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Abstract. A major bottleneck regarding the efforts to better quantify greenhouse gas fluxes, map sources and sinks, and 

understand flux regulation, is the shortage of low-cost and accurate-enough measurement methods. The studies of methane 10 

(CH4) – a long-lived greenhouse gas increasing rapidly but irregularly in the atmosphere for unclear reasons, and with poorly 

understood source-sink attribution – suffer from such method limitations. This study present new calibration and data 

processing approaches for use of a low-cost CH4 sensor in flux chambers. Results show that the change in relative CH4 levels 

can be determined at rather high accuracy in the 2 – 700 ppm mole fraction range, with modest efforts of collecting reference 

samples in situ, and without continuous access to expensive reference instruments. This opens possibilities for more affordable 15 

and time-effective measurements of CH4 in flux chambers. To facilitate such measurements, we also provide a description for 

building and using an Arduino logger for CH4, carbon dioxide (CO2), relative humidity, and temperature.    

1 Introduction 

Methane (CH4) is the second most important of the long-lived greenhouse gases (GHGs). Its global warming potential per 

mass on a 100-year time horizon (GWP100) is 28-34 times greater than the GWP100 for carbon dioxide (CO2), and its relative 20 

increase in the atmosphere since 1750 has been much greater than for other GHGs (e.g. Myhre et al., 2013). The atmospheric 

CH4 originates from multiple sources including incomplete combustion, handling natural gas or biogas, or microbial CH4 

production in agriculture, ruminant digestive tracts, and other anaerobic environments such as wetlands and lakes – the 

microbial CH4 accounting for approximately two thirds of the total emissions (Saunois et al., 2016). The high diversity of 

sources, many yielding fluxes that have high spatio-temporal variability, makes it difficult to quantify fluxes and understand 25 

flux regulation without a large number of local measurements. At the same time, common methods to measure fluxes rely on 

expensive equipment or labour-demanding procedures. Consequently, the CH4 flux from various sources is poorly constrained. 

This is exemplified by the discovery of inland waters and flooded forests as two large global CH4 sources during the last 

decade (Bastviken et al., 2011;Pangala et al., 2017).  Greater availability of measurement approaches that are inexpensive 

enough to allow many measurements and assessment of both spatial and temporal variability simultaneously, would greatly 30 

improve our ability to assess landscape CH4 fluxes and flux regulation.  
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There is substantial interest in sensitive, small, and affordable CH4 sensors, but so far the commercially available low-cost 

CH4 sensors were typically developed for explosion warning systems and thereby for high concentrations (mole fractions at 

percent levels). CH4 detection at percent levels is of high interest for environmental research, including the measurements of 35 

CH4 ebullition, and for such applications cost-efficient sensor applications have been presented (e.g. Maher et al., 2019). For 

measurements of other types of CH4 fluxes, sensors with robust and reliable detection at lower levels (mole fractions in the 

ppm range) are needed. Previous attempts to use and calibrate such sensors at ppm levels have been promising (Eugster and 

Kling, 2012), but also reported remaining challenges, and the use of these sensors in environmental research or monitoring has 

not yet become widespread. The direct monitoring of atmospheric CH4 mole fractions to resolve fluxes, demanding fast and 40 

accurate detection of changes in the order of 10ppb, still represents a challenge for low-cost sensors. However, relevant mole 

fraction ranges for flux chamber studies (2 – 1000 ppm depending on environment, chamber type, and deployment times) 

appear within reach. 

