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Abstract:  71 

Recent successes in passive remote sensing of far-red solar induced chlorophyll fluorescence (SIF) 72 

have spurred development and integration of canopy-level fluorescence models in global 73 

terrestrial biosphere models (TBMs) for climate and carbon cycle research. The interaction of 74 

fluorescence with photochemistry at the leaf- and canopy- scale provides opportunities to 75 

diagnose and constrain model simulations of photosynthesis and related processes, through 76 

direct comparison to and assimilation of tower, airborne, and satellite data. TBMs describe key 77 

processes related to absorption of sunlight, leaf-level fluorescence emission, scattering and 78 

reabsorption throughout the canopy. Here, we analyze simulations from an ensemble of process-79 

based TBM-SIF models (SiB3, SiB4, CLM4.5, CLM5.0, BETHY, ORCHIDEE, BEPS) and the SCOPE 80 

canopy radiation and vegetation model at a subalpine evergreen needleleaf forest near Niwot 81 

Ridge, Colorado. These models are forced with local meteorology and analyzed against tower-82 

based continuous far-red SIF and gross primary productivity (GPP) partitioned eddy covariance 83 

data at diurnal and synoptic scales during the growing season (July-August 2017). Our primary 84 

objective is to summarize the site-level state of the art in TBM-SIF modeling over a relatively short 85 

time period (summer) when light, canopy structure, and pigments are similar, setting the stage 86 

for regional- to global-scale analyses. We find that these models are generally well constrained 87 

in simulating photosynthetic yield, but show strongly divergent patterns in the simulation of 88 

absorbed photosynthetic active radiation (PAR), absolute GPP and fluorescence, quantum yields, 89 

and light response at leaf and canopy scale. This study highlights the need for mechanistic 90 

modeling of non-photochemical quenching in stressed and unstressed environments, and 91 

improved representation of light absorption (APAR), distribution of light across sunlit and shaded 92 

leaves, and radiative transfer from leaf to canopy scale.   93 

 94 
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Section 1: Introduction 97 

Our ability to estimate and measure photosynthesis beyond the leaf scale is extremely limited. 98 

This inhibits the ability to evaluate the performance of terrestrial biosphere models (TBMs) that 99 

are designed to quantify the direct impact and feedbacks of the carbon cycle with climate change.  100 

Consequently, there are substantial uncertainties in estimating the gross primary production 101 

(GPP) response to environmental changes and carbon-climate feedback (Friedlingstein et al., 102 

2014). Global, multi-scale remote sensing of solar induced fluorescence (SIF) may represent a 103 

major breakthrough in alleviating this deficiency (Mohammed et al, 2019). Spaceborne data 104 

indicate a linear relationship between SIF and GPP at large spatial (kilometer) and temporal (bi-105 

weekly) scales (e.g., Sun et al., 2017) for several ecosystems, while theoretical models and 106 

ground-based measurements indicate a more non-linear relationship at leaf and canopy scales 107 

(Zhang et al., 2016; Gu et al., 2019; van der Tol et al., 2014; Magney et al., 2017, 2019a).  108 

Chlorophyll fluorescence is re-emitted energy produced during the photosynthetic light 109 

reactions, in which a small fraction (roughly 2%) of photosynthetic active radiation (PAR) 110 

absorbed by chlorophyll is re-emitted at longer wavelengths (650-850 nm) as fluorescence. In 111 

ambient conditions, the emission of SIF represents a by-product of two primary de-excitation 112 

pathways, photochemical and nonphotochemical quenching (PQ, NPQ). Plants have evolved 113 

these regulatory mechanisms to prevent damage to photosynthetic machinery when the amount 114 

of absorbed radiation is greater than that which can be used to drive photochemistry. Chlorophyll 115 

fluorescence responds dynamically to changes in photochemistry and NPQ from instantaneous 116 

to hourly, daily, and seasonal timescales, as a function of changing environmental conditions and 117 

plant structural properties (Porcar-Castell et al., 2014; Demmig-Adams et al., 2012). SIF is 118 

fundamentally different than steady-state fluorescence yield typically measured at the leaf scale 119 

as it is sensitive to both changes in photochemistry as well as absorbed PAR (APAR, related to 120 

incident light, canopy structure, and biochemical content). The response of canopy SIF to APAR 121 

is well documented in deciduous and evergreen forests and cropping ecosystems (Yang et al., 122 

2018; Badgley et al, 2017; Miao et al., 2018; Magney et al., 2019b; Li et al., 2020). More recently, 123 

Magney et al. (2019b) showed that seasonal changes in canopy SIF for cold climate evergreen 124 
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systems is influenced by changes in needle physiology and photoprotective pigments (Magney et 125 

al., 2019b).   126 

To properly account for these factors, process-based SIF models must represent these underlying 127 

non-linear biophysical and chemical processes. Several modeling groups have adapted TBMs to 128 

incorporate various SIF formalisms for the purpose of model evaluation, data assimilation, and 129 

improved model prediction (Lee et al., 2015; Koffi et al., 2015; Thum et al., 2017; Norton et al., 130 

2019; Bacour et al., 2019; Raczka et al., 2019). With these goals in mind, TBM SIF modeling 131 

requires two important steps: (1) a representation of SIF at the leaf scale that accounts for NPQ 132 

and photochemistry, and (2) canopy radiative transfer of SIF, which enables a comparison to large 133 

field-of-view observations (e.g. tower, satellites). The second step involves accounting for 134 

radiative transfer within the canopy and has typically relied on incorporating the Soil Canopy 135 

Observation Photosynthesis Energy model (SCOPE, van der Tol et al., 2009, 2014), which 136 

simulates chlorophyll fluorescence as a function of biophysics, canopy structure, environmental 137 

conditions, and sun/sensor geometries. This approach has been adopted by TBMs in various ways 138 

using different assumptions for fluorescence modeling and radiative transfer, as will be discussed 139 

in Section 2.  140 

Typically, measuring chlorophyll fluorescence and competing pathways (PQ, NPQ) has been done 141 

at the leaf scale via pulse-amplitude modulation fluorescence (PAM, Schreiber et al., 1986). 142 

Recently, commercially available spectrometers have made it possible to measure SIF directly in 143 

the field at the leaf and canopy scale, and also enable the study of structural, environmental, and 144 

directional controls (Cogliati et al. 2015; Daumard et al. 2010; Migliavacca et al. 2017; Yang et al. 145 

2015; Grossman et al., 2018; Aasen et al., 2019; Gu et al., 2019b; Zhang et al., 2019). The use of 146 

field deployable instruments on eddy covariance towers has increased rapidly since 2014, 147 

providing coverage of multiple vegetation types across various climates around the world (Yang 148 

et al., 2018; Magney et al., 2019a,b; Parazoo et al., 2019). These data enable improved 149 

understanding of the relationship between SIF, GPP, APAR, and environmental effects at canopy 150 

scales. Novel tower-mounted spectrometer systems such as Fluospec2 (Yang et al., 2018), 151 

Photospec (Grossman et al., 2018), and FLOX (e.g., Julitta et al., 2017; Shan et al., 2019) have 152 

made it possible to monitor canopy SIF continuously in the field with high precision over multiple 153 
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years providing opportunities for more direct comparison and evaluation of satellite data 154 

(Grossman et al., 2018; Yang et al., 2015, 2018; Wohlfahrt et al., 2018; Magney et al., 2019b). 155 

PhotoSpec offers the additional benefits (and challenge) of (a) precise field of view capable of 156 

resolving leaf-level SIF, and (b) canopy scanning at azimuth and elevation angles. These features 157 

enable SIF integration from leaf- to canopy- scales, and interpretation of directional variations of 158 

the emitted radiance.  159 

Canopy scanning spectrometers such as PhotoSpec thus provide an opportunity to understand 160 

the physical processes that lead to a breakdown of SIF-GPP linearity at leaf to canopy scale (or 161 

conversely, emergence of linearity at increasing scale), and for detailed evaluation and diagnosis 162 

of TBM performance. This study provides a preliminary benchmarking site-level assessment for 163 

simulations of SIF within a TBM framework and across an ensemble of TBMs, with the primary 164 

purpose being an initial investigation into the response of modelled SIF and GPP to light during 165 

peak summer. We leverage continuous measurements of SIF and GPP at the Niwot Ridge US-NR1 166 

Ameriflux flux tower in Colorado from June-July 2017 (Magney et al., 2019b), and simulations of 167 

canopy radiative transfer, photosynthesis, and fluorescence from a stand-alone version of SCOPE,  168 

to (1) Benchmark TBM-SIF modeling, (2) Evaluate sensitivity to underlying processes and scaling 169 

techniques, (3) Identify strengths and weaknesses in current modeling strategies, and (4) 170 

Recommend strategies for models and observations.  171 

The paper is organized as follows: Section 2 describes SCOPE and the seven TBM-SIF models (SiB3, 172 

SiB4, ORCHIDEE, BEPS, BETHY, CLM4.5, CLM5) which have recently been published or are in 173 

review, and provides more details on site level benchmarking observations. Section 3 summarizes 174 

results comparing modelled and predicted SIF and GPP at hourly and daily scales, as they relate 175 

to absorbed light, GPP and SIF yields, and quantum yields. Section 4 discusses results in more 176 

detail, including attribution of SIF magnitude and temporal phasing biases and sensitivities to 177 

absorbed light, and areas for improvement.  178 

Section 2: Methods 179 

2.1 Site: Niwot Ridge, Colorado 180 
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Our study focuses on an AmeriFlux (https://ameriflux.lbl.gov/) site in Niwot Ridge, Colorado, 181 

USA (US-NR1), where a tower-based eddy covariance system has been continuously measuring 182 

the net ecosystem exchange of carbon dioxide (NEE) over a high-elevation subalpine forest 183 

since 1999, and a spectrometer system that has been continuously monitoring SIF since June 184 

2017 (Grossman et al., 2018; Magney et al., 2019b). The 26 m tall tower is located in a high 185 

elevation forest (3050 m asl) located in the Rocky Mountains of Colorado (Burns et al., 2015; Hu 186 

et al., 2010; Monson et al., 2002) and consists primarily of the evergreen species of lodgepole 187 

pine (Pinus contorta), Engelmann spruce (Piceae engelmanii), and subalpine fir (Abies 188 

lasiocarpa). The mean annual temperature is 1.5°C and mean annual precipitation is 800 mm 189 

(65% as snow). The forest is roughly 120 years old with a mean canopy height of 11.5 m, and a 190 

leaf area index of 4.2 m2 m-2. More site-specific details can be found in Burns et al. (2015).  191 

