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Abstract. Remote Sensing (RS) has traditionally provided estimates of key biophysical properties controlling light 

interaction with the canopy (e.g., chlorophyll content (Cab) or leaf area index (LAI)). However, recent and upcoming 

developments in hyperspectral RS are expected to lead to a new generation of products such as vegetation functional traits 

that control leaf carbon and water gas exchange. This information is pivotal to improve our understanding and capability to 25 

predict biosphere-atmosphere fluxes at global scale. Yet, the retrieval of key functional traits such as maximum 

carboxylation rate (Vcmax) or the Ball-Berry stomatal sensitivity parameter (m) remains challenging, as they only have a weak 

and indirect influence on optical reflectance factors. Recently, the assimilation of different observations in coupled soil-

vegetation-atmosphere transfer (SVAT) and radiative transfer models (RTM) is allowing Vcmax and m estimates; notably 

using the Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) model. In this work we assess the 30 

potential of airborne and satellite emulated hyperspectral imagery jointly with eddy covariance (EC) data for the retrieval of 

functional traits. Specifically, we made use of time series of gross primary production (GPP) and thermal irradiance 

measured with net radiometers, together with 17 hyperspectral airborne images. The potential of satellite-borne sensors was 

tested with emulated EnMAP imagery from the airborne data. EnMAP was selected because of the availability of the 

emulator, and because is one of the foreseen hyperspectral satellite missions expected to contribute to a new generation of 35 

RS products. We estimated ecosystem functional traits by inverting the senSCOPE model, a novel version of SCOPE 
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adapted to represent partly senescent canopies. The experiment takes place in a Mediterranean tree-grass ecosystem subject 

of a large scale manipulation experiment with nitrogen and nitrogen plus phosphorus, monitored by three EC towers. 

Parameter estimates and predicted fluxes were evaluated using both ground observations and pattern-oriented model 

evaluation approach. The method developed in this study provided robust estimates of functional and biophysical parameters 40 

for both airborne and synthetic EnMAP datasets. Cab and Vcmax estimates followed observed relationships with leaf nitrogen 

concentration; whereas m and predicted underlying water use efficiency showed expected relationships with discrimination 

of 13C isotope in leaves. Results prove that the inversion of coupled RTM-SVAT models against a combination of 

hyperspectral imagery (e.g., EnMAP), and time series of GPP and thermal irradiance provides reliable estimates of key 

functional parameters of vegetation that are robust to several sources of uncertainty. The forthcoming satellite hyperspectral 45 

missions combined with ecosystem station networks (e.g. Integrated Carbon Observation System (ICOS), NEON, 

FLUXNET, etc…), offers unique possibilities to characterize the spatiotemporal distribution of functional parameters 

relevant for terrestrial biosphere modeling. 

1 Introduction 

Accurate representation of terrestrial carbon and water fluxes is critical to adequately understand and monitor the response of 50 

ecosystems to climate change. These fluxes are continuously monitored in limited areas of Earth surface by a growing 

network of Eddy Covariance (EC) stations (Baldocchi, 2008, 2014), which is the reference for the calibration and validation 

of several terrestrial biosphere models (TBM) predicting such fluxes at global scale (Friend et al., 2007;Schwalm et al., 

2010). These models, however, still incur in large prediction errors which are partly due to the lack of spatiotemporal 

information on key plant functional traits such as the maximum carboxylation rate (Vcmax), or the Ball-Berry stomatal 55 

sensitivity (m) among others (Rogers, 2014;Rogers et al., 2016;Schaefer et al., 2012). This lack of information is most 

commonly addressed by assigning typified values according to different plant functional types (PFT). However, it has been 

proved that dynamic modeling (both in space and in time) of these parameters can improve the accuracy and precision of 

TBM predictions (Bonan et al., 2011;Rogers, 2014;Walker et al., 2017;Luo et al., 2019). Estimates of plant functional traits 

usually rely on semi-empirical models and / or empirical relationships derived from global databases (Walker et al., 60 

2014;Rogers, 2014;Bonan et al., 2011;Wullschleger et al., 2014), or from the inversion of mechanistic models against 

observations of these parameters (Ali et al., 2016). They are also directly estimated inverting the models against fluxes 

(Zheng et al., 2017;Zhou et al., 2014;Reichstein et al., 2003). Some early works used Remote Sensing (RS) information such 

as surface albedo to constrain models (Alton, 2011), or to evaluate estimates of functional parameters constrained with EC 

data (Zhou et al., 2014).  65 

RS provides global coverage of Earth’s surface and therefore offers great potential to provide global information about plant 

function. A new generation of sensors with enhanced spectral, spatial and temporal resolutions is expected to lead to new 

products of vegetation functional traits; which will require the development of new algorithms, models and data assimilation 

https://doi.org/10.5194/bg-2019-501
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



3 
 

schemes (Schimel et al., 2019). Early research of the RS community on this topic focused on the estimation of Light Use 

Efficiency (LUE) or other plant stress indicators such as stomatal conductance, leaf water potential or canopy temperature 70 

(Drolet et al., 2005;Hernández-Clemente et al., 2011;Suárez et al., 2009;Zarco-Tejada et al., 2013); mainly exploiting the 

Photochemical Reflectance Index, PRI (Gamon et al., 1992). Recent works have used hyperspectral information and 

statistical analyses (e.g., partial least squares regression) to estimate LUE (Huemmrich et al., 2019), Vcmax (Serbin et al., 

2015;Silva-Perez et al., 2018;Dechant et al., 2017) or directly gross primary production (GPP) (DuBois et al., 2018). 

Alternatively, remote estimates of chlorophyll sun induced fluorescence (SIF) have been used to predict GPP (Frankenberg 75 

et al., 2011;Guanter et al., 2012;Joiner et al., 2013;Sun et al., 2017) and transpiration (Alemohammad et al., 2017;Lu et al., 

2018;Shan et al., 2019). Also RS in the thermal infrared (TIR) domain has been used to infer plant functioning. Leaf 

temperature influences photosynthetic efficiency (Farquhar et al., 1980;Hikosaka et al., 1999;Bunce, 2000;Farquhar and von 

Caemmerer, 1982), and it is in part controlled by leaves transpiration, regulated in turn by stomatal conductance (Gates, 

1968;Pallas et al., 1967). Therefore, thermal RS has been used to determine vegetation stress (Zarco-Tejada et al., 80 

2012;Zarco-Tejada et al., 2013;Jarolmasjed et al., 2018;Sepulcre-Cantó et al., 2006). However, most of these works have 

relied on empirical relationships between functional and RS variables; which are difficult to generalize and hard to transfer 

between sensors (e.g., Hill et al., (2006)).  

RS of vegetation function faces the fact that optical and TIR signals that are mechanistically related with photosynthesis and 

transpiration originate inside the leaf. Therefore they vary within the canopy (light or wind speed gradients, among others) 85 

and are modified in their transfer from leaves to top of the canopy (TOC), according to sun-view geometry and vegetation 

structure. This complicates the application of empirical methods to understand or generalize the connection between RS 

observations and plant function. For this reason, there is an increasing on the use of models physically describing both the 

radiative transfer and physiological process. Due to the complexity of these processes and the weak influence that some 

functional traits have on RS observations, some authors argued about the need to jointly use RS and EC data for their 90 

retrieval. For instance, Pacheco-Labrador,  et al., (2019) showed the successful retrieval of Vcmax, m, and Cab, jointly 

constraining the Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) (van der Tol et al., 2009) model 

using with chamber-based fluxes and proximal sensing data. In fact, in the last years the interest of two different 

communities seems to converge. TBM have used RS data to constrain traits or to inform biophysical variables into models 

(Alton, 2017;Xie et al., 2018) whereas RTM have been also coupled to simplified vegetation dynamic (Koetz et al., 2005) or 95 

physiological models (Xin et al., 2015), as well as to TBM (Migliavacca et al., 2009) or crop models (Thorp et al., 

2012;Dorigo et al., 2007) in order to assimilate RS observations. However, to our knowledge an attempt to jointly retrieve 

functional traits using hyperspectral imagery combined with EC data is lacking in the literature. 