 

One commercially available low-cost sensor type, showing promising performance in previous studies, is represented by the 45 

TGS 2600 tin dioxide (SnO2) semiconductor sensor family made by Figaro. This type of sensors has been evaluated multiple 

times at CH4 mole fractions near ambient background air (from 1.8 to 9 ppm; different ranges in different studies; (Eugster 

and Kling, 2012;Casey et al., 2019;Collier-Oxandale et al., 2018;van den Bossche et al., 2017). Given their low cost, they 

performed surprisingly well under non-sulphidic conditions (H2S may interfere with the sensors), although it was challenging 

to generate calibration models with R2 > 0.8, and the reported interferences from e.g. relative humidity (RH) and temperature 50 

(T) were large (van den Bossche et al., 2017). We here evaluate one member of this sensor family for a larger CH4 range (2-

719 ppm), selected to be appropriate for use in automated and manual flux chambers. We propose further development of the 

equations suggested by the manufacturer for data processing, and provide guidance on how to address the sensor response to 

humidity (H), RH and T in flux chamber applications. We also describe a simple CH4/CO2/RH/T logger based on the evaluated 

sensors, an Arduino microcontroller, and a corresponding logger shield. 55 

2 Methods 

2.1 The CH4 sensor 

The sensor used in this study is the Figaro NGM 2611-E13, which is a factory pre-calibrated module based on the Figaro TGS 

2611-E00. The factory calibration is made at 5000 ppm, 20 C and 65% RH. The CH4 mole fraction in the factory calibration 

is not relevant for applications near atmospheric concentration, but the NGM 2611-E13 is compact and ready-to-use, 60 

facilitating its integration with data loggers and equipment for flux measurements (eg. automated flux chambers; (Duc et al., 

2013;Thanh Duc et al., 2019). The detection range given by the manufacturer is 500-10000 ppm, but the sensor has been used 

successfully for measuring indoor ambient concentrations of methane (2-9 ppm) (van den Bossche et al., 2017). The potential 
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of another similar sensor, the Figaro TGS 2600, for atmospheric concentration monitoring has been investigated (Eugster and 

Kling, 2012;Collier-Oxandale et al., 2018, Eugster et al., 2020). The main difference of the TGS 2611-E00, compared to the 65 

TGS 2600, is the presence of a filter that reduce the interference of other combustible gases with the sensor, making it more 

selective towards CH4 (Figaro_TGS_2611-E00, REV: 10/13). The TGS 2611-E00 is also more than 10 times cheaper than the 

sensor used in (Duc et al., 2013) and its detection range is wider, allowing for reliable measurements of concentration above 

1000 ppm, which makes the sensor potentially useful in both low- and high-emitting environments. 

2.2 Calibration setup 70 

The sensor evaluation set-up was designed to resemble real measurement conditions in floating flux chambers in aquatic 

environments. The sensors were placed in the headspace of a plastic bucket positioned upside down on a water surface in a 

tank. We used a 7L plastic bucket in which we located 20 TGS 2611-E13 sensors connected to electronic circuitry and sensor 

signal logging system described in detail separately (Thanh Duc et al., 2019). The chamber headspace was continuously 

pumped from the chamber, through the measurement cell of an Ultraportable Greenhouse Gas Analyzer (UGGA; Los Gatos 75 

Research), and then back to the chamber. The UGGA served as a reference instrument for CH4. The air T and RH inside the 

chamber were measured with ten K33-ELG CO2 sensors (Senseair) which have an accuracy of ± 0.4C and ± 3% RH 

(Bastviken et al., 2015). The large number of K33-ELG sensors was due to a separate test of wireless data transfer (outside the 

scope of this work) and one K33-ELG sensor would have been enough for this CH4 sensor study. The entire installation was 

placed in a climate room to allow for varying T, and thereby also absolute humidity (H) in the chamber headspace. T and H 80 

co-vary under field conditions in measurements near moist surfaces, so although T and H were not controlled independently, 

their variability under this calibration setup was reflecting flux chamber headspace conditions under in situ field conditions.  

 

The CH4 concentration in the chamber was changed by direct injections of methane into the chamber by syringe via a tube. 

