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Abstract. We developed a simple method to refine existing open ocean maps towards different coastal seas. Using a multi

linear regression we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (North Sea, Baltic

Sea, Norwegian Coast and in the Barents Sea) covering a time period from 1998 to 2016. A comparison with gridded SOCAT

v5 data revealed standard deviations of the residuals 0±26µatm in the North Sea, 0±16µatm along the Norwegian Coast,

0±19µatm in the Barents Sea, and 2±42µatm in the Baltic Sea. We used these maps as basis to investigate trends in fCO2, pH5

and air-sea CO2 flux. The surface ocean fCO2 trends are smaller than the atmospheric trend in most of the studied region. Only

the western part of the North Sea is showing an increase in fCO2 close to 2 µatm yr−1, which is similar to the atmospheric

trend. The Baltic Sea does not show a significant trend. Here, the variability was much larger than possibly observable trends.

Consistently, the pH trends were smaller than expected for an increase of fCO2 in pace with the rise of atmospheric CO2

levels. The calculated air-sea CO2 fluxes revealed that most regions were net sinks for CO2. Only the southern North Sea and10

the Baltic Sea emitted CO2 to the atmosphere. Especially in the northern regions the sink strength increased during the studied

period.

1 Introduction

For facing global challenges, such as predicting and tracking climate change, it is important to improve our understanding of the15

ocean carbon sink and its variability. Open oceans, especially those of the northern hemisphere, are relatively well understood

and described in their large-scale variability (Gruber et al., 2019; Landschützer et al., 2018, 2019; Fay and McKinley, 2017).

Reliable autonomous systems for measuring carbon dioxide partial pressure from commercial vessels were developed in the

early 2000s (Pierrot et al., 2009) and have since been deployed on a large number of vessels (e.g. (Bakker et al., 2016). This has

resulted in sufficient data to develop methods to interpolate the data and to describe large scale air-sea CO2 exchange and its20
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variability (Landschützer et al., 2014, 2013; Rödenbeck et al., 2013; Jones et al., 2015). These methods cover a wide variety of

approaches, such as linear interpolations, machine learning, and model based estimates. By comparing the different results it is

possible to achieve a good estimate of the uncertainty associated with the respective methods and to evaluate their performance

relative to each other (Rödenbeck et al., 2015).

Despite coasts cover 7-10% of the world’s oceans (Bourgeois et al., 2016), their contribution to the oceanic carbon sink is not5

yet fully constrained. Whether coastal oceans are a net sink or source for atmospheric CO2 and how their role will change in a

changing climate is still under debate (Bauer et al., 2013; Laruelle et al., 2010). Compared to the open ocean, longer time series

and a higher spatial and temporal resolution of the observations are needed in order to capture all relevant coastal processes.

Circulation patterns such as small currents caused by the topography, or tidal cycles result in a need for more complex maps

with a higher resolution (Bricheno et al., 2014; Lima and Wethey, 2012).These physical drivers are not the only reasons for10

coasts being more complicated to understand. Processes taking place in the sediments or respiration of sinking material do not

directly affect the surface in the open ocean. In shallow coastal regions the water column can easily be mixed all the way to the

bottom allowing for echange between the benthic and pelargic parts of the ecosystem (Griffiths et al., 2017).

The different maps developed for describing the open ocean surface pCO2 (CO2 partial pressure) dynamics and air-sea CO2

fluxes are not directly suitable for use in coastal regions. Many exclude data from coastal regions completely while all of them15

have a too coarse spatial resolution to properly resolve the coast with its small-scale variability (typically between 1 and 5 ◦).

A few studies tried to describe coastal carbon dynamics but most of them had strong regional or temporal limitations. Table 1

shows an overview of studies with estimated pCO2 trends over the northern European shelf while Table 2 presents available

flux estimates. Laruelle et al. (2017) used a neural network approach to produce a global pCO2 climatology of coastal oceans,

describing more distinct seasonal variability in the northern hemisphere than in the southern Pacific and Atlantic. Few studies20

attempted to constrain coastal air-sea fluxes before. Laruelle et al. (2018) published trend estimates in regions with a high data

coverage based on winter data spanning up to 35 years finding the pCO2 rise in coastal regions to lag behind the atmospheric

rise in CO2. For the Baltic Sea, Parard et al. (2016, 2017) used a neural network approach to produce surface ocean pCO2

maps from 1998 to 2011 and estimated an air-sea flux of 1.2 mmol m−2 day−1. Yasunaka et al. (2018) estimated a flux of

8 - 12 mmol m−2 day−1 in the Barents Sea and along the Norwegian coast using a self-organizing map technique. Most of25

the other available studies on the trends in coastal pCO2 are based on data from either summer or winter. Estimates based

on summer-only data typically show large interannual variations (Thomas et al., 2007; Salt et al., 2013), which led to the

conclusion that here the interannual variability masks the actual long term trend. The approach to use winter-only data (Fröb

et al., 2019; Omar et al., 2019), on the other hand, is based on the assumption that during this season the influence of biological

processes is negligible and therefore winter data can be used to establish a baseline trend. However, also using winter-only data30

has its drawbacks. In particular the choice of which months to include can cause biases and the optimal selection can differ

from region to region .

