscale fluxes from the ecosystem level to the continental scale (Dou and Yang, 2018; Papale et al, 

2003).  

A NN approximates a true regression function 𝐹(𝑋):  

𝐹(𝑋) = 𝑡(𝑋) −  𝜀(𝑋)          (A1) 480 

where 𝑡(𝑋) is the target function and 𝜀(𝑋) the noise (Khosravi and Nahavandi, 2010).  𝑋 = [𝑥0, 𝑥1, … , 𝑥𝑀 ] where 

𝑥0 = 1 is a bias term and [𝑥1, … , 𝑥𝑀  ] are the independent variables.  M denotes the number of independent variables. 

The network approximates 𝐹(𝑋) as 𝑓(𝑋, 𝑤) by mapping the relationship between 𝑋 and the target.  Here we used 

feed-forward dense NN with a single hidden layer:  
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𝑓(𝑋, 𝑤) =  ∑ 𝛽ℎ𝑔(∑ 𝛾ℎ𝑚𝑥𝑚
𝑀
𝑚=0 )𝐻

ℎ=1         (A2) 485 

𝑔(∙) is a non-linear transfer function, here we used the rectified linear activation unit (ReLu) (Anders and Korn, 1999).  

𝐻 denotes the number of hidden nodes in the network and must be assigned before training. Too many hidden nodes 

and the NN will overfit the training data, too few and it will underfit.  Early stopping will prevent NN from overfitting 

training sets (Weigend, 1993; Sarle, 1995; Tetko et al., 1995).  Therefore, it is more important to ensure a NN has 

enough hidden nodes to adequately map the target function (Smith, 1994).  We set H to a function M, the number of 490 

training samples (N), and the number of targets (1): 

𝐻 =
𝑁

𝑎∗(𝑀+1)
           (A3) 

This rule of thumb ensures a NN has sufficient flexibility to approximate the target response.  The weights  𝑤 =

[𝛽1 … 𝛽𝑁 , 𝛾10 … 𝛾𝑁𝑀 ] are randomly initialized and after each model iteration is updated by backpropagating the error 

through the network.  N denotes the number of observations or targets.  The error metric most commonly used is the 495 

mean squared error, MSE: 

𝑀𝑆𝐸 =  ∑ (𝑓(𝑋𝑖) − 𝑡𝑖)
2𝑁

𝑖=1          (A4) 

The weights are adjusted in the direction that will decrease the error and training continues until a stopping criterion 

is reached.  We chose to set aside 20% of the training data as a test set to be used for early stopping, and terminated 

training when the MSE of the test set failed to improve for 10 consecutive iterations. 500 

Bootstrapping is used to account for model variability and estimate confidence and prediction intervals by training 

NN on B different realizations of the dataset, where B is the number of bootstrapped samples, we used B = 30 (Heskes, 

1997; Khosravi & Nahavandi, 2010).  An individual NN generates point outputs approximating a target function with 

no information on the confidence in those estimates (Khosravi & Nahavandi, 2010).  However, there are usually 

multiple 𝑓(𝑋, 𝑤) that approximate 𝐹(𝑋) because of the random weight initializations (Weigend & LeBaron, 1994).  505 

As such, there are two sources of error we are concerned with, the accuracy of our estimation of 𝐹(𝑋) and the accuracy 

of our estimates with respect to the target.  A confidence interval describes the first (e.g. 𝐹(𝑋) −  𝑓(𝑋, 𝑤)) while a 

prediction interval describes the latter (eg. 𝑡(𝑋) − 𝑓(𝑋, 𝑤)) (Heskes, 1997).  By definition, a prediction interval 

contains the confidence interval because: 

𝑡(𝑋) − 𝑓(𝑋, 𝑤) = [𝐹(𝑋) −  𝑓(𝑋, 𝑤)] + 𝜀(𝑋)       (A5) 510 

For b = 1 … B, a random sample with replacement of size p is drawn from the original dataset.  Setting p equal to the 

size of the original dataset yields a set of B training sets each containing approximately 67% of the original dataset.  

