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Date: April 17, 2020 1 
 2 
Subject: Cover Letter for Revised Submission of bg-2019-508 3 
 4 
Dear Reviewers and Associate Editor, 5 
 6 
We thank you all for taking time to provide thoughtful and constructive comments. We have 7 
addressed all comments, and paid particular attention to (1) clarify new concepts such as 8 
relative sif, (2) expand our concluding recommendations with more detailed strategies to 9 
improve model formulation and model-observational analysis, and (3) benchmarking analysis 10 
against stand along tower driven SCOPE simulations. The resulting manuscript is improved in 11 
readability and outcomes.  12 
 13 
Please find below our merged document containing comments from Reviewers 1 and 2 with 14 
embedded Author Responses and Changes (Page 2-10) and Tracked Changes starting on Page 15 
11. Note the line numbers in the Reviewer comments (black font) refer to our original 16 
submission, while Page and line numbers in the Author Response (blue font) refer to the 17 
“Tracked Changes” document below.  18 
 19 
Best regards, 20 
 21 
 22 
 23 
 24 
 25 
Dr Nicholas Parazoo (on behalf of all co-authors) 26 
Jet  Propulsion Laboratory 27 
4800 Oak Grove Drive 28 
Mail Stop 200-233 29 
Pasadena, CA 91109 30 
Phone: 818.354.2973 31 
   32 
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Comments and Author Response to Reviewer 1: 1 
 2 
General: Parazoo et al. compare seven SIF-enabled TBMs against empirical SIF and GPP data 3 
from a subalpine evergreen coniferous forest. The models, which had SIF retro-fitted, share 4 
some common concepts but on the other hand differ widely in terms of other concepts, with 5 
corresponding impacts on simulated SIF. The authors describe the differences compared to the 6 
empirical data and discuss these in terms of the differences in model structure. 7 
 8 
Interest in the adding SIF capabilities to TBMs is largely driven by the recent availability of 9 
global SIF satellite products which provides promising avenues for additional constraints on 10 
carbon cycling, especially for GPP. Given that this research field is still in its infancy, I think the 11 
scope of this study, even though limited to a single site and a few weeks of peak-vegetation 12 
period data, is justified. The manuscript is well written and I think the authors do a great job in 13 
navigating the reader through the complexity of the investigated TBMs without getting lost in 14 
the many aspects these models differ.  15 
 16 
We thank the reviewer for the nice feedback and helpful comments, and for appreciating our 17 
decision to keep our scope of study limited. Our hope is to build off the baseline findings 18 
reported here.  19 
 20 
I have only really very few detailed comments (see below) and only one major comment, that is 21 
that I was wondering whether the model comparison would profit from adding simulations with 22 
the original SCOPE model. This model is some sort of golden standard for SIF modelling (in fact 23 
many of the investigated models have gleaned from SCOPE in one way or the other) and I could 24 
imagine that SCOPE simulations might provide a good benchmark for the investigated TBMs, 25 
which given their scope need to weigh complexity against realism. Even though SCOPE is much 26 
more complex in terms of the treatment of canopy radiative transfer and gas exchange, running 27 
it with pre-scribed meteo inputs and adjusting a few key parameters should be easy to do. 28 
 29 
This was a great recommendation and worth the extra effort. We now include results from 30 
SCOPE v1.73 with prescribed met input for the year of study (2017) and vegetation parameters 31 
(LAI, canopy height, leaf chlorophyll content, and Vcmax) calibrated to NR1 according to Raczka 32 
et al., 2019. Results from the stand-alone version of SCOPE are quite similarly qualitatively and 33 
quantitatively to the coupled version with BETHY (high bias in APAR and SIF), except with 34 
improved diurnal and synoptic variability compared to PhotoSpec. This provides a nice 35 
benchmark for TBM-SIFs in this study.  We provide a description of SCOPE in the methods, 36 
references to SCOPE results throughout, and plots of SCOPE in all relevant figures (including 37 
Figs 2-5 in the main text).  38 
 39 
Detailed comments: 40 
l. 60: and theoretical models suggest a non-linear response at leaf-scale (Gu et al. 2019) 41 
 42 
Statement added as follows: 43 
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“Spaceborne data indicate a linear relationship between SIF and GPP at large spatial (kilometer) 1 
and temporal (bi-weekly) scales (e.g., Sun et al., 2017) for several ecosystems, while theoretical 2 
models and ground-based measurements indicate a more non-linear relationship at leaf and 3 
canopy scales (Zhang et al., 2016; Gu et al., 2019; van der Tol et al., 2014; Magney et al., 2017, 4 
2019a). 5 
 6 
l. 84: a needle is anatomically a leaf 7 
 8 
Changed ‘needle/leaf’ to ‘leaf’ 9 
 10 
l. 102: not so much at leaf-scale really 11 
 12 
Changed ‘leaf to canopy scale’ to ‘canopy scale’ 13 
 14 
l. 103: the FLOX is missing in the list of tower-mounted spectrometer systems 15 
 16 
added FLOX and reference to Shan et al., 2019 and Julitta et al., 2017 17 

Shan, N., Ju, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J., Goulas, Y., Zhang, Y.: 18 
Modeling canopy conductance and transpiration from solar-induced chlorophyll 19 
fluorescence. Agricultural and Forest Meteorology, 268, 189–201, 2019. 20 

Julitta, T., Burkart, A., Colombo, R., Rossini, M., Schickling, A., Migliavacca, M., Cogliati, S., 21 
Wutzler, T., Rascher, U.: Accurate measurements of fluorescence in the O2A and O2B band 22 
using the FloX spectroscopy system - results and prospects. In: Proc. Potsdam GHG Flux 23 
Workshop: From Photosystems to Ecosystems, 24–26 October 2017, Potsdam, Germany. 24 
https://www.potsdam-flux-workshop.eu/, 2017 25 

Fig. 1: calling a 3-year average a climatology is a bit of a stretch in my view – maybe 26 
just refer to this as the 2015-2018 average? 27 
 28 
Yes, thank you 29 
 30 
l. 165-174: how representative are these measurements for the larger footprint of the 31 
flux tower? 32 
 33 
Under most daytime conditions abd turbulent boundary layers, SIF measurements have a much 34 
smaller footprint compared to eddy covariance data, and thus are typically not representative 35 
of the larger ecosystem. We added the following stipulation at the end of the paragraph: 36 
 37 
“We note that APAR measurements are only as representative as the distribution of PAR 38 
sensors beneath the canopy; while they are placed within the footprint of SIF (Sec 2.2.3) and 39 
fetch of eddy covariance (Sec 2.2.4) measurements, they cannot be a perfect representation of 40 
canopy APAR for each eddy covariance and SIF measurement.” 41 
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 1 
l. 229: one sentence on the effects of complex terrain, for which NR1 is famous, on 2 
NEE and inferred GPP? 3 
 4 
Good point. The location does not have a significant impact on daytime fluxes, but we added 5 
the following sentence for full disclosure. 6 
 7 
“We note the tower location near the Continental Divide in the Rocky Mountains of Colorado 8 
does present slope flow challenges for eddy covariance during nighttime, but the relatively flat 9 
area of the tower reduces impact on daytime flux measurements (Burns et al., 2018).” 10 
 11 
Burns, S. P., Swenson, S. C., Wieder, W. R., Lawrence, D. M., Bonan, G. B., Knowles, J. F., and 12 

Blanken, P. D.: A comparison of the diel cycle of modeled and measured latent heat flux 13 
during the warm season in a Colorado subalpine forest, Journal of Advances in Modeling 14 
Earth Systems, 10, 617–651, 2018. 15 

 16 
l. 260: wouldn’t that be the Ball-Berry-Woodrow (BBW) model? 17 
l. 261: and this simply the Leuning model? 18 
 19 
Corrected in Sec 2.3.2 and in Table 1 20 
 21 
Table 1: what is the difference between big-leaf and single layer models? Where do 22 
two-leaf big-leaf models fall into? 23 
 24 
Thank you for pointing out these differences. The models can be classified as follows. 25 
 26 
BETHY = multiple layers (sunlit/shaded) 27 
ORCHIDEE/SIB3/4 = big leaf (sunlit only) 28 
CLM4.5/5 = two big leaf (sunlit/shaded) 29 
BEPS = two leaf (sunlit/shaded)  30 
 31 
We clarify these differences in Table 1 and in Section 2.3.1 as shown below 32 
 33 
“These differences, which are summarized in Table 1, include the representation of stomatal-34 
conductance (all use Ball-Berry except CLM5.0, BEPS, and ORCHIDEE), canopy absorption of 35 
incoming radiation (all account for sunlit/shaded radiation except ORCHIDEE, SIB3, and SIB4), 36 
limiting factors for photosynthesis (Vcmax, LAI, radiation, stress) and SIF (kN, fluorescence 37 
photon re-absorption), scaling and radiative transfer methods for transferring leaf-level SIF 38 
simulations to top of canopy, and parameter optimization.” 39 
 40 
l. 573: sunlit/shaded leaf area fractions 41 
 42 
corrected, thank you 43 
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 1 
l. 803-810: what are recommendations for model structure with respect to APAR? 2 
 3 
We added the following recommendation at the end of Area 1 of Section 5, keeping in mind the 4 
stipulation that there is really no perfect in situ APAR measurement: 5 
 6 
“We recommend further site-level investigation of observed and simulated canopy light 7 
absorption, emphasizing comparison of multi-layer and multi-leaf radiation schemes accounting 8 
for sunlit and shaded leaf area.” 9 
 10 
l. 816: might refer to new approaches such as stomatal optimisation based on xylem 11 
hydraulics (Eller et al. 2020) 12 
 13 
Agreed. We added the following recommendation at the end of Area 2 of Section 5: 14 
 15 
“We also recommend more inclusion of stomatal optimization models (e.g., Eller et al., 2020) as 16 
optional parameterizations for TBMs, to better account for plant hydraulic functioning under 17 
water stress compared to the more widely used semi-empirical models.” 18 
 19 
l. 821: here I would think we also need more data from a wider variety of plant species 20 
under in situ conditions, especially all kinds of stress, ideally combining active and 21 
passive chlorophyll fluorescence measurements 22 
 23 
Agreed. We added the following recommendation at the end of Area 3 of Section 5: 24 
 25 
“We also emphasize a need for more simultaneous measurements of active and passive 26 
chlorophyll fluorescence to determine the temporal dynamics of competing pathways (PQ, 27 
NPQ) from a wider variety of plant species under ambient conditions and different levels of 28 
stress.” 29 
 30 
l. 833: for perspective - do the authors dare to say something about what they would 31 
expect from a similar model comparison for a well-watered high-LAI crop? 32 
 33 
We added a 6th bullet point at the end of Section 5: 34 
 35 

“Finally, we note that our focus on a water limited subalpine evergreen needleleaf forest 36 
represents a challenging case study for models and observations. In many cases, there is strong 37 
covariance between LAI, SIF, APAR and GPP in cropping systems (Dechant et al., 2020), but 38 
because this study site experiences little change in canopy structure and APAR throughout the 39 
season (Magney et al, 2019b), our study sought to provide more explicit insight into the models 40 
sensitivity to photosynthesis and fluorescence. As such, it is possible that we would see more 41 
convergence of results, and a reduction in confounding effects (e.g., decreased NPQ), in a well-42 
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watered high-LAI cropping system. We therefore recommend similar model-observation 1 
assessments across a wider range of biota and climate.” 2 

 3 
  4 



 7 

Comments and Author Response to Reviewer 1: 1 
 2 
This paper compares different process based terrestrial biosphere model (TBMs) that include 3 
solar induced chlorophyll fluorescence (SIF) as output. The models are briefly introduced, with 4 
emphasis on the different representations of SIF. The model output with respect to SIF and 5 
gross primary productivity (GPP) output is inter-compared, and comparisons are made to a time 6 
series of field measurements. The models diverged, and the authors relate the differences 7 
among the models to the underlying process descriptions: the estimates of APAR, energy 8 
partitioning in the leaf and radiative transfer of fluorescence. 9 
 10 
The paper provides a good overview of current TBMs capable of simulating SIF. This is of 11 
interest to the readers. It has an informative title, abstract and figures. It does not introduce 12 
new concepts, but it compares existing model concepts and recommends strategies for 13 
improvement. The paper is well written and clear. I have the following recommendations to 14 
consider in the preparation of the final manuscript (all minor): 15 
 16 
Thank you for the very kind review.  17 
 18 
1. Make the paper (even) more inviting for readers who are unfamiliar with the terminology of 19 

SIF. In Line 208,  SIFyield is first used, later in lines 593-602, it is defined, and the difference 20 
with SIFrel is discussed. It may be helpful to introduce SIFyield, SIFrel and phi_F together 21 
and earlier, explaining why these three are used for comparison in this paper (in Figs 3 and 22 
4), and what they mean. 23 

 24 
We thank the reviewer for this helpful suggestion. We added a new section (2.2.2) toward the 25 
beginning of the methods to clarify these differences, merging information from line 208 and 26 
593-602.  27 

