
1 
 

Potential predictability of marine ecosystem drivers 
Thomas L. Frölicher1,2, Luca Ramseyer1, Christoph C. Raible1,2, Keith B. Rodgers3,4, John Dunne5 
 
1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, 3012, Switzerland 
2Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, Switzerland 5 
3Centre for Climate Physics, Institute for Basic Science, Busan, South Korea 
4Pusan National University, Busan, South Korea 
5NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA 
 

Correspondence to: Thomas L. Frölicher (thomas.froelicher@climate.unibe.ch) 10 

Abstract. Climate variations can have profound impacts on marine ecosystems and the socio-economic systems that may 

depend upon them. Temperature, pH, oxygen (O2) and net primary production (NPP) are commonly considered to be important 

marine ecosystem drivers, but the potential predictability of these drivers is largely unknown. Here, we use a comprehensive 

Earth system model within a perfect modelling framework to show that all four ecosystem drivers are potentially predictable 

on global scales and at the surface up to 3 years in advance. However, there are distinct regional differences in the potential 15 

predictability of these drivers. Maximum potential predictability (>10 years) is found at the surface for temperature and O2 in 

the Southern Ocean and for temperature, O2 and pH in the North Atlantic. This is tied to ocean overturning structures with 

‘memory’ or inertia with enhanced predictability in winter. Additionally, these four drivers are highly potentially predictable 

in the Arctic Ocean at surface. In contrast, minimum predictability is simulated for NPP (<1 years) in the Southern Ocean. 

Potential predictability for temperature, O2 and pH increases with depth to more than 10 years below the thermocline, except 20 

in the tropical Pacific and Indian Ocean, where predictability is also three to five years in the thermocline. This study indicating 

multi-year (at surface) and decadal (subsurface) potential predictability for multiple ecosystem drivers is intended as a 

foundation to foster broader community efforts in developing new predictions of marine ecosystem drivers. 

1 Introduction 

Marine organisms and ecosystems are strongly influenced by seasonal to decadal-scale climate variations, challenging the 25 

sustainable management of living marine resources (Drinkwater et al., 2010; Lehodey et al., 2006). Anomalies in temperature, 

pH, O2 and nutrients are important drivers of such climate-induced ecosystem variations (Gattuso et al., 2015; Gruber, 2011). 

Therefore, skillful predictions of these marine ecosystem drivers have considerable potential for use in marine resource 

management (Gehlen et al., 2015; Hobday et al., 2016; Payne et al., 2017; Tommasi et al., 2017).  

 30 

The primary tools for investigating how marine organisms and ecosystems change on seasonal to decadal timescales are Earth 

system models, where prognostic equations are implemented for biogeochemical cycles. These models are capable of 
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representing both natural variability and transient changes in the marine ecosystem drivers (Bopp et al., 2013; Frölicher et al., 

2016). Recently, Earth system models have been used to explore and quantify the predictability of marine biogeochemical 

tracers. Most of the studies focus on predicting the ocean uptake of carbon (Li et al., 2016, 2019; Lovenduski et al., 2019; 35 

Séférian et al., 2018).  

 

To date, only a few studies have investigated the predictability of marine ecosystem drivers (Chikamoto et al., 2015; Park et 

al., 2019; Séférian et al., 2014a). An intriguing finding of these studies is that marine biogeochemical drivers may be more 

predictable than their physical counterparts. Séférian et al. (2014a), for example, showed that net primary productivity (NPP) 40 

has greater predictability than sea surface temperature (SST) in the eastern equatorial Pacific. They hypothesized that SST is 

strongly influenced by high-frequency surface fluxes, whereas NPP is more directly impacted by thermocline adjustment 

processes that determine the rate at which nutrients are brought into the ocean’s euphotic layer. Thus, biogeochemical 

predictions may hold great promise and highlight the need for further investigation. Changes in ecosystem drivers have impacts 

not only on the surface ocean, but over upper ocean waters spanning the euphotic zone and below making it important to 45 

understand more broadly how ecosystem drivers vary over a range of depths. To our knowledge there is no comprehensive 

assessment of potential predictability of marine ecosystem drivers at the global scale spanning multiple depth horizons, and a 

comparison of the relative predictability among them.  

 

In this study, we assess the potential predictability of the four marine ecosystem drivers using ‘perfect model’ simulations of 50 

a comprehensive Earth system model. We address following three questions: 

• To what extent are marine ecosystem drivers predictable at the global scale? 

• What are the regional and depth-dependent characteristics of potential predictability? 

• Which underlying physical and biogeochemical processes prescribe or limit the potential predictability of marine 

ecosystem drivers? 55 

 

This study is organized as follows. First, we introduce the model and methods used to assess the potential predictability in 

marine ecosystem drivers. Subsequently, the temporal sequencing of potential predictability over global scales for the four 

marine ecosystem drivers are identified and evaluated for regional differences in potential predictability horizons. Both surface 

and subsurface manifestations are presented to assess the origin of potential predictability. Finally, we also identify the 60 

mechanistic controls on the limits to potential predictability and conclude with a discussion and summary section.  
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2 Methods 

2.1 Earth system model: GFDL ESM2M 

For this study we conducted a new 240-member ensemble suite of simulations of 10-year duration each with the Earth system 65 

model ESM2M developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric 

Administration (NOAA; Dunne et al., 2012, 2013). The GFDL ESM2M is a fully coupled carbon cycle-climate model. The 

physical core of the model is based on the physical coupled model CM2.1 (Delworth et al., 2006). The atmospheric model 

AM2 has a horizontal resolution of 2° latitude ⨯ 2.5° longitude with 24 vertical levels (Anderson et al., 2004). The land model 

simulates land water, energy and carbon cycle, and has the same horizontal resolution as the atmospheric component. The 70 

ocean model MOM4p1 (Griffies, 2012) has 50 vertical levels of varying thickness and a nominal horizontal resolution of 1° 

latitude ⨯ 1° longitude, increasing towards the equator to up to 1/3°. The sea ice model includes full ice dynamics, three 

thermodynamic layers and five ice thickness categories and is defined on the same grid as the ocean model (Winton, 2000). 

 

Ocean biogeochemistry and ecology is simulated by the Tracers Of Phytoplankton with Allometric Zooplankton version 2.0 75 

(TOPAZ2; Dunne et al., 2013). TOPAZ2 represents 30 prognostic tracers to describe the cycles of carbon, phosphorus, silicon, 

nitrogen, iron, alkalinity, oxygen and lithogenic material as well as surface sediment calcite. TOPAZ2 includes three 

phytoplankton functional groups: small (mostly prokaryotic pico- or nanoplankton), diazotroph (fixing nitrogen from the 

atmosphere), and large phytoplankton. TOPAZ2 only implicitly simulates zooplankton activity. The growth of phytoplankton 

depends on the level of photosynthetically active irradiance, nutrients (e.g. nitrate, ammonium, phosphate and iron) and 80 

temperature (see section 2.3.2 and Appendix A).  