The CH4 concentrations during the calibration experiments ranged from 2 ppm to 719 ppm. We performed multiple separate 85 

calibration experiments at different T and RH levels ranging from 10 to 42 C and 18 – 70 %. At temperatures below 20 C 

the RH was usually 50 - 70 %, while at temperatures > 20 C, RH ranged from 18 to 60 %. The highest absolute water vapour 

mole fraction was 35 000 ppm H2O.  Values were recorded once per minute. T and RH values form the K33-ELG sensors were 

averaged among all sensors (because all sensors were in the same chamber and we could not link specific K33-ELG sensors 

to specific CH4 sensors). 90 

 

The response time to changing chamber headspace CH4 levels differed between the sensors situated in the chamber (responding 

rapidly), and the UGGA (delayed response time due to the residence time of the measurement cell and tubing). The reference 

instrument measurement cell was large enough to be influenced by CH4 from the chamber over a certain time period (the 

measurement cell residence time), and if the concentration change in the chamber was more rapid, the data from the reference 95 

instrument and sensors become incomparable and need to be omitted to not bias the calibration. Therefore data were filtered 
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to remove periods of rapid changes when the different response times caused data offsets. Some sensor data were lost during 

parts of the experiments due to power, connection failure, or data communication issues. Altogether on an average, after data 

filtration, 619 – 930 data points from each sensor and the UGGA, respectively, were used for the evaluation (in total 20 CH4 

sensors evaluated).  100 

2.2 Data processing and interpretation 

The TGS 2611 SnO2 sensing area responds to interaction with target gas molecules by exhibiting decreasing resistance  

(Figaro_Tech_Info_TGS2611, 2012). The sensing area is connected in series with a reference resistor (resistance referred to 

as RL). The total circuit voltage (VC) is 5V across both the sensing area and the reference resistor. The voltage across the 

reference resistor (VL) therefore varies in response to how the sensing area resistance (RS) varies. VL is measured and reported 105 

as output voltage. The sensor response RS is calculated from the following equation (Figaro_Tech_Info_TGS2611, 

2012;Figaro_TGS_2611-E00, REV: 10/13): 

 

𝑅𝑠 = (
𝑉𝐶

𝑉𝐿
− 1) × 𝑅𝐿           (1) 

 110 

The active sensor surface characteristics can differ among individual sensors, which makes individual sensor calibration 

necessary. Interference by water vapour and T has been previously shown (Pavelko, 2012;van den Bossche et al., 2017). RL is 

therefore ideally determined in dry air containing no volatile organic compounds or other reduced gases at a standard T. 

However, it can be challenging to achieve such conditions and determine RL, and Eugster and Kling (Eugster and Kling, 2012) 

proposed to use the lowest measured sensor output voltage (V0), representing minimum background atmospheric levels, to 115 

determine an empirical reference resistance R0, and to calculate the ratio of RS/R0, reflecting the relative sensor response as 

follows: 

 

𝑅𝑆

𝑅0
=  

(
𝑉𝐶
𝑉𝐿

−1)

(
𝑉𝐶
𝑉0

−1)
             (2) 

 120 

This approach allows sensor use without accurate specific determination of RL. Previous attempts to calibrate these type of 

sensors for environmentally relevant applications have focused on CH4 mole fractions of 2-9 ppm, and typically considered 

the influence of T and RH or H (Casey et al., 2019;van den Bossche et al., 2017;Collier-Oxandale et al., 2018;Eugster and 

Kling, 2012). In these cases, an approximately linear response of the relative sensor response could be assumed due to the 

narrow CH4 range. However, the sensor response is non-linear in the range relevant for flux chamber measurements and in 125 

this wider range, other approaches are needed. We here present a two-step sensor calibration based on the complete calibration 
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experiment data. In addition, we tried simplified calibration approaches for situations when full calibration experiments are 

not feasible and when access to reference instruments is limited. These approaches are described below. 