Nowadays, some RTM simulate optical (e.g., PRI, SIF) and / or TIR signals related with plant photosynthesis taking place at 

leaf level (van der Tol et al., 2009;Vilfan et al., 2018;Yang et al., 2017;Hernández-Clemente et al., 2017). However, this 100 

modeling is not informative of the physiological processes originating such signals. This connection can only be achieved 

coupling RTM to models representing such processes as for example the soil-vegetation-atmosphere transfer models 
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(SVAT). The state-of-the-art model coupling optical, SIF and TIR RTM with energy balance and photosynthesis models is 

SCOPE (van der Tol et al., 2009). Further improvements of this model are mSCOPE (Yang et al., 2017), which allows 

representing vertically heterogeneous canopies, and senSCOPE (Pacheco-Labrador et al., 2020), which improves the 105 

representation of canopies featuring mixed green and senescent leaves (Pacheco-Labrador et al., 2020). Using satellite 

imagery, SCOPE has been used to obtain estimates of physiological parameters of vegetation such as Vcmax and / or m 

exploiting reflectance factors (Rλ, where λ denotes spectral) and SIF (Zhang et al., 2014), Rλ, SIF and EC fluxes (Zhang et al., 

2018), Rλ and TIR data (Bayat et al., 2018), or Rλ and EC fluxes (Dutta et al., 2019). Also, proximal sensing data have been 

used to constrain SCOPE providing estimates of functional parameters (Pacheco-Labrador et al., 2019;Hu et al., 2018); and 110 

more recently, airborne imagery has been used to retrieve Vcmax from Rλ and SIF (Camino et al., 2019).  

From all these works, only Camino et al, (2019) validated their retrievals against actual measurements of functional traits 

(Vcmax), as gas exchange leaf-level measurements usually needed to obtain validation data of functional parameters are time 

consuming and are not feasible for large areas and / or diverse natural ecosystems. In these circumstances, pattern-oriented 

model evaluation has been used to assess the suitability of different models and parameter estimates (Carvalhais et al., 115 

2014;Reichstein et al., 2011;Migliavacca et al., 2013;Grimm and Railsback, 2012;Luo et al., 2012). Pacheco-Labrador et al, 

(2019) used pattern-oriented model evaluation approach to assess the suitability of functional and biophysical estimates 

obtained by SCOPE and senSCOPE model inversion against ground observations. On one hand, the relationships between 

variables measured at canopy scale (e.g., nitrogen concentration) with parameter estimates (e.g., Vcmax and chlorophyll 

content (Cab)) were compared with relationships expected from the theory or the literature (e.g. Feng and Dietze (2013)). On 120 

the other hand, variables derived from predicted fluxes (e.g., evaporative fraction (EF)) were compared with observations 

from a nearby EC system. Such evaluations provided relevant information about models structure and ill-posed solutions of 

their inversion. 

The new generation of hyperspectral satellite-borne sensors (Rast and Painter, 2019) brings new possibilities for the 

spatiotemporal characterization functional traits of vegetation, even though the algorithms to convert these data into 125 

information must be developed and evaluated. Some of these sensors are already operational (DESIS (Kerr et al., 2016), 

PRISMA (Galeazzi et al., 2008)); or will be in the next few years (e.g., EnMAP (Guanter et al., 2015), HyspIRI (Lee et al., 

2015), etc. see Rast and Painter (2019) for a complete overview). Meanwhile up-coming missions also offer emulation 

capabilities (e.g., the EnMAP End-to-End simulator (Segl et al., 2012)); which allows the evaluation of their potential for 

different applications before they operate.  130 

In this work we aim at developing a methodology to use of hyperspectral remote sensing in combination with EC stations to 

estimate functional and biophysical parameters of vegetation at the ecosystem scale. We constrain senSCOPE model with a 

combination of multiple hyperspectral Rλ in different phenological periods, diel tower-based TIR observations and GPP 

estimates in a Mediterranean tree-grass ecosystem manipulated with nitrogen (N) and N plus phosphorus (P). The inversion 

is tested both on airborne as well as on synthetic EnMAP hyperspectral imagery, simulated to increase uncertainties and 135 
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down-grade resolutions to levels expected in a space-borne sensor. Biophysical and functional parameters are assessed using 

ground observations and pattern-oriented model evaluation approach. 

2 Methods 

2.1 Study site 

The study area is located in Majadas de Tiétar (39º56’24.68’’ N, 5º45’50.27’’ W; Cáceres, Spain). This is a Mediterranean 140 

tree-grass ecosystem where a large scale manipulation experiment with N and P was conducted at the ecosystem scale 

(MANIP, see El-Madany et al., (2018) and Nair et al., (2019)). Three EC towers monitor three areas under different 

manipulation regimes. The first one (CT) operates since 2003 and is used as control, the second and the third ones operate 

since 2014 and their footprints -~ 24 ha-, have been fertilized with N (NT) and N+P (NPT) respectively. Towers are 

sufficiently separated (~500 m) to prevent 80 % iso-lines of their respective footprint climatology to overlap (El-Madany et 145 

al., 2018). These areas were fertilized twice: 50 and 10 kg P ha-1 in the form of triple superphosphate (Ca(H2PO4)2) were 

applied in November 2014 and March 2016, respectively in NPT. 100 and 20 kg N ha-1 were applied in March 2015 and 

March 2016 in the form of ammonium nitrate (NH4NO3) in NPT, while in NT was in form of calcium ammonium nitrate 

(5Ca(NO3)2NH4NO3) to compensate the Ca added in NPT with the P fertilizer. Fertilization modified species, ecosystem-

level biophysical and functional properties and fluxes (Nair et al., 2019). 150 

The climate is Continental Mediterranean, mean annual temperature and precipitations are 16.7 ºC and ~650 mm, 

respectively. There is a strong seasonality with hot and dry summers reaching ~40 ºC of maximum daily temperature, and 

with scarce precipitation - less than the 6 % of the annual rainfall (Casals et al., 2009). The ecosystem combines two 

vegetation layers: grass and trees. The grassland layer is composed of a large number of annual species comprehending three 

main PFT (grasses, forbs and legumes, see Migliavacca et al, (2017)), and supports low grazing pressure (<0.3 cows / ha). It 155 

features a strong phenological behavior controlled by radiation and water availability in spring-summer, which produces a 

mayor and a minor greening peaks in spring and autumn, respectively; and a dry season in summer (Luo et al., 2018). 