 

Previous studies have shown that the GFDL ESM2M captures the observed large-scale biogeochemical patterns (Dunne et al., 

2012, 2013). The GFDL CM2.1 skillfully simulates primary modes of natural climate variability (Wittenberg et al., 2006), and 

has been extensively applied to assess seasonal and multiannual climate predictions (Meehl et al., 2013; Park et al., 2019).  85 

2.2 Perfect model framework 

We estimated potential predictability within a ‘perfect model’ experiment. By perturbing the initial conditions of the GFDL 

ESM2M and quantifying the spread of initially nearby model trajectories, the limit of initial condition predictability was 

assessed. The underlying assumption is that we have a perfect model (e.g. the model accurately represents all physical and 

biogeochemical processes relevant to assess marine ecosystem drivers at adequate temporal and spatial resolution), near perfect 90 

initial conditions and that we exclude the role for external forcing in determining or limiting predictability. Specifically, we 

first performed a 300-yr preindustrial control simulation (black line in Figure 1), which is branched off a pre-existing quasi-

steady-state 1000-yr preindustrial control simulation. Using this 300-yr preindustrial control simulation to provide initial 

conditions, six 40-member ensemble simulations of 10-yr duration each are performed. Each ensemble simulation starts at 
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different times in the control simulation: January 1st in years 22, 64, 106, 170, 232 and 295, respectively. The six distinct 95 

initialization dates for the individual large ensemble simulations were randomly selected from the 300-yr preindustrial control 

simulation. This was intended to average across biases that may result from predictability being different across different phase 

of climate modes (e.g. different El Niño Southern Oscillation phase states) within the preindustrial simulation. Note that the 

last ensemble exceeds the control simulation by 5 years. Each of the six ensembles consists of 40 ensemble members with 

micro-perturbations to oceanic initial states but with the same atmospheric, land, ocean biogeochemical, sea ice, and iceberg 100 

initial conditions. Specifically, for each ensemble member, i = 1, 2, …, 40, an infinitesimal temperature perturbation 𝛿	is added 

to a single grid cell in the Weddell Sea at 5-m depth, similar to the approach described in Wittenberg et al. (2014a) and Palter 

et al. (2018): 

 

𝛿$ = 0.0001°C	 ×	,
$-.
/
:			𝑓𝑜𝑟	𝑜𝑑𝑑	𝑖

				− $
/
:		𝑓𝑜𝑟	𝑒𝑣𝑒𝑛	𝑖

	.         (1) 105 

 

Thus, the range of perturbations is evenly spread from -0.002°C to 0.002°C with the unperturbed control case in the center 

with zero perturbation. As stated above, our model setup encompasses 240 ensemble members, each of 10-yr duration and 

thus 2400 yr of model integration in addition to the 300-yr long control simulation. While our perturbation method is in no 

way optimal in terms of, for example, sampling the likely range of atmospheric-ocean-biogeochemical errors, it is sufficient 110 

to generate ensemble spread on the timescales of interest. After just four days of simulation time subsequent to the micro-

perturbations for each cluster of 40 starting points, the SST of all surface ocean grid cells are numerically different from the 

SST of the control simulation, underscoring the rapidity with which divergences due to nonlinearities in the model express 

themselves. The method applied here mirrors that of Griffies and Bryan (1997a), Msadek et al. (2010), and Wittenberg et al. 

(2014b), and emphasizes the amplitude (but not the phase) of perturbations to identify potential predictability. Our perturbation 115 

method produces ensemble experiments likely to give the upper limit of the model predictability, hence the term potential 

predictability. Nevertheless, it warrants mentioning here that studies have been published arguing that predictability in the real 

world for some variables may even be larger than estimated with the perfect modeling framework within an Earth system 

model in cases where the ratio of the predictable mode to model noise is underestimated (Eade et al., 2014; Kumar et al., 2014).  

2.3 Analysis methods 120 

We calculate the potential predictability for the four marine ecosystem drivers: temperature, pH, O2 and NPP. In the following, 

NPP is always integrated over the upper 100 m, whereas temperature, pH and O2 are analyzed at different depth levels. In 

addition to identifying the upper limits of predictability of these variables within the Earth system model, an equally important 

objective is to identify the relative predictability of the four variables under consideration. 
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2.3.1 Assessment of potential predictability 125 

The prognostic potential predictability (PPP) is the main metric used in this study to assess predictability. The PPP is the ratio 

between the variance among the ensemble members at a given time t after the initialization and the temporal variance of an 

undisturbed control simulation. The PPP is calculated following Griffies and Bryan (1997b) and Pohlmann et al. (2004): 

 

PPP(𝑡) = 	1 −	
>

?(@A>)
∑ ∑ (CDE(F)GCHE(F))I

@
JK>

?
EK>

LMI
         (2) 130 

 

where Xij is the value of a given variable for the j-th ensemble and i-th ensemble member, 𝑋HO  is the mean of the j-th ensemble 

over all ensemble members, 𝜎Q/ is the variance of the control simulation, N is the total number of different ensemble simulations 

(N = 6) and M the number of ensemble members (M = 40). The variance of the control simulation is calculated for each month 

of the year separately to exclude the seasonality from the natural variability, i.e., only the natural variability at that month in 135 

the seasonal cycle is considered. PPP equals unity constitutes perfect predictability. A F-test is applied to estimate a significant 

difference between the ensemble variance and the variance of the control run. With N = 6 and M = 40, predictability is achieved 

with a 95% confidence level when PPP ≥ 0.183.  

 

The predictability time horizon is defined as the lead time at which PPP falls below the predictability threshold (Figure 1b). 140 

To calculate global means, all metrics are first calculated at each individual grid cell and then averaged with area-weighting 

over the global ocean.  

2.3.2 Taylor deconvolution method to identify mechanistic controls of predictability 

To understand the processes behind the simulated predictability, we applied a first-order Taylor-series deconvolution method 

to decompose the normalized ensemble variance of pH, O2 and NPP into contributions from their physical and biogeochemical 145 

driver variables: 

 

𝜎S/ ≅ 	∑ (US
UVD
WX

$Y. 𝜎VD)
/ + 	2∑ US

UVD
W US
UVE
\$]O 𝐶𝑜𝑣(𝑥$, 𝑥O) ,        (3) 

 

where 𝜎 denotes the standard deviation among the ensemble members of the different variables. Specifically, the Taylor 150 

deconvolution method is applied to decompose the normalized ensemble variance for f being of pH, O2 and NPP into the 

contribution from their physical and biogeochemical drivers by expressing the ensemble variance and the variance of the 

control run from equation (2) in terms of equation (3). The partial derivatives in equation (3) are calculated at the point 𝑝 = 𝑥, 

where 𝑥 is the mean value of the corresponding driver variables over the entire control simulation. 



6 
 

 155 

The changes in pH are attributed to changes in temperature, salinity, total alkalinity (Alk), and total dissolved inorganic carbon 

(DIC). Here, we assume that variations in phosphate and silicate are negligible.  

 

Dissolved oxygen (O2) is decomposed into an oxygen solubility component O2sol and an apparent oxygen utilization (AOU) 

component using (e.g. Frölicher et al. 2009):  160 

 

𝑂/ =	𝑂/def − 𝐴𝑂𝑈.            (4) 

 

O2sol is the solubility of oxygen, which depends non-linearly on temperature and salinity (Garcia and Gordon, 1992). The 

difference between diagnosed O2sol and simulated O2 is AOU. Variations in AOU reflect changes in oxygen consumption and 165 

ocean ventilation. Earlier studies demonstrated that changes in AOU are typically associated with changes in ventilation, as 

simulated changes in the remineralization rates of organic material and in associated O2 consumption are relatively small 

(Gnanadesikan et al., 2012).  

