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Abstract. Wildfires in sagebrush (Artemisia spp.) dominated semi-arid ecosystems in the western United States have increased

dramatically in frequency and severity in the last few decades. Severe wildfires often lead to the loss of native sagebrush

communities and change the biogeochemical conditions which make it difficult for sagebrush to regenerate. Invasion of cheat-

grass (Bromus tectorum) accentuates the problem by making the ecosystem more susceptible to frequent burns. Managers

have implemented several techniques to cope with the cheatgrass-fire cycle, ranging from controlling undesirable fire effects5

by removing fuel loads either mechanically or via prescribed burns, to seeding the fire-affected areas with shrubs and native

perennial forbs. There have been a number of studies at local scales to understand the direct impacts of wildfire on vegetation,

however there is a larger gap in understanding these impacts at broad spatial and temporal scales. This need highlights the

importance of dynamic global vegetation models (DGVMs) and remote sensing. In this study, we explored the influence of fire

on vegetation composition and gross primary production (GPP) in the sagebrush ecosystem using the Ecosystem Demography10

(EDv2.2) model, a dynamic global vegetation model. We selected Reynolds Creek Experimental Watershed (RCEW) to run our

simulation study, an intensively monitored sagebrush-dominated ecosystem in the northern Great Basin. We ran point-based

simulations at four existing flux-tower sites in the study area for a total 150 years after turning on the fire module in the 25th

year. Results suggest dominance of shrubs in a non-fire scenario, however under the fire scenario we observed contrasting

phases of high and low shrub density and C3 grass growth. Regional model simulations showed a gradual decline in GPP for15

fire-introduced areas through the initial couple of years instead of killing all the vegetation in the affected area in the first year

itself. We also compared the results from EDv2.2 with satellite-derived GPP estimates for the areas in RCEW burned by a

wildfire in 2015 (Soda Fire). We observed moderate pixel-level correlations between maps of post-fire recovery EDv2.2 GPP

and MODIS derived GPP. This study contributes to understanding the application of ecosystem models to investigate temporal

dynamics of vegetation under alternative fire regimes and post-fire ecosystem restoration.20
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1 Introduction

The number and intensity of wildfires in the sagebrush-steppe of the semi-arid Great Basin, western US, have increased

dramatically (Keane et al., 2008). Studies have shown that sagebrush (Artemisia spp.) has declined significantly across the

Great Basin due to fire and other disturbances (Knick et al., 2003; Pilliod et al., 2017; Rigge et al., 2019; Schroeder et al.,

2004). The low stature of sagebrush makes it less adapted in morphological terms to survive fires as most of the flammable25

fuels are close to the ground (Hood and Miller, 2007; McArthur and Stevens, 2004; Welch and Criddle, 2003). In addition,

ongoing research indicates that sagebrush regeneration is complicated by changes in climate, long germination and growth

times, and seed dispersal (Chambers, 2000; Shriver et al., 2018; Walton et al., 1986). Even though fire is often recognized as

a natural ecosystem process, it reduces woody shrub biomass while increasing herbaceous biomass (Ellsworth et al., 2016).

Invasion of non-native cheatgrass (Bromus tectorum) alters the competitive balance between woody and herbaceous plants,30

and also makes the ecosystem more susceptible to frequent and larger fires (Baker, 2006; Building et al., 2013; Whisenant,

1990). A recent study has shown that this cheatgrass-fire cycle has resulted in more than one-third of the Great Basin having

been invaded by cheatgrass (Bradley et al., 2018), which represents an enormous community shift with potentially large yet

unknown effects on ecosystem function at a regional scale (Bradley et al., 2006; Bradley, 2010; Fusco et al., 2019).

