1	Ice formation on lake surface in winter causes warm season bias of lacustrine
2	brGDGT temperature estimates
3	
4	Jiantao Cao ^{1, 2} , Zhiguo Rao ^{3, *} , Fuxi Shi ⁴ , Guodong Jia ^{1, *}
5	
6	¹ State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
7	² Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth
8	and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
9	³ College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081,
10	China
11	⁴ Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural
12	University, Nanchang, 330045, China
13	*Corresponding authors: Zhiguo Rao (raozhg@hunnu.edu.cn); Guodong Jia (jiagd@tongji.edu.cn).
14	

15 Abstract

It has been frequently found that lacustrine brGDGT-derived temperatures are warm season biased 16 relative to measured mean annual air temperature (AT) in the mid to high latitudes, the mechanism of 17 which, however, is not very clear. Here, we investigated the brGDGTs from catchment soils, 18 suspended particulate matter (SPM) and surface sediments in different water depths in the Gonghai 19 Lake in north China to explore this question. Our results showed that the brGDGT distribution in 20 sediments resembled that in the SPM but differed from the surrounding soils, suggesting a substantial 21 aquatic origin of the brGDGTs in the lake. Moreover, the increase of brGDGT content and decrease of 22 methylation index with water depth in sediments suggested more contribution of aquatic brGDGTs 23 produced from deep/bottom waters. Therefore, established lake-specific calibrations were applied to 24 25 estimate local mean annual AT. As usual, the estimates were significantly higher than the measured mean annual AT. However, they were similar to, and thus actually reflected, the mean annual lake 26 water temperature (LWT). Interestingly, the mean annual LWT is close to the measured mean warm 27 28 season AT, hence suggesting that the apparent warm season bias of lacustrine brGDGT-derived temperatures could be caused by the discrepancy between AT and LWT. In our study region, ice forms 29 at the lake surface during winter, leading to isolation of the underlying lake water from air and hence 30 higher LWT than AT, while LWT basically follows AT during warm seasons when ice disappears. 31 Therefore, we think what lacustrine brGDGTs actually reflected is the mean annual LWT, which is 32

33	higher than the mean annual AT in our study location. Since the decoupling between LWT and AT in
34	winter due to ice formation is a universal physical phenomenon in the mid to high latitudes, we
35	propose this phenomenon could be also the reason for the widely observed warm season bias of
36	brGDGT-derived temperatures in other seasonally surface ice-forming lakes, especially the shallow
37	lakes.
38	Keywords: lake sediments, aquatic brGDGTs, temperature proxy, seasonality, ice formation
39	
40	1 Introduction
41	The branched glycerol dialkyl glycerol tetraethers (brGDGTs), including 0-2 cyclopentyl
42	moieties (a-c) and four to six methyl groups (I-III) (Weijers et al., 2007a), are components of the cell
43	membranes of microorganisms ubiquitously found in marine and continental environments and
44	sensitive to ambient environmental conditions (Sinninghe Damsté et al., 2000; Weijers et al., 2006a;
45	Schouten et al., 2013). The relative amounts of methyl groups and cyclopentyl moieties, expressed as
46	methylation index and cyclization ratio of brGDGTs (such as MBT/CBT or MBT/CBT) in soil
47	brGDGTs, has been proposed to reflect mean annual air temperature (AT) (Weijers et al., 2007a;
48	Peterse et al., 2012). With improved analytical methods, a series of 6-methyl brGDGTs, previously
49	co-eluted with 5-methyl brGDGTs, were identified (De Jonge et al., 2013), which may introduce
50	scatter in the original MBT'/CBT calibration for the mean annual AT (De Jonge et al., 2014). Thus,

51	exclusion of the 6-methyl brGDGTs from the MBT', i.e. the newly defined MBT' $_{5ME}$, results in
52	improved calibrations (De Jonge et al., 2014; Wang et al., 2016; Wang et al., 2019). Calibrations using
53	globally distributed surface soils for the MBT/CBT, MBT'/CBT or MBT' _{5ME} indices (Weijers et al.,
54	2007a; Peterse et al., 2012; De Jonge et al., 2014) have been widely used for continental AT
55	reconstruction (e.g., Weijers et al., 2007b; Niemann et al., 2012; Lu et al., 2019).
56	BrGDGTs in lake environments were initially thought to be derived from soil input (Hopmans et
57	al., 2004; Blaga et al., 2009), allowing the mean annual AT to be reconstructed from lake sediments.
58	However, when the soil-based calibrations are applied to the lake materials, the estimated
59	temperatures are usually significantly lower than actual local AT (Tierney and Russell, 2009; Tierney
60	et al., 2010; Blaga et al., 2010; Loomis et al., 2011, 2012; Pearson et al., 2011; Sun et al., 2011;
61	Russell et al., 2018), suggesting an intricate brGDGTs response to ambient temperature in aquatic
62	environments. Later, more and more studies reveal that brGDGTs could be produced in situ in lake
63	environments and differ significantly from soil derived brGDGT distributions (Wang et al., 2012;
64	Loomis et al., 2014; Naeher et al., 2014; Hu et al., 2015; Cao et al., 2017) and stable carbon isotope
65	composition (Weber et al., 2015, 2018). The findings of intact polar lipid of brGDGTs, indicative of
66	fresh microbial products, in lake water suspended particulate matter (SPM) and surface sediments
67	(Tierney et al., 2012; Schoon et al., 2013; Buckles et al., 2014a; Qian et al., 2019) further confirm the
68	in-situ production of brGDGTs. Nevertheless, the brGDGT distribution in lake surface sediments has

69	been found to be still strongly correlated with AT. Subsequently, quantitative lacustrine-specific
70	calibrations for AT have been established at regional and global scales (Tierney et al., 2010; Pearson
71	et al., 2011; Sun et al., 2011; Loomis et al., 2012; Shanahan et al., 2013; Foster et al., 2016; Dang et
72	al., 2018; Russell et al., 2018), which have been widely used for AT reconstruction. These
73	lacustrine-specific calibrations may reflect mean annual AT well in low-latitude regions (Tierney et al.,
74	2010; Loomis et al., 2012), such as in the Lake Huguangyan (21°09' N, 110°17' E) in south China (Hu
75	et al., 2015), Lake Donghu (30°54' N, 114°41' E) in central China (Qian et al., 2019) and Lake Towuli
76	(2.5° S, 121° E) on the island of Sulawesi (Tierney and Russell, 2009). However, they usually yield
77	estimates biased to the warm/summer seasons in mid- and high-latitude regions (Shanahan et al., 2013;
78	Foster et al., 2016; Dang et al., 2018), such as in Lake Qinghai (36°54' N, 100°01' E) in the
79	northeastern Tibetan Plateau (Wang et al., 2012), in Lower King pond (44°25' N, 72°26' W) in
80	temperate northern Vermont, U.S.A. (Loomis et al., 2014), and in the Arctic lakes (Peterse et al.,
81	2014). The warm biased temperature estimates in the mid- and high-latitude lakes have been
82	postulated to be caused by the higher brGDGT production during warm seasons (e.g., Pearson et al.,
83	2011; Shanahan et al., 2013).
84	BrGDGT-producing bacteria in soils could be metabolically active, hence producing abundant

85 brGDGTs in warm and humid season, but suppressed in cold and/or dry environments (Deng et al.,

86 2016; De Jonge et al., 2014; Naafs et al., 2017). However, it is presently unclear whether the

87	brGDGTs in lacustrine sediments are mainly produced during the warm season. Investigations on lake
88	water SPM reveal higher concentration of brGDGTs in the water column may occur in different
89	seasons, e.g., in winter in Lake Lucerne in central Switzerland (Blaga et al., 2011), Lake Challa in
90	tropical Africa (Buckles et al., 2014a) and Lake Huguangyan in subtropical southern China (Hu et al.,
91	2016), in spring and autumn in Lower King Pond in temperate northern Vermont, U.S.A. (Loomis et
92	al., 2014), and in warm season in Lake Donghu in central China (Qian et al., 2019). Moreover, the
93	contribution of the aquatic brGDGTs to the sediments is quantitatively unknown, and likely minor
94	considering that brGDGT producers favor anoxic conditions (Weijers et al., 2006b; Weber et al., 2018)
95	that usually prevail in bottom water and sediments, which may discount the application of
96	SPM-derived findings to the sedimentary brGDGTs.
96 97	SPM-derived findings to the sedimentary brGDGTs. In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT),
97	In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT),
97 98	In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT), rather than AT, if the brGDGTs in lake sediments solely or mainly sourced from the lake environments
97 98 99	In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT), rather than AT, if the brGDGTs in lake sediments solely or mainly sourced from the lake environments (Tierney et al., 2010; Loomis et al., 2014). So, the mean annual AT estimate based on lake
97 98 99 100	In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT), rather than AT, if the brGDGTs in lake sediments solely or mainly sourced from the lake environments (Tierney et al., 2010; Loomis et al., 2014). So, the mean annual AT estimate based on lake sedimentary brGDGTs is valid only when LWT is tightly coupled with AT. However, the relationship
97 98 99 100 101	In fact, brGDGT-based temperature indices should directly record lake water temperature (LWT), rather than AT, if the brGDGTs in lake sediments solely or mainly sourced from the lake environments (Tierney et al., 2010; Loomis et al., 2014). So, the mean annual AT estimate based on lake sedimentary brGDGTs is valid only when LWT is tightly coupled with AT. However, the relationship between LWT and AT is potentially complex in cold regions, as well as in deep lakes, and the

105	brGDGTs in deep water and sediments, causing weak correlations between brGDGT-derived
106	temperature and AT (Weber et al., 2018). For shallow lakes, LWT does not always follow AT either,
107	specifically in winter when AT is below freezing, in cold regions, as has been shown in the Lower
108	King pond (Loomis et al., 2014). However, the decoupling between LWT and AT has not been
109	recognized as a key mechanism for the warm bias of brGDGT-derived temperatures observed widely
110	in the mid- and high-latitude lakes, and seasonal production or deposition of brGDGTs is usually
111	invoked as a cause (e.g., Pearson et al., 2011; Shanahan et al., 2013; Loomis et al., 2014). Here, we
112	hypothesized that the decoupling between LWT and AT in mid- and high-latitude shallow lakes, rather
113	than the warm season production, could have caused the frequently observed warmer temperature
114	estimates from the lacustrine brGDGTs. To test this hypothesis, we investigated the Gonghai Lake (a
115	shallow alpine lake) in north China by collecting SPM and surface sediments in different depths in the
116	lake and soils in its catchment in a hot summer and a cold winter. We analyzed brGDGT distributions
117	in these materials to determine the sources of brGDGTs in the lake and further discussed the possible
118	reasons for the seasonality of brGDGT-estimated temperatures.