Replacement of species and mortality accumulates senescent and death standing material through the year, which can already 

represent up to the 30 % of the leaf area before the beginning of the dry season. The ecosystem is composed by scattered 

trees, mainly Quercus ilex L. subsp. ballota [Desf.] Samp (Evergreen Holm Oak). Trees fractional cover is ~20 %, average 160 

tree distance, tree height, horizontal and vertical crown radius are 18.8 m (standard deviation, σ = 5.0 m) and 7.9 m (σ = 0.9 

m), 4.2 m (σ = 0.9 m) and 2.7 m (σ = 0.9 m), respectively (Pacheco-Labrador et al., 2016). Evergreen Holm oak leaves 

partially renovate every spring so leaves of up to three cohorts can coexist within the same crown. Some years, new leaves 

can sprout twice, though biophysical and spectral properties leaves from different cohorts are quite similar after the first 9 

months of development (González-Cascón et al., 2016;Gonzalez-Cascon et al., 2018;Pacheco-Labrador et al., 2017b).  165 
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2.2 Hyperspectral Airborne and EnMAP synthetic imagery 

Airborne images were acquired in seven different campaigns that took place in the study site between May 2011 and May 

2017 covering the spring growing and the summer dry seasons (Table 1). A total of 17 sites-images were used for the 

analysis. Imagery was acquired by the Compact Airborne Spectrographic Imager CASI-1500i (Itres Research Ltd., Calgary, 

AB, Canada), operated by the Instituto Nacional de Técnica Aeroespacial (INTA). CASI featured 144 spectral bands, 170 

spectral range ~350-1050 nm, full width half maximum ~5.5 nm, and field of view ~40 º. Images were acquired around solar 

noon, at least always once in the main wind direction (east-northeast and west-southwest) along the longest axis of the EC 

tower footprints, with a pixel size ~0.90 x 1.66 m approximately. However, for all the campaigns after 2012 also overpasses 

with different azimuth orientations also were acquired. Images were atmospherically corrected by INTA using ATCOR-4TM 

(ReSe Applications GmbH, Germany) and improved with empirical line correction (Smith and Milton, 1999) using ground 175 

calibration targets measured during flight campaigns with an ASD Fieldspec3TM spectroradiometer (Analytical Spectral 

Devices, Inc., Boulder, CO, USA). For most of the campaigns, ancillary measurements of water vapor and aerosol optic 

thickness were acquired using a CIMEL CE318-NE sun photometer (Cimel Electronique, Paris, France). Nearest neighbor 

resampling was used during geometric correction to prevent spectral mixture of different covers; output spatial resolution 

was 1 m. For the campaigns after 2012, several overpasses acquired in the main wind direction as well as in the solar 180 

principal plane were combined in mosaics featuring pixels of 1.5 m, which were used instead of the individual overpasses to 

reduce directional effects of the sun-view geometry. The combination of single overpasses and mosaicked is not ideal, since 

the assimilated data might be subject to different directional effects (see Discussion section). Dates of each overpass can be 

seen in Table 1. 
Table 1. Dates of airborne field campaigns and EC towers overpassed. 185 

Field campaign Towers Mosaicked 

05-May-2011 CT No 

04-Oct-2012 CT No 

08-Apr-2014 CT, NT, NPT Yes 

23-Apr-2015 CT, NT, NPT Yes 

03-Jul-2015 CT, NT, NPT Yes 

03-May-2016 CT, NT, NPT Yes 

19-May-2017 CT, NT, NPT Yes 

 

In order to test the potential of satellite-borne hyperspectral imagery featuring higher uncertainties and coarser spectral and 

spatial resolutions than airborne data, we used the airborne images as a reference and simulated synthetic EnMAP imagery 

with the EnMAP End-to-End simulator (Segl et al., 2012), available for this work. Since no other satellite-borne 

hyperspectral data was available at the site, the simulation was a reasonable alternative. Synthetic imagery featured EnMAP 190 
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spectral configuration (FWHM ϵ [5.75, 9.81] nm between 423 and 930 nm), spatial resolution (~30 m) and include geometric 

and atmospheric uncertainties (Guanter et al., 2015). However, in fact these uncertainties were added to those already present 

in the CASI datasets; which made these images a rougher test for the methodology under evaluation. Squared cut-outs of 1 

km long centered on each EC tower were used for the later analyses both for CASI and EnMAP synthetic images. 

2.3 Eddy Covariance and Footprint Climatology 195 

Three EC towers monitored ecosystem carbon dioxide (CO2), and water vapor concentrations with an enclosed-path infrared 

gas analyzer (LI-7200, LI-COR Biosciences Inc., Lincoln, NE, USA) positioned at a height of 15 m. 3-D wind velocity 

components and sonic temperature were measured using an ultra-sonic anemometer (R3-50; Gill Instruments Limited, 

Lymington, UK) at 20 Hz. Flux processing was conducted with EddyPro (version 5.2.0, LI-COR Biosciences Inc., Lincoln, 

NE, USA). Short wave and long wave down and up welling irradiances were measured with net radiometers (CNR4, Kipp 200 

and Zonen, Delft, Netherlands) also at a height of 15 m. Quality assessment and quality checks were conducted according to 

Mauder and Foken (2005). Low quality data, and data under low turbulent mixing (Papale et al., 2006) or during rainy events 

were discarded. GPP was computed subtracting ecosystem respiration estimated according to Reichstein et al. (2005) from 

net ecosystem exchange using the REddyProc R Package (Wutzler et al., 2018). From the final dataset only daytime high-

quality GPP data (i.e. coming from half hours where NEE was measured with good quality) were used. Fluxes uncertainty 205 

(σ) was computed from the standard deviation of the marginal distribution sampling of the gap-filling procedure (Reichstein 

et al., 2005). Footprint climatology was calculated every half-hour according to Kljun et al. (2015) and used later minimize 

the spatial mismatch between EC footprint and RS imagery. Further details can be found in Perez-Priego et al., (2017) and 

El-Madany et al., (2018).  

2.4 Biophysical variables sampling and up-scaling 210 

Biophysical variables were estimated at ecosystem scale for evaluation of parameter estimated via inversion of senSCOPE. 

Destructive sampling of grass and tree leaves was always performed simultaneously to each airborne campaign, as well as 

during several additional campaigns between 2009 and 2019 (Melendo-Vega et al., 2018;Mendiguren et al., 2015;Pacheco-

Labrador et al., 2014;González-Cascón et al., 2016;Gonzalez-Cascon and Martin, 2018). Grass samples were collected from 

25 x 25 cm quadrants (20 to 26 depending on the campaign) of from where leaf area index (LAI, m2 m-2), leaf water content 215 

(Cw, g cm-2) and dry matter content (Cdm, g cm-2) were determined in the laboratory with gravimetric methods and a scanner 

following protocols described in Mendiguren et al, (2015) and Melendo-Vega et al, (2018). For the grass layer, after 2012, 

these variables were separately measured for green and senescent plants; which allowed determining the fraction of green 

leaf area (fgreen). Trees fgreen was assumed 1. Tree leaves from the current year and previous years were sampled from the 

north and south sides of between 5-18 crowns in each campaign; Cw and Cdm were determined using the same methods than 220 

used for the grasses. Tree LAI was determined combining different methods: indirect measurements using the LICOR LAI 

2200-C instrument (2018) and direct estimations using litter traps and leaf turnover rates (Melendo-Vega et al., 2018). Due 
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to lower temporal frequency of tree LAI measurements, a seasonal model was used to predict tree LAI as a function of DoY 

combining these data. The reduced tree fraction cover and tree LAI variability compared with grasses minimize the 

uncertainties introduced by this approach when integrated at ecosystem scale. Nitrogen concentration per total (Nmass, %) and 225 

green unit mass (Nmass,green, %) was also determined. When missing, seasonal models were used to predict Nmass and Nmass,green 

as well as fgreen (the last two in grasses). Trees Cab and carotenoids content (Cca) were determined from SPAD measurements 

and a model calibrated from samples of the site (Gonzalez-Cascon et al., 2017). From 2016 on, grass Cab and Car were 

determined via destructive sampling (Gonzalez-Cascon and Martin, 2018). The relationship found between Cab per unit total 

leaf area and Nmass (Pacheco-Labrador et al., 2020) was used to estimate grass Cab in the campaigns where it was missing. 230 

Nmass,green was also used to estimate grass Vcmax using the relationship in Feng and Dietze (2013); since no other data were 

available, a constant Vcmax = 45 μmol m-2 s-1 was estimated as an acceptable value for trees according to literature (Vaz et al., 

2010;Vaz et al., 2011;Limousin et al., 2010). 

