
Supplement 
 

1. Supplementary figure to main text 
 

 
 
Fig. 1S: Hydrothermal plume δ30Si versus the Si concentration. For comparison the δ30Si of the basin 
site water column is shown. No correlation with the Si concentration can be observed. 
 

 
2. Supplementary tables to main text 

 
Table 1S: Pore fluid and sediment geochemistry data 
 
      Pore fluid            Sediment   

Station/MUC#/
Station name 

Latitude (N) /    
Longitude  (W)   

Depth Cl Mg Na K NH4 
  

TC TOC CaCO3 

    (cmbsf) (mM) (mM) (mM) (mM) (µM) 
 

% % % 

SO241-33/11/ 27° 33.301' 0 557.8 53.9 10.0 473 0.98 
    Basin site 111° 32.883' 0.5 553.7 53.4 10.3 470 7.49 
 

4.3 3.9 3.6 

  
1.5 555.9 53.2 10.4 471 13.58 

 
4.3 3.9 3.8 

  
2.5 564.6 53.5 10.6 472 11.06 

 
4.3 3.7 5.1 

  
3.5 562.6 53.6 10.7 475 12.06 

 
- - - 

  
4.5 567.2 53.1 10.6 472 11.26 

 
4.2 3.6 4.5 

  
6 569.9 53.1 10.6 472 13.05 

 
3.3 3.0 2.8 

  
8 570.9 52.7 10.7 470 13.51 

 
- - - 

  
10 569.9 52.4 10.7 469 12.92 

 
- - - 

  
12.5 568.9 52.2 10.9 468 13.18 

 
3.8 3.1 5.7 

  
15.5 573.5 51.9 10.8 469 17.02 

 
3.6 3.1 4.2 

  
18.5 569.1 51.5 10.7 466 19.47 

 
- - - 

  
22 573.2 51.4 10.7 468 18.15 

 
4.2 3.2 8.5 

            SO241-22/04/ 27° 28.165' 0 573.5 54.1 10.0 478 0.0 
 

- - - 



Basin site 111° 28.347' 0.5 554.1 53.6 10.3 475 4.9 
 

5.9 5.1 6.1 

  
1.5 557.1 53.3 10.3 474 8.4 

 
- - - 

  
2.5 559.7 53.2 10.4 473 11 

 
7.1 5.3 15 

  
3.5 554.7 53.2 10.3 473 11 

 
- - - 

  
4.5 556.4 53.2 10.3 474 25 

 
- - - 

  
5.5 558.4 52.9 10.3 471 28 

 
5.9 5.3 5.1 

  
7 556.9 53.3 10.4 475 35 

 
- - - 

  
9 558.7 53.1 10.4 473 49 

 
5.8 5.2 4.6 

  
11 561.3 53.1 10.3 473 36 

 
- - - 

  
13 558.1 53.2 10.3 473 43 

 
- - - 

  
15.5 558.7 53.3 10.4 475 44 

 
- - - 

  
18.5 558.3 53.0 10.4 473 33 

 
6.1 5.7 3.9 

  
22 556.6 53.0 10.4 473 28 

 
- - - 

  
26 559.8 53.2 10.4 475 21 

 
3.9 3.5 3.8 

            SO241-23/05/ 27° 30.282' 0 560.4 55.3 10.3 489 0.3 
 

- - - 

Basin site 111° 40.770' 0.5 556.3 53.5 10.1 474 0.2 
 

5.0 3.4 13 

  
1.5 552.2 53.7 10.2 477 5.6 

 
- - - 

  
2.5 565.1 53.2 10.3 474 16 

 