“2.2.2 SIF Yield 28 

We define and clarify three important quantities that define the relationship between absorbed 29 
light and emitted SIF at leaf and canopy scales. 𝜙"  is the quantum yield of fluorescence, 30 
representing the probability an absorbed photon will be fluoresced. This quantity can be 31 
observed at leaf level using PAM fluorimetry, or calculated by models as a function of rate 32 
coefficients for energy transfer (Sec 2.3.3). SIFyield is the canopy emitted SIF per photon absorbed. 33 
The quantify is estimated from models and observations as the ratio of absolute canopy SIF and 34 
APAR (SIFcanopy/APAR). SIFyield is our best attempt to account for the effect of (a) canopy absorbed 35 
light and (b) SIF re-absoprtion within the canopy on the canopy integrated emission of SIF. 36 
However, factors such as observation angle, fraction of sunit/shaded canopy components, and 37 
difference in footprint from APAR, necessitates an additional diagnostic variable defined as 38 
relative SIF (SIFrel). SIFrel is emitted SIF per reflected radiance in the far red spectrum where SIF 39 
retrievals occur (SIF/Reffr). This is useful because is normalizes for the exact amount of 40 
‘illuminated’ canopy elements within the sensor field of view, whereas APAR measurements are 41 
integrated for the entire canopy.  42 
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These quantities represent different but equally important versions of reality. It is difficult for 1 
models to exactly reproduce the distribution and timing of sunlight in the canopy as observed by 2 
PhotoSpec. While SIFrel removes model-observations differences in illumination, it confounds our 3 
interpretation of the relationship with GPPyield, which is derived from APAR. As such, we provide 4 
both results to be comprehensive, but note the temporal stability associated with SIFrel as the 5 
more physical interpretation of canopy yield for this short period of study.” 6 

 7 
2. Lines 623-626. I did not grasp the following reasoning: ‘Finally, we note that PhotoSpec 8 

scans of leaf-level emissions are averaged and reported here as canopy averages, while 9 
model output is reported at the top of the canopy, which accounts for within-canopy 10 
radiative transfer, re-absorption of SIF, and shaded canopies, causing lower emissions 11 
compared to the canopy average.’ Aren’t the top-of-canopy measurements also affected by 12 
within-canopy radiative transfer etcetera? 13 

 14 
Thank you for pointing out this source of confusion. We clarify as follows (Page 34, Line 4-19): 15 
 16 
“Finally, we clarify an important difference between observed and predicted estimates of canopy 17 
average SIF. PhotoSpec scans direct emissions from sunlit and shaded leaves within the canopy, 18 
thus observing the ‘total’ emission from leaves in the instrument FOV. We then average each of 19 
these leaf-level scans and report as canopy averages. Model output, in contrast, is reported at 20 
the TOC, which represents the ‘net’ emission from leaves after attenuation in the canopy 21 
(through canopy radiative transfer, re-absorption of SIF, and shading). Assuming sunlit and 22 
shaded leaves within the canopy emit at the same rate as TOC leaves, attenuation will reduce the 23 
effective signal from leaf-level emissions within the canopy. As such, the average of leaf level 24 
emissions (canopy average) is expected to be lower than the net emission of leaves reaching the 25 
top of canopy.  26 

This is important because CLM4.5 shows strong attenuation of SIF from leaf-level to TOC, 27 
decreasing by a factor of 2-3 at midday (Fig S7). The interpretation here is that the model bias in 28 
absolute SIF may actually be higher than reported here; however, we note that more quantitative 29 
information on the observed fraction of sunlit vs shaded leaves and comparative top-of-canopy 30 
SIF values for the same canopy elements are needed (to account for off-nadir SIF viewing) for 31 
more accurate determination of scaling between observed canopy and top-of-canopy SIF.”  32 

3. Continuation of previous point: The difference between the measurements and the 33 
simulations is that the measurements are the average of small footprints at multiple viewing 34 
angles, whereas the models are nadir values, as explained in the ‘apples to apples’ section (line 35 
691). I presume the radiative transfer factor _740 was derived from SCOPE simulations in nadir. 36 
With SCOPE it is possible to estimate _740 (_o) for multiple observation angles, and then take 37 
the average. Thus it is possible to compare apples to apples. I understand the TBM’s do not 38 
have this right now, but at least I would have expected that to be part of the discussion, or as 39 
part of recommendation 5, which now only mentions instruments with a wider FOV. 40 
 41 
Very excellent point. We added the following sentence to area 5 of Section 5 42 
 43 
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“More effort is also needed to better align models with observations, for example by leveraging 1 
three-dimensional capabilities in SCOPE (and other RTMs) to directly account for multiple 2 
observation angles.” 3 
 4 
4. Line 566, Strictly, x is not the fraction of absorbed light not used in photosynthesis, if this 5 
refers to the variable ‘x’ in the model of Lee et al. and Van der Tol, because when x = 0, this 6 
fraction is 0.17 due to constitutive heat dissipation. 7 
 8 
Thank you for clarifying. We removed the statement that x refers to the “fraction of absorbed 9 
light not used in photosynthesis” 10 
 11 
5. Line 728-730. ‘The fact that relative SIF is the least sensitive [] reduces the sensitivity to APAR 12 
and reveals a strong SIF response to changes in photochemical quenching’. Yes, that seems to 13 
be the case, but perhaps a few lines can be added to guide the reader through this argument 14 
(see also point 1). 15 
 16 
We agree this is a difficult concept to grapple with. We try to clarify as follows (Page 38, Line 4-17 
10): 18 
 19 
“Our results indicate a wide range of SIF responses to APAR: TBM-SIFs and SCOPE are usually far 20 
too sensitive to APAR, observations of absolute SIF are less sensitive, and observations of 21 
relative SIF (SIFrel) are least sensitive (Fig. 5D). We remind the reader that SIFrel is normalized by 22 
the amount of far red light reflected from leaves in the FOV of PhotoSpec, and thus has reduced 23 
sensitivity to absorbed light than absolute SIF. The fact that SIFrel is the least sensitive to APAR 24 
means other processes are driving changes in SIF under increased light absorption. In this case, 25 
it reveals a strong SIF response to changes in photochemical quenching.” 26 
 27 
6. Line 811, recommendation 2. Is it the water stress formulation, or the parameter values, i.e. 28 
the values for the Ball-Berry parameters? 29 
 30 
Here, we are referring to different kinds of the stomatal conductance models (ball-berry, 31 
leuning) and water stress (e.g., soil moisture scalar for attenuating conductance). We clarify 32 
(Page 41, Line 7-9) 33 
 34 
“The underlying photosynthetic models fail to simulate the magnitude of depression of 35 
observed GPP in the afternoon, regardless of how stomatal-conductance and water stress 36 
models and parameters are formulated” 37 
 38 
Following Reviewer 1, we also advocate for more use of stomatal optimization models (Page 41, 39 
Line 13-16) 40 
 41 
“We also recommend more inclusion of stomatal optimization models (e.g., Eller et al., 2020) as 42 
optional parameterizations for TBMs, to better account for plant hydraulic functioning under 43 
water stress compared to the more widely used semi-empirical models.”  44 
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 1 
 2 
7. In Line 680, there is a reference to Figure 6, which is not in the manuscript 3 
 4 
Good catch, we refer to Fig S8 now.  5 
 6 
8. Figure 3C and 3D. What is the temporal resolution of these data? Multiple-day averages? It 7 
takes some effort to relate the spikes to the wet and dry periods described in the text. 8 
 9 
Thank you. We have clarified the temporal resolution in the text and figure caption.  10 
 11 
Technical comments 12 
 13 
Line 290, sentence starting ‘The quantum yield’ has an extra ‘to’:  14 
Line 365 and elsewhere, I recommend to spell out ‘met forcing’:  15 
Line 508, ‘eaves’ should be ‘leaves’:  16 
Figures S1 and S4 are reversed:  17 
The labels in Figure S7 are too small  18 
The legend in Figure S8 is too small  19 
 20 
All corrected 21 
  22 
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Abstract:  1 

Recent successes in passive remote sensing of far-red solar induced chlorophyll fluorescence (SIF) 2 

have spurred development and integration of canopy-level fluorescence models in global 3 

terrestrial biosphere models (TBMs) for climate and carbon cycle research. The interaction of 4 

fluorescence with photochemistry at the leaf- and canopy- scale provides opportunities to 5 

diagnose and constrain model simulations of photosynthesis and related processes, through 6 

direct comparison to and assimilation of tower, airborne, and satellite data. TBMs describe key 7 

processes related to absorption of sunlight, leaf-level fluorescence emission, scattering and 8 

reabsorption throughout the canopy. Here, we analyze simulations from an ensemble of process-9 

based TBM-SIF models (SiB3, SiB4, CLM4.5, CLM5.0, BETHY, ORCHIDEE, BEPS) and the SCOPE 10 

canopy radiation and vegetation model at a subalpine evergreen needleleaf forest near Niwot 11 

Ridge, Colorado. These models are forced with local meteorology and analyzed against tower-12 

based continuous far-red SIF and gross primary productivity (GPP) partitioned eddy covariance 13 

data at diurnal and synoptic scales during the growing season (July-August 2017). Our primary 14 

objective is to summarize the site-level state of the art in TBM-SIF modeling over a relatively short 15 

time period (summer) when light, canopy structure, and pigments are similar, setting the stage 16 

for regional- to global-scale analyses. We find that these models are generally well constrained 17 

in simulating photosynthetic yield, but show strongly divergent patterns in the simulation of 18 

absorbed photosynthetic active radiation (PAR), absolute GPP and fluorescence, quantum yields, 19 

and light response at leaf and canopy scale. This study highlights the need for mechanistic 20 

modeling of non-photochemical quenching in stressed and unstressed environments, and 21 

improved representation of light absorption (APAR), distribution of sunlit and shaded light, and 22 

radiative transfer from leaf to canopy scale.   23 

 24 
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Section 1: Introduction 1 

Our ability to estimate and measure photosynthesis beyond the leaf scale is extremely limited. 2 

This inhibits the ability to evaluate the performance of terrestrial biosphere models (TBMs) that 3 

are designed to quantify the direct impact and feedbacks of the carbon cycle with climate change.  4 

Consequently, there are substantial uncertainties in estimating the gross primary production 5 

(GPP) response to environmental changes and carbon-climate feedback (Friedlingstein et al., 6 

2014). Global, multi-scale remote sensing of solar induced fluorescence (SIF) may represent a 7 

major breakthrough in alleviating this deficiency (Mohammed et al, 2019). Spaceborne data 8 

indicate a linear relationship between SIF and GPP at large spatial (kilometer) and temporal (bi-9 

weekly) scales (e.g., Sun et al., 2017) for several ecosystems, while theoretical models and 10 

ground-based measurements indicate a more non-linear relationship at leaf and canopy scales 11 

(Zhang et al., 2016; Gu et al., 2019; van der Tol et al., 2014; Magney et al., 2017, 2019a).  12 

Chlorophyll fluorescence is re-emitted energy produced during the photosynthetic light 13 

reactions, in which a small fraction (roughly 2%) of photosynthetic active radiation (PAR) 14 

absorbed by chlorophyll is re-emitted at longer wavelengths (650-850 nm) as fluorescence. In 15 

ambient conditions, the emission of SIF represents a by-product of two primary de-excitation 16 

pathways, photochemical and nonphotochemical quenching (PQ, NPQ). Plants have evolved 17 

these regulatory mechanisms to prevent damage to photosynthetic machinery when the amount 18 

of absorbed radiation is greater than that which can be used to drive photochemistry. Chlorophyll 19 

fluorescence responds dynamically to changes in photochemistry and NPQ from instantaneous 20 

to hourly, daily, and seasonal timescales, as a function of changing environmental conditions and 21 

plant structural properties (Porcar-Castell et al., 2014; Demmig-Adams et al., 2012). SIF is 22 

fundamentally different than steady-state fluorescence yield typically measured at the leaf scale 23 

as it is sensitive to both changes in photochemistry as well as absorbed PAR (APAR, related to 24 

incident light, canopy structure, and biochemical content). The response of canopy SIF to APAR 25 

is well documented in deciduous and evergreen forests and cropping ecosystems (Yang et al., 26 

2018; Badgley et al, 2017; Miao et al., 2018; Magney et al., 2019b; Li et al., 2020). More recently, 27 

Magney et al. (2019b) showed that seasonal changes in canopy SIF for cold climate evergreen 28 
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systems is influenced by changes in needle physiology and photoprotective pigments (Magney et 1 

al., 2019b).   2 

To properly account for these factors, process-based SIF models must represent these underlying 3 

non-linear biophysical and chemical processes. Several modeling groups have adapted TBMs to 4 

incorporate various SIF formalisms for the purpose of model evaluation, data assimilation, and 5 

improved model prediction (Lee et al., 2015; Koffi et al., 2015; Thum et al., 2017; Norton et al., 6 

2019; Bacour et al., 2019; Raczka et al., 2019). With these goals in mind, TBM SIF modeling 7 

requires two important steps: (1) a representation of SIF at the leaf scale that accounts for NPQ 8 

and photochemistry, and (2) canopy radiative transfer of SIF, which enables a comparison to large 9 

field-of-view observations (e.g. tower, satellites). The second step involves accounting for 10 

radiative transfer within the canopy and has typically relied on incorporating the Soil Canopy 11 

Observation Photosynthesis Energy model (SCOPE, van der Tol et al., 2009, 2014), which 12 

simulates chlorophyll fluorescence as a function of biophysics, canopy structure, environmental 13 

conditions, and sun/sensor geometries. This approach has been adopted by TBMs in various ways 14 

using different assumptions for fluorescence modeling and radiative transfer, as will be discussed 15 

in Section 2.  16 

Typically, measuring chlorophyll fluorescence and competing pathways (PQ, NPQ) has been done 17 

at the leaf scale via pulse-amplitude modulation fluorescence (PAM, Schreiber et al., 1986). 18 

Recently, commercially available spectrometers have made it possible to measure SIF directly in 19 

the field at the leaf and canopy scale, and also enable the study of structural, environmental, and 20 

directional controls (Cogliati et al. 2015; Daumard et al. 2010; Migliavacca et al. 2017; Yang et al. 21 

2015; Grossman et al., 2018; Aasen et al., 2019; Gu et al., 2019b; Zhang et al., 2019). The use of 22 

field deployable instruments on eddy covariance towers has increased rapidly since 2014, 23 

providing coverage of multiple vegetation types across various climates around the world (Yang 24 

et al., 2018; Magney et al., 2019a,b; Parazoo et al., 2019). These data enable improved 25 

understanding of the relationship between SIF, GPP, APAR, and environmental effects at canopy 26 

scales. Novel tower-mounted spectrometer systems such as Fluospec2 (Yang et al., 2018), 27 