At Niwot Ridge, interannual variations in GPP are closely linked to winter snowfall amount, which 192 

typically melts by early June, and summer precipitation, characterized by afternoon convective 193 

thunderstorms triggered by upslope flow (Burns et al., 2015; Albert et al., 2017) and 194 

climatological peak precipitation around 2 pm local time (Fig 1A). We note that our study period 195 

of July-August 2017 is unusual for NR1 (relative to the 2015-2018 mean) in its bimodal 196 

distribution of diurnal precipitation (morning and afternoon peaks), lower than normal afternoon 197 

precipitation, cooler temperatures, and reduced vapor pressure deficit (Fig 1 A-C). The early 198 

morning peak is due to a strong storm system that moved through from July 22-24 (Fig 1E), and 199 

does not show up when these days are removed. This period also shows a decrease in incoming 200 

shortwave relative to climatology despite lower precipitation (Fig 1D). We note that a second 201 

storm passed through in early August. The combination of these two storms produced net 202 

decreases in air temperature (Fig 1F), vapor pressure deficit (Fig 1G) and sunlight (Fig 1H) over a 203 

two-week period from late July to early August.  204 

2.2 Tower-Based Measurements: PAR, SIF, CO2 Flux 205 

2.2.1 Absorbed PAR 206 

The site is equipped with two main upward-facing PAR sensors. The first (LICOR LI-190R), 207 

mounted on the PhotoSpec telescope unit, provides an independent measurement of 208 
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direct/diffuse light and can be used to calibrate PhotoSpec (Grossman et al., 2018). The second 209 

(SQ-500-SS; Apogee Instruments), mounted on the main flux tower, is part of a larger array of 210 

upward- and downward-oriented PAR sensors above and below the canopy used for the 211 

calculation of the fraction of PAR absorbed by the vegetation canopy (fAPAR). The two PAR 212 

sensors show a similar diurnal pattern during July-August 2017 (Fig S1), including an afternoon 213 

dip and relatively smaller values overall compared to 2018 (the only other year with available 214 

PAR for comparison).  215 

Full-spectrum quantum sensors (SQ-500-SS; Apogee Instruments) were new and factory-216 

calibrated together just before installation. Above-canopy sensors (one up and one down-facing) 217 

were mounted on the main flux tower, and below-canopy sensors (six up and six down) were 218 

mounted at the 2 m height above ground on a shorter canopy-access towers. APAR was 219 

calculated for each pair of below-canopy relative to above-canopy sensors for every half-hour, 220 

then averaged among sensors over daylight hours to create a daytime average. We then estimate 221 

hourly APAR by multiplying hourly incoming PAR (measured and integrated from 400-700 nm) at 222 

the top of canopy (PAR) by the daytime average of fAPAR. Fig S2 shows the mean diurnal cycle 223 

for July-August 2017 for each sensor, and the across-sensor average, with APAR data collection 224 

beginning on July 13, 2017. We note that APAR measurements are only as representative as the 225 

distribution of PAR sensors beneath the canopy; while they are placed within the footprint of SIF 226 

(Sec 2.2.3) and fetch of eddy covariance (Sec 2.2.4) measurements, they cannot be a perfect 227 

representation of canopy APAR for each eddy covariance and SIF measurement.  228 

2.2.2 Fluorescence parameters 229 

We define and clarify three important quantities that define the relationship between absorbed 230 

light and emitted SIF at leaf and canopy scales. 𝜙"  is the quantum yield of fluorescence, 231 

representing the probability an absorbed photon will be fluoresced. This quantity can be 232 

observed at leaf level using PAM fluorimetry or calculated by models as a function of rate 233 

coefficients for energy transfer (Sec 2.3.3). SIFyield is the canopy emitted SIF per photon absorbed. 234 

The quantity is estimated from models and observations as the ratio of absolute canopy SIF and 235 

APAR (SIFcanopy/APAR). SIFyield is our best attempt to account for the effects of (a) canopy absorbed 236 

light and (b) SIF re-absorption within the canopy on the canopy integrated emission of SIF. 237 
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However, factors such as observation angle, fraction of sunlit/shaded canopy components, and 238 

difference in footprint from APAR, necessitates an additional diagnostic variable defined as 239 

relative SIF (SIFrel). SIFrel is emitted SIF per reflected radiance in the far red spectrum where SIF 240 

retrievals occur (SIF/Reffr). This is useful because is normalizes for the exact amount of 241 

‘illuminated’ canopy components within the sensor field of view, whereas APAR measurements 242 

are integrated for the entire canopy.  243 

These quantities represent different but equally important versions of reality. It is difficult for 244 

models to exactly reproduce the distribution and timing of sunlight in the canopy as observed by 245 

PhotoSpec. While SIFrel removes model-observation differences in illumination, it confounds our 246 

interpretation of the relationship with GPPyield, which is derived from APAR. As such, we provide 247 

both results to be comprehensive, but note the temporal stability associated with SIFrel as the 248 

more physical interpretation of canopy yield for this short period of study. 249 

2.2.3 Tower Based Measurements of Solar Induced Chlorophyll Fluorescence (SIF) 250 

SIF data has been collected from a scanning spectrometer (PhotoSpec) installed at the AmeriFlux 251 

US-NR1 tall tower since June 17, 2017. PhotoSpec sits atop the tower at 26 m above the ground 252 

and roughly 15 m above the forest canopy top, transferring reflected sunlight and SIF data 253 

collected from the needleleaf canopy through a tri-furcated optical cable to three spectrometers 254 

in a shed at the base of the tower. These spectrometers measure far-red fluorescence in the 745-255 

758 nm retrieval window at high spectral resolution (FWHM = 0.3 nm) and with a 0.7 deg field of 256 

view (FOV), resulting in a 20 cm diameter footprint at nadir on top of the canopy. The far-red SIF 257 

data are then scaled to 740 nm for model intercomparison using the first principal component of 258 

the spectral shape in Magney et al., 2019a. Photospec scans from nadir to the horizon in 0.7 259 

degrees steps at two azimuth directions, with a time resolution of ~20 s per measurement and 260 

complete scan time of 20 minutes. For this study, we aggregate scans across all azimuth and 261 

elevation angles into hourly, canopy level averages to benchmark model estimates of top of 262 

canopy (TOC) or canopy averaged SIF (BETHY only, see Sec 2.3.4.1) at diurnal and synoptic time 263 

scales. We refer the reader to Grossman et al. (2018) and Magney et al (2019b) for further details 264 

regarding PhotoSpec, implementation at US-NR1, and data filtering, and to Magney et al (2019c) 265 
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for data access. We focus our model-data analysis on the 2017 growing season (July-August, 266 

2017) to maximize overlap between observations of SIF, GPP, and APAR. 267 

Diurnal composites of PhotoSpec SIF in 2017 show a late morning peak and afternoon dip (Fig 268 

S3A). The afternoon dip is consistent with decreased incoming shortwave, PAR and APAR (Figs S1 269 

and S2, respectively). However, we note the retrieved signal from PhotoSpec is also affected by 270 

(1) viewing geometry, (2) fraction of sunlit vs shaded leaves (sun/shade fraction, i.e. the quantity 271 

of needles illuminated by incident sunlight) due to self-shading within the canopy, and (3) 272 

direct/diffuse fraction due to cloud cover. Structural and bidirectional effects lead to different 273 

SIF emission patterns depending on view angle and scanning patterns (Yang and van der Tol, 274 

2018). The viewing geometry of PhotoSpec (as implemented at NR1 in 2017) causes a higher 275 

fraction of illuminated vegetation in the morning, which leads to a 2 to 3 hour offset in the timing 276 

of peak SIF (Fig S3A) and incoming far-red reflected radiance within the retrieval window (Fig 277 

S3B), from the peak zenith angle of the sun at noon (coinciding with the expected peak in PAR) 278 

to late morning. Normalizing SIF by far-red reflected radiance as relative SIF (SIFrel, Fig S3C) and 279 

rescaling to SIF (Fig S3D) shifts the peak back to noon and preserved the afternoon dip (albeit 280 

with reduced magnitude). SIFrel helps to account for factors 1-3 listed above because it accounts 281 

for the amount of reflected radiation in the field of view of PhotoSpec, which is impacted by 282 

canopy structure, sun angle, and direct/diffuse light. As discussed above, SIFrel is likely a better 283 

approximation of SIFyield because it normalizes for the exact amount of ‘illuminated’ canopy 284 

components in each retrieval, whereas APAR integrates the entire canopy. As such, we expect 285 

SIFrel to have a strong seasonal change associated with downregulation of photosynthesis, and a 286 

more subtle diurnal change, as during mid-summer the SIF signal is primarily driven by light 287 

intensity.   288 

It is important to note that the PhotoSpec system is highly sensitive to sun/shade fraction in the 289 

canopy (factor 2) due to the narrow FOV of the PhotoSpec telescoping lens. Increased afternoon 290 

cloud cover during summer causes diurnal asymmetry in incident PAR (Fig S1A). We examine this 291 

effect in more detail (Section 3) by analyzing SIF and GPP under clear and diffuse sky conditions 292 

using a threshold (0.5, top-of-canopy/top-of-atmosphere incoming shortwave radiation) similar 293 

to that used in Yang et al. (2017) and Yang et al. (2018). 294 
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2.2.4 CO2 Flux and GPP Partitioning 295 

NEE measurements are screened using ustar filtering, and partitioned into gross primary 296 

production (GPP) and terrestrial ecosystem respiration components using the so-called nighttime 297 

method which is based on the relationship between NEE during the nighttime (PAR < 50 umol m-298 
2 s-1) and air temperature (Reichstein et al., 2005). Diurnal averages of GPP based on nighttime 299 

partitioning show similar diurnal structure to PAR and SIF including the afternoon dip and 300 

reduced overall magnitude compared to the 2015-2018 mean (Fig S4). Similar results are found 301 

using daytime light partitioning of NEE (Lasslop et al., 2010; Fig S4) and thus only nighttime 302 

partitioned GPP data are reported for the remainder of this study. All GPP estimates are 303 

processed as half hourly means, then gap filled and averaged hourly. We note the tower location 304 

near the Continental Divide in the Rocky Mountains of Colorado presents slope flow challenges 305 

for eddy covariance during nighttime, but the relatively flat area of the tower reduces impact on 306 

daytime flux measurements (Burns et al., 2018). Details on the flux measurements, data 307 

processing and quality control are provided in Burns et al. (2015).  308 

2.3 Modeling Approach 309 

2.3.1 TBM-SIF Overview 310 

The parent TBMs are designed to simulate the exchanges of carbon, water, and energy between 311 

biosphere and atmosphere, from global to local scales depending on inputs from meteorological 312 

forcing, soil texture, and plant functional type. The addition of a fluorescence model that 313 

simulates SIF enables a direct comparison to remotely sensed observations for benchmarking, 314 

process diagnostics, and parameter/state optimization (data fusion) for improved GPP 315 

estimation. The TBM-SIF models analyzed here differ in ways too numerous to discuss. We refer 316 

the reader to the appropriate references in Section 2.3.4 for more detailed model descriptions.  317 