- - - 

  
3.5 557.3 53.5 10.3 475 19 

 
5.2 3.8 12 

  
4.5 562.2 53.5 10.4 476 - 

 
- - - 

  
5.5 557.4 53.3 10.3 474 28 

 
5.6 4.0 14 

  
7 561.4 53.3 10.3 473 26 

 
- - - 

  
9 563.2 53.7 10.4 479 29 

 
5.6 4.2 12 

  
11 566.2 53.4 10.4 476 25 

 
- - - 

  
13 563.3 53.3 10.4 475 27 

 
- - - 

  
15.5 563.4 53.3 10.4 474 - 

 
7.1 3.4 31 

  
18.5 561.5 53.4 10.4 476 - 

 
- - - 

  
22 565.7 53.1 10.4 473 47 

 
7.8 3.3 38 

            SO241-15/02/ 27°26.925' 0 566.1 54.3 10.1 479 0.0 
 

- - - 

Basin site 111°29.926' 0.5 560.7 53.5 10.2 474 1.0 
 

3.5 2.9 4.5 

  
1.5 559.8 53.6 10.2 474 0.0 

 
3.7 3.1 5.2 

  
2.5 565.0 53.4 10.3 473 0.0 

 
4.1 3.4 5.1 

  
3.5 561.9 53.6 10.3 475 0.0 

 
4.1 3.4 5.6 

  
4.5 565.2 53.2 10.3 473 0.4 

 
3.9 3.2 5.4 

  
5.5 564.5 53.3 10.4 474 1.3 

 
4.1 3.3 5.9 

  
7 557.4 53.0 10.4 472 3.6 

 
4.0 3.3 6.1 

  
9 557.6 53.1 10.5 472 6.7 

 
3.8 3.1 6.0 

  
11 553.6 53.3 10.4 472 8.0 

 
3.5 2.8 5.8 

  
13 560.1 53.3 10.4 472 10 

 
3.4 2.7 5.7 

  
15.5 559.2 53.4 10.3 473 15 

 
2.5 2.0 4.6 

  
18.5 559.5 53.4 10.3 473 22 

 
2.3 1.8 4.0 

  
22 556.6 53.3 10.4 474 31 

 
3.7 3.1 5.5 

  
26 556.8 53.2 10.5 473 42 

 
3.5 2.8 5.8 

  
30 555.3 53.3 10.9 477 53 

 
3.0 2.6 3.9 

            SO241-66/16/ 27° 24.577' 0 546.4 54.4 10.2 480 0.0 
 

- - - 

Hydrothermal 
site 

111° 23.265' 0.5 556.7 53.5 10.3 474 5.0 
 

2.4 2.2 1.8 

 
1.5 550.6 53.7 10.4 477 10 

 
2.5 2.3 2.0 

  
2.5 548.6 53.5 10.4 474 16 

 
2.4 2.0 2.9 

  
3.5 548.4 53.5 10.4 476 17 

 
2.2 2.0 1.6 

  
4.5 557.1 53.6 10.4 477 20 

 
2.2 1.8 3.1 

  
5.5 547.2 53.5 10.4 477 20 

 
2.0 1.8 1.7 

  
6.5 547.9 53.4 10.4 475 21 

 
1.9 1.7 1.6 

  
9 546.8 53.8 10.4 478 22 

 
1.6 1.4 1.6 



  
11 554.6 53.5 10.3 474 22 

 
1.1 1.0 0.4 

  
13 548.2 53.5 10.2 474 22 

 
1.9 1.8 0.9 

  
15.5 549.2 53.6 10.2 475 20 

 
2.2 2.1 1.3 

  
18.5 554.7 53.7 10.2 476 20 

 
0.3 0.3 0.3 

            SO241-29/09/ 27° 42.410 0 557.9 54.1 474 10.1 4.7 
 

- - - 

OMZ site 111° 13.656 0.5 553.1 53.7 471 10.2 24 
 

3.5 2.8 5.7 

  
1.5 552.6 53.7 471 10.2 50 

 
3.9 3.1 6.8 

  