Since 2014, the herbaceous layer was sampled in between 6 and 33 quadrants of 30 x 30 cm inside each tower footprint for 

determination of isotope signature of plant material (δ13C, ‰) during the airborne campaigns. Tree leaves were sampled 235 

inside each tower footprint, a total of 8 trees for each footprint and 4 branches sampled along 4 different cardinal positions. 

This sampling was done in winter, when the differences in terms of phenology between leave cohorts are minimal across 

trees and the traits more representative of the average conditions over the season. The carbon isotopic composition of dried 

samples was analyzed using a DeltaPlus isotope ratio mass spectrometer (Thermo Fisher, Bremen, Germany) coupled via a 

ConFlowIII open-split to an elemental analyzer (Carlo Erba 1100 CE analyzer; Thermo Fisher Scientific, Rodano, Italy), and 240 

measured according to Werner et al. (1999;2001) and Brooks et al. (2003). δ13C was calculated using Eq. 1 (Brand, 

2013;Coplen, 2011), scaled to the δ13CIAEA-603 – LSVEC scale, based on calibrated in-house-standard (Acetanilide: -30.06 ± 0.05 

‰):  

𝛿13𝐶 =
𝑅sample− 𝑅standard

1313

𝑅standard13  ,          (1)  

where 13Rsample and 13Rstandard are 13C/12C ratio of the sample and of the standard, respectively. 245 

All the variables defined per leaf area were up-scaled to ecosystem level according to grass and tree LAI, fraction vegetation 

cover tress and grasses (fVC,grass = 100 %, fVC,trees = 20 %, respectively), and seasonal estimates of fractions of current and 

former years leaves for the trees (see Melendo-Vega et al, (2018)). Grass Vcmax was scaled using LAI in the green fraction. 

Variables relative to mass, such as Nmass, Nmass,green and δ13C were scaled considering also Cdm. Scaled δ13C was used to 

compute 13C photosynthetic discrimination (Δ13C) as a function of atmospheric CO2 and plant-measured isotope signature 250 

(δ13Catm and δ13Cgrass, respectively) following Eq. 2:  

∆13C =
𝛿13𝐶atm−𝛿13𝐶plant

1+𝛿13𝐶plant
 ,           (2)  
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2.5 senSCOPE model parametrization 

senSCOPE (Pacheco-Labrador et al., 2020) is an extended version of the model SCOPE that separates radiative transfer, 

energy balance and photosynthesis for green and senescent leaves randomly mixed within a homogeneous canopy. While 255 

SCOPE parametrizes a single leaf type, senSCOPE requires leaf parameters for both senescent and green leaves; where 

senescent leaves only present senescent pigments and green ones feature any pigment but senescent. Like in Pacheco-

Labrador et al., (2020), during inversion we assumed the same Cdm for both leaf types, but that Cw of green leaves is four 

times higher than in senescent leaves (Kidnie et al., 2015). These assumptions allowed us to later invert the model 

optimizing averaged leaf parameters rather than the individual parameters of each leaf type. senSCOPE includes fgreen, 260 

representing the fraction of leaf area corresponding to green leaves; as in Pacheco-Labrador (2020) we used a neural network 

model to predict fgreen as a function of the averaged leaf parameters (X). Therefore, during inversion fgreen is predicted as a 

function of the averaged leaf parameters, and then the parameters corresponding to green and senescent leaves (Xgreen and 

Xsenes, respectively) are calculated solving Eq. 3: 

𝑋 = 𝑋green ∙ 𝑓green + 𝑟 ∙ 𝑋senes ∙ 𝑓senes ,         (3) 265 

where r is the ratio Xsenes/Xgreen, which is different for each parameter according to the assumptions described above; and fsenes 

= 1- fgreen is the fraction of leaf area corresponding to senescent leaves. The neural network predicting fgreen was trained over a 

look-up table (LUT) of 5000 samples generated via Latin Hypercube Sampling of different leaf parameters and fgreen. Cca was 

forced as a function of Cab according to Sims and Gamon (2002), with random normal noise of μ = 0 and σ = 4.5 μg cm-2. 

Parameters were limited according to the same bounds set for the inversion (see section 2.6); except Cab, Cca and senescent 270 

pigments content (Cs) whose maximum values were 50 μg cm-2, 20 μg cm-2 and 4 arbitrary units (a.u.), respectively. 

Different test showed that the emulator must be trained pigment contents bounded with values close to those of the 

vegetation represented when fgreen is close to 1 or 0. Averaged parameter values were simulated mixing the LUT pigments 

according the simulated fgreen, assuming that in green leaves Cs = 0 a.u., and that in senescent leaves Cab = Cca = 0 μg cm-2. 

No assumptions were done about Cw and Cdm and the LUT values were used as the averaged value from both leaf types. The 275 

neural network was then trained to predict fgreen from the average values using the 60 % of the LUT for training and the 

remaining 40 % for validation. Training R2, root mean squared error (RMSE) and mean error (ME) were 0.817, 0.124 and -

.001, respectively. Analogously, validation statistics were 0.778, 1.75 and 0.106. 

senSCOPE uses the brightness-shape-moisture (BSM) to represent soil optical properties. In this work we used the 

parameters determining soil bright estimated in Pacheco-Labrador et al, (2019); and we used superficial (5 cm) soil moisture 280 

content (SMp , vol vol-1) registered in the EC towers to force the effect of moisture on soil reflectance factors. 

Other model parameters were also determined as a function of forcing variables. Roughness length for momentum of the 

canopy (z0, m) and canopy displacement height (d, m) were calculated as fractions of canopy height (hc, m) using the factors 

0.15 (Plate and Quraishi, 1965) and 0.66 (Brutsaert, 1982), respectively. Also, leaf drag coefficient (Cd,l) was calculated 

according to Campbell (1977) as a function of wind speed (u, m) and d (Eq. 4) 285 
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𝐶d,l = �388 ∙ 𝑢 ∙ �𝑑 𝑢⁄ �
−1

 ,          (4) 

Soil boundary layer resistance (rbs, s m-1) was determined as a function of the friction velocity (u*, m s-1) internally calculated 

by the senSCOPE, according with Thom (1972) (Eq. 5)  

𝑟bs = 6.2 ∙ 𝑢∗−
2
3,            (5) 

Soil resistance to evaporation from the pore space (rss) was prescribed as a function of SMp using the model fitted in 290 

Pacheco-Labrador et al, (2019) in the same study site from lysimeters data (Perez-Priego et al., 2017); however, during the 

second step of the inversion (see Sect. 2.6), this variable was also estimated.  

2.6 Model inversion and evaluation 

Fig. 1 summarizes the approach followed for the inversion of senSCOPE. As in Pacheco-Labrador et al, (2019) the inversion 

is divided in two steps; for both of them we used the numerical optimization algorithm in the MatlabTM function 295 

LSQNONLIN.  

 
Figure 1. Schematic diagram of senSCOPE inversion in two steps. 