In this study we present a new approach to develop monthly fCO2 (CO2 fugacity) maps based on already existing open ocean

pCO2 maps, in four example regions: North Sea, Baltic Sea, Norwegian Coast and the Barents Sea, with the aim to determine

the air-sea CO2 exchange in these regions and its decadal trends. A multi linear regression (MLR) was used, fitting driver data35
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Table 1. Overview of trends in surface ocean CO2 reported in the literature.

Reference Time range dpCO2/ dt /µatm yr−1

North Sea Thomas et al. (2007) 2001-2005, summer data 7.9

normalized to 16◦

North Sea Salt et al. (2013) 2001-2005, summer data, 6.5

normalized to 16◦

North Sea Salt et al. (2013) 2005-2008, summer data, 1.33

normalized to 16◦

Faeroe Banks Fröb et al. (2019) 2004-2017, winter data 2.25± 0.20

North Sea, west Omar et al. (2019) 2004-2017, winter data 2.19± 0.55

North Sea, east Omar et al. (2019) 2004-2017, winter data not significant

North Sea Laruelle et al. (2018) 1988-2015 almost no trend

English channel Laruelle et al. (2018) 1988-2015 slightly smaller than atmosphere

Baltic Sea Wesslander et al. (2010) 1994-2008 larger than atmosphere

Baltic Sea Schneider and Müller (2018) 2008-2015 4.6 - 6.1

Baltic Sea, west Laruelle et al. (2018) 1988-2015 much smaller than atmosphere, slightly negative

Barents Sea Yasunaka et al. (2018) 1997-2013 not significant

Barents Sea Laruelle et al. (2018) 1988-2015 about the same as atmosphere

Atmosphere global average 1997-2016 2.02 ppm yr−1

Table 2. Overview of air-sea CO2 fluxes reported in the literature. Negative sign denotes flux from atmosphere to ocean.

Reference Time range F / mmol m−2 day−1

North Sea Meyer et al. (2018) 2001/2002 -3.8

Baltic Sea Parard et al. (2017) 1998-2011 1.2

Norwegian Coast Yasunaka et al. (2018) 1997-2013 -4 - -8

Barents Sea Yasunaka et al. (2018) 1997-2013 -8 - -12
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against fCO2 observations. Based on the resulting fCO2 maps and a salinity-alkalinity correlation we also produced monthly

maps of coastal pH. The performance of the produced maps was evaluated and the maps were then used to investigate trends in

coastal fCO2 and pH in the entire region from 1998 to 2016. Finally, we calculated air-sea CO2 fluxes and show their temporal

and spatial patterns.

2 Method5

2.1 Study area

This work focuses on northern European coasts and marginal seas. As we want to show the performance of the MLR method

we picked a number of regions with very different characteristics: the North Sea, the Baltic Sea, the Norwegian coast and the

western Barents Sea. We decided on these regions specifically because (1) the data coverage in these regions is fairly high and

(2) the authors have strong knowledge on the specific regions. This is important in order to properly evaluate the maps and10

to assess whether or not the output is realistic. The 4 regions were defined based on the COastal Segmentation and related

CATchments (COSCAT) segmentation scheme (Laruelle et al., 2013). The threshold for defining a region as coastal was set to

a depth limit of 500 m (Figure 1). By using this definition, we produce an overlap to the open ocean maps, allowing our maps

to be merged with the open ocean maps.

2.2 Data handling15

The CO2 data used in this study were extracted from SOCAT version 5 (Bakker et al., 2016). Their coverage is shown in Figure

2. An overview over the reanalysis products used as driver data is given in Table 3. We use as basic driver data sea surface

temperature (SST), sea surface salinity (SSS), chlorophyll a concentration (Chl a), mixed layer depth (MLD), bathymetry

(BAT), distance from shore (DIST), ice concentration (ICE), the change in ice concentration from month to month. Chl a

values during the dark winter season were set to 0. In addition to the reanalysis data, pCO2 values from the closest coastal grid20

cell of the open ocean map was used as a driver in our MLR. We can neglect the difference between partial pressure and fugacity

of CO2 (about 1 µatm) at this place as it is much smaller than the accuracy of the data extracted from SOCAT v5 (2 to 10

µatm) and the uncertainty associated to the open ocean maps. The open ocean pCO2 values were extracted from two different

products (Rödenbeck et al. (2014) (version oc_v1.5) and Landschützer et al. (2017, 2016) (version 2016)). Rödenbeck et al.

(2014) is based on a data-driven diagnostic model of ocean biogeochemistry fitted against surface pCO2 observations while25

Landschützer et al. (2016) is based on a two-step neural network (a feed-forward network coupled with self-organizing maps,

FFN-SOM) trained with the pCO2 observations. Please note that the Rödenbeck open ocean map also contains data in coastal

grid boxes, while the Landschützer open ocean map is restricted to the open ocean regions south of 80◦N. The MLR models

based on these two are called MLR 1 (based on the coastal pCO2 values from the Rödenbeck map) and MLR 2 (based on the

the nearest open ocean pCO2 values of the Landschützer map), respectively. To determine the extent to which the regressions30
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Table 3. Products used as driver data in the MLR and the maps.