2.5 558.8 53.4 468 10.1 68 

 
4.1 3.3 7.0 

  
3.5 556.5 53.8 472 10.2 58 

 
4.1 3.2 7.1 

  
4.5 553.0 53.5 469 10.2 93 

 
4.3 3.4 7.7 

  
5.5 551.2 53.8 475 10.3 73 

 
4.6 3.5 8.9 

  
6.5 553.3 53.3 467 10.2 92 

 
4.4 3.5 7.3 

  
7.5 552.6 53.5 471 10.2 139 

 
4.2 3.4 6.9 

  
9 554.0 53.6 471 10.3 183 

 
4.1 3.3 6.2 

  
11 553.7 53.7 472 10.3 218 

 
4.0 3.4 5.0 

  
13 555.7 53.3 469 10.2 281 

 
4.0 3.5 4.3 

  
15 557.7 53.4 471 10.3 320 

 
4.0 3.4 5.1 

  
18.5 556.2 53.5 472 10.3 402 

 
3.6 3.3 2.5 

  
20.5 551.8 54.2 477 10.5 480 

 
3.8 3.5 2.3 

  
23.5 546.9 53.0 466 10.2 582 

 
3.6 3.1 4.6 

  
26.5 551.3 52.9 465 10.2 606 

 
4.0 3.4 5.3 

  
29 555.5 53.3 469 10.2 660 

 
3.9 3.5 3.4 

  
30 556.2 53.4 469 10.2 702 

 
3.5 3.2 2.4 

    38 562.7 53.2 469 10.2 767   3.4 3.3 0.7 

Italic numbers published in Geilert et  al., 2018     
       

 



Table 2S: Main mineral phases identified by XRD analysis in wt-% for the basin sites  and the hydrothermal site. 
 

Station/MUC#/
Station name 

Depth Quartz  Plagioclase K-feldspar  Calcite 
Mg-rich 
Calcite 

Aragoni
te 

Dolomite Ankerite 
    

Error (rel%) (cmbsf) ±1 ±2-5 ±2-5 ±1 ±2-3 ±2-3 ±1 ±2-3 
    

SO241-33/11/ 0.5 8.9 8.5 10.0 0.0 0.0 0.0 0.0 0.0 
    

Basin site 2.5 6.2 5.4 7.6 0.0 0.0 0.0 0.0 0.0 
    

 12.5 8.3 9.9 0.0 0.0 0.0 0.0 0.0 0.0 
    

 
22.0 7.7 9.2 5.1 0.0 0.0 0.0 0.0 0.2 

    
              
SO241-22/04/ 0.5 10.7 14.5 1.1 0.0 0.0 0.0 0.0 0.7 

    
Basin site 5.5 14.0 16.6 4.9 0.0 0.0 0.0 0.0 0.7 

    

 
9.0 8.9 7.6 10.3 0.0 0.3 0.0 0.0 0.4 

    

 
18.5 9.5 10.4 13.6 0.0 0.0 0.0 0.0 0.6 

    

 
26.0 9.0 10.0 9.8 0.0 0.0 0.0 0.0 0.3 

    
              
SO241-23/05/ 0.5 7.2 8.4 0.0 0.0 0.0 0.0 0.0 0.4 

    
Basin site 3.5 6.9 5.7 17.7 0.0 0.0 0.0 0.0 0.5 

    

 
9.0 8.5 6.6 4.6 0.0 0.0 0.0 0.3 0.0 

    

 
22.0 9.0 10.1 4.3 0.2 0.4 0.0 0.3 0.4 

    
              
SO241-15/02/ 0.5 3.0 6.2 5.7 0.0 0.0 0.0 0.2 0.3 

    
Basin site 5.5 9.1 9.0 1.7 0.0 0.7 0.0 0.0 0.4 

    

 
15.5 15.5 8.2 0.0 0.0 0.4 0.0 0.1 1.0 

    

 
30.0 8.2 9.6 2.7 0.0 0.0 0.0 0.0 0.5 

    
              