In Step#1 we combined the GPP value corresponding to the time of each overpass, close to solar noon, with a Rλ 

characteristic of the vegetation in the EC climatology footprint (Rλ,obs). This Rλ,obs resulted of the convolution of the imagery 300 

with the instantaneous climatology footprints calculated ±3 days around the day of each overpass. From the half-hourly 

convolutions, the average Rλ and the corresponding standard deviation (σR) were calculated. Due to the noisy nature of EC 

GPP and since Step#1 relies on a single GPP value, this variable was smoothed by averaging all the GPP observations 1.5 h 
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around the overpass (GPPovp). In Step#1, the biophysical parameters of the model (Table 2) and a first guess of Vcmax 

(Vcmax,S1) were estimated minimizing Eq. 6.  305 

𝜒2 = �
𝐺𝐺𝐺ovp,obs−𝐺𝐺𝐺ovp,pred

𝜎𝐺𝐺𝐺
�
2

+ � �
𝑅𝜆,obs−𝑅𝜆,pred

𝜎𝑅𝜆
�
2930

𝜆=400

 ,       (6) 

where subscripts “obs” and “pred” stand for observed and predicted variables, λ is the wavelength in nm and σGPP is the 

uncertainty of GPP. All the forcing variables of senSCOPE (meteorological conditions, SMp, etc.) were linearly interpolated 

to the time of the overpass. 
Table 2. Parameters estimated inverting sensSCOPE model. 310 

Parameter Symbol Units Step Inversion bounds 

Leaf chlorophyll content Cab μg cm-2 #1 [0, 100] 

Leaf carotenoids content Cca μg cm-2 #1 [0, 40] 

Senescent material Cs - #1 [0, 7.5] 

Leaf water content Cw, g cm-2 #1 [6.3·10-5, 0.06] 

Leaf dry matter content Cdm g cm-2 #1 [0.0019, 0.03] 

Leaf structural parameter N layers #1 [1, 3.6] 

Leaf area index LAI m2 m-2 #1 [0, 8] 

Leaf inclination distribution function  LIDFa - #1 [-1, 1]; |LIDFa + 

LIDFb| ≤ 1 Bimodality of the leaf inclination LIDFb - #1 

Maximum carboxylation capacity Vcmax μmol m-2 s-1 #1 & #2 [0, 200] 

Ball-Berry sensitivity parameter m - #2 [0, 50] 

Soil resistance to evaporation from the pore space rss s m-1 #2 [0,50000] 

 

Then, parameter posterior uncertainties were calculated as proposed in Omlin and Reichter (1999); where the Jacobian 

matrix (J) provided correlated posterior distributions of the parameters that were truncated using the truncated Normal and 

Student's t-distribution toolbox (Botev, 2017;Botev and Ecuyer, 2015). The standard deviation of 200 realizations of Vcmax,S1 

was used as the posterior uncertainty of this variable (𝜎𝑉cmax,S1) with a minimum threshold of 5 μmol m-2 s-1. 315 

In Step #2, diel cycles of GPP and up-welling longwave irradiance (𝐸T↑) ±1 day around the overpass were used to estimate 

the functional parameters Vcmax and m; only daytime (down-welling short wave irradiance (Rin) > 60 W m2 and sun zenith 

angle (θs) < 60º) data were used. Since Step#2 relies on a large number of observations, half-hourly GPP and 𝐸T↑  were not 

further smoothed. Also, the first guess of Vcmax,S1 and its posterior uncertainty (with a minimum value) were used to 

regularize the solution. Unlike in Pacheco-Labrador et al, (2019), rss was not prescribed in Step#2, but also estimated in this 320 

step assuming a constant value for the three days where predictions and observations were compared. Attempts to prescribe 
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this parameter suggested that the estimates might not be representative of the heterogeneity of soil conditions in the whole 

area. Step#2 cost function is presented in Eq. 7: 

𝜒2 = � �
𝐺𝐺𝐺obs,𝑡−𝐺𝐺𝐺pred,𝑡

𝜎𝐺𝐺𝐺𝑡
�
2𝑛

𝑡=0

+ � �
𝐸T,obs,𝑡
↑ −𝐸T,pred,𝑡

↑

𝜎
𝐸T,obs,𝑡
↑

�
2

𝑛

𝑡=0

+ 𝑉cmax,S1−𝑉cmax,S2

γ∙max �𝜎𝑉cmax,S1 ,5�
 ,    (7) 

where t represents each timestamp of the time series of GPP and 𝐸T↑ , 𝜎𝐸T,obs
↑  is the uncertainty of 𝐸T↑  and and γ is a 325 

regularization factor equal 100 and Vcmax,S2 is the estimated Vcmax in Step #2. 

After Step#2, the J is numerically computed for all the estimated parameters in Step#1 and #2, and used to estimate their 

corresponding posterior uncertainties as formerly described. Uncertainties were propagated to the fluxes and Rλ predicted by 

senSCOPE running 200 realizations of the model.  

3. Results 330 

Fig. 2 shows an example of the averaged footprint climatology computed for each of the towers one week around the 

airborne campaign in July 2015. Fig2.a and b show respectively the Normalized Difference Vegetation Index (NDVI) 

corresponding to the CASI and the synthetic EnMAP images together with the normalized probability distribution function 

(PDF) of the footprint climatologies. As can be seen, the lower spatial resolution of the EnMAP image does not allow 

discriminating trees from the grassland, which are clearly differentiated in the CASI image; footprints align approximately in 335 

the main (annual) wind direction, and the areas that contribute the most to EC sensors are located at the west-southwest of 

the towers. 
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Figure 2. Normalized Difference Vegetation Index calculated from CASI (a) and the synthetic EnMAP (b) imagery in July 2015. The 
Probability Distribution Function normalized between 0 and 1 of the footprint climatology 1 week around the campaign calculated for each 340 
EC tower, control (CT), fetilized with nitrogen (NT) and fertilized with nitrogen and phosphorous (NPT), are presented at the 
corresponding spatial resolutions. Footprint PDF < 0.01 have been filtered for clarity. 

Fig. 3 summarizes the fit of Rλ during inversion. Fig. 3a,b present the observed and predicted NDVI for CASI and EnMAP, 

respectively. Observed NDVI is computed from the Rλ in each tower used to constrain the inversion. Analogously, Fig. 3c,d 

present the ME of the fit of Rλ (MER) in the visible and the NIR regions for both sensors. Observed NDVI shows the 345 

phenological state of vegetation in each campaign, and reveals differences induced by fertilization since Apr-2015, being the 

NDVI of fertilized towers higher than CT. Campaigns in Oct-2012 and Jul-2015 coincided with the dry season, and NDVI 

values are low, whereas the campaign in May-2017 took place during the transition from the green peak to senescence. 

NDVI differences induced by fertilization disappear during the dry season.  

Rλ shows a good fit after the inversion. MER were similar for both sensors, but in general Rλ was more accurately fit for 350 

EnMAP. The largest errors were found during the dry season, when Rλ was underestimated in the visible region and 

overestimated in the NIR. CASI RMSE in the visible and NIR regions were 0.0039 and 0.0093, respectively, whereas 

EnMAP RMSE in the same regions were 0.0028 and 0.0080, respectively. 
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Figure 3. Observed and predicted normalized difference vegetation index for CASI (a) and EnMAP (b) for the different towers and 355 
campaigns. Mean error of the fit of the reflectance factors in the visible and the near infrared spectral regions for CASI (c) and EnMAP (d) 
for the different towers and campaigns. Shaded areas separate different campaigns. 

Fig. 4 compares the observed biophysical parameters LAI, fgreen and Cdm with their corresponding estimates inverting 

senSCOPE against CASI (Fig. 4a, b, c) and EnMAP imagery (Fig. 4d, e, f) using Total Least Squares to account for similar 

error on the y and x axis (Golub and Loan, 1980). Green and orange colors indicate spring (NDVI ≥ 0.40) and dry season 360 

(NDVI < 0.40), respectively. LAI (Fig. 4a,d) was slightly overestimated, especially for low values; however mid values were 

underestimated with CASI (Fig. 4a). fgreen (Fig. 4b,e) was underestimated for both sensors in the dry season, but more closely 

predicted in spring. Cdm (Fig. 4c,f) was overestimated, and in some cases it hit the inversion upper bound; however it was 

significantly correlated with observed values. 
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 365 
Figure 4. Observed vs predicted biophysical parameters inverting senSCOPE against CASI (upper row) and synthetic EnMAP ty(lower 
row): leaf area index (a,e), fraction of green leaf area (b,f), leaf dry matter content (c,g). Red lines are the relationship estimated with Total 
Least Squares (Golub and Loan, 1980), black lines show the 1:1 relationship. Subplot axis are limited to the inversion bounds. * stands for 
p < 0.05 and • for 0.05 ≤ p < 0.10. 