Photospec (Grossman et al., 2018), and FLOX (e.g., Julitta et al., 2017; Shan et al., 2019) have 28 

made it possible to monitor canopy SIF continuously in the field with high precision over multiple 29 
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years providing opportunities for more direct comparison and evaluation of satellite data 1 

(Grossman et al., 2018; Yang et al., 2015, 2018; Wohlfahrt et al., 2018; Magney et al., 2019). 2 

PhotoSpec offers the additional benefits (and challenge) of (a) precise field of view capable of 3 

resolving leaf-level SIF, and (b) canopy scanning at azimuth and elevation angles. These features 4 

enable SIF integration from leaf- to canopy- scales, and interpretation of directional variations of 5 

the emitted radiance.  6 

Canopy scanning spectrometers such as PhotoSpec thus provide an opportunity to understand 7 

the physical processes that lead to a breakdown of SIF-GPP linearity at leaf to canopy scale (or 8 

conversely, emergence of linearity at increasing scale), and for detailed evaluation and diagnosis 9 

of TBM performance. This study provides a preliminary benchmarking site-level assessment for 10 

simulations of SIF within a TBM framework and across an ensemble of TBMs, with the primary 11 

purpose being an initial investigation into the response of modelled SIF and GPP to light during 12 

peak summer. We leverage continuous measurements of SIF and GPP at the Niwot Ridge US-NR1 13 

Ameriflux flux tower in Colorado from June-July 2017 (Magney et al., 2019b), and simulations of 14 

canopy radiative transfer, photosynthesis, and fluorescence from a stand-alone version of SCOPE,  15 

to (1) Benchmark TBM-SIF modeling, (2) Evaluate sensitivity to underlying processes and scaling 16 

techniques, (3) Identify strengths and weaknesses in current modeling strategies, and (4) 17 

Recommend strategies for models and observations.  18 

The paper is organized as follows: Section 2 describes SCOPE and the seven TBM-SIF models (SiB3, 19 

SiB4, ORCHIDEE, BEPS, BETHY, CLM4.5, CLM5) which have recently been published or are in 20 

review, and provides more details on site level benchmarking observations. Section 3 summarizes 21 

results comparing modelled and predicted SIF and GPP at hourly and daily scales, as they relate 22 

to absorbed light, GPP and SIF yields, and quantum yields. Section 4 discusses results in more 23 

detail, including attribution of SIF magnitude and temporal phasing biases and sensitivities to 24 

absorbed light, and areas for improvement.  25 

Section 2: Methods 26 

2.1 Site: Niwot Ridge, Colorado 27 

Deleted:  28 



 16 

Our study focuses on an AmeriFlux (https://ameriflux.lbl.gov/) site in Niwot Ridge, Colorado, 1 

USA (US-NR1), where a tower-based eddy covariance system has been continuously measuring 2 

the net ecosystem exchange of carbon dioxide (NEE) over a high-elevation subalpine forest 3 

since 1999, and a spectrometer system that has been continuously monitoring SIF since June 4 

2017 (Grossman et al., 2018; Magney et al., 2019b). The 26 m tall tower is located in a high 5 

elevation forest (3050 m asl) located in the Rocky Mountains of Colorado (Burns et al., 2015; Hu 6 

et al., 2010; Monson et al., 2002) and consists primarily of the evergreen species of lodgepole 7 

pine (Pinus contorta), Engelmann spruce (Piceae engelmanii), and subalpine fir (Abies 8 

lasiocarpa). The mean annual temperature is 1.5°C and mean annual precipitation is 800 mm 9 

(65% as snow). The forest is roughly 120 years old with a mean canopy height of 11.5 m, and a 10 

leaf area index of 4.2 m2 m-2. More site-specific details can be found in Burns et al. (2015).  11 

At Niwot Ridge, interannual variations in GPP are closely linked to winter snowfall amount, which 12 

typically melts by early June, and summer precipitation, characterized by afternoon convective 13 

thunderstorms triggered by upslope flow (Burns et al., 2015; Albert et al., 2017) and 14 

climatological peak precipitation around 2 pm local time (Fig 1A). We note that our study period 15 

of July-August 2017 is unusual for NR1 (relative to the 2015-2018 mean) in its bimodal 16 

distribution of diurnal precipitation (morning and afternoon peaks), lower than normal afternoon 17 

precipitation, cooler temperatures, and reduced vapor pressure deficit (Fig 1 A-C). The early 18 

morning peak is due to a strong storm system that moved through from July 22-24 (Fig 1E), and 19 

does not show up when these days are removed. This period also shows a decrease in incoming 20 

shortwave relative to climatology despite lower precipitation (Fig 1D). We note that a second 21 

storm passed through in early August. The combination of these two storms produced net 22 

decreases in air temperature (Fig 1F), vapor pressure deficit (Fig 1G) and sunlight (Fig 1H) over a 23 

two-week period from late July to early August.  24 

2.2 Tower-Based Measurements: PAR, SIF, CO2 Flux 25 

2.2.1 Absorbed PAR 26 

The site is equipped with two main upward-facing PAR sensors. The first (LICOR LI-190R), 27 

mounted on the PhotoSpec telescope unit, provides an independent measurement of 28 
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direct/diffuse light and can be used to calibrate PhotoSpec (Grossman et al., 2018). The second 1 

(SQ-500-SS; Apogee Instruments), mounted on the main flux tower, is part of a larger array of 2 

upward- and downward-oriented PAR sensors above and below the canopy used for the 3 

calculation of the fraction of PAR absorbed by the vegetation canopy (fAPAR). The two PAR 4 

sensors show a similar diurnal pattern during July-August 2017 (Fig S1), including an afternoon 5 

dip and relatively smaller values overall compared to 2018 (the only other year with available 6 

PAR for comparison).  7 

Full-spectrum quantum sensors (SQ-500-SS; Apogee Instruments) were new and factory-8 

calibrated together just before installation. Above-canopy sensors (one up and one down-facing) 9 

were mounted on the main flux tower, and below-canopy sensors (six up and six down) were 10 

mounted at the 2 m height above ground on a shorter canopy-access towers. APAR was 11 

calculated for each pair of below-canopy relative to above-canopy sensors for every half-hour, 12 

then averaged among sensors over daylight hours to create a daytime average. We then estimate 13 

hourly APAR by multiplying hourly incoming PAR (measured and integrated from 400-700 nm) at 14 

the top of canopy (PAR) by the daytime average of fAPAR. Fig S2 shows the mean diurnal cycle 15 

for July-August 2017 for each sensor, and the across-sensor average, with APAR data collection 16 

beginning on July 13, 2017. We note that APAR measurements are only as representative as the 17 

distribution of PAR sensors beneath the canopy; while they are placed within the footprint of SIF 18 

(Sec 2.2.3) and fetch of eddy covariance (Sec 2.2.4) measurements, they cannot be a perfect 19 

representation of canopy APAR for each eddy covariance and SIF measurement.  20 

2.2.2 Fluorescence parameters 21 

We define and clarify three important quantities that define the relationship between absorbed 22 

light and emitted SIF at leaf and canopy scales. 𝜙"  is the quantum yield of fluorescence, 23 

representing the probability an absorbed photon will be fluoresced. This quantity can be 24 

observed at leaf level using PAM fluorimetry or calculated by models as a function of rate 25 

coefficients for energy transfer (Sec 2.3.3). SIFyield is the canopy emitted SIF per photon absorbed. 26 

The quantity is estimated from models and observations as the ratio of absolute canopy SIF and 27 

APAR (SIFcanopy/APAR). SIFyield is our best attempt to account for the effects of (a) canopy absorbed 28 

light and (b) SIF re-absorption within the canopy on the canopy integrated emission of SIF. 29 
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However, factors such as observation angle, fraction of sunlit/shaded canopy components, and 1 

difference in footprint from APAR, necessitates an additional diagnostic variable defined as 2 

relative SIF (SIFrel). SIFrel is emitted SIF per reflected radiance in the far red spectrum where SIF 3 

retrievals occur (SIF/Reffr). This is useful because is normalizes for the exact amount of 4 

‘illuminated’ canopy components within the sensor field of view, whereas APAR measurements 5 

are integrated for the entire canopy.  6 

These quantities represent different but equally important versions of reality. It is difficult for 7 

models to exactly reproduce the distribution and timing of sunlight in the canopy as observed by 8 

PhotoSpec. While SIFrel removes model-observation differences in illumination, it confounds our 9 

interpretation of the relationship with GPPyield, which is derived from APAR. As such, we provide 10 

both results to be comprehensive, but note the temporal stability associated with SIFrel as the 11 

more physical interpretation of canopy yield for this short period of study. 12 

2.2.3 Tower Based Measurements of Solar Induced Chlorophyll Fluorescence (SIF) 13 

SIF data has been collected from a scanning spectrometer (PhotoSpec) installed at the AmeriFlux 14 

US-NR1 tall tower since June 17, 2017. PhotoSpec sits atop the tower at 26 m above the ground 15 

and roughly 15 m above the forest canopy top, transferring reflected sunlight and SIF data 16 

collected from the needleleaf canopy through a tri-furcated optical cable to three spectrometers 17 

in a shed at the base of the tower. These spectrometers measure far-red fluorescence in the 745-18 

758 nm retrieval window at high spectral resolution (FWHM = 0.3 nm) and with a 0.7 deg field of 19 

view (FOV), resulting in a 20 cm diameter footprint at nadir on top of the canopy. The far-red SIF 20 

data are then scaled to 740 nm for model intercomparison using the first principal component of 21 

the spectral shape in Magney et al., 2019a. Photospec scans from nadir to the horizon in 0.7 22 

degrees steps at two azimuth directions, with a time resolution of ~20 s per measurement and 23 

complete scan time of 20 minutes. For this study, we aggregate scans across all azimuth and 24 

elevation angles into hourly, canopy level averages to benchmark model estimates of top of 25 

canopy (TOC) or canopy averaged SIF (BETHY only, see Sec 2.3.4.1) at diurnal and synoptic time 26 

scales. We refer the reader to Grossman et al. (2018) and Magney et al (2019b) for further details 27 

regarding PhotoSpec, implementation at US-NR1, and data filtering. We focus our model-data 28 
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analysis on the 2017 growing season (July-August, 2017) to maximize overlap between 1 

observations of SIF, GPP, and APAR. 2 

Diurnal composites of PhotoSpec SIF in 2017 show a late morning peak and afternoon dip (Fig 3 

S3A). The afternoon dip is consistent with decreased incoming shortwave, PAR and APAR (Figs S1 4 

and S2, respectively). However, we note the retrieved signal from PhotoSpec is also affected by 5 

(1) viewing geometry, (2) fraction of sunlit vs shaded leaves (sun/shade fraction, i.e. the quantity 6 

of needles illuminated by incident sunlight) due to self-shading within the canopy, and (3) 7 

direct/diffuse fraction due to cloud cover. Structural and bidirectional effects lead to different 8 

SIF emission patterns depending on view angle and scanning patterns (Yang and van der Tol, 9 

2018). The viewing geometry of PhotoSpec (as implemented at NR1 in 2017) causes a higher 10 

fraction of illuminated vegetation in the morning, which leads to a 2 to 3 hour offset in the timing 11 

of peak SIF (Fig S3A) and incoming far-red reflected radiance within the retrieval window (Fig 12 

S3B), from the peak zenith angle of the sun at noon (coinciding with the expected peak in PAR) 13 

to late morning. Normalizing SIF by far-red reflected radiance as relative SIF (SIFrel, Fig S3C) and 14 

rescaling to SIF (Fig S3D) shifts the peak back to noon and preserved the afternoon dip (albeit 15 

with reduced magnitude). SIFrel helps to account for factors 1-3 listed above because it accounts 16 

for the amount of reflected radiation in the field of view of PhotoSpec, which is impacted by 17 

canopy structure, sun angle, and direct/diffuse light. As discussed above, SIFrel is likely a better 18 

approximation of SIFyield because it normalizes for the exact amount of ‘illuminated’ canopy 19 

components in each retrieval, whereas APAR integrates the entire canopy. As such, we expect 20 

SIFrel to have a strong seasonal change associated with downregulation of photosynthesis, and a 21 

more subtle diurnal change, as during mid-summer the SIF signal is primarily driven by light 22 

intensity.   23 

It is important to note that the PhotoSpec system is highly sensitive to sun/shade fraction in the 24 

canopy (factor 2) due to the narrow FOV of the PhotoSpec telescoping lens. Increased afternoon 25 

cloud cover during summer causes diurnal asymmetry in incident PAR (Fig S1A). We examine this 26 

effect in more detail (Section 3) by analyzing SIF and GPP under clear and diffuse sky conditions 27 

using a threshold (0.5, top-of-canopy/top-of-atmosphere incoming shortwave radiation) similar 28 

to that used in Yang et al. (2017) and Yang et al. (2018). 29 
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2.2.4 CO2 Flux and GPP Partitioning 1 