Instead, we focus on key differences affecting joint simulation of GPP and leaf/canopy level SIF 318 

at diurnal and synoptic scale, during the peak of summer. These differences, which are 319 

summarized in Table 1, include the representation of stomatal-conductance (all use Ball-Berry 320 

except CLM5.0, BEPS, and ORCHIDEE), canopy absorption of incoming radiation (all account for 321 

sunlit/shaded radiation except ORCHIDEE, SiB3, and SiB4), limiting factors for photosynthesis 322 
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(Vcmax, LAI, radiation, stress) and SIF (kN, fluorescence photon re-absorption), scaling and radiative 323 

transfer methods for transferring leaf-level SIF simulations to top of canopy, and parameter 324 

optimization. Further details on (a) photosynthetic structural formulation and parameter choice, 325 

(b) representation of leaf level processes important to SIF (𝑘$ and 𝜙%), and (c) leaf-to-canopy 326 

scaling approach (𝑆𝐼𝐹)*+,-.) are provided in Sections 2.3.2 and 2.3.3.  327 

2.3.2 Photosynthesis Models 328 

All TBM-SIF models in this manuscript used enzyme-kinetic models to simulate leaf assimilation 329 

rate (gross photosynthesis) as limited by the efficiency of photosynthetic enzyme system, the 330 

amount of PAR captured by leaf chlorophyll, and the capacity of leaves to utilize end products of 331 

photosynthesis (Farquhar et al., 1980; Collatz et al., 1991, 1992; Sellers et al., 1996). However, 332 

there are important differences in the representation of (a) stomatal conductance that couples 333 

carbon/water cycles, and (b) limiting factors on carbon assimilation due to leaf physiology 334 

(maximum carboxylation capacity, Vcmax), radiation (APAR or fAPAR), canopy structure (LAI, leaf 335 

angle distribution), and stress (water supply and demand, temperature), that affect plant 336 

physiological processes and canopy radiative transfer. The underlying stomatal conductance 337 

models in the TBMs analyzed here are represented by the Ball-Berry family of empirical models 338 

rooted in the leaf gas exchange equation but with different representations of atmospheric 339 

demand (relative humidity or vapor pressure deficit), including the Ball-Berry-Woodrow model 340 

(Ball et al., 1987), the Leuning model (Leuning, 1995), the Yin-Stuik model (Yin and Struik, 2009), 341 

and the Medlyn model (Medlyn et al., 2011). These structural and parametric differences also 342 

influence calculated values such as the degree of light saturation (Section 2.3.3), which influence 343 

both the fluorescence and quantum yield as used by the fluorescence models. Differences in 344 

stomatal conductance, canopy type / radiation scheme, stress, Vcmax, and LAI are summarized in 345 

Table 1.  346 

2.3.3 Fluorescence Modeling Approach 347 

Following the general approach described in Lee et al. (2015) and van der Tol et al. (2014), the 348 

flux of total leaf-level emitted fluorescence, 𝑆𝐼𝐹/0*1, can be diagnosed using a light use efficiency 349 

framework analogous to the expression for photosynthesis (Monteith et al., 1972), 350 
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𝑆𝐼𝐹/0*1 = 𝑓𝐴𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅 ∗	𝜙"  351 

= 𝐴𝑃𝐴𝑅 ∗ 𝜙"	                                                      Equation 1 352 

where PAR and fAPAR are defined in Section 2.2.1 but measured at leaf level, and 𝜙"  is the 353 

quantum yield of fluorescence, representing the number of photons emitted by fluorescence per 354 

absorbed photon. We note that photosystems I and II (PS1 and PSII, respectively) contribute to 355 

leaf level fluorescence but only PSII is considered in models analyzed here (with the exception of 356 

ORCHIDEE and BETHY, Section 2.3.4.2). 𝜙"  is estimated as follows: 357 

𝜙" = 	
9:	

9:;9<;9= (1 − 𝜙%)                                   Equation 2 358 

where k represents the rate coefficients for the different pathways for the transfer of energy 359 

from excited chlorophyll (𝑘"  = fluorescence, 𝑘B = heat dissipation, and 𝑘$ = non-photochemical 360 

quenching, or NPQ), and 𝜙% is the quantum yield of electron transport (see Section 2.3.2). 𝑘"  is 361 

typically set to a constant value (0.05) in models following van der Tol et al (2014). 𝑘B is also 362 

typically set to a constant value of 0.95, or temperature corrected in some cases (e.g., ORCHIDEE, 363 

CLM4.5, CLM5.0, BETHY). 𝑘$ has a substantial and variable impact on energy partitioning at 364 

diurnal and seasonal scales which varies as a function of light saturation (e.g., Raczka et al., 2019; 365 

Porcar-Castell et al., 2011). Once leaf level emissions are known, an approach is needed estimate 366 

the total TOC fluorescence flux (𝑆𝐼𝐹)*+,-.) for comparison to Photospec data. Leaf and canopy 367 

level fluorescence modeling is described in more detail in Section 2.3.3.1 and 2.3.3.2 below.  368 

2.3.3.1 Leaf level SIF emission 369 

The ‘quantum yield’ approach has been used in SIF models to characterize the fraction of photons 370 

that are used for PQ, NPQ, or re-emitted as fluorescence (van der Tol 2014). It is important to 371 

note, that this does not translate into the actual amount of SIF emission leaving the leaf, but is 372 

used as an approximation. TBM-SIF models typically represent 𝜙% using lake model formalism, 373 

which assumes large connectivity between photosynthetic units (Genty et al., 1989; van der Tol 374 

et al., 2014). 𝜙% is expressed in terms of the degree of light saturation (x), derived from the native 375 

photosynthesis module of the parent TBM and represents the balance between actual and 376 

potential electron transport rates, and the maximum photochemical yield under dark-acclimated 377 
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conditions (𝜙%C*D), which is derived from the fluorescence model and defined in terms of rate 378 

coefficients in Eq 2.  379 

𝜙$ accounts for the ability of plants to dissipate excess energy as heat via NPQ through the 380 

regulation of xanthophyll cycle pigments (Demmig-Adams and Adams, 2006). NPQ can be 381 

represented as a sum of reversible (kR) and sustain (kS) components (kN = kR + kS). kR accounts for 382 

the relatively fast (diurnal), reversible NPQ response to light. kS accounts for the relatively slow 383 

(seasonal), sustained NPQ response to light and other environmental factors. With the exception 384 

of CLM4.5, models do not typically account for kS. 385 

A significant challenge in fluorescence models is to find an appropriate relationship between  𝑘$ 386 

and the degree of light saturation (x).  The TBM-SIF models represent 𝑘$ through an approach 387 

similar to the one used in SCOPE, which uses a parametric model of 𝑘$ derived from PAM 388 

fluorometry measurements (van der Tol et al., 2014).   389 

NPQ models can be classified as stressed (drought) and unstressed relative to water availability 390 

depending on the dataset from which empirical fits are derived. The unstressed model is ideal 391 

for irrigated systems such as crops, and the stressed model is more appropriate for water limited 392 

ecosystems such as Niwot Ridge. We examine each of these models using drought and unstressed 393 

models from van der Tol (2014), and a drought-based model from Flexas et al. (2002). These 394 

models use different empirical fits but are otherwise identical. In general, 𝑘$ increases more 395 

rapidly with APAR (light saturation), and ramps up to a higher level, in the drought-based model 396 

compared to the unstressed model. Additionally, some models provide unique improvements 397 

such as dependence on environmental conditions (e.g., water stress vs no water stress in 398 

ORCHIDEE), and equations for reversible and sustained NPQ to represent the different time 399 

scales (minutes to seasonal) at which NPQ regulation occurs (e.g., CLM4.5) influenced by 400 

pigmentation changes in the leaf.  401 

2.3.3.2 Leaf-to-Canopy scaling 402 

The TBM-SIFs produce leaf-level fluorescence which needs to be converted to canopy-level 403 

fluorescence (SIFcanopy) to be directly compared to PhotoSpec and satellite observations.  Leaf- to 404 

canopy- level conversion of SIF requires a representation of canopy radiative transfer, which in 405 
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general is too computationally expensive to include within the TBMs in this study, that are 406 

designed for global scale application.  Therefore, most TBMs analyzed here account for canopy 407 

radiative transfer of SIF using some representation of SCOPE (van der tol 2009a,b). The most 408 

commonly used approach is to run independent simulations of SIF from SCOPE to create an 409 

empirical conversion factor (𝜅FGH) between leaf and canopy level SIF that is a function of Vcmax 410 

(Lee et al., 2015). This conversion factor accounts for integration over the fluorescence emission 411 

spectrum, observation angle, and unit conversion. Model variations of this empirical approach, 412 

as well additional approaches utilizing the full SCOPE model and a SCOPE emulator, are 413 

summarized below and in Table 1.  414 

2.3.4 TBM-SIF Models 415 

Here we provide a brief description of individual TBM-SIF models and within model experiments. 416 

We point out key differences in modeling of photosynthesis, fluorescence, and leaf-to-canopy 417 

scaling. We note that within model experiments, labeled as Experiment 1 (exp1), Experiment 2 418 

(exp2), etc, represent increasing order of realism, rather than a specific set of conditions common 419 

across models. As such, Experiment 1 in BETHY (BETHY-exp1) is not equivalent to Experiment 1 420 

in CLM4.5 (CLM4.5-exp1).  421 

2.3.4.1 BETHY 422 

The Biosphere Energy Transfer HydrologY (BETHY) model is the land surface component of the 423 

Carbon Cycle Data Assimilation System (CCDAS) developed to ingest a range of observational data 424 

for estimating terrestrial carbon fluxes at global scale (Rayner et al., 2005; Kaminski et al., 2013; 425 

Koffi et al., 2012; Anav et al., 2015). Koffi et al. (2015) was the first to combine a process-based 426 

model of SIF with a global TBM. The native canopy radiative transfer and photosynthesis schemes 427 

of BETHY were effectively replaced with corresponding schemes and fluorescence model from 428 

SCOPE (Koffi et al., 2015), thus enabling spatially explicit simulation of GPP and SIF as a function 429 

of plant function type. This model was extended to include a module for prognostic leaf growth 430 

(Norton et al., 2018) and more recently adapted with a formal optimization algorithm for 431 

assimilating spaceborne SIF data (Norton et al., 2019). It has been updated for this study to accept 432 

hourly meteorological forcing. BETHY-SCOPE, denoted here as BETHY, remains the first and only 433 
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global TBM-SIF model to simulate vertically integrated (1-D) fluorescence radiative transfer and 434 

energy balance.   435 

We include three experiments to examine the impact of calibrating the 𝑘$ model against PAM 436 

fluorometry data to different species: (1) BETHY-exp1 is adapted to unstressed cotton species 437 