119

120 **2** Materials and methods

121 2.1 Gonghai Lake

122 The Gonghai Lake [38°54' N, 112°14' E, ca. 1860 m above sea level (a.s.l.); Fig. 1a and 1b] is

123	located on a planation surface of the watershed between the Sang-kan River and the Fenhe River at
124	the northeast margin of the Chinese Loess Plateau. The location is close to the northern boundary of
125	the modern East Asian summer monsoon (EASM, Chen et al., 2008; Fig. 1a). The modern local
126	climate is controlled mainly by the East Asian monsoon system, with a relatively warm and humid
127	summer resulting from the prevailing EASM from the southeast, and a relatively cold and arid winter
128	under the prevailing East Asian winter monsoon (EAWM) from the northwest (Chen et al., 2013,
129	2015; Rao et al., 2016). The mean annual precipitation is ca. 482 mm, concentrated (75%) between
130	July and September (Chen et al., 2013). Its total surface area is ca. 0.36 km ² and the maximum water
131	depth is ca. 10 m. Based on a nearby weather station, the measured mean annual AT is 4.3 °C for the
132	past 30 years. The warm season lasts from May to September (Fig. 1c), when column stratification
133	develops with an upper-bottom temperature difference >1 °C. During the winter from November to
134	March, ice forms on the lake surface, and LWT under ice vertically constant at ca. 4 °C, which is
135	significantly higher than AT that is much below the freezing point (Fig. 1c). From April to October,
136	the ice disappears and LWT follows AT closely, demonstrating a coupling between them (Fig. 1c).
137	The vegetation type of the planation surface belongs to transitional forest-steppe, dominated by Larix
138	principis-rupprechtii, Pinus tabulaeformis and Populus davidiana forest, Hippophae rhamnoides
139	scrub, Bothriochloa ischaemum grassland and Carex spp. (Chen et al., 2013; Shen et al., 2018).

2.2 Sampling

141	In September 2017, five surface soil samples in the catchment and five surface sediment samples
142	at different depths (1.0, 2.5, 5.5, 6.7, 8.0 m) in Gonghai Lake were collected (Fig. 1b). At each soil
143	sample site, we collected 5–6 subsamples (top 0–2 cm) within an area of ca. 100 m ² with contrasting
144	micro-topography or plant cover and then mixed them to represent a single sample. To avoid possible
145	human disturbances, the soil sampling sites were distant from roads and buildings. All samples
146	collected in the field were stored in a refrigeration container during transportation and then
147	freeze-dried for >48 h in the laboratory. Details of all the sampling sites, including locations, sample
148	depth and vegetation type, are listed in Table 1.
149	In addition, we also collected two batches of SPM samples at water depth of 1 m, 3 m, 6 m and 8
150	m by filtering 50 L water through a 0.7 μm Whatman GF/F filter on site in September 2017 and
151	January 2018, respectively. SPM samples were also stored in a refrigeration container during
152	transportation and then freeze-dried for >48 h in the laboratory. At the same time of SPM sampling,
153	we measured water column parameters in the lake using an YSI water quality profiler.

154 **2.3 Sample treatment and GDGT analysis**

Freeze-dried soil and sediment samples were homogenized at room temperature, and accurately weighed. Each freeze-dried filter with SPM attached was cut into small pieces using a sterilized scissor. Each sample of soil, sediment and SPM was placed in a 50 mL tube and then ultra-sonicated successively with dichloromethane/methanol (DCM/MeOH, 1:1, v/v) four times. After centrifugation

159	and combination of all the extracts of a sample, an internal standard consisting of synthesized C_{46}
160	GDGT was added with a known amount (Huguet et al., 2006). Subsequently, the total extracts were
161	concentrated using a vacuum rotary evaporator. The nonpolar and polar fractions in the extracts were
162	separated via silica gel column chromatography, using pure <i>n</i> -hexane and DCM/MeOH (1:1, v/v),
163	respectively. The polar fraction containing GDGTs was dried in a gentle flow of N2, dissolved in
164	<i>n</i> -hexane/ethyl acetate (EtOA) (84:16, v/v) and filtered through a 0.45 μ m polytetrafluoroethylene
165	filter before instrumental analysis. We performed GDGT analysis by high performance liquid
166	chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS;
167	Agilent 1200 series 6460 QQQ). Following the method of Yang et al. (2015), the separation of 5- and
168	6-methyl brGDGTs was achieved using two silica columns in tandem (150 mm \times 2.1 mm, 1.9 $\mu m,$
169	Thermo Finnigan; U.S.A.) maintained at 40 °C. The following elution gradient was used: 84/16
170	n-hexane/EtOA (A/B) to 82/18 A/B from 5 to 65 min and then to 100% B in 21 min, followed by
171	100% B for 4 min to wash the column and then back to 84/16 A/B to equilibrate it for 30 min. The
172	flow rate was at a constant 0.2 ml/min throughout. BrGDGTs were ionized and detected with single
173	ion monitoring (SIM) at m/z 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018 and 744. The
174	brGDGTs were quantified from comparing retention time and peak areas with the C_{46} GDGT internal
175	standard. Based on duplicate HPLC/MS analyses, the analytical errors of both the MBT' _{5ME} and
176	MBT' _{6ME} index were ± 0.01 units.

177 **2.4 Calculation of GDGT-related Proxies**

The MBT'_{5ME} and MBT'_{6ME} index were calculated following Eq. (1) and (2) as in De Jonge et al. (2014):

$$180 \quad MBT'_{5ME} = (Ia+Ib+Ic)/(Ia+Ib+Ic+IIa+IIb+IIc+IIIa)$$
(1)

$$MBT'_{6ME} = (Ia+Ib+Ic)/(Ia+Ib+Ic+IIa'+IIb'+IIc'+IIIa')$$
(2)

182 The isomer ratio (IR) of 6-methyl was calculated as in De Jonge et al. (2014). The Σ IIIa/ Σ IIa ratio was

183 calculated as in Martin et al. (2019), which is modified from Xiao et al. (2016). The weighted average

184 number of ring moieties (#Rings_{tetra}, #Rings_{penta 5ME} and #Rings_{penta 6ME}) followed Sinninghe Damsté

185 (2016):

$$187 \quad \text{IIIb'+IIIc+IIIc'} \tag{3}$$

- 188 $\Sigma IIIa / \Sigma IIa = (IIIa + IIIa' + IIIa') / (IIa + IIa')$ (4)
- 189 $\#\text{Rings}_{\text{tetra}} = (\text{Ic}*2+\text{Ib})/(\text{Ia}+\text{Ib}+\text{Ic})$ (5)
- 190 $\#\text{Rings}_{\text{penta 5ME}} = (\text{IIc}*2+\text{IIb})/(\text{IIa}+\text{IIb}+\text{IIc})$ (6)

191 $\# Rings_{penta 6ME} = (IIc'*2+IIb')/(IIa'+IIb'+IIc')$ (7);

192 The Roman numerals represent different brGDGT homologues referred to Yang et al. (2015) and

193 Weber et al. (2015) (see Appendix 1).

In this study, we used two silica columns in tandem and successfully separated 5- and 6-methyl

195	brGDGTs. However, many previous brGDGT studies on lake materials used one cyano column,
196	which did not separate 5- and 6-methyl brGDGTs (e.g., Wang et al., 2012; Loomis et al., 2014; Hu et
197	al., 2015, 2016; Cao et al., 2017). In order to facilitate comparison with previous studies, we
198	reanalyzed the published brGDGT data without separation of 5- and 6-methyl brGDGTs in the
199	Gonghai Lake (Cao et al., 2017). For temperature estimations, we listed the Eqs. (8-17) used in this
200	study in Table 2.

- 201
- 202 **3 Results**

203 **3.1 Seasonal changes in environmental parameters**

The AT in our study area ranged from -12.2 to 21.6 °C, below freezing in winter (November to February) and at 4.3 °C for the mean in the year 2018 (Fig. 1c). Surface LWT ranged from 3.4 to 21.9 °C (average 10.6 °C), and remained stable at ca. 4 °C in winter (Fig. 1c). In September 2017, water column stratification was weak with temperature ranging from 16.9 to 17.8 °C and exhibiting a gradual and slight decrease with depth (Fig. 2). In January 2018, the lake surface water was frozen and LWTs under ice were 4 °C at all depths (Fig. 2).

210 **3.2 Concentration and distribution of brGDGTs**

BrGDGTs were detected in all samples, and their total concentration ranged between 16–75 ng/g dry weight (dw) in surface soils from Gonghai catchment, 42–707 ng/g dw in lake surface sediments,

213	5-10 ng/l in September and 3-8 ng/l in January in water SPM (Table 1 and Fig. 2). The average
214	content of brGDGTs in lake surface sediments (291 ng/g dw) was significantly higher than in surface
215	soils (31 ng/g dw) and particularly exhibited an increasing trend with water depth. In SPM, the
216	average concentration of brGDGTs in water column showed no significant difference between
217	September and January (t = 1.2, $p = 0.26$) but there was a clearer trend of increase with depth in
218	September than in January (Fig. 2). Notably, the compound IIIa", which was regarded typical for in
219	situ produced lacustrine brGDGTs (Weber et al., 2015), was also identified in the Gonghai Lake
220	sediments and SPM but not found in catchment soils (Table1 and Fig. 3a). There was no significant
221	difference in average concentration of IIIa" in water column between September and January ($t = 0.62$,
222	p = 0.28). The change patterns of IIIa" with water depth in SPM and sediments were the same as those
223	of the total brGDGTs (Table 1).
224	The brGDGTs in soils, sediments and SPM were dominated by brGDGT II and III series, with
224 225	The brGDGTs in soils, sediments and SPM were dominated by brGDGT II and III series, with acyclic compounds dominant in every series (Fig. 3a). In comparison, the mean Σ IIIa/ Σ IIa ratio value
225	acyclic compounds dominant in every series (Fig. 3a). In comparison, the mean Σ IIIa/ Σ IIa ratio value
225 226	acyclic compounds dominant in every series (Fig. 3a). In comparison, the mean $\Sigma IIIa/\Sigma IIa$ ratio value in sediments (1.14–1.52 range, 1.30 average) was higher than in SPM (0.84–1.11 range, 0.99 average)
225 226 227	acyclic compounds dominant in every series (Fig. 3a). In comparison, the mean $\Sigma IIIa/\Sigma IIa$ ratio value in sediments (1.14–1.52 range, 1.30 average) was higher than in SPM (0.84–1.11 range, 0.99 average) and soils (0.56–0.86 range, 0.70 average). In addition, 6-methyl brGDGTs dominated over 5-methyl