 

NPP can be decomposed into the contributions from the three phytoplankton groups simulated in the TOPAZ model: 170 

 

NPP = NPPjk +	NPPlm +	NPPno          (5) 

 

where NPPSm, NPPDi, and NPPLg are the contributions from small, diazotroph and large phytoplankton, respectively. At any 

time 𝑡 the NPP for all phytoplankton groups phyto is given by the phytoplankton stock 𝑃qrsFt  times the phytoplankton growth 175 

rate 𝜇qrsFt: 

 

NPPqrsFt(𝑡) = 𝜇qrsFt(𝑡) ∙ 𝑃qrsFt(𝑡)         (6) 

 

The growth rate 𝜇wx of the small phytoplankton is parametrized using a maximum growth rate 𝜇xyV, which is limited by 180 

nutrients 𝑁{$x, light 𝐿{$x, and temperature 𝑇S (see Appendix A for further details): 

 

𝜇 = 𝜇xyV ∙ 𝑁{$x ∙ 𝐿{$x ∙ 𝑇S .          (7) 

 

Note that grazing, sinking and other loss processes impact phytoplankton stock, but these processes in TOPAZ2 are only a 185 

function of steady state growth and biomass implicit grazing formulation, and exert no separate dynamic control. Therefore 

they do not require separate consideration.  
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3 Results 

3.1 Potential predictability at the ocean surface 

The change in globally averaged annual PPP over time is very similar for all four marine ecosystem drivers at the surface, i.e. 190 

the PPP decreases exponentially over lead time for all four drivers (solid thick lines in Figure 2). After three years, the PPP 

falls below the predictability threshold (dashed line in Figure 2) indicating that the global predictability time horizon is about 

three years for all four ecosystem drivers. The seasonality in PPP (solid thin lines in Figure 2) as well as the differences among 

the four drivers is very small at the global scale. 

 195 

At the regional scale, the predictability time horizon shows distinct structured patterns and also large differences between each 

of  the four different marine ecosystem drivers (Figure 3). In general, SST (Figure 3a), surface pH (Figure 3b) and surface O2 

(Figure 3c) share similar predictability time horizon patterns with short predictability time horizons (1-2 years) between 20° 

and 40° in both hemispheres, intermediate predictability time horizons (3-5 years) in the tropical oceans, and long predictability 

time horizons (>10 years) in the North Atlantic between 40°N and 70°N, in the Southern Ocean between 40°S and 65°S (except 200 

for surface pH), and in the Arctic Ocean. Interestingly, the potential predictability time horizon of surface pH is short relative 

to SST and surface O2 in the Southern Ocean, but longer over both the Caribbean and the eastern subtropical North Pacific 

relative to SST. The Caribbean and the eastern North Pacific are both regions of importance for resource management, given 

the high density of neighboring human populations. 

 205 

The NPP predictability time horizon pattern (Figure 3d) is fundamentally different from the patterns of the other three 

ecosystem drivers. NPP has long predictability time horizons (6-10 years) in the mid-latitudes, where the annual mean NPP is 

generally small (indicated with contour lines in Figure 3d), but very short predictability time horizons of 0-1 years in the 

Southern Ocean, the North Atlantic and the Pacific, as well as short predictability time horizons of 1-3 years in the tropical 

oceans, where annual mean NPP is high (Figure 3d). The spatial pattern of the predictability time horizon and the sequencing 210 

of predictability among the ecosystem drivers is very similar when using two other metrics for potential predictability 

indicating that our results do not depend on the predictability metric used (Appendix B).  

 

We further average the local potential predictability across 17 biogeographical biomes (Figure 4) to highlight the pronounced 

seasonal cycle in predictability for some variables in particular biomes. The biomes capture patterns of large-scale 215 

biogeochemical function at the basin-scale and are defined by distinct SSTs, maximum mixed layer depths, maximum ice 

fractions, and summer chlorophyll concentrations (Fay and McKinley, 2014). As shown in Figure 4, potential predictability 

exhibits strong seasonality for SST, surface O2 and surface pH in the North Atlantic (biomes 8, 9, 10, 11), in the Southern 

Ocean (biomes 15 and 16), and in the subtropical/subpolar gyre boundary region of the North Pacific (biome 3). In all these 

biomes, predictability is higher during the cold season (boreal and austral winter) and lower during the warm season. The 220 
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biomes with high seasonality in PPP are also the regions which generally show larger predictability in the annual mean. The 

PPP of SST and surface O2 have almost identical seasonal amplitudes, while the seasonal amplitude of the surface pH is 

generally smaller compared to SST and surface O2 seasonal amplitude. Interestingly, the PPP for NPP generally shows no 

large differences amongst the seasons, except in biome 8, which is influenced by seasonal sea-ice retreat/growth. Figure 4 

reveals also other interesting characteristics in PPP. For example, the changes in PPP over lead time are very small, but 225 

fluctuate around the predictability threshold for NPP in biome 10 and for SST and O2 in biome 8, making the predictability 

horizon in some biomes for some variables very sensitive to small changes in PPP. In addition, the PPP for NPP in the eastern 

equatorial Pacific (biome 6) shows large interannual variations with lead time indicating that even more ensemble members 

are needed to robustly assess the predictability there. The PPP for SST in biome 17 (around Antarctica) is even negative 

indicating a higher variance simulated in the ensemble simulations than simulated in the 300-yr preindustrial control 230 

simulation.  

3.2 The role of the subsurface ocean in the potential predictability of marine ecosystem drivers 

Next, we assess the predictability time horizon for temperature, O2 and pH in the top 1000 m (Figures 5 and 6). In theory, the 

subsurface ocean should be expected to be longer predictable than the surface layer, as the subsurface is not directly coupled 

to the high-frequency and relatively unpredictable variability of the atmosphere. Indeed, the potential predictability for 235 

temperature, oxygen and pH rapidly increases with depth at the global scale (Figure 5a-c). Below 300 m, the predictability 

time horizon of all three ecosystem drivers exceeds a decade, i.e. the PPP is still larger than the predictability limit (depth 

levels with no hatching in Figure 5a-c). Interestingly, the PPP at depth changes more rapidly with time for temperature than 

for O2 and pH. In fact, the PPP for temperature is constant below 500 m for a given year, i.e. the PPP value does not change 

with depth. This is different for O2 and pH, for which the PPP increases with all depth levels. Clearly, the overall increasing 240 

potential predictability with depth can be attributed to the increasing disconnection of the deeper ocean with the surface ocean 

(see also section 3.3). However, the biogeochemical processes lead to enhanced predictability below 500 m for O2 and pH, 

relative to temperature.   