Product used Resolution Reference

Chl a for MLR 4km x 4km, 8 days Global Ocean Chlorophyll (Copernicus-GlobColour)

from Satellite Observations - Reprocessed

Chl a for maps 4km x 4km, monthly Global Ocean Chlorophyll (Copernicus-GlobColour)

from Satellite Observations - Reprocessed

MLD 12.5km x 12.5km, monthly Arctic Ocean Physics Reanalysis

ICE 0.25◦x0.25◦, monthly Cavalieri et al. (1996)

SST / SSS 0.25◦x0.25◦, weekly Global Ocean Observation-based Products

Global_Rep_Phy_001_021

BAT 2min x 2min ETOPO2v2 Center (2006)

Rödenbeck pCO2 5◦ x 4◦, monthly Rödenbeck et al. (2014)

Landschützer pCO2 1◦ x 1◦, monthly Landschützer et al. (2017)

benefit from the information in the open ocean maps, a third MLR, MLR 3, was determined. This does not have any of the

open ocean maps as driver, but instead uses the year as proxy for the annual rise in CO2.

For producing the input data for the MLR, each SOCAT fCO2 data point was assigned to the closest data point in space

and time of each of the reanalysis data. This produces a matrix as long as the SOCAT fCO2 observations for each driver data.

After this, the fCO2 data as well as all driver data were binned on a monthly 0.125◦x0.125◦ grid covering 1998 to 2016. This5

step ensures that the driver data have the same bias in space and time within each grid box as the fCO2 data. If a grid box for

example only contains observations from the first week of the month and the northwestern corner, we make sure, that also the

gridded driver data only contains values from the first week and the northwestern corner of the grid box, and not an average

over the entire month and grid box. This is mostly important for the chlorophyll driver data, which are available in a very high

resolution compared to the fCO2 maps produced in this work. These driver data were used for the MLR.10

For producing the final maps, a second set of the driver data was produced, in the following called field data. Here the driver

data were directly regridded to a monthly 0.125◦x0.125◦ grid, providing the full spatial and temporal coverage and a homogene

average in each grid box. The field data were used to produce the fCO2 maps based on the equation derived from the MLR.

2.3 Multi linear regression

The multi linear regression models were constructed by forward and backward stepwise regression using the driver data as15

predictor variables to model the fCO2 observations. During a stepwise regression in each step, a variable is tested for being

added or removed from the set of explanatory variables. This decision on whether to add or remove a term was based on the

p-value of the F-statistic with or without the term in question. The entrance tolerance was set to 0.05 and the exit tolerance to

5
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Figure 1. The study area and the location of the four different regions North Sea (purple), Norwegian Coast (red), Barents Sea (green) and

Baltic Sea (blue).

Figure 2. The number of months with fCO2 data from SOCAT v5 in each grid box.
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Table 4. Driver used in the different regressions.

MLD SST SSS CHL ICE ICE change BAT DIST pCO2 year

North Sea

MLR 1 x x x x x x x

MLR 2 x x x x x x x x x

MLR 3 x x x x x x x x x

Norwegian Coast

MLR 1 x x x x x x x

MLR 2 x x x x x x x x

MLR 3 x x x x x x x x

Barents Sea

MLR 1 x x x x x x x x

MLR 2 x x x x x x x x

MLR 3 x x x x x x x x

Baltic Sea

MLR 1 x x x x x x x x

MLR 2 x x x x x x x x

MLR 3 x x x x x x x

0.1. The model includes constant, linear, and quadratic terms as well as products of linear terms. Equation 1 gives the basic

equation, with X1...Xn being the driver data and a1...ann the regression coefficients.

y = a0 + a1 ·X1 + ...+ an ·Xn + a12 ·X1X2 + ...+ amn ·XmXn + a11 ·X2
1 + ...+ ann ·X2

n (1)

The pCO2 value of the respective open ocean maps (MLR 1 and MLR 2), or the year were added (MLR 3). Inclusion of

stationary drivers (such as month, latitude and longitude) in the MLR increased the performance of MLR 2 and MLR 3.5

However, these were still not better than MLR 1 and we therefore decided to limit this analysis to dynamic parameters. Using

dynamic drivers only assures a dynamic description of the conditions in the field, and gives us the possibility to reproduce

changes caused by a regime shifts, for example the ongoing atlanticfication of the Barents Sea (Oziel et al., 2016; Lind et al.,

2018).

2.4 Validation10

The three linear fits were compared to each other by taking into account the R2 and the root mean square error (RMSE) of

the fit, and the Nash Sutcliffe method efficiency (ME) (Nondal et al., 2009). The method efficiency compares how well the
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model output (En) fits the observations (In) for every data point n to how well a simple monthly average (I) would fit the

observations:

ME =
∑

n (In−En)2
∑

n

(
In− I

)2 (2)

A method efficiency >1 means that using just monthly averages of all data in the region would fit better to measured data

than the respective model, Generally, a method efficiency >0.8 is considered bad. Besides the statistics of the fit itself, the final5

maps were also compared to the gridded SOCAT v5 data, resulting in an average offset and standard deviation. In order to

compare the maps against data that were not used to produce the maps, we predicted the fCO2 for the years 2017 and 2018 (ie,

we applied the trained multi-linear model to driver data from 2017 and 2018) and compared these maps to fCO2 observations

in SOCAT v2019, gridded on a monthly 0.125◦x0.125◦ grid. We also compare the map directly with observations at two time

series in the North Sea and the Baltic Sea.10

2.5 Ocean acidification

For calculating ocean acidification, alkalinity (AT) was estimated in the North Sea, along the Norwegian Coast, and in the

Barents Sea via a salinity-alkalinity correlation after Nondal et al. (2009). Alkalinity describes the capacity of the sea water to

buffer changes in pH. As the concentration of most of the weak acids in seawater is strongly dependent on the salinity, alkalinity

can in many regions be estimated from salinity. However, in regions with a high amount of organic acids in seawater, for15

example in strong blooms or at river moths, deviations from the alkalinity-salinity relationship can be observed. The carbonate

system was calculated using the CO2SYS program (van Heuven et al., 2009) with carbonic acid dissociation constants of

Mehrbach et al. (1973) as refitted by Dickson and Millero (1987) and KSO−4 dissociation constants after Dickson (1990). For

the Baltic Sea, we did not calculate pH as the alkalinity-salinity relationship in this region is complex due to different AT-S

relations in different sub-regions of the Baltic Sea, and a non-negligible increase of AT over the last 25 years (Müller et al.,20

2016).