Fig. 5 summarizes pattern-oriented evaluation of senSCOPE after inversion against CASI (Fig. 5 a-d) and EnMAP (Fig. 5 e-370 

h). Fig. 5a,b evaluate predicted and observed chlorophyll content per unit ground area (Cab,ground) against N content in green 

vegetation per unit ground area (Nground,green). Estimated parameters pretty well reproduced the Cab-N relationship followed by 

field observations and literature. Fig. 5d,c shows Vcmax (per unit total leaf area, Vcmax,total) against Nmass; in all the cases, 

Vcmax,total estimates positively correlated with Nmass, but values are lower than the ones estimated from field data and 

literature. The relationships are not significant (CASI) or weak (EnMAP); this is in part due to the low  range of variation of 375 

Nmass (and therefore of Vcmax,total) (e.g., see Pacheco-Labrador et (2019)), so that the uncertainty of the retrieval prevented 

significant relationships. Field Vcmax,total was estimated using Nmass,green and relationships from the literature. As expected, both 

estimates of Cab,ground and Vcmax,total presented the lowest values during the dry season. Similarly, spring m (Fig. 5e,f) estimates 

and predicted underlying water use efficiency (uWUE) (Fig. 5g,h) were evaluated against measurements of Δ13C. Significant 

positive relationships were found between m and Δ13C for CASI, whereas significant and negative relationships were found 380 

between uWUE simulated with senSCOPE after the inversion and Δ13C for both sensors. 
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Figure 5. Pattern-oriented model evaluation of: chlorophyll content per unit ground area vs. nitrogen content per unit ground area (a,b), 
maximum carboxylation rate per unit total leaf area vs. nitrogen concentration (c,d), Ball-Berry stomatal sensitivity vs. 13C isotope 
discrimination (e,f), and predicted underlying water use efficiency vs. 13C isotope discrimination (g,h). CASI estimates/predictions are 385 
presented always on the left (a,c,e,g) and EnMAP estimates on the right (b,d,f,h) of each pair of subplots. * stands for p < 0.05 and • for 
0.05 ≤ p < 0.10 

Fig. 6 compares observed and predicted fluxes after inversion for CASI (Fig 6 a-e) and EnMAP (Fig 6 f-j). GPP (Fig. 6a,f) 

and 𝐸T↑  (Fig. 6b,g) are constraints of the inversion; the first was accurately fit, whereas the second was overestimated (shifted 

~30 W m-2). λE (Fig. 6c,h) was overestimated in the dry season, whereas H (Fig. 6d,i) was biased (slopes ~0.45). 390 

Consequently, EF resulted overestimated in the dry period, and underestimated for low values in spring. However, it was 

well predicted for values > 0.8, when evapotranspiration dominates. Differences between predicted and observed λE and H 

fluxes were strongly related with the energy balance closure error (εEB) of the EC data (Fig. A1); showing R2 ~ 0.84 and 

RMSE ~ 32.5 W m-2. Median εEB was ~111 W m-2 (σ ~ 81 W m-2), which in relative terms represents the ~21.5 % (σ ~ 14.2 

%) of the observed net radiation. However, during the dry season, predicted λE and H error are slightly biased respect to εEB. 395 
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Figure 6. Predicted vs observed fluxes for CASI (left column) and EnMAP (right column): Gross primary production (a,f), up-welling 
thermal irradiance (b,g), latent heat flux (c,h), sensible heat flux (d,i) and evaporative fraction (e,j). Red lines are the relationship estimated 
with Total Least Squares (Golub and Loan, 1980), black lines show the 1:1 relationship. * stands for p < 0.05 and • for 0.05 ≤ p < 0.10 

 400 
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Fig. 7 presents the estimates of rss compared vs SMp. and the exponential decay model was fit. CASI estimates (Fig. 7a) were 

very low in spring for SMp > 12 %, and then increase below this threshold. Results for EnMAP are similar (Fig. 7b). In both 

sensors, some of the estimates in SMp ~ 15 % present high values, separating from the expected decreasing relationship. 

 
Fig. 7. Evaluation of the CASI (a) and EnMAP (b) estimates of soil resistance to evaporation from the pore space against soil water 405 
content. Red lines represent a fit exponentially decreasing model. 

4. Discussion 

The new generation of hyperspectral imaging satellite missions is expected to improve the spatiotemporal characterization of 

vegetation function and functional traits (Schimel et al., 2019;Butler et al., 2017). To achieve this target, advances in 

uncertainty quantification of multiple data streams, algorithm development, as well as modelling and data integration are 410 

essential (Schimel et al., 2019). In this context, we prove the capability of hyperspectral imagery jointly with data from EC 

stations and coupled RTM-SVAT models to inform about vegetation functional traits. We show that an inversion of 

senSCOPE model in a Mediterranean tree-grass ecosystem using multiple constraint (GPP, 𝐸T↑  and remote hyperspectral 

reflectance factors) lead to robust estimates of key biophysical and functional traits of vegetation. The characterization of 

vegetation functional traits is necessary to improve our understanding and simulation of terrestrial water and carbon fluxes. 415 

In this context, EC networks are a keystone for the development, evaluation and benchmarking of TBM (Bonan et al., 

2011;Williams et al., 2009) as well as statistical models (Jung et al., 2011). These models are expected to predict later flux 

information ‘everywhere, all of the time’ (Baldocchi, 2014); partly thanks to the use of global information about vegetation 

biophysical parameters provided by RS. One of the limits of this approach is the lack of knowledge on the spatiotemporal 

distribution of key functional traits controlling these fluxes (Rogers, 2014;Rogers et al., 2016;Schaefer et al., 2012); which 420 

cannot be directly inferred by RS since they have little influence on the outgoing radiance observed from space. The 

estimation of functional parameters such as Vcmax or m is complicated even from field observations. These parameters must 

be estimated from leaf level measurements, which are time and labor demanding and not always feasible. Then, even if 
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feasible, leaf-level estimates need to be up-scaled to the ecosystem level considering the intra and inter-specific variability of 

the vegetation around the EC tower (Sprintsin et al., 2012), increasing their uncertainty. For this reason, process-based model 425 

inversion has been used to estimate these parameters from fluxes in EC stations (Zheng et al., 2017;Reichstein et al., 2003). 

However, coherent estimation or scaling of these parameters strongly depends on the description of canopy structure 

(Sprintsin et al., 2012); so that lack or uncertain knowledge on the biophysical properties of vegetation around the tower can 

result in uncertain prediction of fluxes (Wang et al., 2019) and consequently in uncertain estimates of the functional traits. 

Alternatively, hyperspectral imagery is an independent source of information on canopy structure, biochemistry (Ustin and 430 

Gamon, 2010;Schaepman et al., 2009) , and partly to function (Serbin et al., 2015); its numerous and fine bands are sensitive 

to narrow spectral features and allow solving over-determined systems, which increases the accuracy of the retrievals (Goetz, 

2009). The present manuscript demonstrates that the combination of hyperspectral and EC data in models accurately 

representing radiative transfer, energy balance and photosynthesis allows a coherent estimation of both biophysical and 

functional traits. This is possible because the multiple-constraint imposed by the combination of RS and EC observations is 435 

more robust against model errors than the constraint imposed by RS data only (Pacheco-Labrador et al., 2019b). Therefore, 

this combination might be also more suitable than the mere ingestion of existing RS products of biophysical parameters such 

as LAI, which in some cases include ecosystem-dependent uncertainties (Wang et al., 2019). In a scenario where  both EC 

flux stations networks are developing quickly (e.g. FLUXNET, ICOS, OzFLUX, and NEON) and hyperspectral satellite 

missions are increasing (e.g. DESIS, PRISMA, HyspIRI, EnMAP, etc.), our work calls for a combination of hyperspectral 440 

and EC data together with models that accurately represent radiative transfer, energy balance and photosynthesis (RTM-

SVAT). The characterization of functional (and biophysical) traits in these networks could be later used to inform, constrain 

and evaluate TBM, to inform TMB input uncertainties (Prichard et al., 2019), or to benchmark estimates provided by 

different models and methods (e.g., Luo et al., (2019), Croft et al., (2017), Zhou et al., (2014) or Xie et al., (2018)). Also, 

when comprehensive enough, they could be predicted at global scale using data-driven approaches (Jung et al., 2011) or RS 445 

(Serbin et al., 2015).  