SO241-66/16/ 0.5 2.0 19.8 5.8 0.0 0.0 0.0 0.0 0.0 

    Hydrothermal 2.5 9.1 9.8 19.5 0.0 0.0 0.0 0.2 0.3 
    



site 5.5 7.8 12.3 10.7 0.4 0.4 0.0 0.4 0.4 
    

 
13.0 0.8 4.8 9.5 0.0 0.0 2.6 0.4 0.4 

    

 
18.5 1.9 12.5 22.9 0.5 0.5 0.0 0.7 0.2 

     
 
Table 2S continued 

            
Station/MUC#/
Station name 

Depth Smectites 
Montmorillo

-nites 
Cristoballite Trydimite 

SiO2 nearly 
amorphous 

Mixed 
Layer 
Clays 

Illites Muscovite Biotite Glauconite Kaolinite  Chlorite 

Error (rel%) 
(cm 
bsf) 

±5-10 ±5-10 ±2 ±2 ±5-10 ±5-10 ±5-10 ±5-10 ±5-10 ±5-10 ±2-5 ±2-5 

SO241-33/11/ 0.5 0.0 5.0 0.0 0.0 23.9 20.3 5.9 1.7 0.0 0.0 1.9 1.0 

Basin site 2.5 0.0 20.8 0.0 2.4 20.4 3.5 7.1 2.2 1.7 0.0 4.5 1.0 

 
12.5 1.4 6.6 0.0 0.0 22.6 25.0 7.0 0.0 0.0 0.0 1.9 0.8 

 
22.0 1.5 7.7 0.0 0.0 28.1 14.0 4.8 0.0 0.0 0.0 3.4 0.7 

              
SO241-22/04/ 0.5 3.4 7.2 0.0 0.0 8.0 2.3 26.0 0.0 0.0 0.0 4.9 1.0 

Basin site 5.5 1.9 1.8 0.0 0.0 4.5 13.2 17.1 0.0 0.0 0.0 5.3 1.0 

 
9.0 0.5 7.4 0.0 0.0 5.0 7.3 36.6 0.0 1.5 0.0 4.5 1.0 

 
18.5 0.0 6.6 0.7 0.0 4.4 0.0 20.9 0.0 6.0 0.0 4.1 3.0 

 
26.0 0.0 7.1 0.0 0.0 4.7 7.6 10.9 2.9 2.0 0.0 6.0 0.8 

              
SO241-23/05/ 0.5 1.3 2.4 2.7 0.0 35.8 9.6 6.7 0.0 0.0 3.3 3.5 0.6 

Basin site 3.5 6.3 5.2 0.0 0.0 41.0 5.5 8.7 0.0 0.0 4.3 6.4 0.5 

 
9.0 1.7 4.6 0.0 0.0 25.4 11.8 9.8 0.0 0.0 1.8 4.7 1.1 

 
22.0 1.1 4.0 0.0 0.0 23.0 15.4 5.6 0.0 0.0 0.0 5.9 0.7 

              
SO241-15/02/ 0.5 1.2 6.3 0.0 0.0 10.2 25.9 0.0 0.0 0.0 0.0 1.7 2.8 



Basin site 5.5 2.9 7.5 0.0 0.0 28.6 8.6 12.6 0.0 0.0 0.0 3.6 1.8 

 
15.5 0.0 0.0 0.0 0.0 57.1 0.0 4.8 4.2 0.0 0.0 3.0 1.0 

 
30.0 3.5 6.9 0.0 0.0 21.7 5.9 9.3 0.0 0.0 3.6 4.1 1.3 

              
SO241-66/16/ 0.5 0.0 5.7 0.0 0.0 42.8 0.0 12.8 0.0 0.0 0.0 3.0 0.7 

Hydrothermal 
site 

2.5 2.6 8.0 1.6 1.6 25.3 5.0 14.3 0.0 0.0 1.4 3.9 0.6 

5.5 0.0 12.3 0.0 0.0 26.2 19.9 0.0 0.0 0.0 0.0 5.4 0.3 

 
13.0 0.0 1.9 0.0 0.0 42.2 4.0 5.1 0.0 0.0 0.0 3.0 2.5 

 
18.5 0.0 4.4 0.0 0.5 40.4 5.0 4.4 0.0 0.0 0.0 2.3 0.6 

 
 