 

The global mean picture of Figure 5a-c obscures some interesting seasonal features at the regional scale, which are highlighted 245 

in Figure 5d-f for the North Atlantic. Even though the North Atlantic is among the regions with the largest potential 

predictability at the ocean surface, the predictability at 1000-m depth for pH and O2 is smaller in the North Atlantic than the 

global average at the same depth (Figure 5d-f), especially in boreal winter. For example, the PPP in winter of year 3 for pH is 

0.6 at the global scale at 400-m depth (Figure 5b), but only 0.3 in the North Atlantic (Figure 5e). The strong connection in the 

Atlantic between the ocean surface and the upper 1000 m in winter increases the predictability, but at the same time, decreases 250 

the potential predictability within the subsurface. Interestingly, this effect is also visible for temperature but confined to the 

upper few hundred meters. The reason is that anomalies from the ocean surface do not penetrate as deep for pH and O2 as they 

do for temperature. 
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Figure 6 shows the spatial pattern of the predictability time horizon for ocean temperature, O2 and pH at 300 m (a-c) and 1000 255 

m (d-f) depth, respectively. Although the predictability time horizon is close to 10-yr below 300 m on global average, there 

are specific regions with a reduced predictability time horizon. At 300 m, these regions are the tropical Pacific, the Indian 

Ocean and parts of the Southern Ocean (Figure 6a-c). In the equatorial Pacific and Indian Ocean averaged over 20°N and 20°S, 

the predictability is 4 yr for temperature and 7 yr for O2 and pH, respectively. For temperature and O2, the predictability time 

horizon drops to values lower than 5-6 yr in the eastern equatorial Atlantic. At 1000-m depth (Figure 6d), the spatial pattern 260 

of temperature predictability time horizon is similar to the one at 300 m. Large parts of the equatorial Pacific and the Indian 

Ocean still show relatively short predictability time horizons. This is not the case for O2 and pH, for which the predictability 

time horizon largely increases at 1000-m depth compared to 300 m depth in the eastern equatorial Pacific and in the Indian 

Ocean as well as in the Southern Ocean, so that the predictability time horizon of both O2 and pH are almost everywhere up 

to 10-yr. Only the western equatorial Pacific (for pH) and the central equatorial Pacific (for O2) are characterized by reduced 265 

potential predictability at 1000 m (predictability time horizons lower than 8 yr).   

3.3 Deconvolution into physical and biogeochemical control processes 

The predictability patterns and timescales presented in the previous sections are investigated next for their underlying 

dynamical and/or biogeochemical controls. For SST, we compare our findings with previous studies that attributed SST 

predictability to particular processes. In order to understand the dynamical and biogeochemical control processes of O2, pH 270 

and NPP and to quantify their contribution, we apply a Taylor deconvolution method (see section 2.3.2). It is important to note 

that large contribution of a particular driver to the potential predictability of O2, pH and NPP does not imply a long 

predictability time horizon of that driver. In addition, the contribution of a process depends not only on its potential 

predictability (captured by the variance terms in equation 3), but also on the potential interaction with the other drivers 

(covariance terms in equation 3).  275 

3.3.1 Sea surface temperature 

The long predictability time horizon of SST in the North Atlantic between 40°N and 70°N (Figure 3a) is consistent with 

previous findings (Boer, 2004; Collins et al., 2006; Griffies and Bryan, 1997a; Pohlmann et al., 2004). The SST in the North 

Atlantic experiences low-frequency variability that is linked to the Atlantic Meridional Overturning Circulation (AMOC, 

Buckley and Marshall (2016)). In GFDL’s ESM2M, the AMOC experiences strong low-frequency variability, consistent with 280 

Msadek et al., (2010) and its predictability time horizon is about 9 yr (Figure C1). Similarly, the Southern Ocean surface waters 

are also strongly connected to the deep ocean (Morrison et al., 2015) and slow subsurface ocean processes there give rise to 

decadal predictability in SST (Marchi et al., 2019; Zhang et al., 2017). In CM2.1, the peak in the power spectrum of deep 

convection in the Weddell Sea is simulated to lie between 70 and 120 years (Zhang et al., 2017). In the North Atlantic and the 

Southern Ocean, the potential predictability is enhanced during the winter period (Figure 4), as the surface waters are especially 285 
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well connected with the deep ocean during the cold season. The long SST predictability time horizon in the Arctic Ocean is 

due to the overall low-frequency variability in SST there, because these waters are permanently covered by sea ice in the 

preindustrial ESM2M control simulation and cannot exchange heat (and carbon) with the atmosphere. This is not the case 

around the Antarctic continent, where sea ice almost vanishes during austral summer in ESM2M allowing the surface ocean 

to exchange heat and carbon with the atmosphere. Therefore, the influence of high frequency atmospheric variability is large, 290 

which leads to diminished predictability time horizons around Antarctica. Moderate predictability time horizons in SST of 

about 3 to 5 years is simulated in the tropical oceans associated with the coupled atmosphere-ocean system (Boer, 2004) . 

3.3.2 Dissolved oxygen 

To understand the processes that give rise to the O2 predictability pattern, we use a Taylor deconvolution method (see section 

2.3.2) to further split the O2 predictability into respective O2sol and an AOU contributions. Figures 7 and 8 show the 295 

predictability time horizon of O2 (identical to patterns shown in Figures 3c and 6c), O2sol, AOU and their covariance (left 

panels) as well as their percentage contribution to the normalized ensemble variance (right panels) for the surface (Figure 7) 

and 300-m depth (Figure 8). The percentage contribution is defined as the value of a given variance term (first term on the 

right hand side of the equal sign in equation 3) or covariance term (second term on the right hand side in equation 3), divided 

by the sum of all absolute variance and covariance values. By combining the information from the right panels (i.e. percentage 300 

contribution to total predictability) with the information from the left panels (i.e. predictability time horizon), we can attribute 

the local predictability of O2 to either O2sol, AOU or the covariance. For example, if both the percentage contribution as well 

as the predictability time horizon of particular variable is high, then the O2 predictability is high. If the percentage contribution 

is generally low for a particular variable, then this variable does not contribute to the overall short or long predictability time 

horizon of O2.  305 

 

The largest contribution to the normalized variance in O2 at the surface stems from O2sol (Figure 7) with a globally averaged 

contribution of 58%, followed by AOU with 23% and the covariance between O2sol and AOU contributing 19%. Thus, the O2sol 

predictability time horizon pattern (Figure 7b) is almost identical to the O2 predictability time horizon pattern (Figure 7a or 

Figure 3c), i.e. long predictability time horizons in the North Atlantic, Southern Ocean and the Arctic, and short predictability 310 

time horizons in the mid-latitudes. As O2sol at the ocean surface is mainly controlled by temperature (Garcia and Gordon, 

1992), it is not surprising that the time horizon pattern of surface O2 predictability (Figure 7a and 3c) is also almost identical 

to the time horizon pattern of SST predictability (Figure 3a). In the Arctic Ocean and around Antarctica, however, AOU (Figure 

7f) is almost solely responsible for the normalized variance of O2. As a result, the predictability time horizon of O2 (Figure 7a) 

is similar to the AOU predictability time horizon (Figure 7c) in these two regions. The covariance between O2sol and AOU 315 

overall plays a minor role (Figure 7g).  
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The picture is quite different at 300-m depth (Figure 8), where the largest contribution percentage-wise to the normalized 

variance of O2 stems from AOU (64% on global average), with minor contributions from O2sol (13%) and the covariance 

between O2sol and AOU (23%). Therefore, the pattern of the AOU predictability time horizon (Figure 8c) is similar to the 320 

pattern of the O2 predictability time horizon (Figure 8a). Exceptions are found in the eastern equatorial Pacific, where the 

covariance dominates (Figure 8g) and the northern North Atlantic, where O2sol dominates (Figure 8e). The dominance of AOU 

in explaining subsurface O2 predictability is also the reason why O2 predictability generally increases with depth (Figure 5c), 

which is not the case for temperature (Figure 5a). 