NEE measurements are screened using ustar filtering, and partitioned into gross primary 2 

production (GPP) and terrestrial ecosystem respiration components using the so-called nighttime 3 

method which is based on the relationship between NEE during the nighttime (PAR < 50 umol m-4 
2 s-1) and air temperature (Reichstein et al., 2005). Diurnal averages of GPP based on nighttime 5 

partitioning show similar diurnal structure to PAR and SIF including the afternoon dip and 6 

reduced overall magnitude compared to the 2015-2018 mean (Fig S4). Similar results are found 7 

using daytime light partitioning of NEE (Lasslop et al., 2010; Fig S4) and thus only nighttime 8 

partitioned GPP data are reported for the remainder of this study. All GPP estimates are 9 

processed as half hourly means, then gap filled and averaged hourly. We note the tower location 10 

near the Continental Divide in the Rocky Mountains of Colorado presents slope flow challenges 11 

for eddy covariance during nighttime, but the relatively flat area of the tower reduces impact on 12 

daytime flux measurements (Burns et al., 2018). Details on the flux measurements, data 13 

processing and quality control are provided in Burns et al. (2015).  14 

2.3 Modeling Approach 15 

2.3.1 TBM-SIF Overview 16 

The parent TBMs are designed to simulate the exchanges of carbon, water, and energy between 17 

biosphere and atmosphere, from global to local scales depending on inputs from meteorological 18 

forcing, soil texture, and plant functional type. The addition of a fluorescence model that 19 

simulates SIF enables a direct comparison to remotely sensed observations for benchmarking, 20 

process diagnostics, and parameter/state optimization (data fusion) for improved GPP 21 

estimation. The TBM-SIF models analyzed here differ in ways too numerous to discuss. We refer 22 

the reader to the appropriate references in Section 2.3.4 for more detailed model descriptions.  23 

Instead, we focus on key differences affecting joint simulation of GPP and leaf/canopy level SIF 24 

at diurnal and synoptic scale, during the peak of summer. These differences, which are 25 

summarized in Table 1, include the representation of stomatal-conductance (all use Ball-Berry 26 

except CLM5.0, BEPS, and ORCHIDEE), canopy absorption of incoming radiation (all account for 27 

sunlit/shaded radiation except ORCHIDEE, SiB3, and SiB4), limiting factors for photosynthesis 28 
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(Vcmax, LAI, radiation, stress) and SIF (kN, fluorescence photon re-absorption), scaling and radiative 1 

transfer methods for transferring leaf-level SIF simulations to top of canopy, and parameter 2 

optimization. Further details on (a) photosynthetic structural formulation and parameter choice, 3 

(b) representation of leaf level processes important to SIF (𝑘$ and 𝜙%), and (c) leaf-to-canopy 4 

scaling approach (𝑆𝐼𝐹)*+,-.) are provided in Sections 2.3.2 and 2.3.3.  5 

2.3.2 Photosynthesis Models 6 

All TBM-SIF models in this manuscript used enzyme-kinetic models to simulate leaf assimilation 7 

rate (gross photosynthesis) as limited by the efficiency of photosynthetic enzyme system, the 8 

amount of PAR captured by leaf chlorophyll, and the capacity of leaves to utilize end products of 9 

photosynthesis (Farquhar et al., 1980; Collatz et al., 1991, 1992; Sellers et al., 1996). However, 10 

there are important differences in the representation of (a) stomatal conductance that couples 11 

carbon/water cycles, and (b) limiting factors on carbon assimilation due to leaf physiology 12 

(maximum carboxylation capacity, Vcmax), radiation (APAR or fAPAR), canopy structure (LAI, leaf 13 

angle distribution), and stress (water supply and demand, temperature), that affect plant 14 

physiological processes and canopy radiative transfer. The underlying stomatal conductance 15 

models in the TBMs analyzed here are represented by the Ball-Berry family of empirical models 16 

rooted in the leaf gas exchange equation but with different representations of atmospheric 17 

demand (relative humidity or vapor pressure deficit), including the Ball-Berry-Woodrow model 18 

(Ball et al., 1987), the Leuning model (Leuning, 1995), the Yin-Stuik model (Yin and Struik, 2009), 19 

and the Medlyn model (Medlyn et al., 2011). These structural and parametric differences also 20 

influence calculated values such as the degree of light saturation (Section 2.3.3), which influence 21 

both the fluorescence and quantum yield as used by the fluorescence models. Differences in 22 

stomatal conductance, canopy type / radiation scheme, stress, Vcmax, and LAI are summarized in 23 

Table 1.  24 

2.3.3 Fluorescence Modeling Approach 25 

Following the general approach described in Lee et al. (2015) and van der Tol et al. (2014), the 26 

flux of total leaf-level emitted fluorescence, 𝑆𝐼𝐹/0*1, can be diagnosed using a light use efficiency 27 

framework analogous to the expression for photosynthesis (Monteith et al., 1972), 28 
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𝑆𝐼𝐹/0*1 = 𝑓𝐴𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅 ∗	𝜙"  1 

= 𝐴𝑃𝐴𝑅 ∗ 𝜙"	                                                      Equation 1 2 

where PAR and fAPAR are defined in Section 2.2.1 but measured at leaf level, and 𝜙"  is the 3 

quantum yield of fluorescence, representing the number of photons emitted by fluorescence per 4 

absorbed photon. We note that photosystems I and II (PS1 and PSII, respectively) contribute to 5 

leaf level fluorescence but only PSII is considered in models analyzed here (with the exception of 6 

ORCHIDEE and BETHY, Section 2.3.4.2). 𝜙"  is estimated as follows: 7 

𝜙" = 	
9:	

9:;9<;9= (1 − 𝜙%)                                   Equation 2 8 

where k represents the rate coefficients for the different pathways for the transfer of energy 9 

from excited chlorophyll (𝑘"  = fluorescence, 𝑘B = heat dissipation, and 𝑘$ = non-photochemical 10 

quenching, or NPQ), and 𝜙% is the quantum yield of electron transport (see Section 2.3.2). 𝑘"  is 11 

typically set to a constant value (0.05) in models following van der Tol et al (2014). 𝑘B is also 12 

typically set to a constant value of 0.95, or temperature corrected in some cases (e.g., ORCHIDEE, 13 

CLM4.5, CLM5.0, BETHY). 𝑘$ has a substantial and variable impact on energy partitioning at 14 

diurnal and seasonal scales which varies as a function of light saturation (e.g., Raczka et al., 2019; 15 

Porcar-Castell et al., 2011). Once leaf level emissions are known, an approach is needed estimate 16 

the total TOC fluorescence flux (𝑆𝐼𝐹)*+,-.) for comparison to Photospec data. Leaf and canopy 17 

level fluorescence modeling is described in more detail in Section 2.3.3.1 and 2.3.3.2 below.  18 

2.3.3.1 Leaf level SIF emission 19 

The ‘quantum yield’ approach has been used in SIF models to characterize the fraction of photons 20 

that are used for PQ, NPQ, or re-emitted as fluorescence (van der Tol 2014). It is important to 21 

note, that this does not translate into the actual amount of SIF emission leaving the leaf, but is 22 

used as an approximation. TBM-SIF models typically represent 𝜙% using lake model formalism, 23 

which assumes large connectivity between photosynthetic units (Genty et al., 1989; van der Tol 24 

et al., 2014). 𝜙% is expressed in terms of the degree of light saturation (x), derived from the native 25 

photosynthesis module of the parent TBM and represents the balance between actual and 26 

potential electron transport rates, and the maximum photochemical yield under dark-acclimated 27 
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conditions (𝜙%C*D), which is derived from the fluorescence model and defined in terms of rate 1 

coefficients in Eq 2.  2 

𝜙$ accounts for the ability of plants to dissipate excess energy as heat via NPQ through the 3 

regulation of xanthophyll cycle pigments (Demmig-Adams and Adams, 2006). NPQ can be 4 

represented as a sum of reversible (kR) and sustain (kS) components (kN = kR + kS). kR accounts for 5 

the relatively fast (diurnal), reversible NPQ response to light. kS accounts for the relatively slow 6 

(seasonal), sustained NPQ response to light and other environmental factors. With the exception 7 

of CLM4.5, models do not typically account for kS. 8 

A significant challenge in fluorescence models is to find an appropriate relationship between  𝑘$ 9 

and the degree of light saturation (x).  The TBM-SIF models represent 𝑘$ through an approach 10 

similar to the one used in SCOPE, which uses a parametric model of 𝑘$ derived from PAM 11 

fluorometry measurements (van der Tol et al., 2014).   12 

NPQ models can be classified as stressed (drought) and unstressed relative to water availability 13 

depending on the dataset from which empirical fits are derived. The unstressed model is ideal 14 

for irrigated systems such as crops, and the stressed model is more appropriate for water limited 15 

ecosystems such as Niwot Ridge. We examine each of these models using drought and unstressed 16 

models from van der Tol (2014), and a drought-based model from Flexas et al. (2002). These 17 

models use different empirical fits but are otherwise identical. In general, 𝑘$ increases more 18 

rapidly with APAR (light saturation), and ramps up to a higher level, in the drought-based model 19 

compared to the unstressed model. Additionally, some models provide unique improvements 20 

such as dependence on environmental conditions (e.g., water stress vs no water stress in 21 

ORCHIDEE), and equations for reversible and sustained NPQ to represent the different time 22 

scales (minutes to seasonal) at which NPQ regulation occurs (e.g., CLM4.5) influenced by 23 

pigmentation changes in the leaf.  24 

2.3.3.2 Leaf-to-Canopy scaling 25 

The TBM-SIFs produce leaf-level fluorescence which needs to be converted to canopy-level 26 

fluorescence (SIFcanopy) to be directly compared to PhotoSpec and satellite observations.  Leaf- to 27 

canopy- level conversion of SIF requires a representation of canopy radiative transfer, which in 28 
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general is too computationally expensive to include within the TBMs in this study, that are 1 

designed for global scale application.  Therefore, most TBMs analyzed here account for canopy 2 

radiative transfer of SIF using some representation of SCOPE (van der tol 2009a,b). The most 3 

commonly used approach is to run independent simulations of SIF from SCOPE to create an 4 

empirical conversion factor (𝜅FGH) between leaf and canopy level SIF that is a function of Vcmax 5 

(Lee et al., 2015). This conversion factor accounts for integration over the fluorescence emission 6 

spectrum, observation angle, and unit conversion. Model variations of this empirical approach, 7 

as well additional approaches utilizing the full SCOPE model and a SCOPE emulator, are 8 

summarized below and in Table 1.  9 

2.3.4 TBM-SIF Models 10 

Here we provide a brief description of individual TBM-SIF models and within model experiments. 11 

We point out key differences in modeling of photosynthesis, fluorescence, and leaf-to-canopy 12 

scaling. We note that within model experiments, labeled as Experiment 1 (exp1), Experiment 2 13 

(exp2), etc, represent increasing order of realism, rather than a specific set of conditions common 14 

across models. As such, Experiment 1 in BETHY (BETHY-exp1) is not equivalent to Experiment 1 15 

in CLM4.5 (CLM4.5-exp1).  16 

2.3.4.1 BETHY 17 

The Biosphere Energy Transfer HydrologY (BETHY) model is the land surface component of the 18 

Carbon Cycle Data Assimilation System (CCDAS) developed to ingest a range of observational data 19 

for estimating terrestrial carbon fluxes at global scale (Rayner et al., 2005; Kaminski et al., 2013; 20 

Koffi et al., 2012; Anav et al., 2015). Koffi et al. (2015) was the first to combine a process-based 21 

model of SIF with a global TBM. The native canopy radiative transfer and photosynthesis schemes 22 

of BETHY were effectively replaced with corresponding schemes and fluorescence model from 23 

SCOPE (Koffi et al., 2015), thus enabling spatially explicit simulation of GPP and SIF as a function 24 

of plant function type. This model was extended to include a module for prognostic leaf growth 25 

(Norton et al., 2018) and more recently adapted with a formal optimization algorithm for 26 

assimilating spaceborne SIF data (Norton et al., 2019). It has been updated for this study to accept 27 

hourly meteorological forcing. BETHY-SCOPE, denoted here as BETHY, remains the first and only 28 
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global TBM-SIF model to simulate vertically integrated (1-D) fluorescence radiative transfer and 1 

energy balance.   2 

We include three experiments to examine the impact of calibrating the 𝑘$ model against PAM 3 

fluorometry data to different species: (1) BETHY-exp1 is adapted to unstressed cotton species 4 

(van der Tol et al., 2014), (2) BETHY-exp2 is adapted to drought stressed Mediterranean species 5 

(i.e., vineyard in controlled environment subjected to drought) including higher temperature 6 

correction (Flexas et al., 2002; van der Tol et al., 2014), (3) BETHY-exp3 is adapted to drought 7 

stressed Mediterranean species (Flexas et al., 2002).  8 

We further leverage SCOPE enabled SIF modeling in BETHY (BETHY-exp3 specifically) to examine 9 

(a) leaf and canopy level SIF and quenching under sunlit and shaded leaves, and (b) SIF emissions 10 

at the top of canopy (SIFcanopy) versus the average emission within the canopy (SIFave), which 11 

accounts for the average emission from sunlit and shaded leaves. The latter analysis facilitates 12 

comparison to PhotoSpec, which observes the entire canopy.  13 

An important caveat in the analysis of BETHY simulations is that, at the time of this writing, the 14 

prescribed meteorological forcing at NR1 is only available for 2015. While this degrades 15 

comparison to diurnal and synoptic variation observed by PhotoSpec in 2017, we find that 16 

analysis of magnitude, light sensitivities, and within model experiments still provides useful 17 

insight for interpretation of other TBM-SIFs, and future modeling requirements in general.  18 

2.3.4.2 ORCHIDEE 19 

The Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) model (Krinner et al., 20 

2005) is the land surface component of the Earth System Model of Institut Pierre-Simon Laplace 21 

IPSL-CM, (Dufresne et al., 2013) involved in recent exercises of the Coupled Model 22 

Intercomparison Project (CMIP) established by the World Climate Research Programme 23 

(https://www.wcrp-climate.org/wgcm-cmip). Recently a mechanistic SIF observation operator 24 

was developed for ORCHIDEE to simulate the regulation of photosystem II 𝜙"  at the leaf level 25 

using a novel parameterization of NPQ as a function of temperature, PAR, and normalized 𝜙%. It 26 

emulates the radiative transfer of SIF to the top of the canopy using a parametric simplification 27 

of SCOPE. The details of the SIF modelling approach are provided in Bacour et al. (2019).  28 
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We include three experiments to examine the impact of water stress and parameter optimization 1 