The application of the multiple-constrained inversion of a coupled SVAT-RTM model at ecosystem scale implies facing 

sources of error and uncertainty that were not present in previous works carried out at close range over grassland plots 

(Pacheco-Labrador et al., 2020;Pacheco-Labrador et al., 2019). These can be summarized as: 1) the spatial mismatch 

between optical, thermal and EC footprints, 2) uncertainties in the estimation of GPP and EC energy balance closure, 3) the 450 

atmospheric correction of airborne imagery and the addition of uncertainties in the EnMAP End-to-End simulator, and 4) 

errors induced by the representation of a Mediterranean tree-grass ecosystem featuring species with very different function 

(grasses and trees) when using a 1-D model to represent light interaction and photosynthesis. In some cases, we have applied 

measures to correct some of these uncertainties that could be generally used. Despite of these uncertainties, the estimated 

parameters are coherent with field data and pattern-oriented model evaluation demonstrated the robustness of the proposed 455 

approach. This can be explained since the combination of multiple constraints carrying different and relevant information on 

the parameters to be estimated is able to counterweight the effect of uncertainties both in model and observations (Keenan et 
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al., 2011;Wutzler and Carvalhais, 2014). An evaluation of different sets of constraints of the SCOPE showed the strong 

constrain of GPP on functional traits, and its capability to prevent deviations of biophysical parameters due to uncertainties 

(Pacheco-Labrador et al., 2019). The robustness of the method proposed is promising for its application in different EC 460 

stations monitoring different ecosystems, which is still to be tested. 

The first abovementioned source of uncertainty is the spatial mismatch between optical and an EC footprints, which is 

inherent to the combination of RS and EC data. To minimize this mismatch, we used footprint climatology approach (Kljun 

et al., 2015); which can be applied when pixel size is relatively small compared with EC footprint size. However, to simplify 

modeling and assimilation, we averaged Rλ convolved with half-hourly footprint PDF to provide a representative spectral 465 

signature of the area generating the fluxes. Pacheco-Labrador et al., (2017a) found that the spatial variability of the EC 

footprint induced limited changes in the spectral signal integrated from CASI imagery in this site; and that this variability 

had little impact in the modeling of GPP. For this reason the spectral signal integrated the week around the image acquisition 

was considered representative enough of the fluxes source; whereas the spectral variability induced by half-hourly EC 

footprints was used to weight the cost function in inversion. Nonetheless, this approach might not be advisable for sites 470 

where the properties of the source area strongly vary with footprint displacement, and its suitability should be evaluated at 

each EC station. A second mismatch exists between the footprints of the 𝐸T↑ hemispherical sensor and the EC / RS footprints 

(Marcolla and Cescatti, 2018). Radiation sensors in EC towers are supposed to be representative of the ecosystem monitored, 

but this is a challenge in many EC sites (Leuning et al., 2012). This mismatch is especially problematic in ecosystems that 

are heterogeneous and / or that feature scattered 3D volumes; in these cases the contribution of sunlit and shaded vegetation 475 

and different plant types to the hemispherical sensors can vary through the day as a function of sensor location and sun 

position. These contributions might not be coherent with the radiative regime of the EC footprint in all the cases (Marcolla 

and Cescatti, 2018), which induces part of the error in the closure of the energy balance (Leuning et al., 2012). In this work, 

we did not correct for this mismatch, which would require detailed 3D information of the tower environment and of the 

location of the sensor. Footprint differences might have induced the overestimation of 𝐸T↑  (Fig. 6b,g) and increased εEB since 480 

the contributions of colder tree crowns might be enhanced by the closer distance to the sensor, and because cooler shaded 

grass patches are not represented by the model.  

A second source of uncertainty is related to the EC data. We attempted to reduce the inherent noise to EC GPP data by 

smoothing time series (Damm et al., 2010) around the RS observation time. This was relevant for the estimation of 

biophysical parameters in Step#1, which relies on a single GPP value. These parameters are strongly constrained by GPP via 485 

APAR (Pacheco-Labrador et al., 2019), and unlike Vcmax, are not refined in Step#2. For this reason, we also aggregated GPP 

data 1.5 h around each overpass. Results suggest that estimated biophysical parameters are robust or at least consistent 

within the dataset. Additionally, it must be considered that the energy balance closure gap in real EC datasets is relatively 

high (median εEB ~21.5 % of Rn in our case) compared to the gap achieved by models, in this case senSCOPE (median εEB 

~0.12 % of Rn). Large observational εEB hinders the direct comparison of predicted and observed water and energy fluxes. 490 

For example Fig.5 shows disagreement between these fluxes, resulting λE overestimated but in the dry season and H biased 
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(slope ~ 0.45), especially during spring. However, these differences strongly correlated with εEB (Fig. A1) which suggest that 

this disagreement might be produced by observation uncertainties rather than by biased predictions. The evaluation of EF 

provides a more independent comparison of these fluxes and is closer to the 1:1 line than the original fluxes; but, still 

deviations from this reference are observed. So far, different inversions of SCOPE have relied either on remote thermal 495 

imagery (Bayat et al., 2018), on EC TIR irradiance (this work) or on λE (Dutta et al., 2019) to constrain functional 

parameters related with transpiration such as the Ball-Berry sensitivity parameter; but no comparison of these constraints has 

been yet carried out. Some of the advantages and disadvantages of each variable are clear: TIR radiation measured in EC 

towers from hemispherical diffusors offer high temporal frequency, but the radiometric footprint does not match the EC 

footprint. The use of TIR imagery would allow the use of footprint climatology models minimizing the mismathc, however 500 

diel series of TIR imagery feature low spatial resolution. On the other hand λE and H match the GPP footprint, but they 

present large uncertainties related with the lack of closure of the energy balance. The impact of these uncertainties in the 

inversion of SCOPE and similar models is still unknown. 

RS data also include uncertainties related to the instrumentation, the atmospheric correction and directional effects; the last 

partly increased by the wide FOV of CASI (~40 º). We tried to minimize directional effects mosaicking different overpasses 505 

when available. Space-borne hyperspectral imagery do not often provide multi-angular data which makes unlikely 

mosaicking or correction of angular effects; but at the same time it also presents cross-track field of views much narrower 

than our airborne sensor and therefore a lower range of observation angles (Guanter et al., 2015;Ungar et al., 2003;Lee et al., 

2015). In the case of this study, directional effects are also expected to be minimized by the convolution of imagery with 

footprint climatology; which enhances the contribution of those pixels closer to the EC towers, where the flight tracks were 510 

centered and therefore observed with lower zenith angles. Compared to the airborne imagery, different and even larger 

radiometric uncertainties (e.g., no empirical line correction is applied) and lower spatial and spectral resolutions are expected 

form space sensors. The applicability of the method had to be tested on a dataset comparable to space-borne hyperspectral 

data. Since no such imagery was available at the site; we used the EnMAP End-to-End simulator to produce synthetic images 

including spatial, instrumental and atmospheric uncertainties representative of this sensor (Segl et al., 2012). These 515 

uncertainties were added to the ones already existing in the CASI dataset, producing an even rougher test for the method. 