Land managers and scientists have identified potential techniques to cope with the problems related to the altered fire35

regime in the Great Basin, ranging from controlling fire incidents with removing fuel loads either mechanically or using

prescribed burns, to seeding the burned areas with shrubs and native perennial forbs. There have been a number of studies

(e.g., Diamond et al., 2012; Ellsworth et al., 2016; Miller et al., 2013; Murphy et al., 2013) at the local scale to understand fire

impacts, with many studies suggesting fire suppression as a technique to preserve the sagebrush ecosystem. However, there

is a gap in understanding the influence at broader spatial scales. Remote sensing studies provide contemporary insights of40

ecosystem changes at broad spatial scales (e.g., Bradley et al., 2018). However, longer temporal-scale studies in the context of

future climate scenarios are needed to better understand fire effects on shrub dominated ecosystems like the sagebrush-steppe

(Knutson et al., 2014; Nelson et al., 2014).

One method to consider long time scales in the effects of fire on sagebrush ecosystems is to utilize dynamic global vegetation

models (DGVMs) (Lenihan et al., 2007; Li et al., 2012). A DGVM can be placed anywhere along the continuum of individual-45

based to area-based models (Fisher et al., 2010; Smith et al., 2001). Individual-based models (IBMs) represent vegetation at

the individual plant level incorporating complex community processes like growth, mortality, recruitment, and disturbances.

Area-based models, on the other hand, represent plant communities with area-averaged representation making them more

efficient for broad scale applications (Bond-Lamberty et al., 2015; Fisher et al., 2010; Smith et al., 2001). DGVMs are now

increasingly intertwined with land surface models in ways that facilitate the integrated simulation of changes in vegetation50

community composition and surface water, energy, and biogeochemical cycles in response to changes in climate, land use, and

fire regimes. Fisher and Koven (2020) provide a review of the increasingly sophisticated treatment of land surface processes in

global land models, highlighting in particular the complex ways that vegetation influences fluxes and stores of water, energy,

and carbon within these models. In the last two decades, fire sub-models in various DGVMs have evolved through time
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from simple statistical methods to more complicated approaches with induced ignition and process-based spread and intensity55

(Thonicke et al., 2001, 2010; Knorr et al., 2016).

Ecosystem Demography (EDv2.2) is a DGVM originally developed in 2001 (Moorcroft et al., 2001). EDv2.2 is a cohort-

based model that seeks to balance the fidelity of process representation in individual-based models with the computational

efficiency of area-based models, wherein individual plants with similar properties, in terms of size, age, and function, are

grouped together to reduce the computational cost while retaining most of the dynamics of IBMs (Fisher et al., 2010). Because60

of this balance between process fidelity and computational burden, demography-based models are becoming increasingly

popular versions of DGVMs within global land models (Fisher et al., 2018). While EDv2.2 was originally developed for

a tropical forest ecosystem, it has since been updated for broader use (Medvigy et al., 2009), including to understand fire

behavior under different probable scenarios in tree dominated ecosystems (Trugman et al., 2016; Zhang et al., 2015).

In this study, we used the Ecosystem Demography model (EDv2.2) with a recently developed plant functional type (PFT)65

parameterization of shrubs (Pandit et al., 2019) with the objective to examine model-derived effects of fire on a shrubland

ecosystem in the Reynolds Creek Experimental Watershed (RCEW), Idaho, USA. We developed and ran a two-step numer-

ical experiment to accomplish this. First, we explored the projected gross primary production (GPP) of a sagebrush-steppe

ecosystem (in terms of shrub and C3 grass PFTs) in EDv2.2 for two different fire disturbance scenarios and a no-fire or control

scenario (performed at point-level). Second, we compared the model-simulated spatiotemporal variability of GPP to a remotely70

sensed estimate of GPP (Wylie et al., 2003; Running et al., 2004) prior to and after a 2015 fire that burned a portion of the

RCEW study area.

2 Methods

2.1 Ecosystem Demography (EDv2.2) model

EDv2.2 is a process-based dynamic global vegetation model which takes cohorts (a group of individuals with similar properties)75

as the smallest units of simulation. It is composed of a series of gridded cells, which experience meteorological forcing from

corresponding gridded data or from a coupled atmospheric model (Medvigy, 2006). It captures both vertical and horizontal

distributions of vegetation structure and compositional heterogeneity better than most of the area-based models (Kim et al.,

2012; Moorcroft et al., 2001; Moorcroft, 2003; Sellers et al., 1992). EDv2.2 has a fire subroutine which evaluates conditions

leading to potential fire ignition and quantifies fire disturbance effects on vegetation. A detailed description of the EDv2.280

model structure including its fire subroutine is available in earlier publications (Longo et al., 2019b; Moorcroft et al., 2001;

Medvigy et al., 2009). Here we present a brief summary of the fire subroutine.