(using OCO-2 SIF, see Section 2.4): (1) ORCHIDEE-exp1 is the standard configuration with default 2 

parameters, (2) ORCHIDEE-exp2 is the same as ORCHIDEE-exp1 with two key differences (a) water 3 

stress is applied to stomatal conductance, mesophyll conductance and to the photosynthetic 4 

capacity, and (b) the tree height (12 m instead of 15 m) was set specifically for the NR1 site, (3) 5 

ORCHIDEE-exp3 is the same as ORCHIDEE-exp1 but includes OCO-2 optimized parameters.  6 

2.3.4.3 BEPS 7 

The Boreal Ecosystem Product Simulator (BEPS) is an enzyme kinetic two-leaf model for 8 

simulating carbon and water cycles for different plant functional types (Chen et al., 1999; Liu et 9 

al., 2003). BEPS uses a modified Ball-Berry stomatal conductance model (Leuning et al., 1995) 10 

and semi-analytical canopy radiative transfer. The canopy architecture is well considered in BEPS 11 

model, which has not only remote-sensed LAI but also the global map of the foliage clumping 12 

index. The fluorescence emission at the leaf level follows the approach of Lee et al (2015). SIF 13 

emission for sunlit and shaded leaves are separately simulated based on illumination and canopy 14 

geometry in BEPS. In addition, multiple scattering SIF is also simulated to account for the 15 

scattering process within the canopy. The scaling of leaf-level fluorescence emission to the 16 

canopy is based on a novel scheme for single-layer models which accounts for canopy scattering 17 

and extinction from sunlit and shaded leaves (Qiu et al., 2019). This scaling scheme is an effective 18 

approach to simulate the radiative transfer of SIF for a given canopy structure. We include two 19 

experiments similar to BETHY-exp1/2 in the calibration of the 𝑘$ model against unstressed vs 20 

stressed species (BEPS-exp1 and BEPS-exp2, respectively).  21 

2.3.4.4 CLM4.5 22 

The Community Land Model version 4.5 (CLM4.5) provides a description of the biogeochemical 23 

profile spanning from the sub-surface bedrock to the top of the vegetation canopy. The 24 

fluorescence sub-model follows Raczka et al. (2019), in which the degree of light saturation is 25 

calculated from the potential and actual electron transport rate as determined from the 26 

photosynthesis model described above.  𝜙1 is formulated as described in Equation 2 and 𝜙% is 27 

formulated as a function of the maximum 𝜙% under dark acclimated conditions and the degree 28 
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of light saturation. CLM4.5 uses independent site-level SCOPE simulations that match the 1 

observed canopy characteristics and observed GPP at Niwot Ridge to calculate a leaf to canopy 2 

level conversion factor (𝜅FGH) for estimating SIFcanopy. In CLM4.5, 𝜅FGH is fitted to the modeled 3 

SCOPE data as a function of solar zenith angle (and implicitly Vcmax).  4 

Similar to Raczka et al. (2019), here we examine three separate approaches to parameterize 𝑘$. 5 

CLM4.5-exp1 only considers reversible NPQ (kR), such that, 𝑘$ = 𝑘J, and the relationship 6 

between 𝑘J  and the degree of light saturation is fitted to PAM fluorometry data based on 7 

Mediterranean shrubs (Flexas et al., 2002; Galmes et al., 2007). CLM4.5-exp2 parameterizes 𝑘J  8 

with PAM fluorometry from a Scots Pine forest (Porcar-Castell et al., 2011), and defines the rate 9 

coefficient in terms of both a reversible and sustained component (𝑘$ = 𝑘J+ 𝑘K).  It has been 10 

found that sustained NPQ is important for cold climate evergreen conifer forests such as Niwot 11 

Ridge (Miguez et al., 2015; Magney et al., 2019b), and Raczka et al. (2019) found that 12 

representing both components provided improved simulations of seasonal SIF. CLM4.5-exp3 is 13 

similar to CLM4.5-exp3 but includes a seasonally varying representation of 𝑘J.  All model 14 

experiments use hand-tuned parameters specific to US-NR1 (Raczka et al., 2016). 15 

2.3.4.5 CLM5.0 16 

CLM version 5.0 (CLM5.0) is similar to CLM4.5 with respect to the implementation of the 17 

fluorescence sub-model, yet includes several important updates to the representation of 18 

photosynthesis from CLM4.5, including a prognostic calculation of Vcmax based upon leaf nitrogen 19 

and environmental conditions, revised nitrogen limitation scheme, Medlyn stomatal 20 

conductance model, and plant hydraulic water stress (Kennedy et al., 2019). To represent NPQ 21 

we use a single approach for kN (see CLM4.5-exp1), but examine three approaches for estimating 22 

𝜅FGH: (1) CLM5.0-exp1 uses 𝜅FGH as function of Vcmax following Lee et al (2015), (2) CLM5.0-exp2 23 

follows the approach of CLM4.5, and (3) CLM5.0-exp3 adapts the approach proposed by Zeng et 24 

al. (2019) that estimates the fraction of total emitted SIF escaping the canopy by combining near-25 

infrared reflectance of vegetation (NIRV) and fPAR.  26 

2.3.4.6 SIB3 27 
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The Simple Biosphere Model version 3 (SIB3) involves the use of explicit biophysical mechanisms 1 

to directly calculate carbon assimilation by photosynthesis (Baker et al., 2003; 2008). SiB3 2 

includes prognostic calculation of temperature, moisture, and trace gases in the canopy air space, 3 

but requires prescription of most structural properties including LAI. We examine two 4 

approaches for prescribing LAI: (1) SIB3-exp1 using values prescribed from MODIS, and (2) SIB3-5 

exp2 uses values observed at the study site (4.0 m2 m-2). In general, the fluorescence sub-model 6 

follows the approach of Lee et al. (2015) except that 𝑘$ is adapted to drought stressed species 7 

following van der Tol et al (2014).  8 

2.3.4.7 SIB4 9 

SIB4 (Haynes et al., 2019a,b) shares many similarities to SIB3 with respect to functional aspects 10 

of photosynthesis and fluorescence, however, SIB4 uses prognostic rather than prescribed 11 

phenology and LAI.  12 

2.3.5 SCOPE 13 

SCOPE is a multi-layer canopy model which explicitly represents the within canopy radiative 14 

transfer of fluorescence, whereas TBM-SIFs analyzed here (with the exception of BETHY) only 15 

provide an empirical representation. We provide results from a stand-alone version of SCOPE 16 

v1.73 (van der Tol et al., 2014) as an additional benchmark for TBM-SIF simulations of APAR, GPP, 17 

SIF, and quantum yields. There are three important reasons for this: (1) It is inherently difficult 18 

to provide representative and accurate in situ measurements of APAR, SIF, and GPP for 19 

comparison to models; (2) SCOPE provides estimates of quantum yields for fluorescence, 20 

photochemistry, and non-photochemical quenching, which are not measured continuously in the 21 

canopy at NR1; and (3) SCOPE offers a more direct benchmark for evaluating more simplified 22 

representations of canopy radiative transfer in TBM-SIFs. Unlike the TBM-SIFs, SCOPE does not 23 

include a representation of biogeochemical cycling or carbon pools, and thus no spin up is 24 

required. As such, we prescribe LAI (4 m2 m-2), canopy height (13 m), and leaf chlorophyll content 25 

(25 ug cm-2) following Raczka et al. (2019). We also examine two approaches for prescribing Vcmax: 26 

(1) SCOPE-exp1 uses the default constant value of 30, similar to BETHY, and (2) SCOPE-exp2 uses 27 

a seasonal varying value calibrated to NR1, following Raczka et al. (2016, 2019), which follows a 28 
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bimodal distribution peaking near 45 in early summer (DOY = 150) and 40 in late summer (DOY = 1 

250) 2 

2.4 Data Assimilation 3 

Details of the data assimilation protocols for ORCHIDEE is provided in Bacour et al. (2019). An 4 

ensemble of parameters related to photosynthesis (including optimal Vcmax) and phenology were 5 

optimized for several plant functional types. Note that none of the assimilated pixels encompass 6 

the location of the US-NR1 tower. In ORCHIDEE, the study site is treated as boreal needleleaf 7 

evergreen (ENF); as such, the ORCHIDEE-exp3 simulations in this study are based on parameters 8 

optimized against OCO-2 SIF data using an ensemble of worldwide ENF pixels. Note that for 9 

BETHY, each experiment uses the same set of optimized parameters whereas in ORCHIDEE the 10 

SIF simulations are performed separately for the standard parameters (ORCHIDEE-exp1/exp2) 11 

and optimized parameters (ORCHIDEE-exp3), thus providing a test of sensitivity to parameter 12 

optimization as discussed below.  13 

2.5 Illumination Conditions 14 

In order to gain insight into how SIF emissions and quantum yields vary with illumination, we 15 

further analyze Photospec and a subset of models with respect to (a) changes in incoming light 16 

and (b) self-shading within the canopy, respectively.  For PhotoSpec, we analyze changes in 17 

canopy average SIF and SIFrel under conditions of predominantly direct versus diffuse PAR, using 18 

a 0.5 threshold to distinguish between the two conditions (Section 2.2.3). For models we focus 19 

on emissions from sunlit vs shaded leaves. We analyze leaf- versus canopy-level SIF emissions 20 

(SIFleaf and SIFcanopy) in CLM4.5-exp3, and leaf-level quantum yields (𝜙1, 𝜙-, 𝜙$) in SCOPE-exp2. 21 

We further compare predictions of quantum yield at the top-of-canopy to canopy averages in 22 

SCOPE-exp2. The motivation here is that top-of-canopy leaves see most of the sunlight, and thus 23 

should have different yields compared to shade adapted leaves lower in the canopy. This also 24 

provides a more direct comparison for PhotoSpec.    25 

2.6 Modeling Protocol 26 

Models are run for the period 2000-2018 (except BETHY (2015 only) and SCOPE (2017 only)) using 27 

identical, hourly, gap-filled meteorological observations. The primary hourly output fields 28 
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analyzed are the top-of-canopy SIF (SIFcanopy @ 740 nm), GPP, 𝜙1, 𝜙-, and APAR. Model-1 

observation comparisons are made for absolute and relative SIF, GPP, SIFyield (SIFcanopy/APAR) and 2 

GPPyield (GPP/APAR), sunlit versus shaded canopies (CLM4.5-exp3 and SCOPE-exp2), and TOC 3 

versus canopy average SIF (SIFcanopy versus SIFave, respectively, from SCOPE-exp2). Quantum yields 4 

and within model experiments provide context to understand canopy integrated results. We 5 

focus our analysis on 8 am – 4 pm local time from July-August 2017 for comparison to available 6 

PhotoSpec and APAR data. 7 

Models are controlled for meteorological forcing (meteorological data described in Burns et al., 8 

2015) but other factors such as spin-up, land surface characteristics, parameter tuning, and 9 

model state, are not controlled for and are treated separately according to each model’s 10 

protocol. For example, CLM4.5 is better suited than others in prescribing observed vegetation 11 

characteristics at the study site. One ORCHIDEE experiment (ORCHIDEE-exp3) is preliminary 12 

optimized by assimilating independent Orbiting Carbon Observatory 2 (OCO-2) SIF data at the 13 

global scale (Section 2.4). We emphasize that our point here is not to identify the best model but 14 

to identify common patterns in model behavior through normalized SIF and deviation from 15 

observed behavior to identify areas requiring the most attention.  16 

The results are organized around two parallel themes. The first theme addresses four key 17 

processes driving canopy-level fluorescence: (1) incoming illumination, (2) energy partitioning on 18 

incoming light between photochemistry, fluorescence, and NPQ, and (3) leaf-to-canopy emitted 19 

SIF, including linearity of yields at leaf and canopy scale. The second theme addresses sensitivity 20 

of these processes to environmental conditions at diurnal and synoptic scales. Here, synoptic 21 

scale refers to the impact of day-to-day changes in weather, including two storm events which 22 

brought sustained cool, wet, and cloudy conditions from July 22-31 and then from August 6-10.  23 

Section 3: Results 24 

Incoming Illumination 25 

Two key features dominate observed APAR variability: afternoon depression (Fig 2A) and 26 

reduction during two summer storms (Fig 2D). Both features are captured by models. More 27 

generally, models capture synoptic variability with high correlation (r > 0.8) and low across model 28 
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spread (𝜎 = 10%). The exception is BETHY, which is simulated outside our observation year (2015). 1 

High model fidelity is expected given that observed PAR is prescribed, and it is promising that 2 

models show a consistent response to changes in illumination. The primary shortcoming across 3 

TBM-SIFs and SCOPE is a systematic high bias in APAR magnitude (129%), with most models 4 

exceeding the upper range of observed APAR (as determined from the six within canopy PAR 5 

sensors, Fig S2), and high model spread. These errors are likely related to differences in predicted 6 

fAPAR. In the case of ORCHIDEE, high APAR is expected due to the big leaf assumption where all 7 

leaves are considered as opaque and fully absorbing.  8 

Canopy Photosynthesis 9 

Observed GPP shows a broad peak from mid-morning to early afternoon (~9 am – 1 pm local), 10 

followed by slight decrease until 4 pm (Fig 2B), consistent with afternoon cooling and reduced 11 

light availability (Fig 1B-D). The two month period under investigation is relatively flat with 12 

generally weak day-to-day variability (𝜎 = 17%), but modest correlation with APAR (r = 0.61, Fig 13 

2E). Some models capture the afternoon GPP depression, but all models strongly underestimate 14 

its magnitude, apparently independent of stomatal conductance formulation or more explicit 15 

accounting for plant hydraulic water stress such as in CLM5.0. SCOPE and BETHY, which don’t 16 

account for water stress, show no afternoon depression. Models are mostly uncorrelated with 17 

observed GPP at synoptic scale (r ranges from -0.2 to 0.36, highest value in SiB4), high biased, 18 

and show increased spread (in predicted magnitude) relative to APAR (143% +/- 23%). SCOPE-19 

exp2 shows slight improvement in GPP magnitude with the larger Vcmax value in late summer.  20 