(van der Tol et al., 2014), (2) BETHY-exp2 is adapted to drought stressed Mediterranean species 438 

(i.e., vineyard in controlled environment subjected to drought) including higher temperature 439 

correction (Flexas et al., 2002; van der Tol et al., 2014), (3) BETHY-exp3 is adapted to drought 440 

stressed Mediterranean species (Flexas et al., 2002).  441 

We further leverage SCOPE enabled SIF modeling in BETHY (BETHY-exp3 specifically) to examine 442 

(a) leaf and canopy level SIF and quenching under sunlit and shaded leaves, and (b) SIF emissions 443 

at the top of canopy (SIFcanopy) versus the average emission within the canopy (SIFave), which 444 

accounts for the average emission from sunlit and shaded leaves. The latter analysis facilitates 445 

comparison to PhotoSpec, which observes the entire canopy.  446 

An important caveat in the analysis of BETHY simulations is that, at the time of this writing, the 447 

prescribed meteorological forcing at NR1 is only available for 2015. While this degrades 448 

comparison to diurnal and synoptic variation observed by PhotoSpec in 2017, we find that 449 

analysis of magnitude, light sensitivities, and within model experiments still provides useful 450 

insight for interpretation of other TBM-SIFs, and future modeling requirements in general.  451 

2.3.4.2 ORCHIDEE 452 

The Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) model (Krinner et al., 453 

2005) is the land surface component of the Earth System Model of Institut Pierre-Simon Laplace 454 

IPSL-CM, (Dufresne et al., 2013) involved in recent exercises of the Coupled Model 455 

Intercomparison Project (CMIP) established by the World Climate Research Programme 456 

(https://www.wcrp-climate.org/wgcm-cmip). Recently a mechanistic SIF observation operator 457 

was developed for ORCHIDEE to simulate the regulation of photosystem II 𝜙"  at the leaf level 458 

using a novel parameterization of NPQ as a function of temperature, PAR, and normalized 𝜙%. It 459 

emulates the radiative transfer of SIF to the top of the canopy using a parametric simplification 460 

of SCOPE. The details of the SIF modelling approach are provided in Bacour et al. (2019).  461 
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We include three experiments to examine the impact of water stress and parameter optimization 462 

(using OCO-2 SIF, see Section 2.4): (1) ORCHIDEE-exp1 is the standard configuration with default 463 

parameters, (2) ORCHIDEE-exp2 is the same as ORCHIDEE-exp1 with two key differences (a) water 464 

stress is applied to stomatal conductance, mesophyll conductance and to the photosynthetic 465 

capacity, and (b) the tree height (12 m instead of 15 m) was set specifically for the NR1 site, (3) 466 

ORCHIDEE-exp3 is the same as ORCHIDEE-exp1 but includes OCO-2 optimized parameters.  467 

2.3.4.3 BEPS 468 

The Boreal Ecosystem Product Simulator (BEPS) is an enzyme kinetic two-leaf model for 469 

simulating carbon and water cycles for different plant functional types (Chen et al., 1999; Liu et 470 

al., 2003). BEPS uses a modified Ball-Berry stomatal conductance model (Leuning et al., 1995) 471 

and semi-analytical canopy radiative transfer. The canopy architecture is well considered in BEPS 472 

model, which has not only remote-sensed LAI but also the global map of the foliage clumping 473 

index. The fluorescence emission at the leaf level follows the approach of Lee et al (2015). SIF 474 

emission for sunlit and shaded leaves are separately simulated based on illumination and canopy 475 

geometry in BEPS. In addition, multiple scattering SIF is also simulated to account for the 476 

scattering process within the canopy. The scaling of leaf-level fluorescence emission to the 477 

canopy is based on a novel scheme for single-layer models which accounts for canopy scattering 478 

and extinction from sunlit and shaded leaves (Qiu et al., 2019). This scaling scheme is an effective 479 

approach to simulate the radiative transfer of SIF for a given canopy structure. We include two 480 

experiments similar to BETHY-exp1/2 in the calibration of the 𝑘$ model against unstressed vs 481 

stressed species (BEPS-exp1 and BEPS-exp2, respectively).  482 

2.3.4.4 CLM4.5 483 

The Community Land Model version 4.5 (CLM4.5) provides a description of the biogeochemical 484 

profile spanning from the sub-surface bedrock to the top of the vegetation canopy. The 485 

fluorescence sub-model follows Raczka et al. (2019), in which the degree of light saturation is 486 

calculated from the potential and actual electron transport rate as determined from the 487 

photosynthesis model described above.  𝜙1 is formulated as described in Equation 2 and 𝜙% is 488 

formulated as a function of the maximum 𝜙% under dark acclimated conditions and the degree 489 
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of light saturation. CLM4.5 uses independent site-level SCOPE simulations that match the 490 

observed canopy characteristics and observed GPP at Niwot Ridge to calculate a leaf to canopy 491 

level conversion factor (𝜅FGH) for estimating SIFcanopy. In CLM4.5, 𝜅FGH is fitted to the modeled 492 

SCOPE data as a function of solar zenith angle (and implicitly Vcmax).  493 

Similar to Raczka et al. (2019), here we examine three separate approaches to parameterize 𝑘$. 494 

CLM4.5-exp1 only considers reversible NPQ (kR), such that, 𝑘$ = 𝑘J, and the relationship 495 

between 𝑘J  and the degree of light saturation is fitted to PAM fluorometry data based on 496 

Mediterranean shrubs (Flexas et al., 2002; Galmes et al., 2007). CLM4.5-exp2 parameterizes 𝑘J  497 

with PAM fluorometry from a Scots Pine forest (Porcar-Castell et al., 2011), and defines the rate 498 

coefficient in terms of both a reversible and sustained component (𝑘$ = 𝑘J+ 𝑘K).  It has been 499 

found that sustained NPQ is important for cold climate evergreen conifer forests such as Niwot 500 

Ridge (Miguez et al., 2015; Magney et al., 2019b), and Raczka et al. (2019) found that 501 

representing both components provided improved simulations of seasonal SIF. CLM4.5-exp3 is 502 

similar to CLM4.5-exp3 but includes a seasonally varying representation of 𝑘J.  All model 503 

experiments use hand-tuned parameters specific to US-NR1 (Raczka et al., 2016). 504 

2.3.4.5 CLM5.0 505 

CLM version 5.0 (CLM5.0) is similar to CLM4.5 with respect to the implementation of the 506 

fluorescence sub-model, yet includes several important updates to the representation of 507 

photosynthesis from CLM4.5, including a prognostic calculation of Vcmax based upon leaf nitrogen 508 

and environmental conditions, revised nitrogen limitation scheme, Medlyn stomatal 509 

conductance model, and plant hydraulic water stress (Kennedy et al., 2019). To represent NPQ 510 

we use a single approach for kN (see CLM4.5-exp1), but examine three approaches for estimating 511 

𝜅FGH: (1) CLM5.0-exp1 uses 𝜅FGH as function of Vcmax following Lee et al (2015), (2) CLM5.0-exp2 512 

follows the approach of CLM4.5, and (3) CLM5.0-exp3 adapts the approach proposed by Zeng et 513 

al. (2019) that estimates the fraction of total emitted SIF escaping the canopy by combining near-514 

infrared reflectance of vegetation (NIRV) and fPAR.  515 

2.3.4.6 SIB3 516 



 20 

The Simple Biosphere Model version 3 (SIB3) involves the use of explicit biophysical mechanisms 517 

to directly calculate carbon assimilation by photosynthesis (Baker et al., 2003; 2008). SiB3 518 

includes prognostic calculation of temperature, moisture, and trace gases in the canopy air space, 519 

but requires prescription of most structural properties including LAI. We examine two 520 

approaches for prescribing LAI: (1) SIB3-exp1 using values prescribed from MODIS, and (2) SIB3-521 

exp2 uses values observed at the study site (4.0 m2 m-2). In general, the fluorescence sub-model 522 

follows the approach of Lee et al. (2015) except that 𝑘$ is adapted to drought stressed species 523 

following van der Tol et al (2014).  524 

2.3.4.7 SIB4 525 

SIB4 (Haynes et al., 2019a,b) shares many similarities to SIB3 with respect to functional aspects 526 

of photosynthesis and fluorescence, however, SIB4 uses prognostic rather than prescribed 527 

phenology and LAI.  528 

2.3.5 SCOPE 529 

SCOPE is a multi-layer canopy model which explicitly represents the within canopy radiative 530 

transfer of fluorescence, whereas TBM-SIFs analyzed here (with the exception of BETHY) only 531 

provide an empirical representation. We provide results from a stand-alone version of SCOPE 532 

v1.73 (van der Tol et al., 2014) as an additional benchmark for TBM-SIF simulations of APAR, GPP, 533 

SIF, and quantum yields. There are three important reasons for this: (1) It is inherently difficult 534 

to provide representative and accurate in situ measurements of APAR, SIF, and GPP for 535 

comparison to models; (2) SCOPE provides estimates of quantum yields for fluorescence, 536 

photochemistry, and non-photochemical quenching, which are not measured continuously in the 537 

canopy at NR1; and (3) SCOPE offers a more direct benchmark for evaluating more simplified 538 

representations of canopy radiative transfer in TBM-SIFs. Unlike the TBM-SIFs, SCOPE does not 539 

include a representation of biogeochemical cycling or carbon pools, and thus no spin up is 540 

required. As such, we prescribe LAI (4 m2 m-2), canopy height (13 m), and leaf chlorophyll content 541 

(25 ug cm-2) following Raczka et al. (2019). We also examine two approaches for prescribing Vcmax: 542 

(1) SCOPE-exp1 uses the default constant value of 30, similar to BETHY, and (2) SCOPE-exp2 uses 543 

a seasonal varying value calibrated to NR1, following Raczka et al. (2016, 2019), which follows a 544 
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bimodal distribution peaking near 45 in early summer (DOY = 150) and 40 in late summer (DOY = 545 

250) 546 

2.4 Data Assimilation 547 

Details of the data assimilation protocols for ORCHIDEE is provided in Bacour et al. (2019). An 548 

ensemble of parameters related to photosynthesis (including optimal Vcmax) and phenology were 549 

optimized for several plant functional types. Note that none of the assimilated pixels encompass 550 

the location of the US-NR1 tower. In ORCHIDEE, the study site is treated as boreal needleleaf 551 

evergreen (ENF); as such, the ORCHIDEE-exp3 simulations in this study are based on parameters 552 

optimized against OCO-2 SIF data using an ensemble of worldwide ENF pixels. Note that for 553 

BETHY, each experiment uses the same set of optimized parameters whereas in ORCHIDEE the 554 