2.6 Calculation of trends

For calculating trends of fCO2 and ocean acidification, the data in every grid box were deseasonalised by subtracting the

long-term averages of the respective months. Then a linear fit was applied to the deseasonalised time-series. For illustrating the

influence of interannual variability we calculated the trend for different time ranges. As a time range less than 10 years barely25

resulted in significant trends, we decided to limit the trend analysis to starting years from 1998 to 2006 and ending years from

2008 to 2016.

2.7 Flux calculation

The air-sea disequilibrium was calculated as the difference between our mapped fCO2 values and atmospheric fCO2 in each

grid cell and time step. The atmospheric fCO2 was determined by converting the xCO2 from the NOAA Marine Boundary30
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Layer Reference product from the NOAA GMD Carbon Cycle Group into fCO2 by using the monthly SST and SSS data (Table

3) and monthly air pressure data from the NCEP-DOE Reanalysis 2 (?). We calculated the air-sea CO2 flux (F) according to

Equation 3, such that negative fluxes are into the ocean. The gas transfer coefficient k was determined using the quadratic wind

speed (u) dependency of Wanninkhof (2014) (Equation 4). The Schmidt number, Sc, was calculated according to Wanninkhof

(2014) and the solubility coefficient for CO2, K0, after Weiss (1974).5

F = k ·K0 · (fCO2,sw− fCO2,atm) (3)

k = aq · 〈u2〉 ·
(
Sc

660

)−0.5

(4)

In our calculations, we used 6-hourly winds of the NCEP-DOE Reanalysis 2 product. The coefficient aq in Equation 4

is strongly dependent on the used wind product. We determined it to be aq = 0.16cmh−1 for the 6-hourly NCEP 2 product10

following the recommendations of Naegler (2009) and by using the World Ocean Atlas sea surface temperatures (Locarnini

et al., 2018). The barrier effect of sea ice on the flux was taken into account by relating the flux to the degree of ice cover

following of Loose et al. (2009). As the gas exchange in areas that are considered 100% ice covered from satellite images

should not be completely neglected, we use a sea ice barrier effect for a 99% sea ice cover in all grid cells where the sea ice

coverage exceeded 99%.15

3 Results

3.1 Maps of fCO2

The skill assessment metrics for MLR 1, MLR 2 and MLR 3 are presented in Table 5. It shows the the R2 and RMSE of the fit,

the ME, as well as the average offset and standard deviation to the gridded SOCAT data. The MLRs substantially improve the

predictions of the open ocean maps in all studied regions, showing a better average offset and standard deviation to SOCAT v520

and ME than the coarser-resolution open ocean maps (for example: Rödenbeck map: North Sea 0±95 µatm, Norwegian Coast:

2± 17 µatm, Barents Sea: 22± 40 µatm, Baltic Sea: 4± 48 µatm; MLD1: North Sea: 0± 26 µatm, Norwegian Coast: 0± 16

µatm, Barents Sea: 0± 19 µatm,Baltic Sea: 2± 42 µatm). In all regions MLR 1 was performing best, showing also the best

model efficiency, the highest R2 and the smallest RMSE of the fit, while MLR 2 and MLR 3 showed a weaker performance.

This can be explained by the fact that the Rödenbeck map contains also information about the coasts and the Barents Sea, while25

for MLR 2 the closest open ocean grid cell of Landschützer et al. (2017) was used. MLR 3 showed the weakest performance,

which shows the value of using information from the open ocean maps in the regression.

Figure 3 shows, from left to right, the spatial distribution of the average difference between the predicted fCO2 by MLR1

and the gridded SOCAT v5 data, the Rödenbeck map and the gridded SOCAT v5 data, the difference between MLR 1 and the

Rödenbeck map, and, for comparison, between MLR 3 and the SOCAT v5 data. In the North Sea, MLR 1 seems to slightly30

overestimate the fCO2 in the constantly mixed region at the entrance of the English channel and the area off the Danish North

9
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Figure 3. Average regional differences between MLR 1 and gridded SOCAT v5 data, the Rödenbeck map and gridded SOCAT v5 data, MLR

1 and the Rödenbeck map, and MLR 3 and the gridded SOCAT v5 data (from left to right).

Sea coast. In the Baltic, MLR 1 generally describes well the spatial variability in fCO2. In the Gulf of Finland it usually predicts

too low fCO2 values during May/June while MLR 1 slightly underestimates events of very high fCO2 in December/January.

However, it shows lower spatial biases than the original Rödenbeck map. MLD 2 and 3 are showing much larger differences

from SOCAT v5 data, especially in the Baltic Sea and the southern North Sea. Therefore, we will use MLR 1 in the further

analysis. An extended validation of the MLR 1 maps can be found in the discussion section.5

Figure 4 shows the monthly averages of fCO2 produced by MLR 1 for February, May, August and November. In all regions,

the highest fCO2 values occur in the winter, while the lowest fCO2 occur in summer. The largest seasonal cycle could be

observed in the Baltic Sea, where fCO2 reached well below 200 µatm in mid summer and over 500 µatm during the winter.