3.3.3 pH 325 

The predictability characteristics of pH are decomposed into its primary drivers in the marine carbonate system, namely 

temperature, salinity, DIC and Alk (Figure 9). Even though the total normalized ensemble variances from the Taylor 

deconvolution are only approximations of the total real ensemble variances due to nonlinearities in carbonate chemistry, the 

values of the Taylor deconvolution are always within ±2% of the real values giving us confidence in the appropriateness of 

the Taylor deconvolution method for pH.  330 

 

At the surface, the largest contribution percentage-wise stems from the covariance between Alk and DIC (Figure 9j; with 26% 

globally averaged), followed by DIC (Figure 9i; 22%), Alk (Figure 9h; 15%), the covariance between SST and DIC (Figure 

9k; 14%), and SST (Figure 9g; 9%). All other possible contributors such as sea surface salinity and its covariances (including 

the covariance between SST and Alk) are not discussed further, as their contributions are below 5%. The pH predictability 335 

time horizon at the surface is mainly determined by Alk and DIC, and to a lesser extent SST. The long predictability time 

horizon of pH in the North Atlantic, the Arctic Ocean and in the eastern North Pacific, and the short predictability time horizon 

in the tropical regions (Figure 9a and Figure 3c) are mainly determined by DIC and Alk and the covariance between DIC and 

ALK. SST plays a role for parts of the North Atlantic. The predictability of pH in the Southern Ocean is mainly determined 

by DIC, SST and their covariance. Even though SST exhibits enhanced predictability in the Southern Ocean in relation to pH, 340 

the short predictability time horizon of DIC and the covariance of DIC and SST leads to the overall diminished predictability 

time horizon for pH relative to SST there.   

 

The pH predictability time horizon at 300-m depth (Fig. 10a) is mainly determined by DIC (accounts for 44% on global scale; 

Fig. 10j), and to a lesser extent by the covariance between DIC and SST (19%; Fig. 10k) and the covariance between Alk and 345 

DIC (15%; Fig. 10j). Interestingly, the relatively short pH predictability time horizon of about 5 yr in the western equatorial 

Pacific and the northern Indian Ocean is also mainly determined by DIC (Fig. 10d,i) and the covariance between DIC and SST 

(Fig. 10f,k). The short predictability time horizon of pH in the South Pacific is caused by the covariance between SST and 

DIC. Again, salinity plays a negligible role (not shown). 
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3.3.4 Net primary production 350 

To understand the drivers that may set the upper limits of NPP predictability, we first split the NPP into the contributions from 

small phytoplankton production (NPPsm), large phytoplankton production (NPPLg) and production by diazotrophs (NPPDi; see 

section 2.3.2 and Appendix A). The largest contribution (i.e. the most important driver of NPP potential predictability) stems 

from NPPsm (65% averaged globally; Figure 11). The second most important contributor is the covariance between NPPsm and 

NPPLg (19%) followed by NPPLg (9%). Diazotrophs and all other covariances have only a small impact on the predictability 355 

of NPP (less than 5%; not shown in Figure 11). The large dominance of NPPsm is not unexpected as the small phytoplankton 

production overall dominates the total phytoplankton production in ESM2M (Dunne et al., 2013; Laufkötter et al., 2015). 

NPPsm accounts for 84% of the total NPP at global scales, whereas NPPLg and NPPDi only account for 14% and 2%, 

respectively. 

 360 

On regional scales, NPPsm determines almost everywhere the predictability of NPP (Figure 11f). Exceptions are the eastern 

equatorial Pacific and the higher northern latitudes, where NPPLg (Figure 11e) and the covariance between NPPLg and NPPsm 

(Figure 11g) also play a substantial role. Interestingly, the NPPLg (Figure 11b) has overall longer predictability time horizon 

than NPP (Figure 11a) and NPPSm (Figure 11c).  

 365 

To understand the drivers of small phytoplankton predictability, we further deconvolve NPPSm into growth rate and small 

phytoplankton stock (Figure 12; equation 6 in section 2.3.2). The deconvolution suggests that the largest contribution to the 

potential predictability on a global scale stems from the small phytoplankton stock (51%) followed by the growth rate (31%) 

and the covariance between stock and growth rate (18%). Between 40°S and 40°N, the NPPSm predictability is almost solely 

determined by the small phytoplankton stock, with the exception of the eastern equatorial Pacific, where the growth rate is 370 

more important. Also, the short NPPSm predictability time horizon in the North Atlantic mainly originates from the variance 

of the stock, indicated by the short predictability time horizons of the stock compared to the growth rate there. As we stated 

previously, NPP has a relatively short potential predictability time horizon over the Southern Ocean compared to the other 

ecosystem drivers (Figure 3d). Our analysis shows that small phytoplankton (Figure 11) and especially the growth rate of the 

small phytoplankton (Figure 12) is important for setting this local minimum.  375 

 

We further deconvolute the drivers of the surface growth rate predictability of small phytoplankton into its temperature, 

nutrient and light limiting factors (see Eq. 7 in section 2.3.2; Figure 13). As the limiting factors are not saved routinely as 3-

dimensional fields, we focus here on the growth rate and its limiting factors at the surface. Note that the growth rate 

predictability time horizon at the surface (Figure 13a) may differ from the growth rate predictability time horizon integrated 380 

over the top 100 m (Figure 12c), especially in the Southern Ocean and the North Atlantic. At the surface and at the global 

scale, the largest contribution stems from the nutrient limitation term (50%) followed by the temperature limitation term (25%) 
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and the covariance between the temperature and nutrient limitations (13%). At the regional scale, the nutrient limitation term 

clearly dominates at mid-latitudes (Figure 13f). In GFDL’s ESM2M, the subtropical gyres are mainly iron limited (hatching 

in Figure 13f), and therefore iron fundamentally constrains the predictability of the growth rate of small phytoplankton there. 385 

Exceptions are the boundary region between the subtropical and subpolar gyre in the North Pacific (nitrate limited) as well as 

the tropical Atlantic (phosphate and nitrate) and the northern Indian Ocean (phosphate). GFDL ESM2M’s overall strong iron 

limitation is in contrast to Moore et al. (2013), who suggests that nitrogen is the limiting nutrient in the subtropical gyres. 

GFDL ESM2M is a fully coupled Earth system model and assess iron limitation through the ability to synthesize chlorophyll. 

In contrast, Moore et al., (2013) uses observation-driven parametrizations of phytoplankton growth and assess iron limitation 390 

through nutrient uptake alone. The temperature limitation term is dominant in the higher latitudes and the eastern equatorial 

Pacific (Figure 13g). The light limitation term only plays a substantial role (up to 20%) around Antarctica and close the Arctic 

sea ice edge (Figure 13h). The simulated long predictability time horizon for NPP in the mid-latitudes can therefore be 

attributed to the long predictability time horizon of the nutrient limitation, especially given that the growth rate predictability 

at surface is similar to the growth rate predictability integrated over the top 100 m in this region. At latitudes north of 40°N 395 

and south of 40°S, the temperature limitation is the most important contributor. Therefore, the predictability time horizon 

pattern of the growth rate strongly resembles the one for SST in these regions. In the Southern Ocean, however, the growth 

rate predictability time horizon at surface is much longer than the growth rate predictability integrated over top 100 m 

indicating that a process different than temperature (e.g. light limitation) may limit predictability there.  