SIF simulations are performed separately for the standard parameters (ORCHIDEE-exp1/exp2) 555 

and optimized parameters (ORCHIDEE-exp3), thus providing a test of sensitivity to parameter 556 

optimization as discussed below.  557 

2.5 Illumination Conditions 558 

In order to gain insight into how SIF emissions and quantum yields vary with illumination, we 559 

further analyze Photospec and a subset of models with respect to (a) changes in incoming light 560 

and (b) self-shading within the canopy, respectively.  For PhotoSpec, we analyze changes in 561 

canopy average SIF and SIFrel under conditions of predominantly direct versus diffuse PAR, using 562 

a 0.5 threshold to distinguish between the two conditions (Section 2.2.3). For models we focus 563 

on emissions from sunlit vs shaded leaves. We analyze leaf- versus canopy-level SIF emissions 564 

(SIFleaf and SIFcanopy) in CLM4.5-exp3, and leaf-level quantum yields (𝜙1, 𝜙-, 𝜙$) in SCOPE-exp2. 565 

We further compare predictions of quantum yield at the top-of-canopy to canopy averages in 566 

SCOPE-exp2. The motivation here is that top-of-canopy leaves see most of the sunlight, and thus 567 

should have different yields compared to shade adapted leaves lower in the canopy. This also 568 

provides a more direct comparison for PhotoSpec.    569 

2.6 Modeling Protocol 570 

Models are run for the period 2000-2018 (except BETHY (2015 only) and SCOPE (2017 only)) using 571 

identical, hourly, gap-filled meteorological observations. The primary hourly output fields 572 



 22 

analyzed are the top-of-canopy SIF (SIFcanopy @ 740 nm), GPP, 𝜙1, 𝜙-, and APAR. Model-573 

observation comparisons are made for absolute and relative SIF, GPP, SIFyield (SIFcanopy/APAR) and 574 

GPPyield (GPP/APAR), sunlit versus shaded canopies (CLM4.5-exp3 and SCOPE-exp2), and TOC 575 

versus canopy average SIF (SIFcanopy versus SIFave, respectively, from SCOPE-exp2). Quantum yields 576 

and within model experiments provide context to understand canopy integrated results. We 577 

focus our analysis on 8 am – 4 pm local time from July-August 2017 for comparison to available 578 

PhotoSpec and APAR data. 579 

Models are controlled for meteorological forcing (meteorological data described in Burns et al., 580 

2015) but other factors such as spin-up, land surface characteristics, parameter tuning, and 581 

model state, are not controlled for and are treated separately according to each model’s 582 

protocol. For example, CLM4.5 is better suited than others in prescribing observed vegetation 583 

characteristics at the study site. One ORCHIDEE experiment (ORCHIDEE-exp3) is preliminary 584 

optimized by assimilating independent Orbiting Carbon Observatory 2 (OCO-2) SIF data at the 585 

global scale (Section 2.4). We emphasize that our point here is not to identify the best model but 586 

to identify common patterns in model behavior through normalized SIF and deviation from 587 

observed behavior to identify areas requiring the most attention.  588 

The results are organized around two parallel themes. The first theme addresses four key 589 

processes driving canopy-level fluorescence: (1) incoming illumination, (2) energy partitioning on 590 

incoming light between photochemistry, fluorescence, and NPQ, and (3) leaf-to-canopy emitted 591 

SIF, including linearity of yields at leaf and canopy scale. The second theme addresses sensitivity 592 

of these processes to environmental conditions at diurnal and synoptic scales. Here, synoptic 593 

scale refers to the impact of day-to-day changes in weather, including two storm events which 594 

brought sustained cool, wet, and cloudy conditions from July 22-31 and then from August 6-10.  595 

Section 3: Results 596 

Incoming Illumination 597 

Two key features dominate observed APAR variability: afternoon depression (Fig 2A) and 598 

reduction during two summer storms (Fig 2D). Both features are captured by models. More 599 

generally, models capture synoptic variability with high correlation (r > 0.8) and low across model 600 
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spread (𝜎 = 10%). The exception is BETHY, which is simulated outside our observation year (2015). 601 

High model fidelity is expected given that observed PAR is prescribed, and it is promising that 602 

models show a consistent response to changes in illumination. The primary shortcoming across 603 

TBM-SIFs and SCOPE is a systematic high bias in APAR magnitude (129%), with most models 604 

exceeding the upper range of observed APAR (as determined from the six within canopy PAR 605 

sensors, Fig S2), and high model spread. These errors are likely related to differences in predicted 606 

fAPAR. In the case of ORCHIDEE, high APAR is expected due to the big leaf assumption where all 607 

leaves are considered as opaque and fully absorbing.  608 

Canopy Photosynthesis 609 

Observed GPP shows a broad peak from mid-morning to early afternoon (~9 am – 1 pm local), 610 

followed by slight decrease until 4 pm (Fig 2B), consistent with afternoon cooling and reduced 611 

light availability (Fig 1B-D). The two month period under investigation is relatively flat with 612 

generally weak day-to-day variability (𝜎 = 17%), but modest correlation with APAR (r = 0.61, Fig 613 

2E). Some models capture the afternoon GPP depression, but all models strongly underestimate 614 

its magnitude, apparently independent of stomatal conductance formulation or more explicit 615 

accounting for plant hydraulic water stress such as in CLM5.0. SCOPE and BETHY, which don’t 616 

account for water stress, show no afternoon depression. Models are mostly uncorrelated with 617 

observed GPP at synoptic scale (r ranges from -0.2 to 0.36, highest value in SiB4), high biased, 618 

and show increased spread (in predicted magnitude) relative to APAR (143% +/- 23%). SCOPE-619 

exp2 shows slight improvement in GPP magnitude with the larger Vcmax value in late summer.  620 

While observed GPPyield is mostly stable over the diurnal cycle, most models (except BEPS) show 621 

a distinct midday minimum (Fig 3A). Half of the models show a similar midday minimum in 622 

photochemical quantum yield (𝜙%, Fig 4A), with the other half either increasing or decreasing in 623 

the afternoon (CLM5.0 and SiB3/SiB4, respectively). The midday dip in yield is likely associated 624 

with reduced photosynthetic efficiency at high light levels, as demonstrated by reductions in GPP, 625 

GPPyield, 𝜙% with APAR (Fig 5A, C, E). 626 

Observed GPPyield shows significant structure at synoptic temporal scale (Fig 3C), most notably 627 

increased yield during the cool/rainy period (reduced heat and water stress), and decreased yield 628 
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in mid- to late- August (increased heat and water stress following the cooling pattern). In contrast 629 

to predicted GPP, models show high fidelity in capturing the magnitude and variability of GPPyield 630 

at synoptic scale (r ranges from 0.35 – 0.76, highest values in SCOPE and CLM4.5/5.0). Individual 631 

models are self-consistent in their predictions of GPPyield and 𝜙% at synoptic scale (r = 0.592 – 632 

0.935) except for SiB3/SiB4 (r < 0.1, Fig 4B).  633 

Canopy Fluorescence 634 

Observed SIFcanopy is strongly correlated with observed APAR at diurnal and synoptic scale (r = 635 

0.77), with common features including afternoon depression and reduction during rainy periods 636 

(Fig 2C & 2F). Observed PAR also feeds into the fluorescence sub-model and, unlike GPP, strongly 637 

correlates with SIFcanopy at synoptic scale (r ranges from 0.58 to 0.92, highest values in SCOPE and 638 

ORCHIDEE). However, we find a persistent positive model bias in SIFcanopy (170% +/- 45%) 639 

consistent with, but not proportional in magnitude to, the APAR bias. We note that models are 640 

especially oversensitive to APAR at high light levels (Fig 5D).  641 

We investigate the high bias in SIFcanopy in more detail using SCOPE-exp2 and CLM4.5-exp3. 642 

Specifically, we examine leaf and canopy level SIF and quenching under sunlit and shaded leaves. 643 

Analysis of quantum yields in SCOPE-exp2 (Fig S5) shows a reversal in the fractional amounts of 644 

absorbed energy going to SIF and PQ vs NPQ in low- vs high-light conditions that is consistent 645 

with leaf level data and theory (Porcar-Castell et al., 2014). More specifically, SCOPE-exp2 646 

predicts low 𝜙"  and 𝜙% and high 𝜙$ in sunlit leaves relative to shaded leaves, with more energy 647 

going to fluorescence and photochemistry than to NPQ in shaded leaves, and more energy going 648 

to (shed off by) NPQ in sunlit leaves (Fig S5). Likewise, total 𝜙"  shows decreasing values with 649 

increasing APAR in SCOPE and BETHY-exp2/3 compared to BETHY-exp1, consistent with observed 650 

SIFyield (Fig 5E-F), as 𝜙$ ramps up to higher levels in the drought parameterized Kn model. 651 

Moreover, in stark contrast to SIFyield and SIFcanopy, 𝜙"  does not show high values relative to other 652 

models (Fig 4D). These results point to an issue in SCOPE and BETHY with leaf to canopy scaling 653 

in needleleaf forests. 654 

Analysis of CLM4.5-exp3 suggests several possible reasons for oversensitivity to APAR. First, we 655 

focus on emissions from sunlit/shaded portions of the canopy (Fig S6). CLM4.5-exp3 and 656 



 25 

PhotoSpec both show higher SIF under “high light” conditions (sunlit leaves and direct radiation, 657 

respectively) compared to “low light” conditions (shaded leaves and diffuse radiation, 658 

respectively), which is promising (Fig S6 A,D). Comparing the ratio of sunlit to shaded SIF in 659 

CLM4.5-exp3 to the ratio of direct to diffuse SIF in PhotoSpec (Fig S6 B,E) shows higher ratio in 660 

CLM4.5-exp3 on average. The difference peaks in midday, when sunlit leaf area is maximized 661 

(self-shading minimized) in CLM4.5 but no major difference in the amount of direct radiation, 662 

and decreases with increasing sun angle (morning and afternoon) and with increasing rainfall (in 663 

the afternoon on average, and during the rainy period in late July / early August), both of which 664 

increase the shaded fraction. As such, accounting for view angle and different illumination 665 

metrics for PhotoSpec and CLM4.5 (most comparable in morning, afternoon, and during rainy 666 

days) reduces, but does not entirely remove, the positive bias in high light conditions. 667 

Second, the degree of light saturation (x) is twice as high in the sunlit canopy in CLM4.5 (Fig S7), 668 

which leads to low fluorescence efficiency in sunlit leaves and high fluorescence efficiency in 669 

shaded leaves. While this produces high photochemistry in shaded leaves, it contributes a small 670 

fraction of SIF to the total canopy (~20%) despite higher fractions of shaded leaves (~2/3 at noon, 671 