In this model, fire ignition probability is based on soil dryness which is local (within-gap) in origin but can spread into

adjacent areas given favorable conditions for fire. Burn rate or fire severity is proportional to local fuel availability or total

aboveground biomass (AGB). Under the current model settings, all plants in a burnt patch are killed while parts of carbon85

and nitrogen are transferred into the below-ground biogeochemical module (Moorcroft et al., 2001). The area of burnt patches

within grids can increase linearly through years as a function of aboveground biomass (AGB). New burnt patches are created
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every year when the minimum area necessary to generate a new patch is available through the loss of affected cohorts. Along

with other disturbance factors in EDv2.2, the fire sub-module creates and maintains age- and size-based heterogeneity at sub-

grid levels to closely resemble a broad range of structure and composition in a disturbed ecosystem. For example, a study from90

South America by Longo et al. (2019a) showed that this model represented a fire-disturbed ecosystem like woody savanna very

well. Users can adjust the dryness threshold for fire ignition and fire severity parameters (defined between 0 to 1) to determine

the level of fire-related disturbance depending upon available fuel. The fire related disturbance rate (λFRµ,µ0
) affecting patch u

(and potentially creating new patches u0) is given by the following equation (Eq. 1) as originally defined by Moorcroft et al.

(2001) and later revisited by Longo et al. (2019b).95

λFRµ,µ0
= I

Np∑
u=1

NTu∑
k=1

{[
Culk +FAGuk

(Cuσk
+Cuhk

)
]
γuαu

}
(1)

where patches are denoted by subscript u, Np is number of patch, NTu
is number of cohort in patch where patches are

denoted by u, γu is the binary ignition function as defined in equation 2, αu is relative area of patch u, I is fire intensity,

FAGuk
is fraction of tissue aboveground, Culk is leaf biomass, Cuσk

is sapwood biomass and Cuhk
is structural biomass. The

binary ignition function (Eq. 2) represents the local dryness of environment which depends on the average soil moisture within100

a chosen soil depth.

γu =

1, if ( 1
|ZFr|

∫ 0

ZFr
νgdz)< νFr

0, otherwise
(2)

where, νgdz is soil moisture at given soil layer thickness dz, ZFr is the maximum soil depth considered in analyzing dryness

and νFr is an average soil moisture below which ignition is assumed to occur.

2.2 Study area105

We ran the EDv2.2 model at the Reynolds Creek Experimental Watershed (RCEW), located in the Northern Great Basin region

of the western United States (Fig. 1a). RCEW is operated by the USDA Agricultural Research Service and is also a Critical

Zone Observatory (CZO). The watershed is approximately 240 km2 in area with elevation ranging from about 900 to 2200

m. With an increase in elevation, there is an increase in mean annual precipitation and a decrease in mean annual temperature

(Flerchinger et al., 2020; Renwick et al., 2019). Mean annual temperature ranges from 5 to 10 ◦C and mean annual precipita-110

tion range from 250 to 1100 mm in the watershed. Because of the strong orographic gradient in temperature in the watershed,

most precipitation at lower elevations falls as rain, whereas precipitation at higher elevations is dominated by snow. The higher

elevations in the southern areas of the watershed are dominated by quaking aspen (Populus termuloides), Douglas fir (Pseudot-

suga menziesii), and western juniper (Juniperus occidentalis) (Seyfried et al., 2000). The lower elevations are primarily covered

with Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), low sagebrush (Artemisia arbuscula), rabbitbrush (Eri-115

cameria nauseosa) and bitterbrush (Purshia tridentata). Perennial herbs like bluebunch wheatgrass (Pseudoroegneria spicata),
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Table 1. Description of EC sites used in the point-based analysis.