Table 2S continued 
            

Station/MUC#/
Station name 

Depth 
Clino-

Pyroxenes 
Ortho-

Pyroxenes 
Pyrites 

Fe-Oxides Fe-
Hydroxides, 

Manganit 
Barite 

       
Error (rel%) 

(cm 
bsf) 

±2-5 ±2-5 ±2-5 ±5-10 ±2-5 

       
SO241-33/11/ 0.5 1.05 8.25 0.00 0.40 0.00 

       
Basin site 2.5 1.45 2.82 2.44 0.00 0.00 

       

 
12.5 0.00 5.21 0.00 0.00 0.00 

       

 
22.0 4.71 0.00 3.67 1.33 0.00 

       

              
SO241-22/04/ 0.5 4.99 0.00 0.00 2.55 0.00 

       
Basin site 5.5 3.98 0.00 0.15 2.56 0.00 

       

 
9.0 0.00 0.00 0.00 3.57 0.00 

       

 
18.5 5.70 0.87 6.50 1.49 0.00 

       

 
26.0 3.74 0.84 0.00 0.86 0.00 

       

              



SO241-23/05/ 0.5 0.00 0.00 0.19 9.49 0.18 
       

Basin site 3.5 0.00 0.00 0.34 0.77 0.00 
       

 
9.0 2.03 0.00 0.00 4.17 0.00 

       

 
22.0 0.65 0.00 0.00 3.73 0.00 

       

              
SO241-15/02/ 0.5 0.00 13.78 4.33 3.09 0.00 

       
Basin site 5.5 3.13 0.00 0.00 0.51 0.00 

       

 
15.5 1.10 0.00 1.77 0.29 0.36 

       

 
30.0 0.57 0.00 0.25 0.43 0.00 

       

              
SO241-66/16/ 0.5 0.00 0.00 0.48 1.74 1.21 

       
Hydrothermal 
site 

2.5 0.00 2.58 0.00 2.37 0.00 
       

5.5 0.00 0.00 0.00 1.03 0.19 
       

 
13.0 0.00 4.59 3.58 0.23 1.38 

       
  18.5 1.07 1.82 0.53 0.00 1.79 

        



3. Model set-up  

The turnover of solids (S) and dissolved species (P) was simulated applying the following 

mass balance equations: 

     1 1 1S S B S S

S S
d d D w S d R

t x x

    
               

    
 

S D

P P
D v P R

t x x

    
           

    
 

with S: concentration of solid species in dry sediment (g g-1),  P: concentration of dissolved 

species in pore water (µmol cm-3),  t: time (yr), x: sediment depth (cm), dS: density of dry 

solids (dS = 2.5 g cm-3), Φ: porosity,  DB: bioturbation coefficient (cm2 yr-1); w: burial velocity 

of solids (cm yr-1); RS: turnover rates of solid species (g g-1 yr-1), RD: turnover rates of 

dissolved species (mmol cm-3 yr-1), DS: molecular diffusion coefficient of dissolved species in 

sediment pore water (cm2 yr-1); v: burial velocity of pore water (cm yr-1).  

The model was set up for 5 solid species (SiO2 in biogenic opal, SiO2 in authigenic phases 

formed in the sediment, K in sediments, 30SiO2 in biogenic opal, 30SiO2 in authigenic phases) 

and 3 species dissolved in porewater (silica, 30Si-silica, K).  