Despite of lower resolutions and larger uncertainties of the EnMAP images, results were consistent between both sensors. 

This suggests that space-borne hyperspectral sensors similar to EnMAP could be successfully used to estimate vegetation 

functional traits with the approach evaluated in this manuscript. 

The fourth source of uncertainty is model error. The Mediterranean tree-grass ecosystem under study presents features not 520 

well represented by senSCOPE and other models. Pacheco-Labrador et al, (2019) inverted SCOPE in a Mediterranean 

grassland of this site and found that the model was not suitable to characterize radiative transfer and physiological processes 

in such ecosystem due to the presence of large fractions of senescent leaves. This problem is partly corrected by senSCOPE, 

a modified version of SCOPE that separately represents green and senescent leaves. However, the problem is not completely 

solved. In that work senSCOPE improved the retrieval of Cab via inversion, but still overestimated NIR Rλ and 525 
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underestimated LAI suggesting that the optical properties of senescent material were not adequately represented. This 

conclusion was in agreement with those of of Melendo-Vega et al., (2018) in the same site. Moreover, we must consider that 

in the present work, senSCOPE (a 1-D model) is used to represent a Mediterranean tree-grass ecosystem featuring 1) a 

strong 3-D structure, 2) a mixture of species (grasses and trees) with very different function and ecological strategies, and 3) 

a grassland layer featuring large fractions of senescent leaves and death standing material, whose optical properties are 530 

misrepresented. These conditions portray a harsh test for the inversion method; however, model parameters seem to be 

robustly estimated, are coherent with ancillary observations and between airborne and synthetic EnMAP imagery. Still, the 

effect of some of these uncertainties can be analyzed. For example, angular effects can be important in savanna-like 

ecosystems featuring a strong geometrical scattering component. Melendo-Vega et al, coupled the 1-D RTM PROSAIL 

(Jacquemoud et al., 1996;Verhoef, 1984) with the 3-D RTM FLIGHT (North, 1996) to represent tree-grass ecosystems and 535 

compared this model with PROSAIL, showing that for a low tree cover, differences in predicted Rλ minimized at nadir. 

Consequently, the reduction of off-nadir view directional effects produced by footprint integration and mosaicking might 

have contributed to reduce the impact of 3-D structure during inversion. However, the 1-D model used does not reproduce 

tree crown shading on the grassland; which should affect Rλ and APAR during the day course. Also, the misrepresentation of 

optical properties of the senescent material biases the estimates of some parameters in an attempt to compensate low NIR 540 

scattering. At grass plot scale LAI, NIR Rλ were underestimated and fgreen was overestimated (Pacheco-Labrador et al., 2020); 

whereas at ecosystem scale LAI and NIR Rλ were not so strongly biased, and fgreen was underestimated in the dry period. In 

both cases Cs and Cdm were large, especially in the dry season, since both reduce NIR Rλ. At ecosystem scale tree crowns 

increase NIR Rλ in all the seasons (Pacheco-Labrador et al., 2017a) which might have prevented the underestimation of LAI. 

Cab and Vcmax estimates and their relationship with nitrogen are consistent with field data. Retrieved Vcmax is lower than 545 

independent estimates based on nitrogen concentration and literature not specific of semi-arid Mediterranean ecosystems. 

These estimates might present values too high for the study site. For example, the Nmass-Vcmax curve reported in Feng and 

Dietze (2013) and used to generate the evaluation dataset predict higher Vcmax than values estimated in the grass plots in the 

same ecosystem (Pacheco-Labrador et al., 2019). An alternative hypothesis is related to the fact that tree crowns reduce 

down-welling irradiance impinging the grassland during the day, which is not adequately represented by the 1-D RTM. 550 

Overestimation of APAR (and therefore GPP) might have been compensated decreasing the photosynthetic leaf surface 

(fgreen), or Vcmax to fit observed GPP. Pattern-oriented model evaluation of m and uWUE against Δ13C provided expected 

relationships when comparing spring m and uWUE estimates with Δ13C, a seasonally-integrated indicator of plant water use 

efficiency. In the dry season m estimates showed high values for both sensors (CASI and synthetic EnMAP), suggesting low 

uWUE. Wolf et al., (2006) also estimated large m values in a grassland during the dry season, and related them with 555 

decoupled simulation of transpiration with other processes (which is not the case of the model used here), and to assumptions 

about leaf thermal properties. Contrarily, Bayat et al., (2018) did not found such large values during summer in a different 

grassland. However Bayat et al., (2018) inverted SCOPE model where all the leaf area can transpire; whereas in senSCOPE 

transpiration is limited to the green fraction. Looking at the fluxes can be noticed that in the dry season, predicted H is in 
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agreement with observations, whereas λE is overestimated (Fig. 6); these discrepancies are slightly biased respect to EC εEB 560 

(Fig. A1). We hypothesize that m estimates in the dry season might not be realistic: Overestimation of 𝐸T↑  might have 

demanded large transpiration during summer time; when low GPP and fgreen (also underestimated) might have reduced the 

impact of m on the cost function, allowing large values with little effect on 𝐸T↑ . It must be also considered that the Ball-Berry 

model implemented in SCOPE and derived models relies on relative humidity; this approach does not well represent 

response leaf responses of both conductance and intracellular CO2 concentration to stressing humidity conditions, and 565 

alternative models have been proposed (Leuning, 1990, 1995). These models might also prevent the overestimation of m 

during stress conditions. Further work is needed to understand the challenges in the seasonal retrieval and validation of m 

estimates form RS.  

The previous analyses showed the need and the added value of evaluating functional trait estimates in the context of the 

development of new RS products of vegetation function and functional traits. Since direct observations of these traits would 570 

not be as usual as other biophysical variables that are easier to measure in the field; new methods such as pattern oriented 

evaluation should be developed in parallel. Thorough evaluation contributes to understand the effect of different sources of 

uncertainty, model structure and to identify possibilities of improvement; and therefore it will be fundamental to support the 

development of the next generation of RS products. To the three challenges to overcome proposed by Schimel et al., (2019) 

we should also add the validation and evaluation of the new functional trait estimates as an additional challenge to overcome. 575 

5. Conclusions 

This work proves the potential of the new generation of hyperspectral space missions in combination with EC networks to 

characterize the spatiotemporal distribution of vegetation functional parameters relevant for the prediction of water and 

carbon fluxes. The method proposed has proven robust to different sources of uncertainty; some of which were minimized 

with different approaches (e.g., footprint climatology convolution, or the use of senSCOPE model). Repeated acquisition of 580 

images over the same EC stations can provide not only seasonal variability of key functional and biophysical parameters, but 

also, it can characterize relationships between biophysical and functional parameters and other variables, such as those of Cab 

or Vcmax with nitrogen, m or uWUE with Δ13C, or rss with SMp. Spatiotemporal characterization of functional traits as well as 

these relationships could useful for validation, modeling or inversion of TBM and other models. Results also show that 

biases in the prediction of λE and H strongly correlate with observational energy balance closure error. Pros and cons of the 585 

use of energy fluxes or TIR radiance from proximal or remote sensors to constrain leaf water exchange are discussed; further 

research is needed to determine which of these constraints is the most suitable for the estimation of functional parameters in 

EC sites. Finally, the evaluation of the functional trait estimates is complex and direct observations might not be often 

available. Pattern-oriented model evaluation has provided relevant information to understand the effect of observational and 

model uncertainties; evaluation methodologies should developed in parallel with the new remote sensing products of 590 

vegetation function.  
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Appendix A. Energy balance closure and heat and water flux prediction errors. 

 
Figure A1. Prediction error of latent and sensible heat fluxes versus observed energy balance closure errors for CASI (a) and synthetic 
EnMAP (b). 595 
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