2.2.1 Two-step calibration from complete experimental data (Approach I) 

The first step (Step1) regards determination of the reference sensor resistance, R0.  We assumed that R0 represented RL + RSbkg, 130 

where RSbkg is RS at the background atmospheric CH4 level. We first tried the previously suggested approach to determine R0 

from the minimum VL, i.e. setting V0 to VL at the lowest humidity and CH4 concentrations during all measurements, thereby 

assuming that R0 could be seen as constant. However, RSbkg may be influenced by H and T and could vary even if the CH4 

levels at background atmospheric conditions are constant. Thus, we also tested ways to correct R0 to RH or H and T. Therefore, 

after selecting the experiment data at background CH4 levels but variable humidity and temperature, we tested linear, power, 135 

or Michaelis-Menten models, to generate V0 values valid for different humidity and temperatures. This allowed estimation of 

R0 values at the humidity and temperature associated with each RS value, making the RS/R0 ratio less biased. The background 

level CH4 data was selected in two different ways – either as all known CH4 mole fractions below 2.5 ppm (n = 38-72), or as 

the minimum VL value for each experiment and sensor (n = 6-7). 

 140 

The second step (Step 2) regards calculation of CH4 mole fractions from RS/R0. Several models were tested, where the CH4 

mole fraction were estimated as a function of RS/R0, H, T, and a constant to consider offsets that may differ among sensors. 

We tried several linear and power functions. In line with viewing the sensor surface as an active site where CH4 and H2O 

compete for space, the H effect was in some models represented as an interaction with the sensor response. 

In all above cases, models were generated by curve-fitting in Python using the scipy.optimize curve_fit function. Predicted 145 

CH4 mole fractions were evaluated by comparison with mole fractions independently measured by the UGGA. The specific 

model equations are provided in Table 1 and 2. We tested models using RH or H (which was calculated from RH and T; 

(Vaisala_Technical_Report, 2013). Each evaluation included a combination of both steps above, and generated one set of fitted 

parameters per sensor used, including the parameters for Step 1 and 2. 

2.2.2 Simplified calibration approaches without dedicated calibration experiment data (Approach II and III) 150 

The model combinations from Step 1 and 2 above that generated the best fit with the minimum number of parameters was 

selected for tests of two simplified calibration approaches. In Approach II we tested if model parameters in Step 2 can be 

predicted from parameters derived in Step 1, hypothesising that the derived model parameters in both Step 1 and Step 2 reflect 

the sensor capacity to respond to CH4 and humidity levels as well as the individual sensor offset. If correct, the parameters in 

Step 1 should be correlated with parameters in Step 2. If this correlation is strong enough, it may be possible to predict 155 

parameters in Step 2 from parameters in Step 1, which can be derived from measurements at background air concentrations 

under the natural variation in humidity (e.g. the diel variability), as a part of the regular measurements, preferentially using 

data when the atmospheric boundary layer is well mixed (e.g. windy conditions). Under such conditions atmospheric 
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background CH4 concentrations can be relatively accurately assumed. Hence this Approach II would not require access to 

sensor calibration chambers, nor expensive reference gas analysers, which in turn would make sensor measurements available 160 

much more broadly. To test this approach, we searched for the best possible regression equations to predict Step 2 parameters 

from Step 1 parameters, then used these equations to estimate CH4 mole fractions, and compared this with the UGGA reference 

measurements. 

  

In Approach III we evaluated if reasonable accurate Step 1 and 2 equations can be derived from the combination of (i) minimum 165 

background atmospheric level VL at different humidity, and (ii) a limited number of randomly collected independent manual 

flux chamber samples. If so, a few manual samples during the regular measurements could replace tedious dedicated calibration 

experiments. To test this approach the calibration data for each sensor was subsampled randomly and this random subset data 

were combined with the minimum VL data to derive calibration parameters as done in Approach I. Using these parameters, the 

CH4 mole fractions for the entire calibration data was estimated and compared with observed values. Monte Carlo simulations 170 

were run to test effects of the number of random reference samples (1 – 50) and the methane concentration ranges (3 – 500 

ppm, or 3-50 ppm, respectively) in the subset data. 