3.3 Cyclisation ratio, methylation index of brGDGTs

232	The #Rings _{tetra} values varied from 0.26 to 0.45 (0.36 average) in catchment soils, 0.37–0.43 (0.40
233	average) in September and 0.39–0.42 (0.40 average) in January in SPM, and 0.45–0.47 (0.45 average)
234	in surface sediments (Fig. 3b). The #Rings _{penta 5ME} showed the same increasing trend as #Rings _{tetra}
235	from soils to SPM and then to sediments (Fig. 3b). In contrast, #Rings _{penta 6ME} in soils was similar to
236	that in sediments and SPM (Fig. 3b).
237	The MBT' _{5ME} values varied from 0.31 to 0.36 (average 0.35) in catchment soils, 0.23–0.29 (0.26
238	average) in surface sediments, 0.23-0.28 (0.26 average) in September and 0.24-0.26 (0.25 average) in
239	January in SPM (Fig. 3b). Generally, the MBT' _{5ME} exhibited decreasing trends with water depth in
240	surface sediments and SPM in September (Fig. 2). The MBT' _{6ME} values varied from 0.20 to 0.33 (0.25
241	average) in surface soils of the lake catchment, 0.22-0.27 (0.25 average) in surface sediments,
242	0.24–0.32 (0.28 average) in September and 0.26–0.28 (0.27 average) in January in SPM (Fig. 3b). The
243	MBT'6ME also decreased in SPM in September, but increased in sediments with water depth. Both
244	MBT' _{5ME} and MBT' _{6ME} changed less in SPM in January with water depth (Fig. 2).
245	
246	4 Discussions

4.1 In situ production of brGDGTs in the Gonghai Lake

248 Although brGDGTs have a strong potential to record temperature in lacustrine regions (Tierney

et al., 2010; Pearson et al., 2011; Sun et al., 2011; Loomis et al., 2012; Dang et al., 2018; Russell et al., 2018), the sources of brGDGTs in lake sediments should be carefully identified. There are two potential sources, including allochthonous input from soil and autochthonous production in lake water and/or surface sediments, which can be distinguished by comparison of brGDGT distribution between surface sediments and soils (Tierney and Russell, 2009; Loomis et al., 2011; Wang et al., 2012; Hu et al., 2015; Sinninghe Damsté, 2016).

In the Gonghai Lake, the average content of brGDGTs in surface sediments was significantly 255 higher than that in surface soils (Table 1). Moreover, they exhibited a clearly increasing trend with 256 water depth, suggesting a possible autochthonous contribution, even though soil brGDGTs input 257 cannot be ignored. Moreover, the brGDGT distribution in surface sediments was similar to that of 258 SPM, but quite different from that of soils (Fig. 3a). Several lines of evidence indicate a substantial in 259 situ production of brGDGTs in the Gonghai Lake. (I) The presence of IIIa" in the Gonghai Lake 260 sediments and SPM but the absence in the catchment soils may be a direct evidence of in situ 261 262 production in the lake (Fig. 3a). A similar conclusion has been drawn in a Swiss mountain lake basin (Weber et al., 2015). (II) In the Gonghai Lake, the $\Sigma IIIa/\Sigma IIa$ ratio in sediments (1.3 average) and 263 SPM (0.99 average) were much higher than in catchment soils (0.7 average) (Fig. 3a). The values of 264 Σ IIIa/ Σ IIa >0.92 has been regarded as the evidence of aquatic production in previous reports (Xiao et 265 al., 2016; Martin et al., 2019; Zhang et al., 2020). (III) The average values of IR_{6ME} in surface 266

267	sediments and SPM were significantly lower than in catchment soils (Fig. 3a), suggesting at least
268	some of 5-methyl brGDGTs in lake sediments and SPM were produced in situ. (IV) The cyclisation
269	ratio of brGDGTs has been also used to distinguish the aquatic production, although applied to marine
270	sediments, from soil input (Sinninghe Damsté, 2016). In the Gonghai Lake, #Rings _{tetra} and #Rings _{penta}
271	_{5ME} were clearly higher in sediments than in catchment soils ($p < 0.05$ for #Rings _{tetra} , $p < 0.01$ for
272	#Rings _{penta 5ME}), although #Rings _{penta 6ME} in sediments was similar to that in catchment soils ($p = 0.11$
273	for #Rings _{penta 6ME} ; Fig. 3b).

The in situ production of brGDGTs in the Gonghai Lake can be also evidenced by the 274 discrepancies in reconstructed temperatures between soils and sediments/SPM. Based on the new 275 global soil calibration of Eq. (9) and regional soil calibration of Eq. (10) for China, the 276 brGDGT-derived AT in the Gonghai catchment soils ranged from 1.18 to 2.75 °C (average 2.33 \pm 277 0.65 °C; Table 1) and from -4.22 to -1.21 °C (average -2.42 \pm 1.19 °C; Table 1), respectively. 278 Considering the ± 4.8 °C uncertainty of the global calibration and ± 2.5 °C of the regional calibration, 279 the estimated temperatures from the global calibration are much close to the mean annual AT of 280 4.3 °C, thereby well reflecting mean annual AT in our study lake catchment. Then, the global 281 calibration Eq. (9) was applied to sediment/SPM data, yielding estimated temperatures $-0.50 \pm$ 282 0.78 °C in surface sediments and -0.55 ± 0.52 °C in SPM and hence much lower than those from 283 surface soils (2.33 \pm 0.65 °C; Table 1). Similarly, temperature underestimation using soil-derived 284

calibration has been widely reported in many modern lake sediments (e.g., Tierney et al., 2010;
Loomis et al., 2012; Pearson et al., 2011; Russell et al., 2018), which has been attributed to in situ
production of brGDGTs in the lakes.

4.2 Lacustrine brGDGT-derived ATs are warm season biased (average monthly
 temperature >0 °C)

The suggested in situ production of brGDGTs prompts us to use lake-specific temperature calibrations (Tierney et al., 2010; Pearson et al., 2011; Sun et al., 2011; Loomis et al., 2012; Dang et al., 2018; Russell et al., 2018) to reconstruct AT, although not differentiated quantitatively the relative contributions of aquatic vs. soil-derived brGDGTs. Here, we applied four equations, Eqs. (11) and (15)–(17) in Table 2, to our sedimentary brGDGT data.

As shown in Fig. 4a, the reconstructed temperatures using different equations are >6.4 °C. Despite discrepancies in the temperature values between calibrations, they are comparable considering the uncertainty of each calibration. A prominent feature of the reconstructed temperature is that they, especially those in the shallower sediments, are well above the annual mean AT but more close to the mean warm season AT (average monthly temperature >0 °C). This feature is consistent with numerous studies proposing that lacustrine brGDGT-derived ATs are warm season biased (Shanahan et al., 2013; Peterse et al., 2014; Dang et al., 2018).

302 Many previous brGDGT instrumental analyses on lake materials used one cyano column, which

303	did not separate 5- and 6-methyl brGDGTs. Using the data published in the same lake from Cao et al.
304	(2017), we re-calculated temperature using different calibrations. The results showed that the absolute
305	temperature estimates were all significantly warmer than the mean annual AT (Table 3), with the
306	temperature offsets varying from 4-10 °C, which cannot be fully explained by the uncertainty of each
307	calibration. Therefore, it appears that sedimentary brGDGT-derived temperature is warm season
308	biased in the Gonghai Lake irrespective of whether or not 5- and 6-methyl brGDGTs are separated.
309	Moreover, we found the warm season bias of reconstructed AT is increasingly apparent with the
310	increase of latitude. Here, five lakes, including Lower King pond (Loomis et al., 2014), Qinghai Lake
311	(Wang et al., 2012), Lake Donghu (Qian et al., 2019), Huguangyan maar (Hu et al., 2015, 2016) and
312	Lake Towuli (Tierney and Russell, 2009), were selected to compare as an example. These lakes are
313	located in different regions spanning a relatively large environmental gradient, and more importantly,
314	brGDGT data from both the lake surface sediments and the surrounding soils are available. We
315	re-calculated temperatures from published data of brGDGTs from these lakes (Fig. 5) by applying the
316	calibration of global soils (Eq (8); Peterse et al., 2012) to the surrounding soils and the calibration of
317	lake surface sediments (Eq (11); Sun et al., 2011) to the lake sediments. As shown in Fig. 5a, the
318	brGDGT-inferred temperatures in catchment soils are similar to local mean annual ATs. In contrast,
319	the brGDGT-inferred temperatures in lake sediments are similar to the local mean annual ATs only in
320	low-latitude lakes, whereas they become increasingly higher than the local mean annual ATs toward

321	higher latitudes (Fig. 5b). In comparison, the brGDGT-inferred temperatures are close to the local
322	mean ATs in warm season (average monthly mean AT $>0^{\circ}$ C) in all these lakes (Fig. 5c). Besides
323	above discussed lakes, some investigations have also pointed out that brGDGT-inferred temperatures
324	are higher than mean annual AT, close to warm season AT or summer AT in mid- and high-latitude
325	lakes (Shanahan et al., 2013; Peterse et al., 2014; Foster et al., 2016; Dang et al., 2018), but close to,
326	or lower than, mean annual AT in low-latitude lakes (Tierney et al., 2010; Loomis et al., 2012).
327	Therefore, it is a global occurrence that sedimentary brGDGT-derived temperatures are warm season
328	biased in lakes at cold regions.
329	4.3. Lacustrine brGDGTs reflect deep/bottom water temperature

Another feature of sedimentary brGDGT-derived ATs in our results is that there is a consistently 330 decreasing trend of reconstructed temperature with depth using Eqs. (11), (15) and (16) (Fig. 4a), 331 albeit less clear using Eq. (15). It is not understandable that AT is correlated with water depth. 332 Interestingly, both MBT'_{5ME} and MBT'_{6ME} in SPM showed decreasing trends with water depth in 333 334 September, similar to the water temperature profile of the month (Fig. 2). In January, the relatively unchanged MBT'_{5ME} and MBT'_{6ME} (<0.02) also mirror the constant water temperature of the month 335 (Fig. 2). Accordingly, we surmise that brGDGT-derived temperatures in sediments and SPM may 336 actually reflect water temperature. 337