Fig S6C) and thus sunlit leaves dominate SIFyield and SIFcanopy.  Therefore, it seems likely that a 672 

model’s representation of canopy structure including the partitioning between sunlit/shaded leaf 673 

area fractions has an important impact upon canopy SIF.  Biases in the sunlit/shaded fraction will 674 

likely propagate into the simulated value of canopy SIF. However, it’s important to know that the 675 

observed sunlit/shaded fraction from PhotoSpec is estimated as well, since it is currently not 676 

possible to determine the precise sun/shade fraction within PhotoSpec FOV. 677 

Additionally, all formulations of CLM4.5 (and most models except BETHY and SCOPE) show lack 678 

of decline in SIFyield with APAR compared to measurements of absolute SIF (Fig 5E). For CLM4.5, 679 

the relationship between SIFyield and APAR depends upon the relationship between degree of 680 

light saturation and reversible NPQ (Raczka et al., 2019).  This suggests it is important to properly 681 

represent the NPQ response to environmental conditions when simulating SIF. 682 

While most of the model bias is reduced in SIFyield (126%, mostly attributed to BETHY and SCOPE), 683 

the remaining signal, representing the dynamic response to synoptic conditions (e.g., Magney et 684 

al., 2019), is poorly represented in models, as demonstrated in a time series of 5-day means (Fig 685 
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3D). Most models show zero to strongly negative correlation with observations at synoptic scale 686 

and only three models (SCOPE, ORCHIDEE-exp3, and BETHY-exp2/3), produce correlation greater 687 

than 0.5. These are the only three models that also capture a negative relationship between 688 

SIFyield and APAR (Fig 5E).  689 

In general, predicted SIFyield is stable during our short study period (Fig 3). Half of models show a 690 

significant positive correlation with GPPyield (r > 0.85) and half show zero or negative correlation 691 

(Fig S8). While these findings run counter to observed SIFyield, which shows a clear response 692 

during and following the storm event and moderate positive correlation with observed GPPyield (r 693 

= 0.40), they show some consistency with observed SIFrel (grey line in Fig 3 and Fig S8A) which 694 

like many models is stable and uncorrelated with GPPyield. We refer the reader to Section 2.2.2 695 

for clarification of the important difference between SIFyield and SIFrel.  696 

Leaf-to-Canopy Scaling 697 

Several methods have been proposed to transfer predicted leaf-level SIF emissions to the top of 698 

canopy. While leaf-to-canopy scaling enables efficient global scale simulation, the diversity of 699 

novel methods adds uncertainty to the canopy level estimate of SIF (in addition to 700 

aforementioned uncertainties in structure, APAR, photochemistry, fluorescence). These 701 

differences are evident in comparison of Figures 3 and 4, in which yields are plotted on a similar 702 

scale.   703 

At least at diurnal scale, there is some evidence that leaf and canopy emissions look more similar 704 

for models adopting simplified empirical scaling functions (SiB3, SiB4, CLM4.5, CLM5.0, BEPS) 705 

than for models that more explicitly account for radiative transfer (SCOPE, BETHY, ORCHIDEE). 706 

For the more explicit models, the diurnal cycle of 𝜙1 is out of phase with SIFyield, the former of 707 

which peaks in the afternoon and the latter of which peaks in the morning. This produces 708 

reasonable agreement to PhotoSpec in phase and magnitude between SIFyield and SIFrel for 709 

ORCHIDEE, but produces divergence in the magnitude of SIFcanopy for ORCHIDEE.  710 

Model performance in leaf-to-canopy scaling is summarized in Figure S8. The only three models 711 

with a positive relationship between yields (Fig S8B) and between quenching terms (Fig S8C) 712 

include explicit representation of radiative transfer (i.e., SCOPE, BETHY, and ORCHIDEE). CLM4.5 713 



 27 

is the only model with a positive relationship between yields, but not between quenching terms. 714 

SiB3/SiB4 are the only models with a positive relationship between quenching terms, but not 715 

between yields.    716 

Finally, we clarify an important difference between observed and predicted estimates of canopy 717 

average SIF. PhotoSpec scans direct emissions from sunlit and shaded leaves within the canopy, 718 

thus observing the ‘total’ emission from leaves in the instrument FOV. We then average each of 719 

these leaf-level scans and report as canopy averages. Model output, in contrast, is reported at 720 

the TOC, which represents the ‘net’ emission from leaves after attenuation in the canopy 721 

(through canopy radiative transfer, re-absorption of SIF, and shading). Assuming sunlit and 722 

shaded leaves within the canopy emit at the same rate as TOC leaves, attenuation will reduce the 723 

effective signal from leaf-level emissions within the canopy. As such, the average of leaf level 724 

emissions (canopy average) is expected to be lower than the net emission of leaves reaching the 725 

top of canopy.  726 

This is important because CLM4.5 shows strong attenuation of SIF from leaf-level to TOC, 727 

decreasing by a factor of 2-3 at midday (Fig S7). The interpretation here is that the model bias in 728 

absolute SIF may actually be higher than reported here; however, we note that more quantitative 729 

information on the observed fraction of sunlit vs shaded leaves and comparative top-of-canopy 730 

SIF values for the same canopy elements are needed (to account for off-nadir SIF viewing) for 731 

more accurate determination of scaling between observed canopy and top-of-canopy SIF.  732 

Within Model Experiments 733 

In most cases, within model experiments produce improvements in some metrics and 734 

degradation across others (performance change is quantified by reporting correlation values in 735 

brackets). An important and unexpected result of this study is the impact of different levels of 736 

tuning to observations on our predictions. While this work represents a snapshot of the state-of-737 

the-art in site-level TBM-SIF modeling, and we have taken great care to control for environmental 738 

conditions (most important being illumination), an important overall takeaway is for future 739 

model comparisons to make additional efforts to control for initial conditions and vegetation 740 

state (i.e. model biophysical parameters).    741 
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The most basic example is tuning of LAI in SiB3 and Vcmax in SCOPE. LAI, as prescribed by MODIS 742 

for SiB3-exp1 (~1.5), is on the low end for a subalpine evergreen forest, and consequently 743 

produces negative biases in APAR, GPP, SIF and SIFyield. When prescribed according to tower 744 

observations in SiB3-exp2 (~4.0), the biases become positive (albeit on the lower end of the 745 

model ensemble), but produces degraded variation at synoptic scale for GPP (0.39 vs 0.19), SIF 746 

(0.87 vs .71) and SIFyield (0.09 vs -0.32). The tuning of Vcmax in SCOPE improves the magnitude of 747 

GPP, with minimal impact on variability at diurnal- to synoptic- scale.  748 

Experiments in CLM4.5 comprise a higher level of hand tuning of vegetation structural and 749 

functional characteristics.  Parameter tuning was imposed to match vegetation structure with 750 

site level measurements and consequently CLM4.5 produces overall low bias in yields. With 751 

respect to synoptic variation, NPQ experiments, tuned against the measured air temperature and 752 

a representative evergreen forest, produce improvements at synoptic scale for GPP (-0.01 vs 753 

0.16), SIF (0.59 vs 0.86), and GPPyield (0.05 vs 0.63), but degradation in SIFyield (0.32 vs -0.25). 754 

Likewise, NPQ experiments in BETHY based on species information (calibration of KN against PAM 755 

fluorescence in stressed vs unstressed systems) shows improvement in the SIFyield-APAR 756 

relationship for drought stressed models (BETHY-exp1 vs BETHY-exp2/3).  757 

Experiments with ORCHIDEE demonstrate that errors in model parameters (such as Vcmax, LAImax, 758 

leaf age, or SLA) contribute to SIF and GPP uncertainty but can be alleviated by assimilation of 759 

OCO-2 SIF retrievals (ORCH-exp1/2 vs ORCH-exp3). Model optimization of parameters improves 760 

the functional link between SIF and GPP, thus reducing biases in APAR, GPP, and SIFyield, and 761 

improving synoptic variation in SIFyield (-0.04 vs 0.58).  762 

Section 4. Discussion 763 

This study represents a first attempt to evaluate a controlled ensemble of TBM-SIF models 764 

against canopy integrated SIF observations to identify and attribute model-observation 765 

mismatches related to errors in canopy absorption of sunlight, photosynthesis, fluorescence, and 766 

leaf-to-canopy radiative transfer of fluorescence.  767 

Different models match some observed parameters better than others (with respect to APAR and 768 

yield), but no model gets both APAR and SIFyield magnitude and/or sensitivities close to the 769 
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observations. For example, BEPS closely matches the magnitude of APAR (Fig 2A), and BETHY  770 

captures the decline in SIFyield with APAR for NPQ quenching based on stressed species (Fig 5E), 771 

but both models overestimate observed yield by a factor of 2, hence SIF is overestimated (Fig 2). 772 

CLM4.5 correctly captures the diurnal SIFyield change, but overestimate APAR; in this case, SIF and 773 

SIFyield are overestimated. Importantly, models diverge strongly from each other and from 774 

observations in the magnitude of SIFyield and its decline with APAR (Fig 5E), partially reflecting 775 

model variability in 𝜙1 (Fig 5F), but in general show a characteristic pattern of weak SIFyield decline 776 

with APAR. GPPyield shows higher agreement between models and with observations (Fig 5B), 777 

despite divergent 𝜙% (Fig 5C), which could be indication that the primary uncertainty is due to 778 

the representation of fluorescence and not the photosynthesis model.  779 

Consequently, we find a strong linear and positive relationship between observed SIFyield and 780 

GPPyield for absolute SIF, which is underestimated on average by models (Fig S8A-B). In contrast, 781 

models show quite strong positive relationships between 𝜙1 and 𝜙% (Fig S8C). Our study 782 

highlights an apparent challenge for models in transferring leaf level processes to canopy scale, 783 

and consequently, linking the proper canopy mechanistic SIF-GPP relationship at the leaf level.  784 

The mismatch between multi-model simulations and tower-based observations of SIF and GPP 785 

at hourly and daily scales can be summarized as symptoms of five main factors: (1) PhotoSpec 786 

scan strategy, (2) radiative transfer of incoming PAR and impact on APAR and sunlit/shaded 787 

fraction, (3) representation of photosynthesis and sensitivity to water limitation especially during 788 

afternoon conditions, (4) representation of fluorescence and sensitivity to reversible NPQ 789 

response at Niwot Ridge, and (5) radiative transfer of fluorescence from leaf to canopy. Several 790 

persistent biases falling under these broad categories are discussed below.   791 