Site Ameriflux ID Location Elevation

[m]

Mean annual

precipitation

[mm]

Mean annual

temperature

[°C]

WBS US-Rws 43.1675, -116.7132 1425 290 8.9

LS US-Rls 43.1439, -116.7356 1608 333 8.4

US US-Rwf 43.1207, -116.7231 1878 505 6.5

RMS US-Rms 43.0645, -116.7486 2111 800 5.4

needle and thread (Hesperostipa comata), western wheatgrass (Pascopyrum smithii), tapertip hawksbeard (Crepis acuminata),

and yarrow (Achillea millefolium) are also present (Pyke et al., 2015). The 2015 Soda Fire burned over 1,000 km2 in southeast

Oregon and southwest Idaho, including approximately 32% of RCEW in its northern region (Fig. 1b). Collaborative efforts be-

tween federal, state and private agencies have been applied to assess risk and devise a plan to implement treatments to stabilize120

burned areas, promote recovery of native plant communities, increase perennial grasses, and reduce invasive annual species

(BLM, 2016).

We used EDv2.2 to run both point-based and regional analyses in RCEW. For the point-based runs, we used four 200 m x

200 m polygons centered at four eddy covariance (EC) tower sites in RCEW to represent the tower footprints. The four sites

include: Wyoming Big Sagebrush (WBS), Lower sheep (LS), Upper Sheep (US), and Reynolds Mountain Sagebrush (RMS)125

(Table 1). Wyoming big sagebrush is the dominant shrub at the WBS site with perennial grasses like bluebunch wheatgrass

(Pseudoroegneria spicata), squirreltail (Elymus elymoides), and Sandberg bluegrass (Poa secunda). The dominant shrub at the

LS site is low sagebrush (Artemisia arbuscula) along with Sandberg bluegrass, squirreltail (Elymus elymoides), and Idaho fes-

cue (Fescue idahoensis). Mountain big sagebrush (Artemisia tridentata ssp. vaseyana) is the common shrub cover at the US and

RMS sites, where there is also a strong presence of forbs including longleaf phlox (Phlox longifolia), pale agoseris (Agoseris130

glauca), and silvery lupine (Lupinus argenteus) (Flerchinger et al., 2020). For regional runs, we discretized the watershed into

a 1 km rectangular grid covering the entirety of the watershed, consistent with the resolution of the meteorological forcings

input to the model described below. The study area in the regional runs consisted of the Soda Fire region of RCEW (Soda Fire

region contained within the black polygon in Fig. 1b) and the whole of the RCEW (contained within the black polygon in Fig.

1b).135

2.3 Meteorological forcing data

Meteorological forcing data input to the EDv2.2 model consisted of output from a multi-decadal run of the Weather Research

and Forecast (WRF) model (Skamarock et al., 2008), which was used to dynamically downscale data from the North American

Regional Reanalysis (National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of

Commerce, 2005) to a spatial resolution of 1 km (Pandit et al., 2019) (Table 2). WRF outputs correspond to atmospheric140

outputs at a standard height of 2 m for temperature and specific humidity, 10 m for wind speed and direction, and the ground
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Figure 1. (a) Location of the four EC flux tower sites within the Reynolds Creek Experimental Watershed (RCEW) study area. The inset map

shows the location of RCEW within the Northern Great Basin (LCC, 2019). The Great Basin area is shown in grey shading. (b) Map showing

area affected by Soda Fire, 2015 (red polygon), boundary of RCEW (blue boundary), and rectangle covering RCEW (black polygon) used to

run the regional EDv2.2 simulations. Normalized Difference Vegetation Index, NDVI (Landsat image, August, 2015) map in the background

shows the disturbance from fire in the Soda Fire area.

surface for downward shortwave and longwave radiation, surface pressure, and precipitation (Flores et al., 2016). The temporal

resolution of the WRF data is 1 hr and it is available for the period from October 1, 1986 to September 30, 2018. We partitioned

shortwave radiation into direct and diffuse, visible and near-infrared components as summarized by Weiss and Norman (1985).