3.2 Maps of pH

The monthly average of pH calculated from MLR 1 fCO2 is ranging from about 8 during winter to 8.15 during summer in the10

North Sea and at the Norwegian coast (Figure 5). Towards the Barents Sea the pH maximum increases during summer to 8.2.

The pH of 8.00 - 8.15 in regions with a large influence from the Atlantic, such as the northern North Sea and the Norwegian

coast, is in good agreement with the range of pH determined for the open North Atlantic (Lauvset and Gruber, 2014; Lauvset

10
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Table 5. Statistical evaluation of the MLR 1, MLR 2 and MLR 3 in comparison to the open ocean maps of Rödenbeck et al. (2015) and

Landschützer et al. (2017) for each region. The data for the open ocean map of Landschützer et al. (2017) are in parentheses since this is

based on an extrapolation of he closed open ocean grid cell towards the coast. The number of grid cells containing data is given behind the

region abbreviations.

R2 adj RMSE ME difference to gridded SOCAT v5

median mean standard deviation

/µatm /µatm /µatm

North Sea (36170)

MLR 1 0.7271 25 0.3145 -0.15 26

MLR 2 0.5130 33 0.5789 -0.52 36

MLR 3 0.5331 33 0.4895 -2.4 32

Rödenbeck 0.3522 -0.28 95

(Landschützer) 0.5714 -4.7 103

Norwegian Coast (16014)

MLR 1 0.7860 16 0.1742 0.46 16

MLR 2 0.5634 22 0.3597 -2.3 24

MLR 3 0.6074 20 0.2436 -0.08 21

Rödenbeck 0.2177 2.0 17

(Landschützer) 0.3294 7.0 23

Barents Sea (13925)

MLR 1 0.8871 12 0.1069 0.32 19

MLR 2 0.8724 14 0.0986 1.3 68

MLR 3 0.8672 18 0.1082 1.3 24

Rödenbeck 0.2923 22 40

(Landschützer) 0.3364 15 44

Baltic Sea (46810)

MLR 1 0.9076 39 0.0488 2.2 42

MLR 2 0.6733 66 0.3111 -1.0 68

MLR 3 0.6628 67 0.3027 0.24 69

Rödenbeck 0.1326 4.2 48
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Figure 4. The average fCO2 of MLR 1 (1998-2016) for one example months in each season (February, May, August and November).

et al., 2015). In the North Sea, the pH is in the same range as reported in Salt et al. (2013) and it also shows the same distribution

in August/September with higher pH in the northern North Sea and lower pH in the southern part.

4 Discussion

4.1 Validation of the pCO2 maps

The performance of the MLR and the produced maps are evaluated in different ways: (1) the R2 and the RMSE of the fit between5

the driver data and the gridded observations, (2) the average deviation and its standard deviation, as well as the ME between the

produced fCO2 maps and the gridded observations as a regional average, (3) showing the median deviation between the MLR

and the gridded observations on a monthly level, (4) by comparing the data from the fCO2 maps to observations from two time

series stations. (2) - (4) will be shown for both, the time period covered by the driver data (1998-2016) and a prediction of the

maps into the years 2017 and 2018. Please note that the comparability of the model performance between the different regions10
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Figure 5. The average pH based on MLR 1 (1998-2016) for one example month in each season (February, May, August and November).

is limited. All used statistical parameters are influenced by characteristics that can vary substantially between the different

regions, such as range of the data, their variability or the amount of grid cells with data. Additionally, in a region with many

measurements the amount of variability captured by these measurements is most likely larger and, thus will lead to a weaker

correlation.

Generally, the uncertainty of MLR 1 are in the same range as in other studies (Laruelle et al., 2017; Yasunaka et al., 2018)5

mapping coastal fCO2 dynamics: 25 µatm in the North Sea, 16 µatm along the Norwegian Coast, 12 µatm in the Barents Sea,

and 39 µatm in the Baltic Sea (based on the RMSE in Table 5). In the Baltic Sea, which has a large variability in itself, Parard

et al. (2016) obtained lower standard deviations through dividing the area in smaller sub-regions.

The seasonal differences between MLR 1 and the SOCAT v5 data for each region are shown in Figure 6. This comparison

shows a very good agreement. For MLR 1, the seasonal variations of the median bias are small in the North Sea, along10

the Norwegian coast and in the Baltic Sea. In the Barents Sea, however, the bias varies seasonally. Here, MLR 1 slightly

underestimates the fCO2 in winter and early spring, while it overestimates the fCO2 in summer. In all other regions, the
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Figure 6. Boxplots showing the median deviation of MLR 1 from the gridded SOCAT v5 data for each region (red line). The boxes show the

respective 75% percentiles. 99% of the data lays within the range of the purple whiskers. Extremes are shown as gray crosses.

median seasonal bias is smaller than the uncertainty of the maps. The larger seasonal bias in the Barents sea is most likely

caused by the larger seasonal bias in the number of available observations. There is no data available in October, December

and January.