2.2.3 A low-cost Arduino-based CH4/CO2/RH/T logger 

To facilitate use of the sensors and our results, we also gathered instructions for how to build a logger for CH4, CO2, RH and 

T measurements, using the CH4 sensor tested here, and the Senseair K33 ELG CO2/RH/T sensor described elsewhere 175 

(Bastviken et al., 2015), a supplementary DHT22 sensor for RH and T, an Arduino controller unit, and an Adafruit Arduino 

compatible logger shield with a real time clock (input voltage 7-12 V; 10 bit resolution; Figure 2). This development was based 

on sensor specifications and the open source knowledge generously shared on internet by the Arduino user community. The 

full description of this logger unit is found in the Supplement.    

3 Results and Discussion 180 

The results of different Step 1 and Step 2 calibration equations are shown in Tables 1 and 2. The models including H were 

equal or superior to models using RH. This is reasonable because it is the absolute water molecule abundance that influence 

the sensor response. Hence, models using H were prioritized. In Approach I, several Step 1 models, including a constant 

minimum VL, and power, linear and Michaelis-Menten-based equations gave similar R2 (0.85 to 0.9) and root mean square 

error (RMSE) when comparing predicted versus observed results (Table 1). The effect of T appeared negligible compared to 185 

H, which may be related to the built-in heating of the active sensor surface (280 mW; this heating was focused on a small part 

of the sensor and no self-heating around sensors was detected). It is possible that the Michaelis-Menten equation is superior 

over the full theoretically possible H range. However, under our experiment conditions, covering normal field H levels, the 
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combination of best fit and minimum number of parameters in Step 1, was found for a simple linear equation with H (Model 

V4 in Table 1), which was used for later tests of Approach II and III. 190 

 

The tests of different equations in Approach I, Step 2, showed that power relationships with H and T represented as interactions 

with the sensor response, performed best (Table 2 Model ≥4). With the exception of Models 10a-c, all these models had in the 

regression of observed versus predicted, a slope and intercept that was statistically indistinguishable from 1 and 0, respectively 

(p < 0.05) and an R2 of 0.98 – 1.00 (Table 2, Figures S1 and S2). Again, T had a marginal effect and H was clearly most 195 

important. Hence, while Model 7 including T in Table 2 had the lowest RMSE (9.8), Model 8 represented a good compromise 

between minimum number of parameters and low RMSE (10.4) and was used in Approach II and III. The non-linear response 

of the sensor yielded a stronger and more coherent response at low CH4 levels, and a large part of the uncertainty were 

generated at the higher CH4 levels in the studied range (Figures S1 and S2). Near the atmospheric background at 2 ppm, the 

confidence interval for individual sensor response was in the order of ± 1.1 ppm (Model 7 having lowest RMSE). Hence, the 200 

presented calibration equations have a limited accuracy in terms of absolute CH4 mole fractions, and is not optimized for high-

precision measurements at atmospheric background levels (as shown by SE for the model intercept corresponding to 0.16-1 

ppm; Table 2). However, high R2 and low SE for the slope of several models indicate that the relative change of CH4 levels 

over time, which is the core of flux chamber measurements, can be assessed efficiently with the sensors if calibrated properly 

(Table 2).   205 

 

Approach II, deriving all calibration equations from a small set of minimum VL values using Models V4 or V5 (Table 1) and 

10a-c (Table 2), generated substantially greater RMSE. Most of this RMSE change was due to less accurate prediction of the 

intercept. The R2 and slope standard error range remained similar to the other models (Table 2), but the actual slope values 

could deviate substantially from 1 and varied considerably among sensors (in contrast to the models for all other approaches 210 

always having slopes close to 1 and similar among sensors; Figures S1 and S2). Thereby, Approach II could lead to a large 

bias in absolute mole fractions, and this crude generation of calibration equations may be adequate primarily for assessing 

relative change over time measured by the same sensor, and cross comparisons among sensors should be avoided when using 

this approach. Examples of equations for the parameter estimation in Approach II are provided in Table S1. Applying Approach 