338 Although the MBT'_{5ME} and MBT'_{6ME} in SPM in the lake seem to reflect temperature changes in

339	the water column to some extent, the differences of brGDGT-derived temperatures based on
340	lake-specific calibrations between September and January (-0.93 to 1.21 °C) are much lower than the
341	measured difference (~13 °C), independent of the calibration of (15), (16) or (17) (Tables 1 and 2). In
342	fact, similar results have been also reported in other lakes. For example, in the Lower King Pond, the
343	calculated seasonal temperature difference in surface water SPM was 5.4 °C, significantly smaller
344	than the measured difference about 28.3 °C (Loomis et al., 2014); in the Huguangyan maar lake, the
345	calculated seasonal temperature difference was 8 °C, also significantly smaller than the measured
346	difference about 16 °C (Hu et al., 2016). The reduced seasonal contrasts in SPM brGDGT-derived
347	temperatures could result from the existence of "fossil" brGDGTs and sediment resuspension in the
348	water column, which may lead to a long (e.g., multi seasonal) residence time of SPM, although not
349	exactly known (Loomis et al., 2014). The even smaller differences in MBT' _{5ME} and MBT' _{6ME} between
350	sediments and SPM at deeper sites in our results (Fig. 2) suggest the impacts of sediment suspension
351	on SPM. Such a scenario may lead to more "fossil" brGDGTs in SPM than those produced within a
352	specific season or month, as evidenced by an observation showing that only a small proportion of
353	intact polar lipid of brGDGTs, indicative of fresh brGDGTs, was detected in total brGDGTs in SPM
354	in a shallow lake (Qian et al., 2019). Besides, several parameters, such as $\Sigma IIIa/\Sigma IIa$, IR _{6ME} , #Rings _{tetra}
355	and #Rings _{penta} in SPM were in-between the soil and sediment values, we speculate terrestrial inputs
356	may be a factor, if any, to reduce the seasonal changes of brGDGTs in SPM.

357	In addition to reflecting water temperature, the decease trend with depth in sedimentary
358	brGDGT-derived temperature further suggests a controlling influence of deep/bottom water
359	temperature. Similar occurrence has been observed also in Lower King pond in temperate northern
360	Vermont, U.S.A. and Lake Biwa in central Japan, showing that the sedimentary brGDGT-derived
361	temperatures decreased with water depth, co-varied with mean annual LWT at depths (Ajiako et al.,
362	2014; Loomis et al., 2014). Also in Loch Lomond in the UK, the brGDGT-derived temperatures by
363	different MBT/CBT lacustrine calibrations all decreased with water depth (Buckles et al., 2014b). So,
364	a water depth-related production of brGDGTs should be considered when interpreting
365	brGDGT-derived temperatures, which will be discussed below.
365 366	brGDGT-derived temperatures, which will be discussed below. We notice recent works suggesting that changes in microbial community composition may be
366	We notice recent works suggesting that changes in microbial community composition may be
366 367	We notice recent works suggesting that changes in microbial community composition may be responsible for variations in the distribution of brGDGTs, causing the different responses of soil
366 367 368	We notice recent works suggesting that changes in microbial community composition may be responsible for variations in the distribution of brGDGTs, causing the different responses of soil brGDGTs temperature, as well as pH, under different temperature ranges (e.g., De Jonge et al. 2019).
366 367 368 369	We notice recent works suggesting that changes in microbial community composition may be responsible for variations in the distribution of brGDGTs, causing the different responses of soil brGDGTs temperature, as well as pH, under different temperature ranges (e.g., De Jonge et al. 2019). However, little is known about whether this idea is applicable to aquatic environments. According to

373 those available for the entire 15 brGDGT compounds in literature, mostly from the east Africa. As

374 shown in Fig. 4b, the putative two community clusters also occur in lake environments, with the

Gonghai community belonging to the "cold" cluster. Different from soil data showing that MBT'_{5ME} captures large temperature changes only when the bacterial community shows a strong change in composition (De Jonge et al. 2019), it seems that MBT'_{5ME} changes linearly with LWT, which is less influenced by the bacterial community change (Fig. 4b). However, we note that the test of community change here is rather crude, and further studies on the biological sources of brGDGT and their response to temperature in aquatic environments are needed.

4.4 Ice cover formation as a mechanism for the apparent warm bias of lacustrine brGDGT-derived temperature

383 One explanation for the warm season biases of the lacustrine brGDGT-derived temperature in mid to high latitudes has been proposed as the excessive production of brGDGTs during the 384 385 warm/summer season relative to winter season (Pearson et al., 2011; Shanahan et al., 2013; Peterse et al., 2014; Foster et al., 2016; Dang et al., 2018). In the Gonghai Lake, the average concentration of 386 brGDGTs in SPM is 7.1 \pm 2.0 ng/l in September and 5.2 \pm 2.3 ng/l in January (Fig. 2) with no 387 388 significant difference. Besides, the compound IIIa", which is likely specifically of aquatic origin (Weber et al., 2015), also showed no significant seasonal difference $(0.36 \pm 0.09 \text{ ng/l in September vs.})$ 389 0.31 ± 0.15 ng/l in January). More importantly, the small differences in MBT'_{5ME} and MBT'_{6ME} of 390 SPM and their derived temperatures between September and January suggest that the actual seasonal 391 temperature difference, which may be recorded by the immediately produced brGDGTs, would have 392

393	been substantially masked or smoothed by the predominance of fossil brGDGTs. In addition,
394	brGDGT-derived temperatures in SPM were close to mean annual water temperature and lower than
395	the mean annual warm water temperature, also did not support the excessive production of brGDGTs
396	during the warm/summer season relative to winter season. Besides, the season of higher brGDGT
397	concentration has been found different in different lakes, e.g., in spring and autumn in Lower King
398	pond (Loomis et al., 2014), in winter in Lake Lucerne (Blaga et al., 2011), and in summer in Lake
399	Donghu in central China (Qian et al., 2019). However, in all these lakes in temperate climate zones,
400	the brGDGT-derived temperatures have been found to be slightly or significantly warm season biased
401	(Loomis et al., 2014; Qian et al., 2019; Fig. 5b). The above evidence suggests that other factors, other
402	than seasonality in the production of brGDGTs in the lakes, should be responsible for the bias of
403	brGDGT-inferred temperature toward warm season in higher latitudes (Fig. 5b and c).
404	The brGDGT-derived temperature in lake sediments could be influenced by the vertically
405	inhomogeneous production of brGDGTs with maximum in deep/bottom waters. This seems true in the
406	Gonghai Lake as evidenced by the increase of sedimentary brGDGT content and the decrease of
407	brGDGT-derived temperature with water depth as discussed above. The bio-precursors of brGDGTs
408	have been proposed to be bacteria with an anaerobic heterotrophic lifestyle (Sinninghe Damsté et al.,
409	2000; Weijers et al., 2006b, 2010; Weber et al., 2015, 2018), implying that a potentially anoxic

411	Zhang et al., 2016; Weber et al., 2018). Such an occurrence could lead to higher proportion of 'colder
412	temperature' brGDGTs in lake sediments, which may at least partly interpret the frequently observed
413	cool bias of brGDGT-derived temperatures in many lakes, such as the Lake Challa, Lake Albert, Lake
414	Edward and Lake Tanganyika (Tierney et al., 2010; Loomis et al., 2012; Buckles et al., 2014a). The
415	MBT/CBT-derived temperature in the tropical Lake Huguangyan was thought to reflect mean annual
416	AT (Hu et al., 2015, 2016); however, has recently been proposed to be winter/cool biased (Chu et al.,
417	2017). We suppose that, as a monomictic lake, the lower mean annual temperature than mean annual
418	AT in deep/bottom waters might be a cause for the cool biased brGDGT temperature in the lake.
419	Intriguingly, all the above lakes are in the tropics. Nonetheless, the deep/bottom water bias may be
420	still true for the brGDGT-derived temperature in lakes in higher latitude, as suggested by our data in
421	the Gonghai Lake. However, different from those tropical lakes, in higher-latitude lakes, including the
422	Gonghai Lake (this study), Qinghai Lake (Wang et al., 2012), Lower King pond (Loomis et al., 2014),
423	some cold-region lakes in China (Dang et al., 2018) and some Arctic lakes (Shanahan et al., 2013;
424	Peterse et al., 2014), the sedimentary brGDGT-derived temperatures are all higher, not lower, than the
425	mean annual AT. Therefore, more production of brGDGTs in deep/bottom water alone is not
426	responsible for the warm bias of brGDGT-derived temperature in surface sediments at least in these
427	lakes.

428 Although brGDGTs in lake sediments were confirmed to be mainly derived from in situ aquatic

429	production, previous studies deemed that the estimated temperatures can still reflect AT by assuming
430	that LWT is tightly coupled with AT (Tierney et al., 2010). In fact, such tight coupling can be found in
431	tropical-subtropical lakes, where AT is always above the freezing point, but is not true in
432	higher-latitude lakes such as Lower King pond and Gonghai Lake with lake surface freezing in winter
433	(Fig. 6a and b). The reason is that lake surface ice prevents the thermal exchange between water and
434	air, leading to decoupling between LWT (usually \geq 4 °C) and AT (<0 °C) in winter in cold regions. The
435	decoupling makes mean annual LWT, even at the deep/bottom waters, higher than mean annual AT.
436	Therefore, the greater warm biases of brGDGT-derived temperatures from surface sediments in higher
437	latitudes (Fig. 5b) could be due to the stronger decoupling (e.g., longer freezing time) between LWT
438	and AT. Nevertheless, annual mean LWT appears basically close to the mean AT in warm season
439	(average monthly temperature >0 $^{\circ}$ C) (Fig. 6f), which could be the reason why the brGDGT-inferred
440	temperatures are similar to the mean warm season AT (Fig. 5c). Due to lack of detailed AT and LWT
441	data in literature, we failed to show more examples than as shown in Fig. 6, especially those from
442	even higher latitudes. However, we proposed a simple model for the relationship between LWT and
443	AT in a year cycle (Fig. 7), which may be a universal physical phenomenon in shallow lakes. In the
444	mid- and high-latitude region, we believe the decoupling between AT and LWT caused by ice
445	formation in winter may be applied to explain the observed seasonality of the brGDGT temperature
446	records. For example, the biases of brGDGT-derived temperatures toward summer AT observed

extensively in the Arctic and Antarctic lakes (Shanahan et al., 2013; Foster et al., 2016) are
compatible with the mechanism that we propose here. Of course, considering limited data in this study,
more investigations are needed to test our viewpoint in future studies.