When comparing all observations from the years 2017 and 2018 to the predictions by the MLR1, we find a good agreement

in the North Sea (2± 20 µatm) and no seasonal bias (Figure 7). In the other regions, the agreement is somewhat reduced5

compared to the years 1998-2016 (−9± 39 µatm (Norwegian Coast), −5± 29 µatm (Barents Sea) and 28± 58 µatm (Baltic

Sea)). In these regions we also observe a seasonal bias in the years 2017 and 2018. At least for the Baltic Sea this could be a

reason of a extraordinarily warm and dry summer in 2018, that lead to very low fCO2 values in the Baltic Sea Bakker et al.

(2016) Please note that for this comparison, the MLR was extrapolated in time. Only observations until December 2016 were

used to produce the MLR.10

In a second test to investigate to which extent MLR 1 can reproduce observations we compared the MLR output with time

series data from two voluntary observing ship lines in two very different regions with a good data coverage: M/V Nuka Arctica
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Figure 7. Boxplots showing the median deviation of MLR 1 (based on observations until 2016) predicted and measured fCO2 values in

2017 and 2018. The boxes show the respective 75% percentiles. 99% of the data lays within the range of the purple whiskers. Extremes are

shown as gray crosses. The number of grid cells with data available were: North Sea: 5047 , Norwegian Coast: 1543, Barents Sea: 2312,

Baltic Sea: 5414.

in the northern North Sea (0-2◦E, 58-60◦N) and M/V Finnmaid in the Baltic Sea (23-24◦E, 59-60◦N) (Figure 8). To every

observation we assigned the related value of MLR 1. The agreement between the MLR 1 and the observations is very good.

MLR 1 reproduces the general seasonality and some of the interannual variability, also in the years 2017 and 2018, of which

the observations were not used in the regression.

When performing interpolation exercises it is always important to be aware of the fact that the resulting maps might come5

with biases and do not represent all regions equally well. While the here presented maps give a good general overview about

the surface ocean fCO2 variability in regions with a relatively large amount of data, the reliability, however, is limited in

those regions where the data coverage is more scarce. This is especially the case, when the region with scarce data coverage

is showing different characteristics in, for example, temperature and salinity, compared to the rest of the region. One such

example is the Gulf of Bothnia in the Baltic Sea region where almost all data used to derive the MLR is from south of 60◦N10
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Figure 8. Time series of VOS data from Nuka Arctica (upper panel, blue) and Finnmaid (lower panel, blue) compared with MLR 1 at the

same location (red). In light blue the predictive MLR output for the years 2017 and 2018 is shown.
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i.e. not in the Gulf of Bothnia, but in the Baltic Proper and western Baltic Sea (Figure 2). The MLR method can also lead

to unrealistic extreme values and even negative fCO2. Some such values occur in the northeastern Barents sea as well as in

some parts of the Baltic Sea (about 0.01% of the grid cells in each region). As pH cannot be calculated for negative fCO2, we

excluded all negative fCO2 values for the calculation of pH. Excluding the negative values resulted in a change of the average

fCO2 of 0.05 µatm (Baltic Sea) and 0.3 µatm (Barents Sea) so they are of negligible importance for the flux estimates. While5

the negative values are easy to spot and discard there are most likely more unrealistically low values in spring and summer data

in the very north and northeastern Barents Sea as well as some parts of the Baltic Sea. However, there are no data available in

SOCAT v5 or elsewhere available to validate this to validate this.

All regions with questionable fCO2 are also questionable in their pH data. There is a number of very high pH in the Barents

Sea, that are associated with also very low fCO2 that might not be realistic. In addition,estimated pH values in regions or10

seasons where the actual alkalinity-salinity deviates strongly from the Nondal et al. (2009) one used here, should be interpreted

with caution.

4.2 Trends in fCO2 and pH

The trends in surface ocean fCO2 in coastal regions are often difficult to assess because of the scarcity of the data relative to the

highly dynamical character of these regimes and their large interannual variability. One issue is that the start of the productive15

season can range from February to April even within a small area, such that even restricting the analysis to specific seasons

(e.g. winter) can be challenging. However, due to lack of data, especially winter data, most observational studies are based on

repeated sections during summer. Further, the fact that these measurements typically do not take place every year, adds even

more uncertainty to the estimated trend, as the interannual variability can mask the trend signal.

The monthly maps of fCO2 from 1998 to 2016 enable us now to estimate the trend in surface ocean fCO2 for the entire20

region and equally distributed over the seasons (Figure 9, left). All trends were computed by using deseasonalized data. The

interannual variability of the trend estimates in each region is shown in the panels on the right hand side in Figure 9. Based

on the linear regression the significant trends in fCO2 have an average uncertainty of 0.5 µatm/yr (North Sea), 0.4 µatm/yr

(Norwegian Coast), 0.4 µatm/yr (Barents Sea), and 0.7 µatm/yr (Baltic Sea), while the shorter time periods shown have a

higher and the longer time periods a lower uncertainty. For pH trends the average uncertainty of the regression is 5 · 10−425

(North Sea) and 7 · 10−4 (Norwegian Coast and Barents Sea).