At the upper boundary of the model (x = 0), constant fluxes (rain rates RRS) were applied for 

the solids: 

 
0

1S B S

x

S
d D w S RR

x


 
        

 
 

whereas constant concentrations corresponding to ambient bottom water values (PBW) 

were used for the solutes: 

0 BWx
P P


  

A zero gradient condition was applied at the lower boundary (x = L) for both solids and 

solutes: 

0 0

x L x L

S P

x x
 

 
 

 
 

 



The model was solved using the solver for partial differential equations of MATHEMATICA 

applying the Method-of-Lines approach. The model was integrated over time until a steady 

state was attained. The parameter values, depth-dependent functions, kinetic rate laws, 

and rate terms applied in the model are listed in tables S3- S6. 

Within this modeling framework, we applied and extended a previously developed isotope 

model to simulate the reactive transport of dissolved silica in surface sediments (Ehlert et 

al., 2016). In this model, two separate mass balance equations (see above) were set up to 

simulate the turnover of total dissolved 30SiO2 and SiO2. The isotopic composition of the 

pore fluid was calculated as ratio of these two compounds (MF30 = 30Si/Si). Considering the 

abundance of the three Si isotopes 28Si, 29Si and 30Si, the mol fraction MF30 is related to the 

commonly used isotope ratio (R30 = 30Si/28Si) as: 

 

𝑅30 =
𝑀𝐹30 ∙ 𝑅𝑆𝑡30 ∙ (𝑅𝑆𝑡29 ∙ (𝑐𝑅 − 1) − 1) 

𝑐𝑅 ∙ 𝑀𝐹30 ∙ 𝑅𝑆𝑡29 + 𝑅𝑆𝑡30 ∙ (𝑀𝐹30 − 1)
 

 

with RSt30 = 0.0341465,  RSt29 = 0.0507446 and cR = 0.51 (Ehlert et al., 2016).  

The δ30Si value of the pore fluid (in ‰) is calculated from the ratio as: 

 

𝛿30𝑆𝑖 = (
𝑅30

𝑅𝑆𝑡30 − 1
) ∙ 1000 

 

Opal data and the concentration and isotopic composition of dissolved silica determined in 

pore fluids were employed to constrain rates of opal and terrigenous phase dissolution and 

the precipitation rate of authigenic phases. The shift to negative values observed in the pore 

fluids (δ30Sipf) within the top cm of the sediment column is caused by the dissolution of 

terrigenous phases depleted in 30Si. We applied a δ30Siterr value of -2‰ to simulate the 

release of terrigenous clay Si into the pore fluids (Frings et al., 2016) and induce the 

negative shift observed in the data. Authigenic phases precipitating in marine sediments are 

depleted in 30Si with respect to the pore fluids. We applied a fractionation factor of Δ30SiAu 

=-2‰ (Δ30SiAu = δ30Siau - δ30Sipf) to simulate the impact of authigenic phase precipitation on 



pore fluid composition as previously observed in Peruvian OMZ sediments (Ehlert et al., 

2016). With this approach, the positive shift of δ30Sipf values observed below 1 cm sediment 

depth was reproduced in the model by a combination of opal dissolution and authigenic 

phase precipitation.   

The kinetics of terrigenous phase dissolution is largely known (Wallmann et al., 2008). Since 

our data imply that most of the dissolution takes place within the top cm of the sediment, 

we apply a dissolution rate that decreases exponentially with sediment depth (Fig. S2).  

Authigenic mineral precipitation is probably linked to terrigenous phase dissolution because 

dissolved Al released from terrigenous phases supports the formation of authigenic Si-Al 

phases in marine sediments (Loucaides et al., 2010). Hence, the precipitation rate usually 

decreases with sediment depth (Loucaides et al., 2010). Since the reactivity of biogenic opal 

also decreases with sediment depth (Van Cappellen and Qiu, 1997), we assumed that the 

kinetic rate constants for authigenic phase precipitation and biogenic opal dissolution 

decrease exponentially with depth and applied a solubility control to simulate the rates (Fig. 