While observed GPPyield is mostly stable over the diurnal cycle, most models (except BEPS) show 21 

a distinct midday minimum (Fig 3A). Half of the models show a similar midday minimum in 22 

photochemical quantum yield (𝜙%, Fig 4A), with the other half either increasing or decreasing in 23 

the afternoon (CLM5.0 and SiB3/SiB4, respectively). The midday dip in yield is likely associated 24 

with reduced photosynthetic efficiency at high light levels, as demonstrated by reductions in GPP, 25 

GPPyield, 𝜙% with APAR (Fig 5A, C, E). 26 

Observed GPPyield shows significant structure at synoptic temporal scale (Fig 3C), most notably 27 

increased yield during the cool/rainy period (reduced heat and water stress), and decreased yield 28 
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in mid- to late- August (increased heat and water stress following the cooling pattern). In contrast 1 

to predicted GPP, models show high fidelity in capturing the magnitude and variability of GPPyield 2 

at synoptic scale (r ranges from 0.35 – 0.76, highest values in SCOPE and CLM4.5/5.0). Individual 3 

models are self-consistent in their predictions of GPPyield and 𝜙% at synoptic scale (r = 0.592 – 4 

0.935) except for SiB3/SiB4 (r < 0.1, Fig 4B).  5 

Canopy Fluorescence 6 

Observed SIFcanopy is strongly correlated with observed APAR at diurnal and synoptic scale (r = 7 

0.77), with common features including afternoon depression and reduction during rainy periods 8 

(Fig 2C & 2F). Observed PAR also feeds into the fluorescence sub-model and, unlike GPP, strongly 9 

correlates with SIFcanopy at synoptic scale (r ranges from 0.58 to 0.92, highest values in SCOPE and 10 

ORCHIDEE). However, we find a persistent positive model bias in SIFcanopy (170% +/- 45%) 11 

consistent with, but not proportional in magnitude to, the APAR bias. We note that models are 12 

especially oversensitive to APAR at high light levels (Fig 5D).  13 

We investigate the high bias in SIFcanopy in more detail using SCOPE-exp2 and CLM4.5-exp3. 14 

Specifically, we examine leaf and canopy level SIF and quenching under sunlit and shaded leaves. 15 

Analysis of quantum yields in SCOPE-exp2 (Fig S5) shows a reversal in the fractional amounts of 16 

absorbed energy going to SIF and PQ vs NPQ in low- vs high-light conditions that is consistent 17 

with leaf level data and theory (Porcar-Castell et al., 2014). More specifically, SCOPE-exp2 18 

predicts low 𝜙"  and 𝜙% and high 𝜙$ in sunlit leaves relative to shaded leaves, with more energy 19 

going to fluorescence and photochemistry than to NPQ in shaded leaves, and more energy going 20 

to (shed off by) NPQ in sunlit leaves (Fig S5). Likewise, total 𝜙"  shows decreasing values with 21 

increasing APAR in SCOPE and BETHY-exp2/3 compared to BETHY-exp1, consistent with observed 22 

SIFyield (Fig 5E-F), as 𝜙$ ramps up to higher levels in the drought parameterized Kn model. 23 

Moreover, in stark contrast to SIFyield and SIFcanopy, 𝜙"  does not show high values relative to other 24 

models (Fig 4D). These results point to an issue in SCOPE and BETHY with leaf to canopy scaling 25 

in needleleaf forests. 26 

Analysis of CLM4.5-exp3 suggests several possible reasons for oversensitivity to APAR. First, we 27 

focus on emissions from sunlit/shaded portions of the canopy (Fig S6). CLM4.5-exp3 and 28 
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PhotoSpec both show higher SIF under “high light” conditions (sunlit leaves and direct radiation, 1 

respectively) compared to “low light” conditions (shaded leaves and diffuse radiation, 2 

respectively), which is promising (Fig S6 A,D). Comparing the ratio of sunlit to shaded SIF in 3 

CLM4.5-exp3 to the ratio of direct to diffuse SIF in PhotoSpec (Fig S6 B,E) shows higher ratio in 4 

CLM4.5-exp3 on average. The difference peaks in midday, when sunlit leaf area is maximized 5 

(self-shading minimized) in CLM4.5 but no major difference in the amount of direct radiation, 6 

and decreases with increasing sun angle (morning and afternoon) and with increasing rainfall (in 7 

the afternoon on average, and during the rainy period in late July / early August), both of which 8 

increase the shaded fraction. As such, accounting for view angle and different illumination 9 

metrics for PhotoSpec and CLM4.5 (most comparable in morning, afternoon, and during rainy 10 

days) reduces, but does not entirely remove, the positive bias in high light conditions. 11 

Second, the degree of light saturation (x) is twice as high in the sunlit canopy in CLM4.5 (Fig S7), 12 

which leads to low fluorescence efficiency in sunlit leaves and high fluorescence efficiency in 13 

shaded leaves. While this produces high photochemistry in shaded leaves, it contributes a small 14 

fraction of SIF to the total canopy (~20%) despite higher fractions of shaded leaves (~2/3 at noon, 15 

Fig S6C) and thus sunlit leaves dominate SIFyield and SIFcanopy.  Therefore, it seems likely that a 16 

model’s representation of canopy structure including the partitioning between sunlit/shaded leaf 17 

area fractions has an important impact upon canopy SIF.  Biases in the sunlit/shaded fraction will 18 

likely propagate into the simulated value of canopy SIF. However, it’s important to know that the 19 

observed sunlit/shaded fraction from PhotoSpec is estimated as well, since it is currently not 20 

possible to determine the precise sun/shade fraction within PhotoSpec FOV. 21 

Additionally, all formulations of CLM4.5 (and most models except BETHY and SCOPE) show lack 22 

of decline in SIFyield with APAR compared to measurements of absolute SIF (Fig 5E). For CLM4.5, 23 

the relationship between SIFyield and APAR depends upon the relationship between degree of 24 

light saturation and reversible NPQ (Raczka et al., 2019).  This suggests it is important to properly 25 

represent the NPQ response to environmental conditions when simulating SIF. 26 

While most of the model bias is reduced in SIFyield (126%, mostly attributed to BETHY and SCOPE), 27 

the remaining signal, representing the dynamic response to synoptic conditions (e.g., Magney et 28 

al., 2019), is poorly represented in models, as demonstrated in a time series of 5-day means (Fig 29 
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3D). Most models show zero to strongly negative correlation with observations at synoptic scale 1 

and only three models (SCOPE, ORCHIDEE-exp3, and BETHY-exp2/3), produce correlation greater 2 

than 0.5. These are the only three models that also capture a negative relationship between 3 

SIFyield and APAR (Fig 5E).  4 

In general, predicted SIFyield is stable during our short study period (Fig 3). Half of models show a 5 

significant positive correlation with GPPyield (r > 0.85) and half show zero or negative correlation 6 

(Fig S8). While these findings run counter to observed SIFyield, which shows a clear response 7 

during and following the storm event and moderate positive correlation with observed GPPyield (r 8 

= 0.40), they show some consistency with observed SIFrel (grey line in Fig 3 and Fig S8A) which 9 

like many models is stable and uncorrelated with GPPyield. We refer the reader to Section 2.2.2 10 

for clarification of the important difference between SIFyield and SIFrel.  11 

Leaf-to-Canopy Scaling 12 

Several methods have been proposed to transfer predicted leaf-level SIF emissions to the top of 13 

canopy. While leaf-to-canopy scaling enables efficient global scale simulation, the diversity of 14 

novel methods adds uncertainty to the canopy level estimate of SIF (in addition to 15 

aforementioned uncertainties in structure, APAR, photochemistry, fluorescence). These 16 

differences are evident in comparison of Figures 3 and 4, in which yields are plotted on a similar 17 

scale.   18 

At least at diurnal scale, there is some evidence that leaf and canopy emissions look more similar 19 

for models adopting simplified empirical scaling functions (SiB3, SiB4, CLM4.5, CLM5.0, BEPS) 20 

than for models that more explicitly account for radiative transfer (SCOPE, BETHY, ORCHIDEE). 21 

For the more explicit models, the diurnal cycle of 𝜙1 is out of phase with SIFyield, the former of 22 

which peaks in the afternoon and the latter of which peaks in the morning. This produces 23 

reasonable agreement to PhotoSpec in phase and magnitude between SIFyield and SIFrel for 24 

ORCHIDEE, but produces divergence in the magnitude of SIFcanopy for ORCHIDEE.  25 

Model performance in leaf-to-canopy scaling is summarized in Figure S8. The only three models 26 

with a positive relationship between yields (Fig S8B) and between quenching terms (Fig S8C) 27 

include explicit representation of radiative transfer (i.e., SCOPE, BETHY, and ORCHIDEE). CLM4.5 28 
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is the only model with a positive relationship between yields, but not between quenching terms. 1 

SiB3/SiB4 are the only models with a positive relationship between quenching terms, but not 2 

between yields.    3 

Finally, we clarify an important difference between observed and predicted estimates of canopy 4 

average SIF. PhotoSpec scans direct emissions from sunlit and shaded leaves within the canopy, 5 

thus observing the ‘total’ emission from leaves in the instrument FOV. We then average each of 6 

these leaf-level scans and report as canopy averages. Model output, in contrast, is reported at 7 

the TOC, which represents the ‘net’ emission from leaves after attenuation in the canopy 8 

(through canopy radiative transfer, re-absorption of SIF, and shading). Assuming sunlit and 9 

shaded leaves within the canopy emit at the same rate as TOC leaves, attenuation will reduce the 10 

effective signal from leaf-level emissions within the canopy. As such, the average of leaf level 11 

emissions (canopy average) is expected to be lower than the net emission of leaves reaching the 12 

top of canopy.  13 

This is important because CLM4.5 shows strong attenuation of SIF from leaf-level to TOC, 14 

decreasing by a factor of 2-3 at midday (Fig S7). The interpretation here is that the model bias in 15 

absolute SIF may actually be higher than reported here; however, we note that more quantitative 16 

information on the observed fraction of sunlit vs shaded leaves and comparative top-of-canopy 17 

SIF values for the same canopy elements are needed (to account for off-nadir SIF viewing) for 18 

more accurate determination of scaling between observed canopy and top-of-canopy SIF.  19 

Within Model Experiments 20 

In most cases, within model experiments produce improvements in some metrics and 21 

degradation across others (performance change is quantified by reporting correlation values in 22 

brackets). An important and unexpected result of this study is the impact of different levels of 23 

tuning to observations on our predictions. While this work represents a snapshot of the state-of-24 

the-art in site-level TBM-SIF modeling, and we have taken great care to control for environmental 25 

conditions (most important being illumination), an important overall takeaway is for future 26 

model comparisons to make additional efforts to control for initial conditions and vegetation 27 

state (i.e. model biophysical parameters).    28 
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The most basic example is tuning of LAI in SiB3 and Vcmax in SCOPE. LAI, as prescribed by MODIS 1 

for SiB3-exp1 (~1.5), is on the low end for a subalpine evergreen forest, and consequently 2 

produces negative biases in APAR, GPP, SIF and SIFyield. When prescribed according to tower 3 

observations in SiB3-exp2 (~4.0), the biases become positive (albeit on the lower end of the 4 

model ensemble), but produces degraded variation at synoptic scale for GPP (0.39 vs 0.19), SIF 5 

(0.87 vs .71) and SIFyield (0.09 vs -0.32). The tuning of Vcmax in SCOPE improves the magnitude of 6 

GPP, with minimal impact on variability at diurnal- to synoptic- scale.  7 

Experiments in CLM4.5 comprise a higher level of hand tuning of vegetation structural and 8 

functional characteristics.  Parameter tuning was imposed to match vegetation structure with 9 

site level measurements and consequently CLM4.5 produces overall low bias in yields. With 10 

respect to synoptic variation, NPQ experiments, tuned against the measured air temperature and 11 

a representative evergreen forest, produce improvements at synoptic scale for GPP (-0.01 vs 12 

0.16), SIF (0.59 vs 0.86), and GPPyield (0.05 vs 0.63), but degradation in SIFyield (0.32 vs -0.25). 13 

Likewise, NPQ experiments in BETHY based on species information (calibration of KN against PAM 14 

fluorescence in stressed vs unstressed systems) shows improvement in the SIFyield-APAR 15 

relationship for drought stressed models (BETHY-exp1 vs BETHY-exp2/3).  16 

Experiments with ORCHIDEE demonstrate that errors in model parameters (such as Vcmax, LAImax, 17 

leaf age, or SLA) contribute to SIF and GPP uncertainty but can be alleviated by assimilation of 18 

OCO-2 SIF retrievals (ORCH-exp1/2 vs ORCH-exp3). Model optimization of parameters improves 19 

the functional link between SIF and GPP, thus reducing biases in APAR, GPP, and SIFyield, and 20 

improving synoptic variation in SIFyield (-0.04 vs 0.58).  21 

Section 4. Discussion 22 

This study represents a first attempt to evaluate a controlled ensemble of TBM-SIF models 23 

against canopy integrated SIF observations to identify and attribute model-observation 24 

mismatches related to errors in canopy absorption of sunlight, photosynthesis, fluorescence, and 25 

leaf-to-canopy radiative transfer of fluorescence.  26 

Different models match some observed parameters better than others (with respect to APAR and 27 

yield), but no model gets both APAR and SIFyield magnitude and/or sensitivities close to the 28 
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observations. For example, BEPS closely matches the magnitude of APAR (Fig 2A), and BETHY  1 

captures the decline in SIFyield with APAR for NPQ quenching based on stressed species (Fig 5E), 2 

but both models overestimate observed yield by a factor of 2, hence SIF is overestimated (Fig 2). 3 