In most of the regions addressed in this study, the trend in the surface ocean is lower than the trend in atmospheric xCO2

(global average 2.02 ppm yr −1 ("Cooperative Global Atmospheric Data Integration Project", 2015)). Trends exceeding the

atmospheric values in the period from 1998 to 2016 can only be observed at the entrance of the English Channel, in Storfjor-

den/Svalbard, the Gulf of Finland and the Gulf of Bothnia (2.5− 3 µatm yr−1). It has to be noted that there was almost no30

measured fCO2 as MLR input in neither Storfjorden nor the Gulf of Bothnia. Therefore, these trends should be handled with

care. The western North Sea has a trend that is only slightly lower than the trend in the atmosphere (1.5−2 µatm yr−1), while

the trends in the eastern North Sea, along the Norwegian coast and in the Barents Sea are somewhat lower (0.5-1.5 µatm yr−1).

In the North Sea this is consistent with a recent study directly based on observations Omar et al. (2019). The low trends result
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Figure 9. The trend in surface ocean fCO2 estimated from deseasonalized fCO2. The left hand panel show the spatial distribution of the

trend over the time period from 1998 to 2016. Grid boxes without a significant trend are denoted with a black dot. On the right hand the

influence of the time range on the average trend is shown for the four regions. Non significant trends were left blank. Significant trends in

sea surface temperature are indicated with crosses/circles.

in an increase in the strength of the ocean carbon sink with time. A trend smaller than the atmospheric trend can be caused

by a shift in the bloom onset. For example, in the North Sea a significant drawdown in fCO2 has been observed as early as

February in some years (Omar et al., 2019). The bloom onset in the North Sea after the 1990s has been shown to be mainly

triggered by the spring-neap tidal cycle and the air temperature by Sharples et al. (2006). They found that the onset of spring

bloom has occurred on average 1 day earlier every year. Over the period covered in this study (almost 20 years) this could cause5

a change of three weeks in the timing of the spring bloom. Even if the trend in winter fCO2 was following the atmospheric

xCO2 increase, such a change in bloom onset would lead to a trend lower than the atmospheric when averaging over the entire

year.

18

https://doi.org/10.5194/bg-2019-480
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 10. The trend in surface ocean pH estimated from deseasonalized pH. On the left hand the spatial distribution of the trend over the

time period from 1998 to 2016 is shown. Grid boxes without a significant trend are denoted with a black dot. On the right hand the influence

of the time range on the average trend is shown for the four regions. Non significant trends were left blank.

The observation that large subareas (the Baltic Sea, the western North Sea) did not show a significant trend can be explained

by the fact that, coastal systems, especially enclosed areas as the Baltic Sea, experience a high anthropogenic pressure. An-

thropogenic impacts other than rising atmospheric CO2 concentrations influencing the ocean carbon system and the bloom

properties such as the nutrient load of rivers can effect coastal ecosystems through eutrification, resulting in lower fCO2 in

summer and higher fCO2 in winter. Another important process that influences the carbon system in the Baltic Sea are inflow5

events from the North sea. In between such events, CO2 accumulates in deeper water layers causing an increasing gradient

of dissolved inorganic carbon (DIC) across the halocline. Whenever deep winter mixing occurs, this will then lead to a large

increase of surface fCO2 because of the input of DIC rich waters from below. Another reason is the observed change in alka-

linity with time which effects the fCO2 though changes in the buffer capacity of the inorganic carbon system (Müller et al.,

2016).10
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When looking at the interannual variability, it becomes obvious that the trend in the North Sea is slightly smaller than the

atmospheric CO2 trend. In contrast, the Norwegian coast and the Barents Sea experience a robust trend much lower than the

atmospheric trend (Norwegian Coast: 1− 1.5 µatm yr−1, Barents Sea: around 1 µatm yr−1). Here we can also see a stable

pattern of warming over time scales of 10 to 15 years. The warming in itself would result in an increase of fCO2 with time,

in addition to the atmospheric forcing. As we are observing a trend smaller than the atmospheric trend, temperature effects5

can’t be the driver here. The lower trend stems most likely from an earlier onset of spring bloom. It has been shown that the

atlantification and the reduced ice coverage of the Barents sea leads to a longer productive season, and this will result in more

months with strong undersaturation in CO2 (Oziel et al., 2016). In the Baltic Sea the pattens are different. Here the variability

is much larger, while most of the time periods show a trend larger than the atmospheric trend (3− 3.5 µatm yr−1). Although

slightly smaller our results broadly agree with trend estimates based on measurements of 4.6 - 6.1 µatm yr−1 over 2008-201510

(Schneider and Müller, 2018). Finally, it also needs to be noted that the uncertainty of the fCO2 maps was highest in the Baltic

Sea. This makes it also more difficult, if not impossible, to properly detect these small trends.

For pH, the trend in most regions is around -0.002 yr−1 (Figure 10). A expected, regions with the strongest trend in fCO2

also show the highest trend in pH, such as the southern North Sea. The trend in the northern North Sea and along the Norwegian

Coast is in good agreement with the pH trends found in studies focusing on the open Atlantic Ocean (-0.0022 yr−1 (Lauvset15

and Gruber, 2014)) and the North Atlantic and Nordic Seas (-0.002 yr−1 (Lauvset et al., 2015)).

4.3 CO2 disequilibrium and flux

The average sea-air CO2 disequilibrium (∆fCO2=fCO2,sea− fCO2,atm) is shown in Figure 11. The only region showing an

average supersaturation is the southern North Sea. Towards the north, the surface ocean becomes more and more undersatu-

rated, with lowest values in the Barents Sea. The values we found in the Barents Sea (-60 to -80 µatm in the southern Barents20

Sea and less than -100 µatm around Svalbard) are in generally in agreement those estimated by Yasunaka et al. (2018). The

seasonal cycle of ∆fCO2 follows a mainly biologically driven pattern with higher values in the winter and lower values from

April to August. The seasonal cycle is largest in the Baltic and smallest in the Barents Sea.