II on a smaller concentration range yielded a considerably lower RMSE (Table 2, Model 10c). 215 

 

Approach III (Model 11a and 11b in Table 2) showed that as few as 10 – 20 reference samples, collected at random occasions 

during actual measurements, could substantially reduce the RMSE of the calibration models, reaching close to the lowest levels 

based on the 619 – 930 measurements and the full range up to 719 ppm in Approach I (Table 2 Model 11a; Figure S3). The 

concentrations of the reference samples did not appear important for the RMSE within a given specific data range. However, 220 

simulations using data for CH4 mole fractions below 50 ppm only, generated much lower RMSE than using all data (Table 2, 
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Model 11b). This support the conclusion that the sensors are more sensitive and give a stronger relative response in the low 

part of the studied concentration range. 

 

An overview of approaches to derive calibration models for this type is shown in Table S1. The challenges found regarding 225 

monitoring of background atmospheric levels was confirmed by our study, while use for relative changes of greater magnitudes 

in flux chambers appear promising based on our results, also with a simplified calibration (Approach III). As a general note 

for all approaches when used under variable environmental conditions, best precision may be achieved by using absolute 

partial pressure units for both CH4 and humidity, thereby compensating for variability in atmospheric pressure. In addition, for 

use above the maximum absolute humidity in this study, extra care is advised to check sensor capacity and behaviour. An 230 

example of real field data is provided in Figure 3. This example illustrate that the direct sensor response is heavily influenced 

by humidity and that the calibration equations shown in Table 1 and 2 are needed to reveal the CH4 part of the sensor signal. 

Further, Figure 3 illustrates that sensors can be highly useful in very variable environments with rapid changes in humidity 

and when using data loggers with 10 bit resolution only. Optimal calibration procedures in stable environments and with higher 

logger resolution would likely indicate better sensor performance, while we deliberately focused on calibration procedures 235 

closely linked to field use with inexpensive equipment to provide information of relevance for as many conditions as possible.  

 

Long-term stability of the sensors were not addressed here but is important for environmental use. Other studies of the same 

type of sensors show promising results. For example, van den Bossche et al. (2017) found no drift over 31 days. Eugster et al. 

(2020) using the similar Figaro TGS 2600 sensor for outdoor measurements over 7 years, concluded that the drift was in the 240 

order of 4–6 ppb/yr. This suggest that the sensor drift is modest even when exposed to variable weather over long time. 

However, it is possible that the drift can be faster under some conditions and regular drift checks are therefore advised. 

4 Conclusions 

The main conclusions can be summarized by the following: 

 The tested CH4 sensors are suitable for use in flux chamber applications if there are simultaneous measurements of relative 245 

humidity and temperature. 

 Sensor-specific calibration is required. 

 Occasional independent reference samples during regular measurements, can be an alternative to designated calibration 

experiments. Background atmospheric levels in combination in the order of 10 – 20 in situ reference samples at other CH4 

levels, can yield rather accurate calibration models. 250 

 For highest accuracy regarding absolute CH4 concentrations, careful designated calibration experiments covering relevant 

environmental conditions are needed. 
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 These results, together with the increased accessibility of low-cost sensors and data logger systems (one example described 

in the Supplement), open supplementary paths toward improved capacity for greenhouse gas measurements in both nature 

and society. 255 

5 Code and data availability 

Python code for data evaluation and the calibration experiment data are available from the main author upon request. Please 

note that both the code and the data are specific for the experimental setup. The Python code needs modifications for use with 

other data, and the CH4 sensor data cannot represent results from other sensors as sensor specific calibration is needed.  