Apples to Apples Comparison.  792 

PhotoSpec is unique in its ability to scan entire canopies for signals that are largely hidden from 793 

nadir-oriented instruments. However, this creates unique challenges for interpretation of data 794 

and comparison to models. For example, the diurnal cycle of observed SIF is highly sensitive to 795 

view angle. PhotoSpec was set up in 2017 to scan back-and-forth between northwest and 796 

northeast view angles, but the instrument was slightly biased to the northwest, causing a low 797 
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phase angle in the morning (more aligned with rising sun) and increased phase angle in the 798 

afternoon (more opposed to setting sun). As such, PhotoSpec observed predominantly 799 

illuminated canopies in the morning and shaded canopies in the afternoon (i.e., more shaded 800 

fraction), leading to the late morning peak in reflected radiance (Fig S3). 801 

Moreover, Photospec scans specific locations at the top of the canopy from near nadir to view 802 

angles closer to the horizon (see Fig. S8 in Magney et al., 2019b), while models are currently 803 

configured to simulate top of canopy emission and simulated here as nadir viewing. The question 804 

becomes whether to retain nadir only data and sacrifice signal-to-noise, or to average over all 805 

elevation angles and risk aliasing view angle effects. This study, partly motivated by high 806 

agreement of canopy integrated SIF with spaceborne data from OCO-2 and TROPOMI (Magney 807 

et al., 2019b; Parazoo et al., 2019), has chosen the latter approach but with an attempt to 808 

minimize scan angle effects in SIFrel. However, it is worth noting that swath sensors such as 809 

GOME-2 show high sensitivity to viewing angle especially under increasing illumination angles 810 

(Kohler et al., 2018; Joiner et al., in review). View angle effects are likely to be especially acute 811 

for PhotoSpec in the morning and afternoon with increasing anisotropy and changes in the 812 

illuminated field of view with sun and view angle. Other tower SIF instruments with a wide FOV 813 

(i.e. FluoSpec2; Yang et al., 2018) may more appropriately represent the TOC SIF emission, but 814 

also have difficulty disentangling the sunlit/shaded canopy components.  815 

It is critical that model evaluation relative to measured SIF data and data assimilation studies 816 

properly account for the specificities of the instrument (viewing of the instrument, spectral band, 817 

time of the overpass for space-borne instruments), the representation of canopy emission, and 818 

correct observations for directional variations in SIF relative to observation geometry. Although 819 

normalizing SIF by reflected radiance partially alleviates scan angle effects, this highlights the 820 

need for models to get canopy structure, radiative transfer, and sunlit/shaded fraction correct, 821 

which feed all the way through to SIF and GPP. Further ground-based investigations of SIF 822 

anisotropy, sunlit/shade fraction, and vertical distribution (within canopy, canopy integrated, 823 

and top of canopy) with PhotoSpec and SCOPE may help to inform models on the physical aspects 824 

of the signal. Despite the issues we highlight in comparing observations to models, the potentially 825 
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more interesting and important story here is with respect to model-model comparisons, which 826 

reveals wide divergence in response to light conditions and other factors, as discussed below.  827 

TBM SIF is too sensitive to APAR.  828 

Our results indicate a wide range of SIF responses to APAR: TBM-SIFs and SCOPE are usually far 829 

too sensitive to APAR, observations of absolute SIF are less sensitive, and observations of relative 830 

SIF (SIFrel) are least sensitive (Fig. 5D). We remind the reader that SIFrel is normalized by the 831 

amount of far-red light reflected from leaves in the FOV of PhotoSpec, and thus has reduced 832 

sensitivity to absorbed light than absolute SIF. The fact that SIFrel is the least sensitive to APAR 833 

means other processes are driving changes in SIF under increased light absorption. In this case, 834 

it reveals a strong SIF response to changes in photochemical quenching. SIF models appear 835 

especially sensitive to sunlit leaves. In CLM4.5, SIF emissions from the sunlit portion of the canopy 836 

are a factor of 5 higher than emissions from shaded leaves, despite twice as fewer leaves in the 837 

sunlit canopy (Fig S6C). In CLM4.5, the combination of higher than average 𝜙1 (Fig 5F) with higher 838 

fluorescence efficiency in the sunlit portion of the canopy, produce an increase in the magnitude 839 

and sensitivity to sunlit fraction, thus contributing to the high bias (factor of 3 higher than 840 

observed) and strong diurnal cycle (2-fold increase from morning to midday).  841 

Linearity of SIF and GPP yields.  842 

Observations show a positive but not significant linear relationship between SIFyield and GPPyield 843 

(Fig 6A, r = 0.40) at our study site. This is likely due to the short time period investigated here 844 

where there is relatively little change in SIFyield and GPPyield during peak summer. Half of models 845 

(4 of 8) show a significant (r > 0.35) linear and positive slope (r > 0.35; SCOPE, ORCH-exp3, 846 

CLM4.5-exp3, and BETHY-exp3) between SIFyield and GPPyield, while 6 models (except CLM5.0) 847 

show a significant positive slope between quantum yields (𝜙1 and 𝜙-, Fig S8C). These regression 848 

plots of quantum yields, in turn, help explain the observed linearity of SIFyield vs. GPPyield: At least 849 

in the case of Niwot Ridge, model (and presumably observed) 𝜙- stays within high light “NPQ-850 

Phase” conditions, and generally doesn’t exceed the range in which decoupling of 𝜙1 and 𝜙- (𝜙- 851 

> 0.6) in low light “PQ-Phase’ conditions occurs (Porcar-Castell et al., 2014, cf Fig 9). SCOPE and 852 

BETHY-exp3, which best capture the observed relationship in the canopy between SIFyield and 853 



 32 

GPPyield, are also the only models that also show a decline in SIFyield with APAR, as discussed below. 854 

These results are likely to change when we expand the study to several years; however, the 855 

purpose of this study was to provide an initial investigation into the response of modelled SIF and 856 

GPP to light during peak summer.   857 

Insufficient decline in SIFyield with APAR.  858 

In general, models show an insufficient decline in SIFyield with APAR, when compared to observed 859 

SIFyield (Fig 5E). All models except SiB3 and SiB4 show some decline, with BETHY showing the best 860 

agreement in slope magnitude. SCOPE and BETHY are the only models with full radiative transfer 861 

but this does not appear to have a substantial impact on SIFyield, which has a similar (albeit 862 

suppressed) decline with APAR as 𝜙1 (Fig 5F). Within model experiments show little to no 863 

sensitivity of SIFyield or 𝜙1 decline with APAR to water stress (e.g., ORCHIDEE) or prescribed LAI 864 

(e.g., SiB3), but high sensitivity to the formulation of NPQ with respect to species calibration (e.g., 865 

BETHY) and reversibility (e.g., CLM4.5). 866 

Three CLM4.5 experiments demonstrate sensitivity to representation of NPQ variability at diurnal 867 

and seasonal scales. The first simulation using the default NPQ parameterization from SCOPE 868 

(CLM4.5-exp1, based on a 2-parameter fit to drought stressed Mediterranean species (Galmes et 869 

al., 2007) produces the strongest decline in SIFyield. The second simulation, which includes a site-870 

specific NPQ formulation that accounts for kR and kS (CLM4.5-exp2), produces the weakest 871 

decline. The third simulation with seasonally varying kR produces a slightly stronger decline. An 872 

important point for this formulation is that kR is constrained by PAM fluorometry data at Hyytiala 873 

(Scot Pine) and does not account for high light saturation values and summer drought conditions 874 

that may be more typical of lower latitude sites such as Niwot Ridge. This could indicate that 875 

parameterizing kR based upon similar PFTs may not be sufficient to properly characterize the NPQ 876 

response for lower latitude sites such as Niwot Ridge.  877 

Similar results are found in experiments with BETHY comparing stressed (drought) and 878 

unstressed (relative to water availability) NPQ models at NR1 but controlling for kR (constant in 879 

time in both cases, stronger negative SIFyield response to APAR in stressed model). In the 880 

unstressed models of CLM4.5 and BETHY, the NPQ response to APAR becomes too low, causing 881 

Deleted: s882 



 33 

an oversensitivity of SIF to APAR and thus high SIF bias. The strongly regulated NPQ response of 883 

the drought-based model enables more non-photochemical quenching at high light levels in 884 

stressed ecosystems compared to typical unstressed plants. While this 𝑘$%M model was 885 

developed using drought-stressed plants, similar up-regulation of NPQ is expected to occur under 886 

any condition where photosynthesis is limited and available excitation energy is high (e.g. cold 887 

temperatures and high light, Sveshnikov et al., 2006). Our results thus emphasize the need for 888 

careful implementation of NPQ dynamics for simulating and assimilating SIF in different light and 889 

stress environments (Raczka et al., 2019; Norton et al., 2019). 890 

Data assimilation reduces high bias. Assimilation of OCO-2 SIF in ORCHIDEE brings the magnitude 891 

of both GPP and SIF in closer agreement with observations. This improvement is driven by 892 

decreases in leaf photosynthetic capacity (Vcmax, LAImax, leaf age, SLA, Bacour et al., 2019), which 893 

decreases the magnitude (but not shape) of APAR closer to observed values (Fig 2), and leads to 894 

improvements in GPPyield and SIFyield (Fig 3). Nevertheless, after the assimilation there are still 895 

disagreements in SIFyield vs GPPyield relative to the measured quantities (Fig S8). For diurnal and 896 

synoptic cycles, the assimilation effectively acts to scale the magnitude of SIF, GPP and APAR (and 897 

related yields), but it does little to alter variability. Although data assimilation (i.e. calibrating 898 

model parameters) is critical to improving modelled SIF and GPP, this should be done in 899 

conjunction with improvements in the model formulation (as summarized in Section 5), 900 

otherwise the estimated model parameters can be sub-optimal to compensate for the lack of 901 

missing processes.  902 

5. Conclusions/Recommendations 903 

Our results reveal systematic biases across TBM-SIF models affecting leaf-to-canopy simulations 904 

of APAR, GPP, and SIF. This highlights key areas where observing strategies and model 905 

formulations can be improved:  906 

1) Radiative transfer of incoming and absorbed PAR. The representation of incoming radiative 907 

transfer produces positive biases in APAR that leads to positive biases in GPP, both of which 908 

occur regardless of time of day. This is influenced by characterization of the canopy, leaf 909 

orientation and clumping, biochemical content, canopy layers, and leaf area, which dictates 910 
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the sunlit/shaded fractions of the canopy. Furthermore, the combination of high APAR bias 911 

in models and high uncertainty in observed APAR highlights a need for more accurate and 912 

representative in situ measurements of APAR within the FOV of SIF observations and 913 

footprint of eddy covariance data. We recommend further site-level investigation of 914 

observed and simulated canopy light absorption, emphasizing comparison of multi-layer and 915 

multi-leaf radiation schemes accounting for sunlit and shaded leaf area.   916 

2) Water stress impacts on photosynthesis. The underlying photosynthetic models fail to 917 

simulate the magnitude of depression of observed GPP in the afternoon, regardless of how 918 

stomatal-conductance and water stress models and parameters are formulated. This likely 919 

results from the inability to account for afternoon water stress to properly restrict stomatal 920 

conductance and hence GPP and SIF.  Additional effort is needed to characterize SIF and GPP 921 

sensitivity to increased atmospheric demand and/or reduced soil moisture across a range of 922 

managed and unmanaged systems. We also recommend more inclusion of stomatal 923 

optimization models (e.g., Eller et al., 2020) as optional parameterizations for TBMs, to better 924 

account for plant hydraulic functioning under water stress compared to the more widely used 925 

semi-empirical models. 926 

3) Leaf Mechanism for Energy Partitioning. We provide evidence that many models fail to 927 

capture the correct reversible NPQ response to light saturation, leading to biases in SIFyield 928 

during high light conditions and especially with increasing moisture limitation at the end of 929 

summer. Further investigation using models such as BETHY and CLM is needed to better 930 

characterize sensitivity of NPQ formulations to PFT and environmental conditions. We also 931 

emphasize a need for more simultaneous measurements of active and passive chlorophyll 932 

fluorescence to determine the temporal dynamics of competing pathways (PQ, NPQ) from a 933 

wider variety of plant species under ambient conditions and different levels of stress.  934 