The 33% leftover from each bootstrap sampled can be used for model validation (Heskes, 1997).  The average of our 

ensemble of networks can then serve as our approximation of F(X): 

𝐹(𝑋) =  
1

𝐵
∑ 𝑓𝑏(𝑋, 𝑊)𝐵

𝑏=1           (A6) 515 

The variance of the model outputs is: 

𝜎2(𝑋) =  
1

𝐵−1
∑ (𝑓

𝑏
(𝑋, 𝑊) − 𝐹(𝑋))

2
𝐵
𝑏=1         (A7) 

A confidence interval (CI) for 𝐹(𝑋) can be calculated as 𝐹(𝑋) ± 𝑡(1−∝,𝑑𝑓)𝜎(𝑋), where tscore is the students t-score, 

1-α is the desired confidence level, and df are the degrees of freedom which are set to the number of bootstrapped 
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samples B.  NN performance can be seen to improve with the inclusion of more factors, until the model saturates and 520 

becomes over-parametrized (Fig A1). 

Random forests (RF) are said to be among the best performing gap filling methods for NME (Kim et al., 2020).   and 

it has been claimed that aggregating many regression trees in a RF prevents overfitting (Breiman, 2001;).  We did not 

find this to be the case.  Following the methods outlined in Kim et al. (2020): a RF with 400 trees and no restrictions 

on tree size fit FCH4 nearly perfectly (R2 = 0.98).  Without considerable limitations on tree size, the RF will just learn 525 

the dataset rather than the relationships present.  It is our view that this tree is extremely overfit, as highlighted by the 

example in Figure A2.  Further, RF do not allow for straightforward visualization functional relationships in a dataset.  

Plotting FCH4 against VWC, which is the dominant environmental control identified does not reveal a meaningful 

relationship like Figure 5 a & c.  You can look at an individual decision tree within the RF, but those are difficult to 

interpret beyond the first few splits, and each tree will be different.  Lastly, RF are incapable of projecting beyond the 530 

parameter space observed which limited their applicability for this study (Fig A2).  This presents an issue because 

may gaps in EC data arise from data filtering (e.g. clear calm nights, precipitation events) and are by definition outside 

the parameter space observed. 
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Figures & Tables 790 

 

Figure 1: a) Map of the distribution of vegetation classes at Illisarvik, with the footprint climatology (FClim) over the study 

period, the locations of the chambers and the eddy covariance (EC) system.  The alphanumeric labels correspond to the 

unit codes in Table 1. b) Legend for the map in a. c) Oblique drone image of Illisarvik, take at 16:40 July 23rd 2016 view 

from E of DTLB towards W.  The Basin and EC system are shown on the image using the same symbology as a). 795 
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Figure 2: a) Half hourly air and soil temperatures, displayed along with photosynthetic photon flux density (PPFD).  b) 

Hourly soil volumetric water content and daily total precipitation. c) Half hourly FCO2 (green) and NEENN (grey), and d) 800 
half hourly FCH4 (red) and NMENN (grey). 
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Figure 3: Boxplot of a) ER, b) NME and c) NME fluxes measured using closed chambers, grouped by vegetation class.  The 

orange lines represent the median, blue stars represent means, the boxes indicate the interquartile range (Q3-Q3), the 

whiskers indicate Q1 –(1.5*IQR) and Q3+(1.5*IQR), and the circles represent outliers extending beyond the whiskers.  Note 805 
the scale for c) Sedge is different. 
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Figure 4: a. Modelled NEE response to PPFD under different VPD conditions and b. the partial first derivatives of NEE 

with respect to PPFD.  c. Modelled ER (dashed line) and NEE (solid line) response to VWC at different Shrub% and d. the 

partial first derivatives of ER (dashed lined) and NEE (solid line) with respect to VWC.  NEE in c was calculated at PPFD 810 
= 600 μmol m2

 s-1.  The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.   
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Figure 5: a. Modelled NME response to VWC at different source area fractions and b. the partial first derivatives of NME 

with respect to VWC.  c. Modelled NME response to Ts at different source area fractions and d. the partial first derivatives 

of NME with respect to Ts.  The shaded areas in a & c are 95% confidence intervals and grey circles are the EC observations.   815 
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Figure A2: The averaged mean squared error (θ) of the bootstrapped Neural Network model validation datasets, with error 

bars showing one standard error (SE).  The x axis shows models of increasing size from left to right (1-9 factors), and the 

label indicates the factor added to the model at each step.  The blue line indicates the 1-SE rule threshold and the red bar 

indicates the model selected by the 1-SE rule. 820 
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Figure A2: FCH4 estimated by a RF using the same factors as the NN model.  The colours correspond to the scenarios in Fig 

5a.  VWC was estimated over the range 0.45 to 0.65. 
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Table 1: Dominant species or landscape feature within the vegetation/cover classes.  Unit codes correspond to the map 

Figure 1a. 