450

451 **5** Conclusions

We investigated the brGDGT distribution in catchment soils, surface sediments and water 452 column SPM in September and January in the Gonghai Lake in north China. The lake is characterized 453 by ice formation on its surface and a constant 4 °C condition in the underlying water in winter. The 454 455 brGDGT distribution in sediments were similar to that in SPM but differed clearly from that in soils, indicating mainly in situ production of brGDGTs in the lake. BrGDGTs in SPM showed little seasonal 456 457 differences in concentration and MBT'_{5ME}, likely due to a dominant contribution of fossil brGDGTs caused by, e.g., sediment suspension, which may mask any seasonal signals documented in 458 sedimentary brGDGTs. The increase of brGDGT content and decrease of methylation index with 459 460 water depth in sediments suggested more contribution of aquatic brGDGTs produced from deep/bottom waters. Based on available lake calibrations, we found that the temperature estimates in 461 surface sediments and SPM of the Gonghai Lake were higher than the measured mean annual AT but 462 close to warm season AT, which cannot interpreted by more aquatic production of brGDGTs in warm 463 season and/or in deep/bottom waters. We found that such a warm biased brGDGT-derived temperature 464

465	was actually close to the mean annual LWT, and therefore proposed that water-air temperature
466	decoupling due to ice formation at the lake surface in winter, which can prevent thermal exchange
467	between lake water and air, may be the cause for the apparent bias toward warm AT of lacustrine
468	brGDGT-derived temperatures. Since the warm AT bias of brGDGT estimates has been observed
469	extensively in mid- and high-latitude shallow lakes, we believe the mechanism proposed here could
470	also be applicable to these lakes.
471	
472	Data availability
473	The raw data of this study can be accessed from https://figshare.com/s/a4f324247ecd9d1ac575.
474	Author contribution
475	ZR designed experiments, FS and JC collected samples and JC carried experiments out. JC, GJ and
476	ZR prepared the manuscript with contributions from all co-authors.
477	Conflicts of interest
478	The authors declare that they have no conflict of interest.
479	
480	Acknowledgments
	Acknowledgments The work was supported by the Hunan Provincial Natural Science foundation of China (2018JJ1017),

483 for the Central Universities of China (grant no. lzujbky-2018-it77). Two anonymous reviewers are
484 thanked for their valuable comments.

485

486 **References**

487	Ajioka, T., Yamamoto, M., and Murase, J.: Branched and isoprenoid glycerol dialkyl glycerol
488	tetraethers in soils and lake/river sediments in Lake Biwa basin and implications for MBT/CBT
489	proxies, Org. Geochem., 73, 70-82, doi: 10.1016/j.orggeochem.2014.05.009, 2014.
490	Bechtel, A., Smittenberg, R. H., Bernasconi, S. M., and Schubert, C. J.: Distribution of branched and
491	isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: Insights into sources
492	and GDGT-based proxies, Org. Geochem., 41, 822-832, doi:10.1016/j.orggeochem.2010.04.022,
493	2010.
494	Blaga, C. I., Reichart, G. J., Heiri, O., and Sinninghe Damsté, J. S.: Tetraether membrane lipid
495	distributions in water-column particulate matter and sediments: a study of 47 European lakes
496	along a north-south transect, J. Paleolimnol., 41, 523-540, doi:10.1007/s10933-008-9242-2,
497	2009.
498	Blaga, C. I., Reichart, G. J., Schouten, S., Lotter, A. F., Werne, J. P., Kosten, S., Mazzeo, N., Lacerot,
499	G., and Sinninghe Damsté, J. S.: Branched glycerol dialkyl glycerol tetraethers in lake sediments:
500	can they be used as temperature and pH proxies, Org. Geochem., 41, 1225-1234,

501 doi:10.1016/j.orggeochem.2010.07.002, 2010.

502 Blaga, C. I., Reichart, G. J., Vissers, E. W., Lotter, A. F., Anselmetti, F. S., and Sinninghe Damst	502	Blaga, C. I.	, Reichart	, G. J.,	Vissers.	E. W.	Lotter	. A. F.	, Anselmetti	F. S.	, and Sinnin	ghe Damste	5. J
--	-----	--------------	------------	----------	----------	-------	--------	---------	--------------	-------	--------------	------------	------

- 503 S.: Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a
- 504 perialpine lake: Implications for the use of the TEX86 and BIT proxies, Geochim. Cosmochim.
- 505 Acta, 75, 6416-6428, doi:10.1016/j.gca.2011.08.016, 2011.
- 506 Buckles, L. K., Weijers, J. W. H., Verschuren, D., and Sinninghe Damsté, J. S.: Sources of core and
- 507 intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake
- 508 Challa and its catchment, equatorial East Africa, Geochim. Cosmochim. Acta, 140, 106-126,
- 509 doi:10.1016/j.gca.2014.04.042, 2014a.
- 510 Buckles, L. K., Weijers, J. W. H., Tran, X. M., Waldron, S., and Sinninghe Damsté, J. S.: Provenance
- 511 of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for
- 512 glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry, Biogeosciences, 11,
- 513 5539-5563, doi:10.5194/bg-11-5539-2014, 2014b.
- 514 Cao, J. T., Rao, Z. G., Jia, G. D., Xu, Q. H., and Chen, F. H.: A 15 ka pH record from an alpine lake in
- 515 north China derived from the cyclization ratio index of aquatic brGDGTs and its paleoclimatic
- 516 significance, Org. Geochem., 109, 31-46, doi:10.1016/j.orggeochem.2017.02.005, 2017.
- 517 Chen, F. H., Yu, Z. C., Yang, M. L., Ito, E., Wang, S. M., Madsen, D. B., Huang, X. Z., Zhao, Y., Sato,
- 518 T., John, B. B. H., Boomer, I., Chen, J. H., An, C. B., and Wünnemann, B.: Holocene moisture

519 evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history, Quat.

520	Sci. Rev., 27, 351-364, doi:10.1016/j.quascirev.2007.10.017, 2008.
521	Chen, F. H., Liu, J. B., Xu, Q. H., Li, Y. C., Chen, J. H., Wei, H. T., Liu, Q. S., Wang, Z. L., Cao, X. Y.
522	and Zhang, S. R.: Environmental magnetic studies of sediment cores from Gonghai Lake:
523	implications for monsoon evolution in North China during the late glacial and Holocene, J.
524	Paleolimnol., 49, 447-464, doi:10.1007/s10933-012-9677-3, 2013.
525	Chen, F. H., Xu, Q. H., Chen, J. H., Birks, H. J. B., Liu, J. B., Zhang, S. R., Jin, L. Y., An, C. B.,
526	Telford, R. J., Cao, X. Y., Wang, Z. L., Zhang, X. J., Selvaraj, K., Lu, H. Y., Li, Y. C., Zheng, Z.,
527	Wang, H. P., Zhou, A. F., Dong, G. H., Zhang, J. W., Huang, X. Z., Bloemendal, J. and Rao, Z.
528	G.: East Asian summer monsoon precipitation variability since the last deglaciation, Sci. Rep., 5,
529	11186, doi:10.1038/srep11186, 2015.
530	Chu, G., Sun, Q., Zhu, Q., Shan, Y., Shang, W., Ling, Y., Su, Y., Xie, M., Wang, X., Liu, J.: The role
531	of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last
532	deglaciation, Quat. Sci. Rev., 177, 120-129, doi:10.1016/j.quascirev.2017.10.014, 2017.
533	Dang, X. Y., Ding, W. H., Yang, H., Pancost, R. D., Naafs, B. D. A., Xue, J. T., Lin, X., Lu, J. Y., and
534	Xie, S. C.: Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese
535	lake sediments compared to that in soils, Org. Geochem., 119, 72-79,
536	doi:10.1016/j.orggeochem.2018.02.008, 2018.

537	De Jonge, C., Hopmans, E.C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland, R., Tegelaar, E., Sinninghe
538	Damsté, J.S.: Identification of novel penta- and hexamethylated branched glycerol dialkyl
539	glycerol tetraethers in peat using HPLC-MS ² , GC-MS and GC-SMB-MS, Org. Geochem., 54,
540	78-82, doi:10.1016/j.orggeochem.2012.10.004, 2013.
541	De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J. H., Schouten, S., and Sinninghe Damsté, J. S.:
542	Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:
543	implications for palaeoclimate reconstruction, Geochim. Cosmochim. Acta, 141, 97-112,
544	doi:10.1016/j.gca.2014.06.013, 2014.
545	De Jonge, C., Radujković, D., Sigurdsson, B. D., Weedon, J. T., Janssens, I., Peterse, F.: Lipid
546	biomarker temperature proxy responds to abrupt shift in the bacterial community composition in
547	geothermally heated soils, Org. Geochem., 137, 103897, doi:10.1016/j.orggeochem.2019.07.006.
548	Deng, L. H., Jia, G. D., Jin, C. F., and Li, S. J.: Warm season bias of branched GDGT temperature
549	estimates causes underestimation of altitudinal lapse rate, Org. Geochem., 96, 11-17,
550	doi:10.1016/j.orggeochem.2016.03.004, 2016.
551	Foster, L. C., Pearson, E. J., Juggins, S., Hodgson, D. A., Saunders, K. M., Verleyen, E., and Roberts,
552	S. J.: Development of a regional glycerol dialkyl glycerol tetraether (GDGT)-temperature
553	calibration for Antarctic and sub-Antarctic lakes, Earth Planet. Sci. Lett., 433, 370-379,
554	doi:10.1016/j.epsl.2015.11.018, 2016.

555	Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.:
556	A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid
557	tetraether lipids, Earth Planet. Sci. Lett., 224, 107-116, doi:10.1016/j.epsl.2004.05.012, 2004.
558	Hu, J. F., Zhou, H. D., Peng, P. A., Yang, X. P., Spiro, B., Jia, G. D., Wei, G. J. and Ouyang, T. P.:
559	Reconstruction of a paleotemperature record from 0.3-3.7 ka for subtropical South China using
560	lacustrine branched GDGTs from Huguangyan Maar, Paleogeogr. Paleoclimatol. Paleoecol., 435,
561	167-176, doi:10.1016/j.palaeo.2015.06.014, 2015.
562	Hu, J. F., Zhou, H. D., Peng, P. A., and Spiro, B.: Seasonal variability in concentrations and fluxes of
563	glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the
564	applicability of the MBT-CBT paleotemperature proxy in lacustrine settings, Chem. Geol., 420,
565	200-212, doi:10.1016/j.chemgeo.2015.11.008, 2016.
566	Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe Damsté, J. S., and
567	Schouten, S.: An improved method to determine the absolute abundance of glycerol dibiphytanyl
568	glycerol tetraether lipids, Org. Geochem., 37, 1036-1041,
569	doi:10.1016/j.orggeochem.2006.05.008, 2006.
570	Li, X. M., Wang, M. D., Zhang, Y. Z., Lei, L., and Hou, J. Z.: Holocene climatic and environmental
571	change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf
572	wax deuterium-to-hydrogen ratios at Aweng Co, Quaternary Res., 87, 455-467,
	32

573 doi:10.1017/qua.2017.9, 2017.