Table 2. Meteorological data from the WRF model used for simulation. Adapted from Pandit et al., (2019)

Variable description Name Unit

2-m temperature T2 K

Surface pressure PSFC Pa

Accumulated precipitation RAINNC mm

Terrain height HGT m

10-m u wind (zonal) component U10 ms−1

10-m v wind (meridional) component V10 ms−1

2-m specific humidity Q2 kgkg−1

Downward longwave flux at ground surface GLW Wm−2

Downward shortwave flux at ground surface SWDOWN Wm−2
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2.4 Multi-decadal simulation at point scale145

We ran point-based simulations at four EC tower sites in RCEW to understand the multi-decadal temporal dynamics of PFTs

for alternative fire conditions. We initialized ecosystem conditions using representative existing vegetation conditions with

equal densities (0.25 plants m−2) of shrubs and grasses as PFTs. The shrub density was based on field studies in the area

(Glenn et al., 2017). For the shrubs, we used a PFT especially developed for sagebrush in the study area based on our previous

work (Pandit et al., 2019) whereas for the grasses, we used the temperate C3 grass PFT which is the closest match from among150

available PFTs in EDv2.2. We assumed that this existing temperate grass PFT in the model would represent common perennial

grass species in the study area. We minimized interannual climate variability by calculating mean monthly precipitation from

thirty years of WRF data (1988-2017), then selecting the year 2012 as the year that most closely matched the 30-year mean

precipitation record. All four sites were run for an initial 25 years, after which each site was run with three different scenarios:

(i) no fire, (ii) low fire severity, and (iii) high fire severity, for the next 125 years. In the fire scenario simulations, we ran the155

model with active fire for these later 125 years. The fire severity parameter in the model which specifies intensity of disturbance

from fire can range from 0 to 1, where we applied 0.5 and 0.9 values for low and high severity fires, respectively. We observed

GPP trends of shrub and grass PFTs for these three scenarios at all four EC sites, and compared results with GPP data from the

sites (Fellows et al., 2017).

2.5 Multi-year simulation at regional scale160

We performed regional (watershed) scale simulations to perform comparisons across simulations for fire/no-fire conditions,

and between model simulations and satellite-derived estimates of ecosystem productivity. First, we compared the fire caused

vegetation disturbance and recovery at the regional scale by allowing EDv2.2 to run with both fire and no-fire (control) con-

ditions. Second, we compared the model predicted GPP (for both burnt and unburnt areas in the region) with MODIS derived

GPP from the study area. To perform these simulations, we initialized EDv2.2 with a near-bare-earth scenario of 0.1 plants165

m−2 for all allowed PFTs (i.e. C3 grass, shrub, northern pines and late conifers) from 1990 and ran it for the following 25

years. Our analysis indicated that 25 years of spin-up was sufficient for GPP to reach equilibrium (Fig. S1 in the Supplement).

For these model runs, we used meteorological data from the years corresponding with the simulation years, except for 2018

and 2019 when WRF data were not available. For these two years, we imputed WRF data from other years which closely

resembled monthly total precipitation with the observations (NOAA, 2019).170

For the first experiment, we ran fire and no-fire model simulations for a region inside RCEW which was affected by the Soda

Fire in 2015 (hereafter Soda Fire scenario). For the fire scenario, we activated the fire subroutine in the model from 2015 and

ran it until 2019. In this run, we adopted a high fire severity (0.9) to relate closely with the severity observed in the Soda Fire.

For the no-fire (control) scenario, we allowed the model to continue without fire until 2019. We compared differences between

the fire and no-fire simulations for each year.175

For the next experiment, we ran EDv2.2 in a manner that would best represent the true circumstances for the entire study

area (hereafter RCEW scenario). To perform this, we introduced fire (with same parameter as above) only into that portion of
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RCEW which actually burned in 2015 and simulated the remaining portion of the watershed without fire. The purpose of this

experiment was to compare the predictions from EDv2.2 (for burnt and unburnt areas) with that derived from MODIS images.