The Arduino code for the CH4/CO2/RH/T logger described in the supplement is available at 260 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162780. 
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Table 1: Model results for Step 1 of sensor calibration - i.e. the correction of reference output voltage (V0 in the unit mV) in background air 

to humidity and temperature. V0min, H, and T, represent the minimum V0 for each sensor (mV), absolute humidity (ppm), and temperature 350 

(C) during measurements in open air. The model parameters g, h, S, m and n are constants for each sensor derived by curve fitting. The 

model R2 is the adjusted coefficient of determination (mean, minimum and maximum for the 20 sensors tested), and RMSE is then root 

mean square error. Equivalent models using relative humidity (RH; %) instead of H, returned lower R2 and higher RMSE and are not shown. 

These Step 1 models were combined with the Step 2 models as noted in Table 2. N denotes number of values used. See text for details. 

Model for V0 Data N Observed vs. Predicted 

No. Equation   R2 RMSE 
  

  mean min max mean 

V1 V0min (constant) Minimum V0 1 - - - - 

V2 V0 = gHh + mTn + S All < 2.5 ppm 

CH4 

38 - 72 0.85 0.66 0.94 8.9 

V3 V0 = gH + mT + S All < 2.5 ppm 

CH4 

38 - 72 0.88 0.68 0.95 8.2 

V4a V0 = gH + S All < 2.5 ppm 

CH4 

38 - 72 0.88 0.68 0.95 8.2 

V4b V0 = gH + S Min V0 for 

each exp. 

6 - 7 0.90 0.72 0.96 8.3 

V5a V0 = gH / (S + H) All < 2.5 ppm 

CH4 

38 - 72 0.88 0.70 0.96 8.0 

V5b V0 = gH / (S + H) Min V0 for 

each exp. 

6 - 7 0.89 0.71 0.96 8.3 

 355 
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Table 2: Model results for Step 2 of the data evaluation, i.e. the determination of methane (CH4) mole fractions (ppm) from the sensor 360 

response expressed as R (corresponding to RS/R0) using different calibration models. (RH), H, and T as defined in Table 1. The model 

parameters a, b, c, d, e, f and K are constants for each sensor derived by curve fitting. The models were evaluated via a linear regression of 

Observed versus Predicted CH4 mole fractions, where k and M are the slope and the intercept, respectively. SE denote standard error, R2 the 

adjusted coefficient of determination (mean and minimum to maximum for the 20 sensors tested), and RMSE is the root mean square error 

(ppm). The table show the most successful subset of all models tested. N = 619 – 930 per sensor in total and 203-313 for the data subset with 365 

CH4 mole fractions < 50 ppm. See text for details. 

Model V0 CH4 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 =  𝒌 ∗ 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 + 𝑴 

No. Equation mod max 𝒌 𝑴 R2 RMSE 
  

 ppm SE 

(min-

max) 

min to 

max* 

SE 

(min-

max) 

mean 

(min-max) 

mean 

(min-max) 

1 CH4 = aR + b(RH) + cT + K V1 719 0.024-

0.036 

-3.2∙10-7 to 

3.5∙10-7 

5.8-

8.2 

0.58 

(0.54-0.68) 

117 

(104-127) 

2 CH4 = aRb + c(RH)d + eTf + K V1 719 0.006-

0.010 

-8.8∙10-7 to 

4.2∙10-7 

1.6-

2.6 

0.96 

(0.94-0.97) 

35.9 

(32-45) 

3 CH4 = aRb + c(RH)(aRb) + dT(aRb) 

+ K 

V1 719 0.003-

0.006 

-6.8∙10-7 to 

9.3∙10-7 

0.72-

1.44 

0.99 

(0.98-0.99) 

18.5 

(15-25) 

4 CH4 = aRb + cH(aRb) + dT(aRb) + 

K 

V1 719 0.002-

0.003 

-4.3∙10-7 to 

3.2∙10-7 

0.43-

0.90 

1.00 

(0.99-1.00) 