CLM4.5 correctly captures the diurnal SIFyield change, but overestimate APAR; in this case, SIF and 4 

SIFyield are overestimated. Importantly, models diverge strongly from each other and from 5 

observations in the magnitude of SIFyield and its decline with APAR (Fig 5E), partially reflecting 6 

model variability in 𝜙1 (Fig 5F), but in general show a characteristic pattern of weak SIFyield decline 7 

with APAR. GPPyield shows higher agreement between models and with observations (Fig 5B), 8 

despite divergent 𝜙% (Fig 5C), which could be indication that the primary uncertainty is due to 9 

the representation of fluorescence and not the photosynthesis model.  10 

Consequently, we find a strong linear and positive relationship between observed SIFyield and 11 

GPPyield for absolute SIF, which is underestimated on average by models (Fig S8A-B). In contrast, 12 

models show quite strong positive relationships between 𝜙1 and 𝜙% (Fig S8C). Our study 13 

highlights an apparent challenge for models in transferring leaf level processes to canopy scale, 14 

and consequently, linking the proper canopy mechanistic SIF-GPP relationship at the leaf level.  15 

The mismatch between multi-model simulations and tower-based observations of SIF and GPP 16 

at hourly and daily scales can be summarized as symptoms of five main factors: (1) PhotoSpec 17 

scan strategy, (2) radiative transfer of incoming PAR and impact on APAR and sunlit/shaded 18 

fraction, (3) representation of photosynthesis and sensitivity to water limitation especially during 19 

afternoon conditions, (4) representation of fluorescence and sensitivity to reversible NPQ 20 

response at Niwot Ridge, and (5) radiative transfer of fluorescence from leaf to canopy. Several 21 

persistent biases falling under these broad categories are discussed below.   22 

Apples to Apples Comparison.  23 

PhotoSpec is unique in its ability to scan entire canopies for signals that are largely hidden from 24 

nadir-oriented instruments. However, this creates unique challenges for interpretation of data 25 

and comparison to models. For example, the diurnal cycle of observed SIF is highly sensitive to 26 

view angle. PhotoSpec was set up in 2017 to scan back-and-forth between northwest and 27 

northeast view angles, but the instrument was slightly biased to the northwest, causing a low 28 
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phase angle in the morning (more aligned with rising sun) and increased phase angle in the 1 

afternoon (more opposed to setting sun). As such, PhotoSpec observed predominantly 2 

illuminated canopies in the morning and shaded canopies in the afternoon (i.e., more shaded 3 

fraction), leading to the late morning peak in reflected radiance (Fig S3). 4 

Moreover, Photospec scans specific locations at the top of the canopy from near nadir to view 5 

angles closer to the horizon (see Fig. S8 in Magney et al., 2019b), while models are currently 6 

configured to simulate top of canopy emission and simulated here as nadir viewing. The question 7 

becomes whether to retain nadir only data and sacrifice signal-to-noise, or to average over all 8 

elevation angles and risk aliasing view angle effects. This study, partly motivated by high 9 

agreement of canopy integrated SIF with spaceborne data from OCO-2 and TROPOMI (Magney 10 

et al., 2019b; Parazoo et al., 2019), has chosen the latter approach but with an attempt to 11 

minimize scan angle effects in SIFrel. However, it is worth noting that swath sensors such as 12 

GOME-2 show high sensitivity to viewing angle especially under increasing illumination angles 13 

(Kohler et al., 2018; Joiner et al., in review). View angle effects are likely to be especially acute 14 

for PhotoSpec in the morning and afternoon with increasing anisotropy and changes in the 15 

illuminated field of view with sun and view angle. Other tower SIF instruments with a wide FOV 16 

(i.e. FluoSpec2; Yang et al., 2018) may more appropriately represent the TOC SIF emission, but 17 

also have difficulty disentangling the sunlit/shaded canopy components.  18 

It is critical that model evaluation relative to measured SIF data and data assimilation studies 19 

properly account for the specificities of the instrument (viewing of the instrument, spectral band, 20 

time of the overpass for space-borne instruments), the representation of canopy emission, and 21 

correct observations for directional variations in SIF relative to observation geometry. Although 22 

normalizing SIF by reflected radiance partially alleviates scan angle effects, this highlights the 23 

need for models to get canopy structure, radiative transfer, and sunlit/shaded fraction correct, 24 

which feed all the way through to SIF and GPP. Further ground-based investigations of SIF 25 

anisotropy, sunlit/shade fraction, and vertical distribution (within canopy, canopy integrated, 26 

and top of canopy) with PhotoSpec and SCOPE may help to inform models on the physical aspects 27 

of the signal. Despite the issues we highlight in comparing observations to models, the potentially 28 
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more interesting and important story here is with respect to model-model comparisons, which 1 

reveals wide divergence in response to light conditions and other factors, as discussed below.  2 

TBM SIF is too sensitive to APAR.  3 

Our results indicate a wide range of SIF responses to APAR: TBM-SIFs and SCOPE are usually far 4 

too sensitive to APAR, observations of absolute SIF are less sensitive, and observations of relative 5 

SIF (SIFrel) are least sensitive (Fig. 5D). We remind the reader that SIFrel is normalized by the 6 

amount of far-red light reflected from leaves in the FOV of PhotoSpec, and thus has reduced 7 

sensitivity to absorbed light than absolute SIF. The fact that SIFrel is the least sensitive to APAR 8 

means other processes are driving changes in SIF under increased light absorption. In this case, 9 

it reveals a strong SIF response to changes in photochemical quenching. SIF models appear 10 

especially sensitive to sunlit leaves. In CLM4.5, SIF emissions from the sunlit portion of the canopy 11 

are a factor of 5 higher than emissions from shaded leaves, despite twice as fewer leaves in the 12 

sunlit canopy (Fig S6C). In CLM4.5, the combination of higher than average 𝜙1 (Fig 5F) with higher 13 

fluorescence efficiency in the sunlit portion of the canopy, produce an increase in the magnitude 14 

and sensitivity to sunlit fraction, thus contributing to the high bias (factor of 3 higher than 15 

observed) and strong diurnal cycle (2-fold increase from morning to midday).  16 

Linearity of SIF and GPP yields.  17 

Observations show a positive but not significant linear relationship between SIFyield and GPPyield 18 

(Fig 6A, r = 0.40) at our study site. This is likely due to the short time period investigated here 19 

where there is relatively little change in SIFyield and GPPyield during peak summer. Half of models 20 

(4 of 8) show a significant (r > 0.35) linear and positive slope (r > 0.35; SCOPE, ORCH-exp3, 21 

CLM4.5-exp3, and BETHY-exp3) between SIFyield and GPPyield, while 6 models (except CLM5.0) 22 

show a significant positive slope between quantum yields (𝜙1 and 𝜙-, Fig S8C). These regression 23 

plots of quantum yields, in turn, help explain the observed linearity of SIFyield vs. GPPyield: At least 24 

in the case of Niwot Ridge, model (and presumably observed) 𝜙- stays within high light “NPQ-25 

Phase” conditions, and generally doesn’t exceed the range in which decoupling of 𝜙1 and 𝜙- (𝜙- 26 

> 0.6) in low light “PQ-Phase’ conditions occurs (Porcar-Castell et al., 2014, cf Fig 9). SCOPE and 27 

BETHY-exp3, which best capture the observed relationship in the canopy between SIFyield and 28 
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GPPyield, are also the only models that also shows a decline in SIFyield with APAR, as discussed 1 

below. These results are likely to change when we expand the study to several years; however, 2 

the purpose of this study was to provide an initial investigation into the response of modelled SIF 3 

and GPP to light during peak summer.   4 

Insufficient decline in SIFyield with APAR.  5 

In general, models show an insufficient decline in SIFyield with APAR, when compared to observed 6 

SIFyield (Fig 5E). All models except SiB3 and SiB4 show some decline, with BETHY showing the best 7 

agreement in slope magnitude. SCOPE and BETHY are the only models with full radiative transfer 8 

but this does not appear to have a substantial impact on SIFyield, which has a similar (albeit 9 

suppressed) decline with APAR as 𝜙1 (Fig 5F). Within model experiments show little to no 10 

sensitivity of SIFyield or 𝜙1 decline with APAR to water stress (e.g., ORCHIDEE) or prescribed LAI 11 

(e.g., SiB3), but high sensitivity to the formulation of NPQ with respect to species calibration (e.g., 12 

BETHY) and reversibility (e.g., CLM4.5). 13 

Three CLM4.5 experiments demonstrate sensitivity to representation of NPQ variability at diurnal 14 

and seasonal scales. The first simulation using the default NPQ parameterization from SCOPE 15 

(CLM4.5-exp1, based on a 2-parameter fit to drought stressed Mediterranean species (Galmes et 16 

al., 2007) produces the strongest decline in SIFyield. The second simulation, which includes a site-17 

specific NPQ formulation that accounts for kR and kS (CLM4.5-exp2), produces the weakest 18 

decline. The third simulation with seasonally varying kR produces a slightly stronger decline. An 19 

important point for this formulation is that kR is constrained by PAM fluorometry data at Hyytiala 20 

(Scot Pine) and does not account for high light saturation values and summer drought conditions 21 

that may be more typical of lower latitude sites such as Niwot Ridge. This could indicate that 22 

parameterizing kR based upon similar PFTs may not be sufficient to properly characterize the NPQ 23 

response for lower latitude sites such as Niwot Ridge.  24 

Similar results are found in experiments with BETHY comparing stressed (drought) and 25 

unstressed (relative to water availability) NPQ models at NR1 but controlling for kR (constant in 26 

time in both cases, stronger negative SIFyield response to APAR in stressed model). In the 27 

unstressed models of CLM4.5 and BETHY, the NPQ response to APAR becomes too low, causing 28 
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an oversensitivity of SIF to APAR and thus high SIF bias. The strongly regulated NPQ response of 1 

the drought-based model enables more non-photochemical quenching at high light levels in 2 

stressed ecosystems compared to typical unstressed plants. While this 𝑘$%M model was 3 

developed using drought-stressed plants, similar up-regulation of NPQ is expected to occur under 4 

any condition where photosynthesis is limited and available excitation energy is high (e.g. cold 5 

temperatures and high light, Sveshnikov et al., 2006). Our results thus emphasize the need for 6 

careful implementation of NPQ dynamics for simulating and assimilating SIF in different light and 7 

stress environments (Raczka et al., 2019; Norton et al., 2019). 8 

Data assimilation reduces high bias. Assimilation of OCO-2 SIF in ORCHIDEE brings the magnitude 9 

of both GPP and SIF in closer agreement with observations. This improvement is driven by 10 

decreases in leaf photosynthetic capacity (Vcmax, LAImax, leaf age, SLA, Bacour et al., 2019), which 11 

decreases the magnitude (but not shape) of APAR closer to observed values (Fig 2), and leads to 12 

improvements in GPPyield and SIFyield (Fig 3). Nevertheless, after the assimilation there are still 13 

disagreements in SIFyield vs GPPyield relative to the measured quantities (Fig S8). For diurnal and 14 

synoptic cycles, the assimilation effectively acts to scale the magnitude of SIF, GPP and APAR (and 15 

related yields), but it does little to alter variability. Although data assimilation (i.e. calibrating 16 

model parameters) is critical to improving modelled SIF and GPP, this should be done in 17 

conjunction with improvements in the model formulation (as summarized in Section 5), 18 

otherwise the estimated model parameters can be sub-optimal to compensate for the lack of 19 

missing processes.  20 

5. Conclusions/Recommendations 21 

Our results reveal systematic biases across TBM-SIF models affecting leaf-to-canopy simulations 22 

of APAR, GPP, and SIF. This highlights key areas where observing strategies and model 23 

formulations can be improved:  24 

1) Radiative transfer of incoming and absorbed PAR. The representation of incoming radiative 25 

transfer produces positive biases in APAR that leads to positive biases in GPP, both of which 26 

occur regardless of time of day. This is influenced by characterization of the canopy, leaf 27 

orientation and clumping, biochemical content, canopy layers, and leaf area, which dictates 28 
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the sunlit/shaded fractions of the canopy. Furthermore, the combination of high APAR bias 1 

in models and high uncertainty in observed APAR highlights a need for more accurate and 2 

representative in situ measurements of APAR within the FOV of SIF observations and 3 

footprint of eddy covariance data. We recommend further site-level investigation of 4 

observed and simulated canopy light absorption, emphasizing comparison of multi-layer and 5 

multi-leaf radiation schemes accounting for sunlit and shaded leaf area.   6 

2) Water stress impacts on photosynthesis. The underlying photosynthetic models fail to 7 

simulate the magnitude of depression of observed GPP in the afternoon, regardless of how 8 

stomatal-conductance and water stress models and parameters are formulated. This likely 9 

results from the inability to account for afternoon water stress to properly restrict stomatal 10 

conductance and hence GPP and SIF.  Additional effort is needed to characterize SIF and GPP 11 

sensitivity to increased atmospheric demand and/or reduced soil moisture across a range of 12 

managed and unmanaged systems. We also recommend more inclusion of stomatal 13 

optimization models (e.g., Eller et al., 2020) as optional parameterizations for TBMs, to better 14 

account for plant hydraulic functioning under water stress compared to the more widely used 15 

semi-empirical models. 16 

3) Leaf Mechanism for Energy Partitioning. We provide evidence that many models fail to 17 

capture the correct reversible NPQ response to light saturation, leading to biases in SIFyield 18 

during high light conditions and especially with increasing moisture limitation at the end of 19 

summer. Further investigation using models such as BETHY and CLM is needed to better 20 

characterize sensitivity of NPQ formulations to PFT and environmental conditions. We also 21 

emphasize a need for more simultaneous measurements of active and passive chlorophyll 22 

fluorescence to determine the temporal dynamics of competing pathways (PQ, NPQ) from a 23 

wider variety of plant species under ambient conditions and different levels of stress.  24 