574	Loomis, S. E., Russell, J. M., and Sinninghe Damsté, J. S.: Distributions of branched GDGTs in soils
575	and lake sediments from western Uganda: implications for a lacustrine paleothermometer, Org.
576	Geochem., 42, 739-751, doi:10.1016/j.orggeochem.2011.06.004, 2011.
577	Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A., and Sinninghe Damsté, J. S.: Calibration
578	and application of the branched GDGT temperature proxy on East African lake sediments, Earth
579	Planet. Sci. Lett., 357-358, 277-288, doi:10.1016/j.epsl.2012.09.031, 2012.
580	Loomis, S. E., Russell, J. M., Heureux, A. M., Andrea, W. J. D., and Sinninghe Damsté, J. S.:
581	Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate
582	lake system, Geochim. Cosmochim. Acta, 144, 173-187, doi:10.1016/j.gca.2014.08.027, 2014.
583	Martin, C., Ménot, G., Thouveny, N., Davtian, N., Andrieu-Ponel, V., Reille, M., and Bard, E.: Impact
584	of human activities and vegetation changes on the tetraether sources in Lake St Front (Massif
585	Central, France), Org. Geochem., 135, 38-52, doi:10.1016/j.orggeochem.2019.06.005, 2019.
586	Naeher, S., Peterse, F., Smittenberg, R. H., Niemann, H., Zigah, P. K., and Schubert, C. J.: Sources of
587	glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of
588	Lake Rotsee (Switzerland)-implications for the application of GDGT-based proxies for lakes,
589	Org. Geochem., 66, 164-173, doi:10.1016/j.orggeochem.2013.10.017, 2014.
590	Naafs, B. D. A., Gallego-Sala, A. V., Inglis, G. N., and Pancost, R. D.: Refining the global branched

33

591 glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration, Org. Geochem., 106,

592	48-56, doi:10.1016/j.orggeochem.2017.01.009, 2017.
	······································

- 593 Niemann, H., Stadnitskaia, A., Wirth, S. B., Gilli, A., Anselmetti, F. S., Sinninghe Damsté, J. S.,
- 594 Schouten, S., Hopmans, E. C., and Lehmann, M. F.: Bacterial GDGTs in Holocene sediments
- and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer, Clim.
- 596 Past, 8, 889-906, doi:10.5194/cp-8-889-2012, 2012.
- 597 Ning, D. L., Zhang, E. H., Shulmeister, J., Chang, J., Sun, W. W., and Ni, Z. Y.: Holocene mean
- 598 annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol
- tetraethers from Lake Ximenglongtan, southwestern China, Org. Geochem., 133, 65-76,
 doi:10.1016/j.orggeochem.2019.05.003, 2019.
- 601 Pearson, E. J., Juggins, S., Talbot, H. M., Weckström, Jan., Rosén, P., Ryves, D. B., Roberts, S. J., and
- 602 Schmidt, R.: A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to
- 603 Antarctic: renewed potential for the application of GDGT-paleothermometry in lakes, Geochim.
- 604 Cosmochim. Acta, 75, 6225-6238, doi: 10.1016/j.gca.2011.07.042, 2011.
- 605 Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N., Jackson, R. B., Kim, J. M.,
- and Sinninghe Damsté, J. S.: Revised calibration of the MBT-CBT paleotemperature proxy based
- 607 on branched tetraether membrane lipids in surface soils, Geochim. Cosmochim. Acta, 96,
- 608 215-229, doi:10.1016/j.gca.2012.08.011, 2012.

609	Peterse, F., Vonk, J. E., Holmes, R. M., Giosan, L., Zimov, N., and Eglinton, T. I.: Branched glycerol
610	dialkyl glycerol tetraethers in Arctic lake sediments: sources and implications for
611	paleothermometry at high latitudes, J. Geophys. ResBiogeosci., 119, 1738-1754, doi:
612	10.1002/2014jg002639, 2014.
613	Qian, S., Yang, H., Dong, C. H., Wang, Y. B., Wu, J., Pei, H. Y., Dang, X. Y., Lu, J. Y., Zhao, S. J., and
614	Xie, S. C.: Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental
615	variables in a shallow lake in central China: Implications for the use of tetraether-based proxies,
616	Org. Geochem., 128, 108-121, doi:10.1016/j.orggeochem.2018.12.007, 2019.
617	Rao, Z. G., Jia, G. D., Li, Y. X., Chen, J. H., Xu, Q. H., and Chen, F. H.: Asynchronous evolution of
618	the isotopic composition and amount of precipitation in north China during the Holocene
619	revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain
620	<i>n</i> -alkanes from an alpine lake, Earth Planet. Sci. Lett., 446, 68-76,
621	doi:10.1016/j.epsl.2016.04.027, 2016.
622	Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J., and Sinninghe Damsté, J. S.: Distributions of
623	5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake
624	sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations, Org.
625	Geochem., 117, 56-69, doi:10.1016/j.orggeochem.2017.12.003, 2018.
626	Schoon, P. L., de Kluijver, A., Middelburg, J. J., Downing, J. A., Sinninghe Damsté, J. S., and

35

627	Schouten, S.: Influence of lake water pH and alkalinity on the distribution of core and intact
628	polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes, Org. Geochem., 60, 72-82,
629	doi:10.1016/j.orggeochem.2013.04.015, 2013.
630	Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and Sinninghe Damsté, J. S.:
631	Improved analytical methodology of the TEX86 paleothermometry by high performance liquid
632	chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem., 791,
633	2940-2944, doi:10.1021/ac062339v, 2007.
634	Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic geochemistry of glycerol
635	dialkyl glycerol tetraether lipids: a review, Org. Geochem., 54, 19-61,
636	doi:10.1016/j.orggeochem.2012.09.006, 2013.
637	Shanahan, T. M., Hughen, K. A., and Van Mooy, B. A. S.: Temperature sensitivity of branched and
638	isoprenoid GDGTs in Arctic lakes, Org. Geochem., 64, 119-128,
639	doi:10.1016/j.orggeochem.2013.09.010, 2013.
640	Shen, Z. W., Liu, J. B., Xie, C. L., Zhang, X. S., and Chen, F. H.: An environmental perturbation at
641	AD 600 and subsequent human impacts recorded by multi-proxy records from the sediments of
642	Lake Mayinghai, North China, The Holocene, 28, 1870-1880, doi:10.1177/0959683618798159,
643	2018.
644	Sinninghe Damsté, J. S., Hopmans, E. C., and Pancost, R. D.: Newly discovered non-isoprenoid

645	glycerol dialkyl glycerol tetraether lipids in sediments, Chem. Commun., 23, 1683-1684,
646	doi:10.1039/b004517i, 2000.
647	Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and Verschuren, D.: Fluxes and
648	distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the
649	TEX86 palaeothermometer and BIT index in lacustrine settings, Geochim. Cosmochim. Acta, 73,
650	4232–4249, doi:10.1016/j.gca.2009.04.022, 2009.
651	Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched tetraethers in shelf systems: The
652	geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia), Geochim.
653	Cosmochim. Acta, 186, 13-31, doi:10.1016/j.gca.2016.04.033, 2016.
654	Sun, Q., Chu, G. Q., Liu, M. M., Xie, M. M., Li, S. Q., Ling, Y., Wang, X. H., Shi, L. M., Jia, G. D.,
655	and Lü, H. Y.: Distributions and temperature dependence of branched glycerol dialkyl glycerol
656	tetraethers in recent lacustrine sediments from China and Nepal, J. Geophys. Res., 116, G01008,
657	doi: 10.1029/2010jg001365, 2011.
658	Tian, L. P., Wang, M. Y., Zhang, X., Yang, X. Q., Zong, Y. Q., Jia, G. D., Zheng, Z., and Man, M. L.:
659	Synchronous change of temperature and moisture over the past 50 ka in subtropical southwest
660	China as indicated by biomarker records in a crater lake, Quat. Sci. Rev., 212, 121-134, doi:
661	10.1016/j.quascirev.2019.04.003, 2019.
662	Tierney, J. E., and Russell, J. M.: Distributions of branched GDGTs in a tropical lake system:

663	implications for lacustrine application of the MBT/CBT paleoproxy, Org. Geochem., 40,
664	1032-1036, doi:10.1016/j.orggeochem.2009.04.014, 2009.
665	Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D., and Sinninghe Damsté,
666	J. S.: Environmental controls on branched tetraether lipid distributions in tropical East African
667	lake sediments, Geochim. Cosmochim. Acta, 74, 4902-4918, doi:10.1016/j.gca.2010.06.002,
668	2010.
669	Tierney, J. E., Schouten, S., Pitcher, A., Hopmans, E. C., and Sinninghe Damsté, J. S.: Core and intact
670	polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA):
671	insights into the origin of lacustrine GDGTs, Geochim. Cosmochim. Acta, 77, 561-581, doi:
672	10.1016/j.gca.2011.10.018, 2012.
673	Wang, H. Y., Liu, W. G., Zhang, C. L., Wang, Z., Wang, J. X., Liu, Z. H., and Dong, H. L.:
674	Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and
675	surrounding soil, Org. Geochem., 47, 78-87, doi:10.1016/j.orggeochem.2012.03.008, 2012.
676	Wang, H. Y., Liu, W. G., Lu, H. X.: Appraisal of branched glycerol dialkyl glycerol tetraether-based
677	indices for North China, Org. Geochem., 98, 118-130, doi:10.1016/j.orggeochem.2016.05.013,
678	2016.
679	Wang, M. Y., Zheng, Z., Zong, Y. Q., Tian, L. P.: Distributions of soil branched glycerol dialkyl
680	glycerol tetraethers from different climate regions of China, Sci Rep., 9, 2761,

681 doi:10.1038/s41598-019-39147-9, 2019.