The sea-air CO2 fluxes (Figure 12) show that most regions are a net and increasing sink for CO2. The only source net regions

are the southern North Sea and the Baltic Sea. The two different regimes in the North Sea with the southern, nonstratified part25

being a source and the northern temporarily stratified part a sink for CO2, are well described in the literature (Thomas et al.,

2004).

The seasonal variations in the air-sea flux are driven by a combination of the changes in the disequilibrium, the wind strength,

and the ice cover. As there is less wind during summer, when the disequilibrium is large, but a smaller disequilibrium during

winter, when the wind strength is high, the seasonal variability is often less clear than that of e.g. the disequilibrium. This30

can be seen in the Barents Sea and Norwegian Coast. Yasunaka et al. (2018) found the seasonal and interannual variation in

the Barents Sea and the Norwegian Sea mostly corresponded to the wind speed and the sea ice concentration. In contrast to

that we see the strongest dependence on the air-sea disequilibrium. However, even though we don’t find the same seasonality,

considering the error margin and the small amplitude of the seasonality, our average fluxes fit well with those reported by
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Figure 11. The average air-sea CO2 disequilibrium over the period 1998-2016 (left hand panel, red colors indicate average undersaturation,

while blue colors indicate average oversaturation). For every region average disequilibria are shown as seasonal averages (right side, upper

corner) and time-series of annual disequilibria (right side, lower corner). Blue line: North Sea, red line: Norwegian coast, yellow line: Barents

Sea, purple line: Baltic Sea

Yasunaka et al. (2018) of -8 to -12 mmol m−2 d−1 (Barents Sea) and -4 to -8 mmol m−2 d−1 (Norwegian Coast). In the

North Sea there is almost no net flux during winter, as the surface ocean is more or less in equilibrium with the atmosphere.

In the Baltic Sea, we can see high fluxes into the atmosphere during winter as here a large oversaturation coincides with high

wind strengths. This is also why the Baltic Sea is a net source regions. Although Parard et al. (2017) did find slightly smaller

fluxes (+15 mmol m−2 d−1 during winter and -8 mmol m−2 d−1 during summer), the annual air-sea CO2 fluxes are in good5

agreement (0 to +4 mmol m−2 d−1 between 1998 and 2011).

The uncertainty in the calculated fluxes is a result of the uncertainties in the fCO2 observations, ∆fCO2 maps, the gas

exchange parameterization and the wind product. The uncertainty of the ∆fCO2 is mostly driven by the uncertainty of the

MLR, resulting in an error between 12 µatm and 39µatm, according to the RMSE values of MLR1 for the different regions

(Table 5). A number of studies addresses on the uncertainty of gas exchange parameterizations and the wind products (Couldrey10

et al., 2016; Gregg et al., 2014; Ho and Wanninkhof, 2016). For this study, we apply an uncertainty of the gas transfer velocity
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Figure 12. The average air-sea CO2 flux over the period 1998-2016 (left hand panel, red colors indicate sink regions, while blue colors

indicate source regions). For every region average fluxes are show as seasonal averages (right side, upper corner) and timeseries of annual

fluxes (right side, lower corner).

of 20% (Wanninkhof, 2014). This will result in an uncertainty of the air-sea flux of about 2 mmol C d−1 m−2. It has to be

kept in mind, that the absolute uncertainty in k increases with increasing wind speed, but that the uncertainty in the wind speed

has largest influence in summer when also the disequilibrium is large. In contrast to that the uncertainty in ∆fCO2 will cause

larger errors in winter, when the wind speeds are high.

5 Conclusions5

The MLR approach presented in this work is a relatively easy and straight forward method to produce monthly fCO2 maps

with a high spatial resolution in coastal regions. Using available open ocean maps did improve the coastal maps significantly.

The maps reproduce nicely the main spatial and temporal patterns that can also be found in observations in the different regions

for both fCO2 and pH. The surface seawater fCO2 trends were mostly lower than the atmospheric trends and also lower than

the trends found in the open North Atlantic. We did find the northern European shelf to be an increasing net sink for CO2. Only10
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the Baltic Sea is a net source region. This method clearly has the potential to be extended to a larger region. However, it should

be handled with care in regions with only a small number of observations as the MLR can lead to unrealistic values.

Longterm observations with a high temporal resolution are extremely important for developing maps such as presented here.

While a decent spatial coverage exists for the open North Atlantic, most coastal regions are still undersampled. This is in

particular the case for higher latitudes and in the Arctic. To further understand and interpret the trends on fCO2 and pH it5

is necessary to increase our knowledge and understanding of the interaction of primary production, respiration in the water

column and the sediments, mixing and gas exchange and their influence on the carbon cycle.

While MLR derived sea surface provides coherent picture of the entire region, they have clear limitations and should be

interpreted with caution in regions with few or none observations. Both, for producing high quality maps, as well for their

validation a large number of observations is essential.Also, observations of second parameter of the carbon system would10

be beneficial for deriving pH maps. This will help to reduce and quantify the error introduced by estimating alkalinity from

salinity. In addition to that, our work neglects the areas closest to land due to unavailability of CO2 data and reanalysis products

in those areas. For adding their contribution to the flux estimates, new platforms specialized on measurements directly at the

land-ocean interface need to be developed.
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