4) Radiative transfer of SIF. SIF is emitted from the leaf level (sunlit shaded fractions of leaf level) 25 

and then is transferred to the top of canopy as a function of canopy structure (leaf geometry, 26 

canopy layers, leaf area). Despite high disagreement of SCOPE and BETHY with respect to the 27 

simulation of APAR and SIF magnitude, we recommend site level simulations using a similar 28 
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framework where a radiative transfer model is run both offline and coupled to a terrestrial 1 

biosphere model for more detailed investigation of sensitivity to canopy characteristics.  2 

5) Observation strategy. The PhotoSpec scan strategy enables direct measurement of SIF 3 

emission at leaf-to-canopy scale, but requires off-nadir view angles that lead to changing 4 

fractions of sunlit and shaded canopies throughout the day as a function of sun angle. Further 5 

work could be done using tower mounted instruments with a wider FOV that more accurately 6 

represent top of canopy emissions for comparison to model simulations, and to classify 7 

emissions from shaded vs sunlit canopies. More effort is also needed to better align models 8 

with observations, for example by leveraging three-dimensional capabilities in SCOPE (and 9 

other RTMs) to directly account for multiple observation angles.  10 

6) Finally, we note that our focus on a water limited subalpine evergreen needleleaf forest 11 

represents a challenging case study for models and observations. In many cases, there is 12 

strong covariance between LAI, SIF, APAR and GPP in cropping systems (Dechant et al., 2020), 13 

but because this study site experiences little change in canopy structure and APAR 14 

throughout the season (Magney et al, 2019b), our study sought to provide more explicit 15 

insight into the models sensitivity to photosynthesis and fluorescence. As such, it is possible 16 

that we would see more convergence of results, and a reduction in confounding effects (e.g., 17 

decreased NPQ), in a well-watered high-LAI cropping system. We therefore recommend 18 

similar model-observation assessments across a wider range of biota and climate.  19 
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Figures 1 

2 
Figure 1. Observed diurnal (A-D) and synoptic (E-H) precipitation (PPT), air temperature at 21 m 3 

(Tair), vapor pressure deficit (VPD), and downwelling shortwave (SWdown). Diurnal cycles are 4 

averaged over July-August, 2017. Synoptic cycles are plotted as 5-day averages from June 15 – 5 

Sep 15. Data from 2017 is shown in black and climatology (2015-2018) in grey. Typically, peak 6 

rainfall occurs in the afternoon at this site (A ). A substantial rain event which occurred from DOY 7 

203-205 is removed from the 2017 average to show the impact on diurnal variability and to 8 

demonstrate the dominance of the afternoon monsoon upon diurnal precipitation in summer.  9 
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1 

Figure 2. Observed and simulated diurnal and synoptic cycles of APAR, GPP and SIF. Diurnal cycles 2 

(A-C) are averaged over July-August, 2017. Synoptic cycles (D-F) are plotted as 5-day averages 3 

from June 15 – Sep 15. Observations are shown in black, with relative SIF (SIFcanopy / far red 4 

reflected radiance) included in (C, F) in grey. The across model average (dashed black) represents 5 

the average of “best-case” model scenarios (solid lines; SCOPE-exp2, SiB3-exp2, SiB4, ORCHIDEE-6 

exp3, CLM5.0-exp3, CLM4.5-exp3, BEPS-exp2, BETHY-exp3) with uncertainty bars indicating the 7 

across model 1 sigma uncertainty.   8 
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 1 

Figure 3. Same as Figure 2 except for SIFyield and GPPyield. Here, SIFyield = SIFcanopy / APAR, and 2 

GPPyield = GPP / APAR. As with Figure 2, the left column shows the mean diurnal cycle, and the 3 

right column shows a time series of 5-day averages. 4 
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 1 

Figure 4. Same as Figure 2, except for quantum yield of fluorescence (𝜙") and photochemistry 2 

(𝜙%).  3 
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1 

Figure 5. Observed and predicted change in GPP, SIF, and yields with APAR.  Regression lines are 2 

shown for (A) GPP, (B) GPPyield, (C) photochemical quantum yield (𝜙-), (D) SIFcanopy, (E) SIFyield, (F) 3 

fluorescence quantum yield (𝜙1), as a function of APAR, using daily mean (8 am – 4 pm local) 4 

values over the period July-August 2017. Observations are shown in solid black, individual models 5 

and experiments in color, the across model average in dashed black. Relative SIF is shown in grey 6 

in (D) and (E).  7 
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Tables 1 

2 

Table 1. Summary of TBM-SIF models and within model experiments illustrating model 3 

components that may have led to differences in modeled SIF.,  These include a representation of 4 

stomatal-conductance (column 3), canopy absorption of incoming radiation (column 4), limiting 5 

factors for photosynthesis (Stress, Vcmax, LAI; columns 5-7) and SIF (kN; column 8), leaf-to-canopy 6 

scaling of SIF (column 9), and parameter optimization (column 10).  The underlined model 7 

experiment was used for model intercomparison . 8 

 9 

 10 
 11 

Model
(citation)

Model 
Experiments

Stomatal 
Conductance

Canopy Type / 
Radiation

Stress Vcmax LAI kN Leaf-to-Canopy Scaling Parameter 
Optimization

SCOPE v1.73
(van der Tol, 
2014)

SCOPE-exp1 Ball-Berry-
Woodrow

Multi-layer
Sunlit/Shaded = 
Yes
Fpar/APAR = 
semi-analytical 
canopy radiative 
model (based on 
SAIL)

Ta stress Prescribed
(30)

Prescribed 
(4.0 m2 m-2)

Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

60 layer 1D radiative transfer Hand-tuned to 
NR1 (Raczka et 
al., 2016)

SCOPE-exp2 Seasonally 
calibrated 
to NR1

BETHY
(Norton et al., 
2019)

BETHY-exp1 Ball-Berry-
Woodrow

Same as SCOPE Ta stress Prior is a 
function of 
Ta

Prescribed 
(4.0 m2 m-2)

Adapted to unstressed cotton species (Tol et al., 
2014)

SCOPE radiative transfer. f(Ta, 
APAR, structure, leaf composition) 
via dependence of photosynthetic 
rate on φf

Default

Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

BETHY-exp2

BETHY-exp3 Adapted to drought stressed Mediterranean species 
(Flexas et al., 2002)

ORCHIDEE
(Bacour et al., 
2019)

ORCHIDEE-
exp1

Yin-Struik Big Leaf
Sunlit/Shaded = 
No
APAR = Beer-
Lambert law 
depending on LAI 
and extinction 
factor = 0.5

Ta stress f (leaf age, 
CO2, Ta, 
water 
stress) 

Prognostic Adapted to needleleaf species (Porcar-Castell et al., 
2011) and unstressed Mediterranean species 
(Flexas, 2002), with added dependence on PAR, 
temperature, and φP

Parametric representation of 
SCOPE (v1.61) to emulate radiative 
transfer within canopy for PSI/II. 

Default

ORCHIDEE-
exp2

Ta and water 
stress (Yin and 
Struik, 2009)

Default

ORCHIDEE-
exp3

Same as exp 1 Global ENF PFT 
optimized 
against OCO-2 

BEPS
(Qiu et al., 
2019)

BEPS-exp1 Leuning Two Leaf
Sunlit/Shaded = 
Yes
Fpar = semi-
analytical canopy 
radiative transfer

Soil water stress 
factor (ratio of 
measured soil 
available water to 
maximum plant 
available water)

Prescribed Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

Parametric representation of 
radiative transfer physics to 
account for canopy scattering 
effects

Default

BEPS-exp2 Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

CLM4.5
(Raczka et al., 
2019)

CLM4.5-exp1 Ball-Berry-
Woodrow

Two Big Leaf
Sunlit/Shaded = 
Yes

Ta(Vcmax); soil 
moisture stress 
uses Btran
parameterization 
(function of 
column rooting 
profile and soil 
water potential)

Prescribed 
(calibrated 
against 
observed 
GPP at NR1)

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

!740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs using prescribed 
canopy characteristics at NR1

Hand-tuned to 
NR1 (Raczka et 
al., 2016)

CLM4.5-exp2 Adapted to needleleaf species (Porcar-Castell et al., 
2011); Accounts for sustained NPQ (kS) separately 
from reversible NPQ (kR). kS is calibrated to NR1 Tair. 
kR is fixed in time

CLM4.5-exp3 same as Exp 2, but kR is seasonal 

CLM5.0
(unpublished)

CLM5.0-exp1 Medlyn Two Big Leaf
Sunlit/Shaded = 
Yes

Plant hydraulic 
water stress 
(Sperry and Love, 
2015; Lawrence 
et al., 2019) 
accounting for 
water demand 
and supply

f (soil 
moisture,  
nitrogen), 
calibrated 
to NR1

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

!740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

CLM5.0-exp2 !740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs w/ prescribed 
canopy characteristics at NR1

CLM5.0-exp3 Escape ratio (fesc), derived from 
NIRv and fPAR (Zeng et al., 2019)

SiB3
(Baker et al., 
2003, 2008)
SIB4
(Haynes et al., 
2019a,b)

SiB3-exp1 Ball-Berry-
Woodrow

Big Leaf
Sunlit/Shaded = 
No

Downregulation 
by VPD, Ta, and 
soil moisture

f (soil 
moisture)

Prescribed 
(MODIS)

Adapted to drought stressed species (Tol et al., 
2014)

!740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

Prescribed 
(4.0 m2 m-2)SiB3-exp2

PrognosticSiB4
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Model

(TBM-SIF 
reference)

Model 
Experiments

Stomatal 
Conductanc
e

Canopy Type / 
Radiation

Stress Vcmax LAI kN Leaf-to-Canopy Scaling Parameter 
Optimization

BETHY
(Norton et 
al., 2019)

BETHY-exp1 Ball-Berry Multiple Layers
Sunlit/Shaded = Yes
Fpar/APAR = semi-
analytical canopy 
radiative model 
(SCOPE, based on 
SAIL)

Ta and water 
stress

Prior is a 
function of 
Ta, then 
optimized 
against 
OCO-2

Prescribed 
(4.0 m2 m-2)

Adapted to unstressed cotton species (Tol et al., 2014) SCOPE radiative transfer. f(Ta, APAR, 
structure, leaf composition) via 
dependence of photosynthetic rate 
on φf

Optimized 
against OCO-2

BETHY-exp2 Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 2014; 
Flexas et al., 2002)

BETHY-exp3 Adapted to drought stressed Mediterranean species 
(Flexas et al., 2002)

ORCHIDEE
(Bacour et 
al., 2019)

ORCHIDEE-
exp1

Yin-Struik Big Leaf Model
Sunlit/Shaded = No
APAR = Beer-Lambert 
law depending on LAI 
and extinction factor 
= 0.5

Ta stress f (leaf age, 
CO2, Ta, 
water 
stress) 

prognostic Adapted to needleleaf species (Porcar-Castell et al., 2011) 
and unstressed Mediterranean species (Flexas, 2002), with 
added dependence on PAR, temperature, and φP

Parametric representation of SCOPE 
(v1.61) to emulate radiative transfer 
within canopy for PSI/II. 

Default

ORCHIDEE-
exp2

Ta and water 
stress (Yin and 
Struik, 2009)

Default

ORCHIDEE-
exp3

Same as exp 1 Global ENF 
PFT optimized 
against OCO-2 

BEPS
(Qiu et al., 
2019)

BEPS-exp1 Ball-Berry-
Leuning

Single Layer
Sunlit/Shaded = Yes
Fpar = semi-
analytical canopy 
radiative transfer

Soil water stress 
factor (ratio of 
measured soil 
available water to 
maximum plant 
available water)

Prescribed prescribed Adapted to water stressed Mediterranean species (Galmes
et al., 2007)

Parametric representation of 
radiative transfer physics to account 
for canopy scattering effects

Default

BEPS-exp2 Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 2014; 
Flexas et al., 2002)

CLM4.5
(Raczka et 
al., 2019)

CLM4.5-exp1 Ball-Berry Single Layer
Sunlit/Shaded = Yes

Ta(Vcmax); soil 
moisture stress 
uses Btran
parameterization 
(function of 
column rooting 
profile and soil 
water potential)

Prescribed 
(calibrated 
against 
observed 
GPP at NR1)

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species (Galmes
et al., 2007)

!740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs using prescribed 
canopy characteristics at NR1

Hand-tuned to 
NR1 (Raczka et 
al., 2016)

CLM4.5-exp2 Adapted to needleleaf species (Porcar-Castell et al., 2011); 
Accounts for sustained NPQ (kS) separately from reversible 
NPQ (kR). kS is calibrated to NR1 Tair. kR is fixed in time

CLM4.5-exp3 same as Exp 2, but kR is seasonal 

CLM5.0
(unpublishe
d)

CLM5.0-exp1 Medlyn Single Layer
Sunlit/Shaded = Yes

Plant hydraulic 
water stress 
(Sperry and Love, 
2015; Lawrence et 
al., 2019) 
accounting for 
water demand and 
supply

f (soil 
moisture,  
nitrogen), 
calibrated to 
NR1

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species (Galmes
et al., 2007)

!740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

CLM5.0-exp2 !740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs using prescribed 
canopy characteristics at NR1

CLM5.0-exp3 Escape ratio (fesc), derived from NIRv
and fPAR (Zeng et al., 2019)

SiB3
(Baker et al., 
2003, 2008)
SIB4
(Haynes et 
al., 2019a,b)

SiB3-exp1 Ball-Berry Single Layer
Sunlit/Shaded = Yes

Downregulation 
by VPD, Ta, and 
soil moisture

f (soil 
moisture)

Prescribed 
(MODIS)

Adapted to drought stressed species (Tol et al., 2014) !740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

Prescribed 
(4.0 m2 m-2)SiB3-exp2

Prognostic
SiB4