The unburnt area in this simulation is used as a benchmark for comparisons and to offset annual variations. Like before, we ran180

the model with these conditions for the next 5 years (2015 to 2019). We produced GPP from MODIS GPP CONUS datasets

(Robinson et al., 2018), using Google Earth Engine. The mean of all available MODIS images for July of each year was

calculated, clipped and resampled to match the spatial coverage and grid resolution (1 km) of the EDv2.2 simulation, before

comparing them against simulated mean monthly GPP values of July from the model.

3 Results185

3.1 Multi-decadal GPP prediction at point scale

Temporal dynamics of the GPPs for shrub and C3 grass PFTs were similar for the LS, WBS and US sites while slightly different

for the RMS site (Fig. 2), which is located at higher elevation (Fig. 1a). Without fire, shrubs eventually dominated to comprise

the entirety of GPP persisting through the end of the simulation period. GPP for C3 grass was high during the initial years, but

decreased rapidly after about 2-3 years of simulation, while shrub GPP increased gradually and became more dominant than190

grass after 10-15 years. Between 30 and 40 years, shrub GPP peaked, C3 grass GPP completely disappeared, and GPP reached

an approximate equilibrium at or slightly above 0.3 kgCm−2yr−1 for the three lower elevation sites (LS, US, WBS) and at

about 0.55 kgCm−2yr−1 for the highest elevation site (RMS). We observed that during its initial rapid growth phase (Fig. 2),

some portion of the total above ground biomass (AGB) is also covered by C3 grass (Fig. A1), which in the latter years was

completely wiped out by shrub AGB. We did not observe any growth of conifer PFTs throughout the simulation period, even195

for the no fire scenario.

Upon activation of fire module after 25 years of simulation, shrub GPP declined abruptly and C3 grass GPP increased

dramatically in all four study sites. However, around 25 years after fire activation, shrubs initiate a recovery and maintain a

gradual increase until reaching a peak in 50-75 years; at the same time C3 grass GPP gradually decreased to a minimal level.

We observed lower overall GPP during the years when shrub GPP was at the peak, since at this time C3 grass productivity was200

at the minimum. Disturbance rates from fire spiked in the first couple of years when fire was first introduced and later stabilized

to closely follow the trend of shrub AGB (Fig. A1), suggesting the highest disturbance rate at the peak of shrub AGB leading

to decline of shrub GPP (and shrub AGB) afterwards. A similar cycle was observed for the remainder of the simulation years.

In most of the cases, we observed the peaks of total GPP approaching total GPP from the no fire scenario (at a cycle of about

60-75 years). For most of the sites, while shrub GPP remained lower compared to the no fire scenario C3 in the post-fire years,205

grass GPP dominates the overall shape of total GPP. However, cycles of total AGB after fire matched well with the trend of

shrub AGB which in turn influence the approximate fire return interval (with maximum fire disturbance rate in about 50-75

years) in the ecosystem.

We identified some differences between low and high fire severity conditions, even though the general temporal pattern of

GPP dynamics was similar for both. Compared to the low fire severity scenario, high fire severity simulations suggested lower210
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Figure 2. Mean annual trends in shrub, C3 grass (temperate C3 grass) and total GPP (kgCm−2yr−1) (shrub and C3 grass GPP showed

in stack) simulated at four EC flux tower sites (LS, WBS, US, and RMS). Figures in the left column represent the trend in the no fire

condition, the middle column the low fire severity condition, and the right column the high fire severity condition. For the model runs with

fire conditions, fire was introduced in the 25th year of simulation. The red dashed line is scaled by the secondary y-axis (right), which shows

mean fire disturbance rate for the simulation years.
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Figure 3. Comparison of simulated average annual GPP from EDv2.2 for alternate fire scenarios (no fire, low fire severity, and high fire

severity) with observations (from 2015, 2016, 2017) from all four EC tower sites.

peaks of shrub GPP, despite having approximately equal (or even higher for some) levels of total GPP due to higher levels of

grass GPP. We can see clear difference in total AGB (Fig. A1) with lower peaks for high fire severity conditions for all four

sites. With high fire severity, we observed longer fire return intervals for LS and RMS sites (about 60 years for both LS and

RMS) compared to the lower fire severity condition (>100 years for LS and >75 years for RMS). We compared average annual

GPP from EDv2.2 for different scenarios (at an equilibrium state for no fire condition and at the peak level for fire conditions)215

with the observed GPP from EC flux tower sites from 2015, 2016, and 2017 for all four sites (Fig. 3). EDv2.2 underestimated

GPP for all sites, with the lowest error for the WBS site (≈12%) and the highest error for the US site (≈ 100%) for the no fire

scenario.