682	Weber, Y., De Jonge, C., Rijpstra, W. I. C., Hopmans, E. C., Stadnitskaia, A., Schubert, C. J.,
683	Lehmann, M. F., Sinninghe Damsté, J. S., and Niemann, H.: Identification and carbon isotope
684	composition of a novel branched GDGT isomer in lake sediments: evidence for lacustrine
685	branched GDGT production, Geochim. Cosmochim. Acta, 154, 118-129,
686	doi:10.1016/j.gca.2015.01.032, 2015.
687	Weber, Y., Sinninghe Damsté, J. S., Zopfi, J., De Jonge, C., Gilli, A., Schubert, C. J., Lepori, F.,
688	Lehmann, M. F., and Niemann, H.: Redox-dependent niche differentiation provides evidence for
689	multiple bacterial sources of glycerol tetraether lipids in lakes, Proc. Natl. Acad. Sci. USA, 115,
690	10926-10931, doi:10.1073/pnas.1805186115, 2018.
691	Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and
692	distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy
693	and the BIT index, Org. Geochem., 37, 1680-1693, doi:10.1016/j.orggeochem.2006.07.018,
694	2006a.
695	Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J., David, O. R. P., Coleman, J. M.,
696	Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane lipids of mesophilic anaerobic bacteria
697	thriving in peats have typical archaeal traits, Environ. Microbiol., 8, 648-657,
698	doi:10.1111/j.1462-2920.2005.00941.x, 2006b.

699	Weijers, J. W. H., Schouten, S., Van den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. S.:
700	Environmental controls on bacterial tetraether membrane lipid distribution in soils, Geochim.
701	Cosmochim. Acta, 71, 703-713, doi:10.1016/j.gca.2006.10.003, 2007a.
702	Weijers, J. W. H., Schefuß, N., Schouten, S., and Sinninghe Damsté, J. S.: Coupled thermal and
703	hydrological evolution of tropical Africa over the last deglaciation, Science, 315, 1701-1704,
704	doi:10.1126/science.1138131, 2007b.
705	Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C., and Pancost, R. D.: Carbon isotopic
706	composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a
707	heterotrophic life style of their source organism(s), Biogeosciences, 7, 2959-2973,
708	doi:10.5194/bgd-7-3691-2010, 2010.
709	Woltering, M., Werne, J. P., Kish, J. L., Hicks, R., Sinninghe Damsté, J. S., Schouten, S.: Vertical and
710	temporal variability in concentration and distribution of thaumarchaeotal tetraether lipids in Lake
711	Superior and the implications for the application of the TEX86 temperature proxy, Geochim.
712	Cosmochim. Acta, 87, 136-153, doi:10.1016/j.gca.2012.03.024, 2012.
713	Xiao, W. J., Wang, Y. H., Zhou, S. Z., Hu, L. M., Yang, H., Xu, Y. P.: Ubiquitous production of
714	branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new
715	
/10	source indicator for brGDGTs, Biogeosciences, 13, 5883-5894, doi:10.5194/bg-13-5883-2016,

717	Yang, H., Lü, X. X., Ding, W. H., Lei, Y. Y., Dang, X. Y., Xie, S. C.: The 6-methyl branched
718	tetraethers significantly affect the performance of the methylation index (MBT') in soils from an
719	altitudinal transect at Mount Shennongjia, Org. Geochem., 82, 42–53,
720	doi:10.1016/j.orggeochem.2015.02.003, 2015.
721	Zhang, J., Yu, Z. G., Jia, G. D.: Cyclisation degree of tetramethylated brGDGTs in marine
722	environments and its implication for source identification, Global Planet. Change, 184, 103043,
723	doi:10.1016/j.gloplacha.2019.103043, 2020.
724	Zhang, Z. H., Smittenberg, R. H., and Bradley, R. S.: GDGT distribution in a stratified lake and
725	implications for the application of TEX86 in paleoenvironmental reconstructions, Sci. Rep., 6,
726	34465, doi:10.1038/srep34465, 2016.

Captions for Tables and Figures:

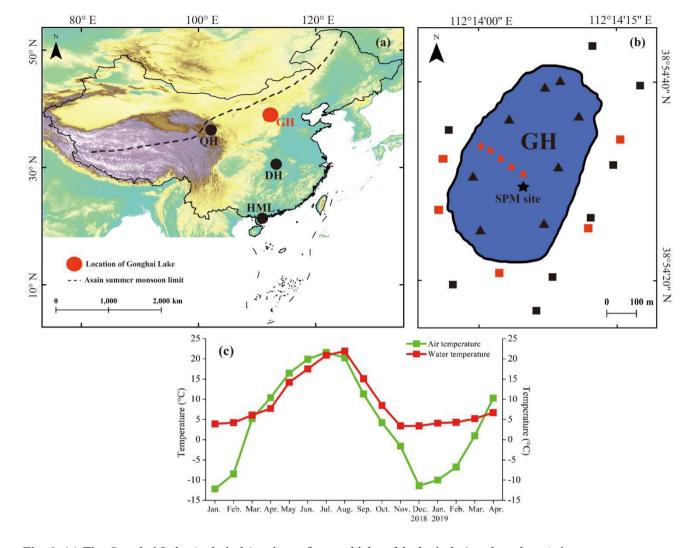
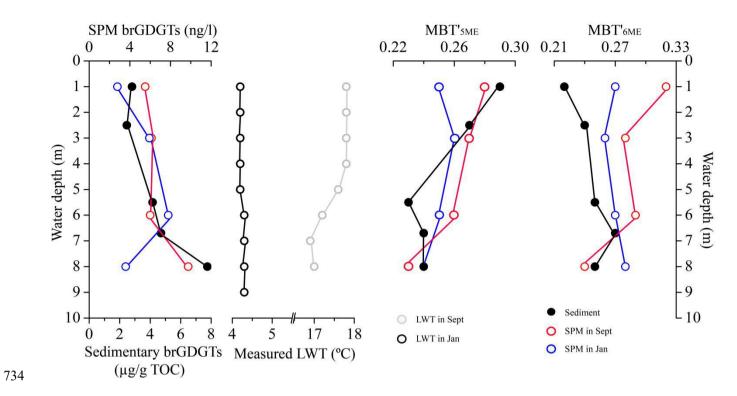
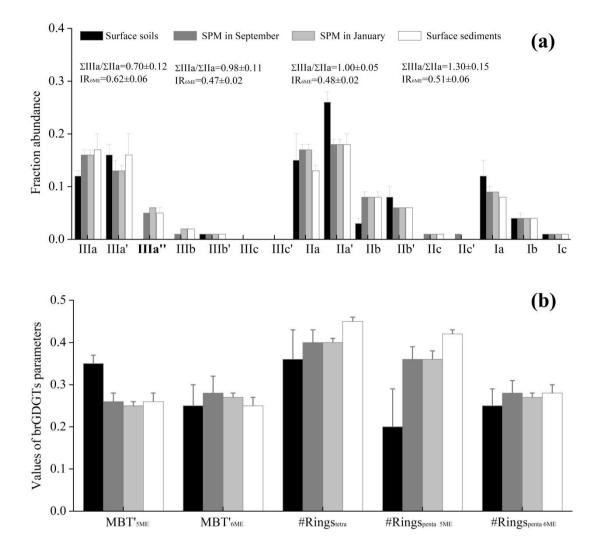
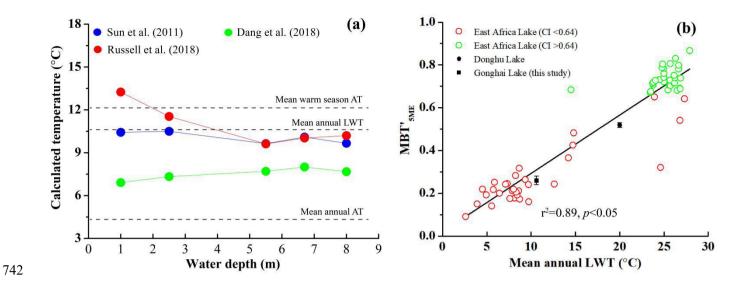




Fig. 1. (a) The Gonghai Lake (red circle), other referenced lakes (black circles) and modern Asian summer monsoon limit (dashed line; Chen et al., 2008). (b) SPM from water column (black star), surface soils (red squares) and surface sediments (red triangles) in Gonghai Lake in this study; black squares and triangles represents the sample sites published in Cao et al. (2017) (modified from Cao et al., 2017). (c) Measured local air temperature (AT) and lake water temperature (LWT) during 2018–2019 (this study).


735 Fig. 2. Depth profiles of water temperature, brGDGT concentrations, MBT'_{5ME}, MBT'_{6ME} in water SPM from

736	January and September and sediments in the Gonghai L	.ake.

739 Fig. 3. BrGDGT distribution in surface soils, water column (SPM) and surface sediments of the Gonghai Lake. (a)

740 Fracional abundance of brGDGTs. (b) Degree of methylation and cyclisation of brGDGTs.

Fig. 4. (a) BrGDGT-derived temperatures for sediments using lake calibrations Eqs. (11), (15) and (16) from Sun et

al. (2011), Dang et al. (2018) and Russell et al. (2018) respectively. (b) The correlation between MBT'_{5ME} of
sedimentary brGDGTs and mean annual lake water temperature (LWT); CI index represents Community Index
(De Jonge et al., 2019); the brGDGT data of East Africa Lake, Donghu Lake and Gonghai Lake were sourced
from Russell et al. (2018), Qian et al. (2019) and this study.

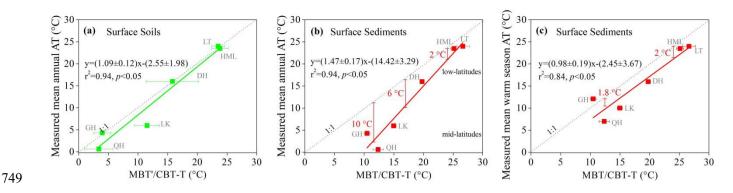


Fig. 5. Comparison of brGDGT-derived temperature and measured air temperature. (a) Measured mean annual AT
and estimated temperatures of brGDGTs in surface soils based on soil calibration Eq. (9). (b) Measured mean
annual AT and estimated temperatures of brGDGTs in surface sediments based on lake calibration Eq. (11). (c)
Measured mean warm season AT and estimated temperatures of brGDGTs in surface sediments based on lake calibration Eq. (11). (c)
Measured mean warm season AT and estimated temperatures of brGDGTs in surface sediments based on lake
calibration Eq. (11). Data are from Gonghai Lake (GH; Cao et al., 2017), Lower King pond (LK; Loomis et al.,
2014), Huguangyan maar (HML; Hu et al., 2015, 2016), Lake Donghu (DH; Qian et al., 2019), Qinghai Lake
(QH; Wang et al., 2012) and Lake Towuli (LT; Tierney and Russell, 2009).