4 Discussion and Conclusion 400 

We set out three goals for this study: (a) assessing the global characteristics of potential predictability for temperature, pH, O2 

and NPP, as a mean to identify an upper bound on our ability to predict conditions for marine ecosystems, (b) assessing regional 

and depth-dependent characteristics of potential predictability, and (c) identifying the potential mechanisms that limit or 

increase predictability for the different marine ecosystem drivers. This was pursued within a perfect modelling framework 

using a comprehensive Earth system model. 405 

 

The analysis revealed that on global scales the predictability time horizon of each variable is surprisingly similar, i.e. three 

years for all four marine ecosystem drivers (Figure 2; first goal), despite the fact that the regional processes operating are 

different over a range of scales (second and third goal). This is unexpected, as the ocean processes that sustain the disparate 

divers should not be expected to have identical memory as pertains to predictability. For example the relatively long 410 

predictability time horizon identified for SST and surface O2 over the subpolar North Atlantic (the SST to be consistent with 

Griffies and Bryan 1997; Boer 2000; Collins et al. 2006; Keenlyside et al. 2008) and the Southern Ocean (consistent with 

Zhang et al. (2017) and Marchi et al. (2019)) is not reflected in NPP. Likewise, the long predictability time horizon of NPP in 
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the subtropical gyres is not simulated for other ecosystem drivers and the short predictability time horizon of surface pH in the 

Southern Ocean is reflected in neither SST nor in surface O2.  415 

 

Our results suggesting the same global predictability time horizon for all four ecosystem drivers is not inconsistent with time 

of emergence diagnostics for transient climate warming scenarios where pH (early emergence) and NPP (late emergence) 

behave opposite (Frölicher et al., 2016; Rodgers et al., 2015; Schlunegger et al., 2019). Time of emergence is defined as the 

ratio (large for pH and small for NPP) of the anthropogenic forced change to the background internal variability.  Comparing 420 

our results with the time of emergence analysis is therefore complicated by the presence of the anthropogenic forced signal in 

scenario projections. In fact it is the presence of the large invasion flux for CO2 that renders acidification the most rapidly 

emergent of the drivers under anthropogenic perturbations, in particular relative to NPP.  The similarities between the analyses 

of predictability and emergence timescales lie in the noise, which is expected to include not only modes of climate variability 

such as ENSO, but also higher frequency variability such as cloud cover that may impact NPP for both cases.  425 

 

Our study complements earlier studies which suggested that marine ecosystem drivers may be predictable on multi-annual 

timescales. In contrast to earlier studies (Chikamoto et al., 2015; Park et al., 2019; Séférian et al., 2014b), rather than focusing 

on a single ecosystem driver, we compare and contrast the potential predictability of four marine ecosystem drivers and also 

evaluate the processes behind their respective predictability limits. We find that in contrast to SST, these ecosystem drivers 430 

depend on a complex interplay between physical and biogeochemical underlying processes. For O2, the importance of 

subsurface AOU reveals a complex interplay between non-local circulation and biological consumption, whereas at the surface, 

O2 is mainly determined by the predictability of SST. For NPP, the growth rate of the small phytoplankton in the Southern 

Ocean is important for setting the local minimum in predictability time horizon there. The predictability time horizon of surface 

pH is mainly determined by a complex interplay between DIC and Alk predictability in the low latitudes and DIC, Alk and 435 

temperature predictability in high latitudes. Interestingly, we find longer predictability time horizons for SST than for NPP in 

the equatorial Pacific, which is in contrast to findings of  Séférian et al. (2014a). Importantly, this may be indicative of a 

potential model-dependency of the relationship between ecosystem driver predictability. Séférian et al. (2014b) attributed 

longer NPP predictability time horizons to the idea that the nutrient supply processes that modulate NPP are themselves 

regulated by thermocline wave adjustment processes, without sizeable modulation by surface fluxes. This was framed as 440 

standing in contrast to the case of SST, where air-sea fluxes reflecting higher-frequency variations act to reduce the 

predictability of SST. In ESM2M, the predictability time horizon for SST in the eastern equatorial Pacific (biome 6 in Figure 

4) is approximately 3.5 yr, modestly longer than the predictability time horizon for NPP of approximately 3 yr. In ESM2M, 

NPP is only weakly correlated with changes in upwelling and nutrient supply in the eastern tropical Pacific (as was shown in 

Figure 2 of Kwiatkowski et al. (2017)). This is confirmed by our analysis showing that nutrient limitation is not the dominant 445 

term for explaining the predictability of NPP there. This indicates that less predictable processes occurring over shorter 

timescales, such as temperature and/or light level variations, influence NPP predictability.   
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Even though we consider our conclusion as robust, a number of potential caveats warrant discussion. These include the (i) 

ensemble design of the perfect model simulations (e.g. initialization and number of ensemble members) and (ii) the impact of 450 

model formulation and biases. For the first of these caveats, our simulations are all initialized with SST perturbations applied 

to a single grid cell in the Weddell Sea and therefore a different spatial perturbation strategy may give different results. 

However, as the signal at the ocean surface spreads very rapidly, i.e. after four days all grid cells at the ocean surface are 

perturbed, our results are insensitive to the spatial initialization method, at least in the upper ocean. Second, all ensemble 

simulations start in January 1st of the corresponding simulation year. It has been shown that the forecast skill of seasonal 455 

predictions may depend strongly on the way the models are initialized. ENSO forecasts, for example, have a much lower 

predictability if they are initialized before and through spring (Webster and Yang, 1992). However, as our focus is on annual-

to-decadal timescales, this effect is less important for our analysis. Third, we have employed only six starting points for our 

40-member ensemble simulation. Even though all six ensemble simulations branched off at different El Niño Southern 

Oscillation states of the preindustrial control simulation, our choice of six macro-perturbations may still introduce aliasing 460 

issues that could bias our results. Although the computing resources at our disposal for this study did not allow for expanding 

the number of starting points, we recommend that future studies with CMIP-class models should expand the number of 

initialization points to further explore the sensitivity of the results to the starting point of the ensembles.  

 

The second caveat in our study is that we only used one single Earth system model and that our results might depend on the 465 

model formulation and resolution. Even though the GFDL ESM2M model achieves sufficient fidelity in its preindustrial states 

(Bopp et al., 2013; Dunne et al., 2012, 2013; Laufkötter et al., 2015), it is well known that CMIP5-generation models have 

imperfect representation of biogeochemical and physical processes as well as variability over a range of timescales, ranging 

from weather variability to ENSO variability (Frölicher et al., 2016; Resplandy et al., 2015) to decadal variability (England et 

al., 2014; McGregor et al., 2014). Different physical and biogeochemical parameterizations within a given model may change 470 

the length of the predictability time horizon. For example, TOPAZv2 represents a hypothetically optimal phytoplankton 

physiology, namely the model assumes that the fastest growing phytoplankton group always wins in all environments via the 

upper limit in growth rates. In addition, TOPAZv2 represents a steady-state ecosystem, such that there are no time lags between 

primary production and the grazing response. In the subsurface, the remineralization of particles is set to reproduce the vertical 

scale of the nutricline on the timescale of sinking particles, and the sinking particle velocity is fast. All three factors may tend 475 

to decrease the memory associated with the real-world surface ecosystem and minimize predictability. For the case of weather 

prediction, it has been argued that the inclusion of stochastic parametrizations increases potential predictability (Palmer and 

Williams, 2008). To our knowledge, this remains unexplored for marine biogeochemistry and ecosystem drivers. In any case, 

it would be necessary to repeat our predictability experiments with a set of different Earth system models including different 

parameterizations of biogeochemical and/or physical ocean processes to investigate the dependence of our result on the model 480 

representation (Séférian et al., 2018), in parallel with broader efforts to further evaluate noise characteristics of these models. 
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Additionally, the ocean model resolution of GFDL ESM2M is rather coarse and cannot represent the critical scales of small-

scale structures of circulation. Predictability studies using high resolution ocean models with improved process representations 

are therefore needed to explore potential predictability, especially at the local scale. However, it is currently impossible in 

many cases to constrain the simulated variability in biogeochemical drivers, especially for the ocean subsurface, with 485 

observations due to limited data availability (Frölicher et al., 2016; Laufkötter et al., 2015).    