Unit Code Vegetation Class Dominant Species/Landscape feature  

1a Shrub Salix alaxnesis (Tall Willow) 

1b Shrub Salix glauca (Low Willow) 

1c Shrub Alnus viridis subsp. crispa (Alder) 

2a Sedge Marsh Carex aquatilis (Sedge) 

2b Sedge Marsh Arctophila fulva (Pendant Grass) 

3 Grass Meadow Pocacea spp. (Grasses), Eriophorum angustifolium (Cotton Grass) 

4a Sparse Cover Sparse Vegetation 

4b Sparse Cover Bare Ground 

5 Ponds Hippuris vulgaris (Mare’s Tail), Open Water 

6a Outside of Basin Dwarf shrub tundra: Salix spp. & Betula nana (Birch) 

6b Outside of Basin Fen 

6c Outside of Basin Ocean 

  

Table 2: The surface cover class fractions of the basin, along with the mean source area fractions of the footprint climatology 

(FClim) and the range of source area fractions for individual half hourly observations shown in brackets. 850 

Surface Class Basin FClim 

Shrub 48.3 % 36.0 % [0.0 – 79.0%] 

Grass 27.9 % 39.0 % [1.1-78.1%] 

Sedge 12.3 % 10.9 % [0.0 – 55.6%] 

Sparse 8.4 % 2.2% [0.0 – 33.6%] 

Water 3.1 % 0.2% [0.0 – 4.4%] 

Upland 0% 6.2% [0.6 – 15.0%] 

Outside Basin 0% 12.3% [0.2 - 28.0%] 

 

Table 3: The ER temperature sensitivity (Q10) and base respiration (R10) estimated by Laforce (2018) and estimated from 

nighttime EC footprint observations. 

 Q10 R10 μmol m-2 s-1 R2 

Sedge 2.1 3.8 0.82 

Upland 1.9 4.1 0.55 

Grass 1.6 4.0 0.55 

Shrub 1.8 2.7 0.46 

Sparse 1.0 1.9 0.01 

Night-time EC observations (n=100) 1.6 2.9 0.47 
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Table 4: Growing season (gs) daily range in eddy covariance-derived NEE and NME from drained thermokarst lake basins 855 
(DTLB) and other select wetland/coastal tundra sites across the Arctic.  The period of studies measurements for the studies 

observations are: a) mid-June – end of July b) June 12 – August 28, 2007, Fig 4 c) June 11 – August 25, 2011 d) upscaled 

chamber estimates, exact dates not specified, e) mean June 15 –August 31 2003-2006, f) July 5 – Aug 4, 2009. 

Site Site Characteristics NEE 

g C-CO2 m-2 d-1 

NME 

mg C-CH4 m-2 d-1 

Studies 

Illisarvik  Young DTLB, Low & 

Tall Shrub/Grass/Wet 

Sedge  

-1.5 8.7 (this study) 

Various DTLB, 

Barrow 

Peninsula, Alaska 

Young DTLB, Wet 

Sedge Tundra 

-1.1b, -0.9d, -

0.8c  

 

18.4a, 26.1d, 44.0c 

 

Zona et al. 2009a & 2010b, 

Sturtevant and Oechel, 2013c; 

Lara et al. 2015d 

Medium DTLB, Wet 

Sedge Tundra 

-0.7b, -0.6d, -

0.4c 

27.0d, 41.3c 

Old DTLB, Wet Sedge 

Tundra 

-1.0b, -0.4d, 0.1c 24.2d, 38.7c 

Ancient DTLB, Wet 

Sedge Tundra 

0.4d 

 

21.7d 

Katyky, Indigirka 

lowlands, Siberia 

Ancient DTLB, Dwarf-

Shrub and Wet Sedge 

Tundra 

-1.3e 36.0f Van der Molen et al. 2007e, 

Budishchev et al. 2014f 

 