11.4 

(9-16) 

5 As No. 4 V2 719 0.001-

0.003 

-3.3∙10-7 to 

4.1∙10-7 

0.38-

0.87 

1.00 

(0.99-1.00) 

10.6 

(8-16) 

6 As No. 4 V3 719 0.001-

0.003 

-4.1∙10-7 to 

3.6∙10-7 

0.37-

0.82 

1.00 

(0.99-1.00) 

9.8 

(8-15) 

7 As No. 4 V4a 719 0.001-

0.003 

-2.2∙10-7 

to 2.8∙10-7 

0.37-

0.82 

0.99 

(0.99-1.00) 

9.8 

(8-14) 

8 CH4 = aRb + cH(aRb) + K V4a 719 0.001-

0.003 

-5.6∙10-7 to 

1.3∙10-7 

0.37-

0.84 

1.00 

(0.99-1.00) 

10.4 

(8-15) 

9a As No. 8 with equation V4b to 

determine V0. 

V4b 719 0.001-

0.003 

-7.8∙10-7 to 

1.4∙10-6 

0.37-

0.84 

1.00 

(0.99-1.00) 

10.4 

(8-15) 

9b As No. 9a with lower max CH4 level. V4b 50 0.007-

0.014 

-4.1∙10-8 to 

8.1∙10-8 

0.16-

0.33 

0.98 

(0.96-0.99) 

2.1 

(2-3) 
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*Minimum and maximum mean intercepts for the group of 20 sensors. The confidence interval around the mean intercept was ± 1.1 ppm in 

Model 7 (having lowest RMSE). ** Monte Carlo simulations with 1000 runs generating random data subsets used for deriving the model 

parameter ranges. 

  370 

10a As No 8. Parameters a, b, c and K 

estimated from relationships with 

parameters in V4b; see text. 

V4b 719 0.001-

0.012 

-108 to 1.1 0.39-

1.62 

1.00 

(0.99-1.00) 

74 

(18-150) 

10b As No 8. Parameters a, b, c and K 

estimated from relationships with 

parameters in V5b; see text. 

V5b 719 0.001-

0.024 

-122 to 1.9 0.43-

2.80 

0.99 

(0.96-1.00) 

88 

(20-154) 

10c As No. 10a with lower max CH4 

level. 

V4b 50 0.006-

0.021 

-51 to -14 0.30-

0.87 

0.98 

(0.96-0.98 

28 

(21-35) 

11a As No. 8. Parameters a, b, c, and K, 

derived from 6-7 minimum VL 

values at different H, and 20 samples 

at random CH4 mole fractions 

between 3 and 500 ppm.** 

V4b 719 0.002-

0.004 

-6.5 to 7.1 0.41-

0.96 

1.00 

(0.99-1.00) 

13 

(8.8-20) 

11b As No. 11a with the 20 random 

samples at CH4 mole fractions 

between 3 and 50 ppm.** 

V4b 50 0.008-

0.017 

-0.7 to 0.5 0.17-

0.41 

0.97 

(0.95-0.98) 

2.5 

(2-3) 
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 375 

 

Figure 1. Sensor output voltage (VL; mV), Rs/R0 ratio, and predicted CH4 mixing ratio (predCH4; ppm) using Model 9a, 10a and 11a in 

Table 2, respectively, versus observed CH4 mixing ratio (obsCH4; ppm), for one of the studied sensors. See text for details and Figures S1 

and S2 for similar graphs regarding all sensors. Black diagonals represent 1:1 lines. 
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Figure 2. Photo of the CH4/CO2/RH/T logger described in the supplementary information. 
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Figure 3: Real data from a flux chamber on a lake in June 2019 with 14 automated chamber open-closure cycles over 30 hours. The upper, 395 

central and bottom panels show calibrated CH4 mole fractions based on this study, untreated sensor output signal, and absolute humidity. 

 

 