 

Currently, no global coupled physical-biogeochemical seasonal-to-decadal forecast system is yet operational (Tommasi et al., 

2017). However, our study suggests great promise that physical-biogeochemical forecast systems may have the potential to 

provide useful information to a wide group of stakeholders, such as, for example, for the management of fisheries (Dunn et 490 

al., 2016; Park et al., 2019). Our study therefore underscores the need to further develop integrated physical-biogeochemical 

forecast systems. Especially in regions with long predictability time horizons, such as the North Atlantic (for temperature, O2, 

pH), the Southern Ocean (for temperature and O2), and mid-latitudes (for NPP), installing and maintaining a spatially and 

temporally dense physical and biogeochemical ocean observing system would have the potential to significantly improve the 

effective predictability of marine ecosystem drivers.    495 

Appendix A 

The NPP in TOPAZ2, defined as the phytoplankton nitrogen production, is individually described for all phytoplankton groups 

𝑖 by the product of a phytoplankton growth rate 𝜇$ and the amount of nitrogen in the plankton group [N]$: 

 

NPP$ = 𝜇$ ∙ [N]$.            (A1) 500 

 

The growth rate of the small phytoplankton group is given by a maximum growth rate times the limiting factors of nutrients 

𝑁{$x, light 𝐿{$x, and temperature 𝑇S: 

 

𝜇wx = �����
.-�

∙ 𝑁{$x ∙ 𝐿{$x ∙ 𝑇S.          (A2) 505 

 

The temperature limitation factor is: 

 

𝑇S = exp�𝑘�qq ∙ 𝑇�.           (A3) 

 510 

The nutrient limitation factor is: 
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𝑁{$x = min�𝑁��,𝑁���,𝑁��� + 𝑁����,         (A4) 

 

with iron limitation: 515 

 

𝑁�� =
���:�
I

���:�
I -���:�

I ,   with   𝑄��:� = min �𝑄��:����,
[��] �
[�] �

¡,       (A5) 

 

with phosphate limitation: 

 520 

𝑁��� =
�¢:�

�¢:?���
,    with   𝑄�:� = min�𝑄�:����,

[�] �
[�] �

¡,       (A6) 

 

with nitrate limitation: 

 

𝑁��� =
[���]

[���]-��£�
∙ .-[���]

��¤�
,          (A7) 525 

 

and with ammonium limitation: 

𝑁��� =
[���]

[���]-��¤�
.           (A8) 

 

The light limitation factor is: 530 

 

𝐿{$x = 1 − 𝑒𝑥𝑝 ¥ G¦§[¨©©]
�ªD�«¬����

­,          (A9) 

 

with    𝜃 = §���G§�D¯
.-(§���G§�D¯)¦[¨©©�°�]/�/�ªD�«¬�����

+ 𝜃x$X,       (A10) 

 535 

and    𝜃x$X = max�0,𝜃x$XXt{$x − 𝜃x$X{$x � ∙ 𝑁{$x + 𝜃x$X{$x ,        (A11) 

 

where [𝐼𝑅𝑅] describes the photosynthetically active radiation and [𝐼𝑅𝑅x�x] is the irradiation memory over the last 24 hours. 
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Appendix B 

Potential predictability may depend on the choice of the predictability metric (Hawkins et al., 2016). Therefore, we calculate 540 

two additional metrics to assess the robustness of our results: the normalized root mean square error (NRMSE) and the intra-

ensemble anomaly correlation coefficient (ACCI). The NRMSE is similar to the PPP but uses standard deviations instead of 

variances and compares every ensemble member to every other member of that ensemble, thereby increasing the effective 

sample size (Collins et al., 2006): 

 545 

NRMSE(𝑡) = 1 −	¹
º(CDE(F)G	C»E(F))I⟩D,E,»½D

/LMI
       (B1) 

 

〈∙〉	means that we sum over the listed indices and divide by the degrees of freedom. The intra-ensemble anomaly correlation 

coefficient (ACCI) is a measure for the correlation between the anomaly of all ensemble members of an ensemble averaged 

over all ensembles and is regularly used for assessing operational predictions (Goddard et al., 2013). The anomaly is defined 550 

as the deviation of a given value from the climatological mean 𝜇O (i.e. the mean over the control run) over the j-th ensemble 

period.  

 

ACCÁ(𝑡) =
〈(CDE(F)G	�E)(C»E(F)G�E)〉D,E,»½D

〈(CDE(F)G	�E)I〉D,E
        (B2) 

 555 

While PPP and NRMSE estimate predictability by comparing the spread of the ensembles to the natural variability from the 

control simulation, the anomaly correlation coefficients include the phase alignment of the ensembles and the control 

simulation. We again use a F-test for NRMSE and a t-test for ACCI to estimate the predictability threshold.  

 

Figure B1 compares the two additional metrics applied to SST with the PPP metric. We introduce an artificially predictability 560 

threshold for ACCI in such a way that the emerging pattern matches the predictability time horizon best. This allows us to 

compare the relative differences in predictability between the metrics best. The predictability pattern for SST obtained from 

all three metrics are very similar. Especially the patterns obtained using PPP and NRMSE are nearly identical. This can be 

expected since both the PPP and the NMRSE estimate potential predictability by analyzing the ensemble spread. The ACCI 

shows some small differences to PPP and NMRSE, especially in the Southern Ocean and the North Pacific.   565 
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The GFDL ESM2M simulations are available upon request. 
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Figures 

 

 

Figure 1: Illustration of the model setup and the calculation of the predictability time horizon. (a) Simulated global mean SST of the 750 

300-yr reference control simulation (black line) and of the six 10-yr long 40 ensemble simulations (red lines). (b) Global mean SST anomaly 

(i.e., deviation from the control simulation) for the ensemble simulation starting in year 170. Thick red line indicates the period over which 

SST is predictable (i.e. PPP ≥	0.183), and thin red lines indicate period over which SST is unpredictable (i.e. PPP < 0.183). The dashed 

horizontal lines indicate one standard deviation of the control simulation and the vertical line indicates the predictability time horizon. 
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 755 

 

Figure 2: Globally averaged prognostic potential predictability (PPP) for all four marine ecosystem drivers at the surface, except 

for NPP which is integrated over the top 100 m. Monthly mean (thin lines) and annual mean (thick lines) values of PPP are shown. The 

horizontal black dashed line represents the predictability threshold. If PPP is above (below) the predictability threshold, the driver is 

potentially predictable (unpredictable) as indicated with the arrows on the right hand side. The PPP has first been calculated at each grid cell 760 

and then averaged globally.  
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Figure 3: Predictability time horizon for (a) SST, (b) surface pH, (c) surface O2, and (d) NPP integrated over top 100 m using PPP 765 

as predictability measure. The red contour lines in (d) indicate the annual mean total nitrogen production in mol N kg-1 yr-1 averaged over 

the 300-yr preindustrial control simulation to highlight regions with low and high NPP. In (d) regions north of 69°N and south of 69°S have 

been excluded since NPP is zero during winter time there.  
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 770 

Figure 4: PPP for all four ecosystem drivers averaged over 17 different biomes at the surface, except for NPP, which is integrated 

over top 100 m. Monthly means are shown as thin lines and annual means as thick lines. The horizontal dashed black lines in each panel 

represents the predictability threshold. The lower right panel shows the boundaries and the geographical location of the biomes 1 to 17.  
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 775 