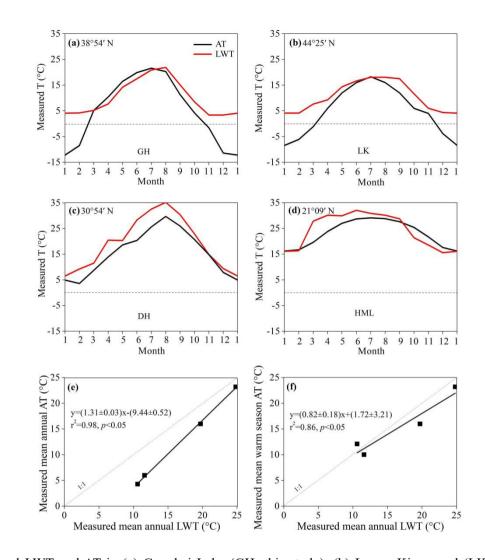


Fig. 6. Measured LWT and AT in (a) Gonghai Lake (GH; this study), (b) Lower King pond (LK; modified from
Loomis et al., 2014), (c) Lake Donghu (DH; modified from Qian et al., 2019) and (d) Lake Huguangyan (HML;
modified from Hu et al., 2016). (e) Correlation between mean annual AT and mean annual LWT. (f) Correlation
between mean warm season AT and mean annual LWT. In the mid-latitude Gonghai Lake and Lower King pond,
the surface LWT follows AT only when the AT is above freezing. In the low-latitude Lake Donghu and Lake
Huguangyan, the surface LWT follows AT for the whole year.

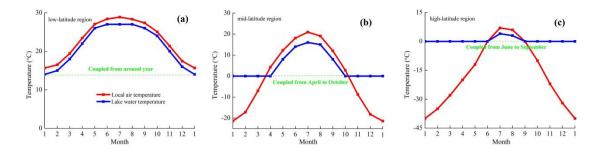


Fig. 7. A simple model showing the relationship between LWT and AT in different latitudes

sediments and water column SPM in the Gonghai Lake.

Code of site	Longtitude (E)	Latitude (N)	Vegetation type	Water depth (m)		Total brGDGTs /g dw) g/L)	MBT' _{SME}	MBT' _{6ME}	MAAT ª (°C)	MAAT ^b (°C)	MAAT ° (°C)	MAAT ^d (°C)	Growth AT ° (°C)
Surface soils in Gonghai catchment													
S1	112° 14'19.039"	38° 54'37.343"	grass		0	74.82	0.31	0.21	1.20	-2.90			
S2	112° 14'18.460"	38° 54'28.750"	grass		0	23.50	0.36	0.20	2.58	-1.21			
S3	112° 14'24.140"	38° 54'23.098"	shrub		0	22.00	0.35	0.33	2.40	-4.22			
S4	112° 14'36.827"	38° 54'27.126"	shrub		0	32.65	0.36	0.26	2.64	-2.15			
S5	112° 14'40.502"	38° 54'38.174"	grass		0	16.06	0.36	0.24	2.82	-1.61			
Gonghai surface sediments													
D1	112° 14'22.963"	38° 54'36.357"		1.00	1.46	42.03	0.29	0.22	0.70	-4.24	8.35	13.50	6.91
D2	112° 14'24.004"	38° 54'35.903"		2.50	1.59	33.95	0.27	0.24	-0.13	-4.79	7.50	11.91	7.33
D3	112° 14'25.109"	38° 54'35.294"		5.50	17.87	327.62	0.23	0.25	-1.19	-6.53	6.40	10.11	7.70
D4	112° 14'27.301"	38° 54'34.499"		6.70	25.53	374.29	0.24	0.27	-0.93	-7.32	6.67	10.57	8.00
D5	112° 14'28.453"	38° 54'33.980"		8.00	42.96	706.72	0.24	0.25	-0.95	-6.44	6.64	10.72	7.67
Gonghai SPM	in Sept												
Water-1 m	112° 14'28.453"	38° 54'33.980"		1.00	0.29	5.71	0.28	0.32	0.24	-6.00	7.88	11.19	9.16
Water-3 m	112° 14'28.453"	38° 54'33.980"		3.00	0.36	6.39	0.27	0.28	-0.05	-5.46	7.57	10.86	8.25
Water-6 m	112° 14'28.453"	38° 54'33.980"		6.00	0.30	6.22	0.26	0.29	-0.35	-6.55	7.26	10.45	8.55
Water-8 m	112° 14'28.453"	38° 54'33.980"		8.00	0.49	10.07	0.23	0.24	-1.40	-6.79	6.18	10.60	7.31
Gonghai SPM in Jan													
Water-1 m	112° 14'28.453"	38° 54'33.980"		1.00	0.16	2.88	0.25	0.27	-0.75	-6.32	6.85	10.40	7.95
Water-3 m	112° 14'28.453"	38° 54'33.980"		3.00	0.36	6.09	0.26	0.26	-0.49	-5.57	7.12	11.02	7.77
Water-6 m	112° 14'28.453"	38° 54'33.980"		6.00	0.49	8.05	0.25	0.27	-0.65	-6.24	6.95	10.57	7.99
Water-8 m	112° 14'28.453"	38° 54'33.980"		8.00	0.22	3.71	0.24	0.28	-0.96	-6.89	6.63	10.20	8.24

MAAT represents mean annual air temperature.

770

^a Calculated according to Eq. (9).^b Calculated according to Eq. (10).

^c and ^d Calculated according to Eq. (16) and (17).

^e Calculated according to Eq. (15).

Calibrations Equation no. in the text References For soils MAAT=0.81-5.67*CBT+31.0*MBT' (n=176, r²=0.59, RMSE=5.0 ° C) (8) Peterse et al. (2012) MAAT=-8.57+31.45*MBT'_{5ME} (n=222, r²=0.66, RMSE=4.8 ° C) (9) De Jonge et al. (2014) MAAT a=27.63*Index 1-5.72 (n=148, r2=0.75, RMSE=2.5 ° C) (10) Wang et al. (2016) For sediments MAAT=6.803-7.062*CBT+37.09*MBT (n=139, r²=0.62, RMSE=5.24 ° C) (11) Global, Sun et al. (2011) MAAT=8.263-17.938*CBT+46.675*MBT (n=24, r²=0.52, RMSE=5.1 ° C) (12)Regional, Sun et al. (2011) MAAT ^b=50.47-74.18*f(IIIa)-31.60*f(IIa)-34.69*f(Ia) (n=46, r²=0.94, RMSE=2.2 ° C) Tierney et al. (2010) (13) MAAT=22.77-33.58*f(IIIa)-12.88*f(IIa)-418.53*f(IIc)+86.43*f(Ib) (n=111, r²=0.94, RMSE=1.9 ° C) (14)Loomis et al. (2012) Growth AT=21.39*MBT'6ME+2.27 (n=39, r²=0.75, RMSE=1.78 ° C) (15) Dang et al. (2018) MAAT=23.81-31.02*f(IIIa)-41.91*f(IIb)-51.59*f(IIb')-24.70*f(IIa)+68.80*f(Ib) (n=65, r²=0.94, RMSE=2.14 ° C) (16) Russell et al. (2018) Russell et al. (2018) MAAT=-1.21+32.42*MBT'5ME (17)

Table 2 Calibrations for brGDGT-derived temperature proxies used in this study.

775 AT represents air temperature.

MAAT represents mean annual air temperature.

^a Index=log[(Ia+Ib+Ic+IIa'+IIIa')/(Ic+IIa+IIc+IIIa+IIIa')].

^b Fractional abundance of brGDGTs is a fraction of only brGDGT Ia, IIa and IIIa.

Name	Latitude	Longitude	Depth	MAA T		Mean annual LWT	Surface	Surface sediments					
iname	Latitude	Longitude	(m)		AT		MAAT ^a	MAAT ^b	MAAT °	MAAT ^d	MAAT °	References	
				(°C)	(° C)	(°C)	(°C)	(°C)	(° C)	(°C)	(°C)		
Gonghai Lake	38° 54′	112° 14′	9	4.3	12.1	10.6	2.06 1.46	$10.74\pm$	9.70±0.71	$10.86\pm$	7.02 1.46	C., (1 (2017)	
Gongnai Lake	Ν	Е	9	4.5	12.1	10.6	3.96±1.46	0.33	9.70±0.71	1.33	7.93±1.46	Cao et al. (2017)	
Lake Towuti		1018 5	200	24	24	n.d.	22.52±	$26.62\pm$	$29.13\pm$	n.d.	n.d.	Tierney and Russell.	
Lake I owuti	2.5° S	121° E	200				2.61	1.10	1.86	n.d.		(2009)	
Lake	21° 09′	110° 17′					$23.80\pm$	25.11±	$28.12\pm$	$26.47\pm$	$26.07\pm$		
Huguanyan	Ν	Е	20	23.2	23.2	24.8	1.39	0.60	0.90	0.83	0.73	Hu et al. (2015, 2016)	
	30° 54′	114° 41′	,				20	15.79±	19.74±	$22.82\pm$	25.75±	$20.61\pm$	
Lake Donghu	Ν	Е	6	16	16	20	4.37	0.39	0.51	0.34	0.71	Qian et al. (2019)	
0.1.1.1	36° 54′	100° 01′	27	0.65	7		2 20 1 2 40	$12.34\pm$		$13.61\pm$. 1 (2012)	
Qinghai Lake	Ν	Е	27	0.65	7	n.d.	3.38±2.40	0.87	9.92±1.14	1.49	8.80±1.11	Wang et al. (2012)	
Lower King	44° 25′	72° 26′					11.50±	14.97±		$18.75\pm$	15.76±		
pond	Ν	w	8	6	11.3	11.6	2.08	0.42	14.9±0.53	0.64	0.84	Loomis et al. (2014)	

brGDGT-derived temperature from sediments in different lake basins.

AT represents air temperature and MAAT represents mean annual air temperature.

LWT represents lake water temperature.

^a Calculated after according to Eq. (8).

^b and ^c Calculated according to Eq. (11) and (12).

785

780

^d Calculated after according to Eq. (13). ^e Calculated after according to Eq. (14).