S2, Tab. S5).   

K/Al ratios measured in the solid phase and pore water K data were used as additional 

model constraints.  We did not separate the pore water from the sediment prior to the solid 

phase K analysis. Hence, the K concentrations measured in the dried sediment samples 

were corrected for the contribution of K dissolved in pore fluids applying the following 

equation:  

 

𝐾𝐶 = 𝐾𝑀 −
𝑓𝑊

1 − 𝑓𝑊
 𝐾𝑃𝑊 

 

where KC is the concentration of K in the solid phase (g/g) corrected for the pore water 

contribution, KM is the concentration of K measured in dried samples (g/g), fW is the initial 

water content of the wet samples prior to drying (g/g) and KPW is the concentration of 

dissolved K in the pore water (g/g). The concentration of K in pore water was measured in 

units of mmol/dm3.  It was converted into appropriate units (g/g) by multiplying with the 

factor 10-6 MWK where MWK is the molecular weight of K.  



The release of K during the dissolution of terrigenous clay phases and the uptake of K in 

authigenic phases was simulated applying corresponding K/Si ratios. Unfortunately, we did 

not determine the Si content of the OMZ sediments. Moreover, the total Si content in OMZ 

sediments reflects not only the terrigenous contribution but also the concentrations of 

biogenic opal and authigenic phases. The mean K/Al ratio measured in our OMZ sediments 

(0.33 g/g, after correction for pore water K) is close to the K/Al ratio in shale (0.34 g/g) and 

upper continental crust (0.35 g/g) (Wedepohl, 1971; Taylor and McLennan, 1995). Hence, 

we applied the mean K/Si ratio of shale and upper continental crust to simulate the K 

release from terrigenous phases (K/SiTerr = 0.1 g/g = 0.07 mol/mol).  Authigenic Si phases 

formed in marine sediments are typically enriched in K and we applied the K/Si of authigenic 

material in Amazon sediments (Michalopoulos and Aller, 2004) to define the uptake of K in 

authigenic phases (K/SiAu = 0.19 mol/mol).  

Moreover, we applied a constant Al concentration in the model corresponding to the mean 

Al concentration measured in the OMZ sediments (4.8 ± 0.5 wt-%). We assumed a constant 

Al deposition rate at the sediment surface and that Al released from sediments during 

mineral dissolution was quantitatively re-precipitated in authigenic minerals. The solid 

phase K concentrations calculated in the model were normalized to the mean Al 

concentration measured in the sediment and compared to the measured K/Al ratios. With 

this approach, we assume that any down-core change in the Al concentration observed in 

the data is induced by processes that are not considered in the model such as temporal 

changes in the composition and mass accumulation rate of terrigenous phases deposited at 

the sediment surface.  

A best fit model solution was obtained by fitting the model results to dissolved silica 

concentrations and δ30Si values measured in the pore fluids and the biogenic opal and K/Al 

ratios measured in the solid phase corrected for pore water K. Down-core changes in kinetic 

rate constants (Fig. S2), rain rates of biogenic opal and solid phase K at the sediment surface 

and the solubility of the authigenic phase were varied systematically to obtain the best fit to 

the observations. However, our model results should be regarded with caution because we 

applied strongly simplifying assumptions (e.g. steady state, simple rate laws). Moreover, our 

estimates of solid phase reactivity and isotopic composition are preliminary and not 

supported by independent data.  