Figure 5: PPP depth profiles for the top 1000 m for ocean temperature, oxygen and pH at the (a-c) global scale and (d-f) in the North 

Atlantic. The PPP is shown as monthly means. The light gray hatching indicates a PPP value below the predictability threshold. The North 

Atlantic is defined as the ocean area between 40°N and 60°N in the North Atlantic. Note that the variance over the control simulation for pH 

is zero for approximately 0.4% of grid cells at subsurface, which leads to an undefined PPP value there (see Eq. 2). Such grid cells have 780 

been excluded here.  
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Figure 6: Spatial pattern of the predictability time horizon at (a-c) 300-m and (d-f) 1000-m depth for (a,d) ocean temperature, (b,e) 785 

pH, and (c,f) dissolved oxygen.  
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Figure 7: Spatial pattern of the (a-d) predictability time horizons and (e-g) contribution of different terms to the predictability of 

oxygen at the surface. (a-d) Predictability time horizon for (a) O2, (b) O2
sol, (c) AOU, and (d) covariance between O2

sol and AOU. (e-g) 790 

Percentage contributions of (e) O2
sol, (f) AOU and (g) covariance between O2

sol and AOU relative to the sum of all terms. Red shading in (e-

g) represents positive absolute values of the variance and covariance terms. The percentage contributions are shown as averages over the 

entire 10 yr of the simulations. The percentage contributions do not change substantially over the 10 yr (always within ± 5% of the 10-yr 

averages).  
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 795 

Figure 8: Same as Figure 7, but at 300-m depth.   
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Figure 9: Spatial pattern of the (a-f) predictability horizons and (g-k) contribution of different terms to the predictability of pH at 800 

the surface. (a-f) Predictability time horizon for (a) pH, (b) SST, (c) Alk, (d) DIC, and the covariance between (e) Alk and DIC, and (f) DIC 

and SST. (g-k) Percentage contributions of (g) SST, (h) Alk, (i) DIC, and covariance of (j) ALK and DIC, and (k) DIC and SST relative to 

the sum of all terms. Red shading in (g-k) represents positive absolute values of the variance and covariance terms. The percentage 

contributions are shown as averages over the entire 10 yr of the simulations. The percentage contributions do not change substantially over 

the 10 yr (always within ± 5% of the 10-yr averages). Note that the terms that do not contribute to pH predictability such as sea surface 805 

salinity, and the covariances between sea surface salinity and all other terms as well as the covariance between SST and Alk are not shown 

here.  
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Figure 10: Same as Figure 9, but at 300-m depth.  810 
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Figure 11: Spatial pattern of the (a-d) predictability horizons and (e-g) contribution of different terms to the predictability of NPP 

integrated over the top 100 m. (a-d) Predictability time horizon for (a) NPP, (b) large phytoplankton production NPPLg, (c) small 815 

phytoplankton production NPPSm, and (d) the covariance between NPPLg and NPPSm. (e-g) Percentage contributions of (e) NPPLg, (f) NPPSm, 

(g) and covariance of NPPLg and NPPSm relative to the sum of all terms. Red shading in (e-g) represents positive absolute values of the 

variance and covariance terms. The percentage contributions are shown as averages over the entire 10 yr of the simulations. The percentage 

contributions do not change substantially over the 10 yr (always within ± 5% of the 10-yr averages). Note that the terms that do not 



36 
 

substantially contribute to NPP predictability such diazotrophs (NPPDi), and the covariances between NPPDi and all other terms are not 820 

shown here.   
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Figure 12: Spatial pattern of the (a-d) predictability horizons and (e-g) contribution of different terms to the predictability of small 

phytoplankton production (NPPSm) integrated over the top 100 m. (a-d) Predictability time horizon for (a) NPPSm, (b) small 

phytoplankton stock, (c) growth rate of small phytoplankton, and (d) the covariance between the stock and the growth rate of small 825 

phytoplankton. (e-g) Percentage contributions of (e) stock, (f) growth rate, (g) and covariance of stock and growth rate relative to the sum 

of all terms. Red shading in (e-g) represents positive absolute values of the variance and covariance terms. The percentage contributions are 

shown as averages over the entire 10 yr of the simulations. The percentage contributions do not change substantially over the 10 yr (always 

within ± 5% of the 10-yr averages).   
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 830 

Figure 13: Spatial pattern of the (a-e) predictability horizons and (f-i) contribution of different terms to the predictability of the 

small phytoplankton growth at the surface. (a-f) Predictability time horizon for (a) growth rate of small phytoplankton, (b) nutrient 

limitation, (c) temperature limitation, (d) light limitation, and (e) the covariance between the temperature and nutrient limitation. (f-i) 

Percentage contributions of (f) nutrient limitation, (g) temperature limitation, (h) light limitation, and (i) covariance between temperature 
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and nutrient limitation relative to the sum of all terms. Red shading in (f-i) represents positive absolute values of the variance and covariance 835 

terms. The percentage contributions are shown as averages over the entire 10 yr of the simulations. The percentage contributions do not 

change substantially over the 10 yr (always within ± 5% of the 10-yr averages). Note that the terms that do not substantially contribute to 

NPP predictability covariances between temperature and light and nutrient are not shown here. The hatching in panel (f) indicates the limiting 

nutrient as obtained from the 300-yr long preindustrial control simulation. 

 840 

 

Figure B1: SST predictability time horizon calculated with different metrics. Spatial pattern of the predictability horizon for sea surface 

temperature using (a) PPP, (b) NRMSE, and (c) ACCI. Note that we assume an arbitrary predictability threshold for ACCI so that the 

emerging pattern matches the PPP predictability best. This allows us to compare the relative differences in predictability.  

 845 

Figure C1: (a) Simulated annual mean AMOC maximum of the 300-yr long preindustrial control simulation. The blue line indicates the 10-

yr running mean. (b) Monthly mean (thin line) and annual mean (thick line) prognostic potential predictability for the AMOC maximum. 

The horizontal black dashed line represents the predictability threshold.  

 850 
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Table A1: TOPAZ2 parameters for small phytoplankton 

Parameter Value Units Description 

ζ 0.1  Photorespiration loss 

𝑘�qq 0.063 °CG. Temperature coefficient for growth 

α 2.4e-5 · 2.77e18/6.022e17 g C (g Chl)-1 m2 W-1 s-1 Light harvest coefficient 

𝜇xyV′ 1.5e-5 s-1 Maximum growth rate at 0°C 

𝜃x$XXt{$x 0.01 g Chl (g C)-1 Minimum Chl:C without nutrient 

limitation 

𝜃x$X{$x  0.001 g Chl (g C)-1 Minimum Chl:C with complete 

nutrient limitation 

𝜃xyV 0.04 g Chl (g C)-1 Maximum Chl:C 

𝐾��� 2e-6 mol N kg-1 NOÅ half-saturation coefficient 

𝐾��� 2e-7 mol N kg-1 NHÇ half-saturation coefficient 

𝐾��:� 12e-6 · 106/16 mol Fe (mol N)-1 Half-saturation coefficient of iron 

deficiency 

𝑄��:�	kÈÉ 46e-6 · 106/16 mol Fe (mol N)-1 Maximum Fe:N limit 

𝑄�:�	kÈÉ 0.1458 mol P (mol N)-1 Maximum P:N limit 

  