4) Radiative transfer of SIF. SIF is emitted from the leaf level and then is transferred to the top 935 

of canopy as a function of canopy structure (leaf geometry, canopy layers, leaf area, 936 

sunlit/shaded fraction). Despite high disagreement of SCOPE and BETHY with respect to the 937 

simulation of APAR and SIF magnitude, we recommend site level simulations using a similar 938 
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framework where a radiative transfer model is run both offline and coupled to a terrestrial 940 

biosphere model for more detailed investigation of sensitivity to canopy characteristics.  941 

5) Observation strategy. The PhotoSpec scan strategy enables direct measurement of SIF 942 

emission at leaf-to-canopy scale, but requires off-nadir view angles that lead to changing 943 

fractions of sunlit and shaded canopies throughout the day as a function of sun angle. Further 944 

work could be done using tower mounted instruments with a wider FOV that more accurately 945 

represent top of canopy emissions for comparison to model simulations, and to classify 946 

emissions from shaded vs sunlit canopies. More effort is also needed to better align models 947 

with observations, for example by leveraging three-dimensional capabilities in SCOPE (and 948 

other RTMs) to directly account for multiple observation angles.  949 

6) Finally, we note that our focus on a water limited subalpine evergreen needleleaf forest 950 

represents a challenging case study for models and observations. In many cases, there is 951 

strong covariance between LAI, SIF, APAR and GPP in cropping systems (Dechant et al., 2020), 952 

but because this study site experiences little change in canopy structure and APAR 953 

throughout the season (Magney et al, 2019b), our study sought to provide more explicit 954 

insight into the models sensitivity to photosynthesis and fluorescence. As such, it is possible 955 

that we would see more convergence of results, and a reduction in confounding effects (e.g., 956 

decreased NPQ), in a well-watered high-LAI cropping system. We therefore recommend 957 

similar model-observation assessments across a wider range of biota and climate.  958 
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Figures 1193 

 1194 

Figure 1. Observed diurnal (A-D) and synoptic (E-H) precipitation (PPT), air temperature at 21 m 1195 

(Tair), vapor pressure deficit (VPD), and downwelling shortwave (SWdown). Diurnal cycles are 1196 

averaged over July-August, 2017. Synoptic cycles are plotted as 5-day averages from June 15 – 1197 

Sep 15. Data from 2017 is shown in black and climatology (2015-2018) in grey. Typically, peak 1198 

rainfall occurs in the afternoon at this site (A ). A substantial rain event which occurred from DOY 1199 

203-205 is removed from the 2017 average to show the impact on diurnal variability and to 1200 

demonstrate the dominance of the afternoon monsoon upon diurnal precipitation in summer.  1201 
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 1204 

Figure 2. Observed and simulated diurnal and synoptic cycles of APAR, GPP and SIF. Diurnal cycles 1205 

(A-C) are averaged over July-August, 2017. Synoptic cycles (D-F) are plotted as 5-day averages 1206 

from June 15 – Sep 15. Observations are shown in black, with relative SIF (SIFcanopy / far red 1207 

reflected radiance) included in (C, F) in grey. The across model average (dashed black) represents 1208 

the average of “best-case” model scenarios (solid lines; SCOPE-exp2, SiB3-exp2, SiB4, ORCHIDEE-1209 

exp3, CLM5.0-exp3, CLM4.5-exp3, BEPS-exp2, BETHY-exp3) with uncertainty bars indicating the 1210 

across model 1 sigma uncertainty.   1211 
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 1212 

Figure 3. Same as Figure 2 except for SIFyield and GPPyield. Here, SIFyield = SIFcanopy / APAR, and 1213 

GPPyield = GPP / APAR. As with Figure 2, the left column shows the mean diurnal cycle, and the 1214 

right column shows a time series of 5-day averages. 1215 
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 1217 

Figure 4. Same as Figure 2, except for quantum yield of fluorescence (𝜙") and photochemistry 1218 

(𝜙%).  1219 
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 1223 

Figure 5. Observed and predicted change in GPP, SIF, and yields with APAR.  Regression lines are 1224 

shown for (A) GPP, (B) GPPyield, (C) photochemical quantum yield (𝜙-), (D) SIFcanopy, (E) SIFyield, (F) 1225 

fluorescence quantum yield (𝜙1), as a function of APAR, using daily mean (8 am – 4 pm local) 1226 

values over the period July-August 2017. Observations are shown in solid black, individual models 1227 

and experiments in color, the across model average in dashed black. Relative SIF is shown in grey 1228 

in (D) and (E).  1229 

 1230 
  1231 
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Tables 1232 

1233 
Table 1. Summary of TBM-SIF models and within model experiments illustrating model 1234 

components that may have led to differences in modeled SIF.,  These include a representation of 1235 

stomatal-conductance (column 3), canopy absorption of incoming radiation (column 4), limiting 1236 

factors for photosynthesis (Stress, Vcmax, LAI; columns 5-7) and SIF (kN; column 8), leaf-to-canopy 1237 

scaling of SIF (column 9), and parameter optimization (column 10).  The underlined model 1238 

experiment was used for model intercomparison . 1239 

 1240 

 1241 
 1242 

Model
(citation)

Model 
Experiments

Stomatal 
Conductance

Canopy Type / 
Radiation

Stress Vcmax LAI kN Leaf-to-Canopy Scaling Parameter 
Optimization

SCOPE v1.73
(van der Tol, 
2014)

SCOPE-exp1 Ball-Berry-
Woodrow

Multi-layer
Sunlit/Shaded = 
Yes
Fpar/APAR = 
semi-analytical 
canopy radiative 
model (based on 
SAIL)

Ta stress Prescribed
(30)

Prescribed 
(4.0 m2 m-2)

Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

60 layer 1D radiative transfer Hand-tuned to 
NR1 (Raczka et 
al., 2016)

SCOPE-exp2 Seasonally 
calibrated 
to NR1

BETHY
(Norton et al., 
2019)

BETHY-exp1 Ball-Berry-
Woodrow

Same as SCOPE Ta stress Prior is a 
function of 
Ta

Prescribed 
(4.0 m2 m-2)

Adapted to unstressed cotton species (Tol et al., 
2014)

SCOPE radiative transfer. f(Ta, 
APAR, structure, leaf composition) 
via dependence of photosynthetic 
rate on φf

Default

Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

BETHY-exp2

BETHY-exp3 Adapted to drought stressed Mediterranean species 
(Flexas et al., 2002)

ORCHIDEE
(Bacour et al., 
2019)

ORCHIDEE-
exp1

Yin-Struik Big Leaf
Sunlit/Shaded = 
No
APAR = Beer-
Lambert law 
depending on LAI 
and extinction 
factor = 0.5

Ta stress f (leaf age, 
CO2, Ta, 
water 
stress) 

Prognostic Adapted to needleleaf species (Porcar-Castell et al., 
2011) and unstressed Mediterranean species 
(Flexas, 2002), with added dependence on PAR, 
temperature, and φP

Parametric representation of 
SCOPE (v1.61) to emulate radiative 
transfer within canopy for PSI/II. 

Default

ORCHIDEE-
exp2

Ta and water 
stress (Yin and 
Struik, 2009)

Default

ORCHIDEE-
exp3

Same as exp 1 Global ENF PFT 
optimized 
against OCO-2 

BEPS
(Qiu et al., 
2019)

BEPS-exp1 Leuning Two Leaf
Sunlit/Shaded = 
Yes
Fpar = semi-
analytical canopy 
radiative transfer

Soil water stress 
factor (ratio of 
measured soil 
available water to 
maximum plant 
available water)

Prescribed Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

Parametric representation of 
radiative transfer physics to 
account for canopy scattering 
effects

Default

BEPS-exp2 Adapted to drought stressed Mediterranean species 
including high temperature correction (Tol et al., 
2014; Flexas et al., 2002)

CLM4.5
(Raczka et al., 
2019)

CLM4.5-exp1 Ball-Berry-
Woodrow

Two Big Leaf
Sunlit/Shaded = 
Yes

Ta(Vcmax); soil 
moisture stress 
uses Btran
parameterization 
(function of 
column rooting 
profile and soil 
water potential)

Prescribed 
(calibrated 
against 
observed 
GPP at NR1)

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

!740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs using prescribed 
canopy characteristics at NR1

Hand-tuned to 
NR1 (Raczka et 
al., 2016)

CLM4.5-exp2 Adapted to needleleaf species (Porcar-Castell et al., 
2011); Accounts for sustained NPQ (kS) separately 
from reversible NPQ (kR). kS is calibrated to NR1 Tair. 
kR is fixed in time

CLM4.5-exp3 same as Exp 2, but kR is seasonal 

CLM5.0
(unpublished)

CLM5.0-exp1 Medlyn Two Big Leaf
Sunlit/Shaded = 
Yes

Plant hydraulic 
water stress 
(Sperry and Love, 
2015; Lawrence 
et al., 2019) 
accounting for 
water demand 
and supply

f (soil 
moisture,  
nitrogen), 
calibrated 
to NR1

Prescribed 
(4.0 m2 m-2)

Adapted to water stressed Mediterranean species 
(Galmes et al., 2007)

!740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

CLM5.0-exp2 !740 = f(Vcmax, SZA), calibrated to 
offline SCOPE runs w/ prescribed 
canopy characteristics at NR1

CLM5.0-exp3 Escape ratio (fesc), derived from 
NIRv and fPAR (Zeng et al., 2019)

SiB3
(Baker et al., 
2003, 2008)
SIB4
(Haynes et al., 
2019a,b)

SiB3-exp1 Ball-Berry-
Woodrow

Big Leaf
Sunlit/Shaded = 
No

Downregulation 
by VPD, Ta, and 
soil moisture

f (soil 
moisture)

Prescribed 
(MODIS)

Adapted to drought stressed species (Tol et al., 
2014)

!740 = f(Vcmax), calibrated to offline 
SCOPE runs from Lee et al. (2015)

Default

Prescribed 
(4.0 m2 m-2)SiB3-exp2

PrognosticSiB4