 



Tab. S3. Parameter values applied in the model 

Parameter Symbol Value 

Density of dry solids dS 2.5 g cm-3 

Porosity at x = 0 Φ0 0.97 

Porosity at x = infinity Φf 0.91 

Attenuation coefficient for porosity decrease px 0.15 cm-1 

Bioturbation coefficient at x = 0 DB(0) 1 cm2 yr-1 

Depth of bioturbated zone xB 1 cm 

Burial velocity after compaction wf 0.18 cm yr-1 

Sediment temperature T 6.7 °C 

Salinity of porewater Sal 35 

Molecular diffusion coefficient for dissolved silica  DM 188 cm2 yr-1 

Molecular diffusion coefficient for dissolved K  DM 388 cm2 yr-1 

Solubility of biogenic opal Solopal 0.8 mM 

Solubility of authigenic phase Solau 0.2 mM 

Rain rate of biogenic opal RRopal 7.3 mg cm-2 yr-1 

Rain rate of K   RRK 0.77 mg cm-2 yr-1 

Molar K/Si ratio in terrigenous phase K/Siterr 0.07 

Molar K/Si ratio in authigenic phase K/Siau 0.19 

δ30Si of opal deposited at the seafloor δ30Siopal +0.77 ‰ 

δ30Si of terrigenous phase subject to dissolution δ30Siterr -2.0 ‰ 

Isotopic fractionation factor for authigenic phase 
formation 

Δ30Siau -2.0 ‰ 

Isotopic fractionation factor for authigenic phase 
formation in term of mol fractions 

βau 0.998111 

Molecular weight of SiO2 MWSiO2 60.08 g mol-1 

Atomic weight of K MWK 39.098 g mol-1 

 

  



Tab. S4. Depth-dependent functions applied in the model 

Parameter Symbol Equation 

Porosity  Φ 
0( ) exp( )f f px x         

Bioturbation coefficient DB 2

2
(0) exp

2
B B

B

x
D D

x

 
   

 
 

Burial velocity of solids w 1

1

f

fw w


 


 

Burial velocity of solutes v 
f

fv w


 


 

Tortuosity To  2 1 2To ln     

Diffusion coefficient of solutes in 

porewater 

DS 
2

M
S B

D
D D

To
   

Function to convert rates from 

g g-1 yr-1 to µmol cm-3 yr-1 

fsp 6 1
10sp Sf d

MW


  

 
 

Mol fraction of Si MF 30 Si
MF

Si
  

 

  



Table S5: Kinetic rate laws applied in the model 

Reaction Symbol Equation 

Biogenic opal dissolution in g g-1 yr-1 

 

Ropal 
4( )

1opal opal opal

opal

Si OH
R k S

Sol

 
     

 

 

Dissolution of terrigenous phase             

in µmol cm-3 yr-1  

Rterr terr terrR k  

Authigenic mineral precipitation                 

in µmol cm-3 yr-1  

Rau 
4( )

1au au

au

Si OH
R k

Sol

 
   

 
 

Dissolution of 30SiO2 in biogenic opal  

in g g-1 yr-1 

Ropal
30 30

opal opal opalR MF R   

Dissolution of terrigenous 30SiO2               

in µmol cm-3 yr-1 

Rterr
30 30

terr terr terrR MF R   

Precipitation auf authigenic 30SiO2           

in µmol cm-3 yr-1 

Rau
30 30

au pf au auR MF R    

 

 

Table S6: Rate terms applied in mass balance equations 

Species Equation 

Biogenic opal (in g g-1 yr-1) - Ropal 

Authigenic phase (in g g-1 yr-1) + Rau/fsp 

K in sediment (in g g-1 yr-1) (-K/Siterr Rterr + K/Siau Rau)/fsp 

Dissolved silica (in µmol cm-3 yr-1) fsp Ropal + Rterr – Rau 

Dissolved K (in µmol cm-3 yr-1) K/Siterr Rterr - K/Siau Rau 

30Si in authigenic phase (in g g-1 yr-1) + Rau
30/fsp 

30Si in dissolved silica (in µmol cm-3 yr-1) fsp Ropal
30 + Rterr

30 – Rau
30 

 

 



 

Fig. S2. Down-core profile of kinetic constants for biogenic opal dissolution (kopal), authigenic 

phase precipitation (kau) and terrigenous phase dissolution (kterr) applied in the model runs 
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