3.2 Multi-year GPP prediction at regional scale

3.2.1 EDv2.2 GPP for fire and no-fire scenarios, Soda Fire scenario220

We observed annual variation in GPP predictions for both fire and no-fire scenarios (Fig. 4). Annual variation of GPP in the

no-fire model simulation could be mostly attributed to annual climatic variations. Despite the climatic influence, differences
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Table 3. Pearson’s correlation coefficient calculated between modeled GPP and MODIS GPP for burnt, unburnt, and whole area.

Year
Burnt area Unburnt area Whole area

Number

of grids

(n)

Pearson’s correlation

coefficient (r)

Number

of grids

(n)

Pearson’s correlation

coefficient (r)

Number

of grids

(n)

Pearson’s correlation

coefficient (r)

2015 336 0.58* 464 0.40* 800 0.50*

2016 336 0.63* 464 0.46* 800 0.55*

2017 336 0.57* 464 0.50* 800 0.63*

2018 336 0.52* 464 0.49* 800 0.63*

2019 336 0.54* 464 0.55* 800 0.66*

between fire and no-fire GPP outputs are apparent, especially from 2017 to 2019. High GPP areas in the southwestern regions

(in the no-fire simulations) are nearly absent from the fire simulations. The maps in the bottom row of Figure 4 clearly show

the differences among the two scenarios. For the first year after fire, there is only a slight reduction in GPP and with no clear225

spatial pattern. In the second year after fire (2017), GPP was reduced in the fire simulation, at least in some parts (e.g. western

region), and shows a clear spatial pattern. From the third year after fire (2018), the reduction in GPP intensified in certain

locations while most of the other areas remained similar. In the fourth year (2019), the intensity of GPP reduction got even

worse in certain areas while we could also see certain pockets with positive GPP, meaning some recovery for these areas.

We observed obvious differences in EDv2.2 prediction of GPP for shrub PFT and C3 grass PFT for post-fire years (Fig.230

A2). Since shrub PFT covers the major portion of the overall GPP, the latter is highly influenced by the shrub PFT patterns.

While shrub GPP gradually decreased through these years after fire, in contrast, C3 grass started to recover by the third year

after the initial reduction in the first and second years (Fig. A2). The pockets of slight recovery in GPP seen in the overall GPP

(Fig. 4) appears to be the effect of this C3 grass recovery. These results are in agreement with our results from point-scale fire

simulations.235

3.2.2 EDv2.2 GPP and MODIS GPP, RCEW scenario

Introduction of fire in the northern portion of the study area to the EDv2.2 simulation resulted in observable reduction and

recovery of GPP in the burned area (Fig. 5). Modeled GPP reduction in the fire-affected area is a gradual process spanning

several years following fire. The first year after the fire showed evidence of some disturbance, however the impact was most

evident only during the second (2017) and third years (2018) after fire, based on changes between pre- and post-fire GPP240

output (Fig. 5). The spatial variation in fire-induced disturbance has close association with elevation (Fig. 1a), which largely

influences the precipitation pattern in the study area. Recovery in GPP for the fire-affected area was seen only after the fourth

year (2019), even though GPP in the burnt area still lagged behind the unburnt area.
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Figure 4. EDv2.2 predicted mean monthly GPP (kgCm−2yr−1) for the Soda Fire scenario for July, showing outputs from the model with

fire (upper row), without fire (middle row) and difference between two scenarios for the years 2016 to 2019 (representing post-fire years after

Soda Fire)

Comparing the pre-fire (2015) EDv2.2 GPP prediction with MODIS GPP revealed an under-prediction across the study area,

with major differences towards southern regions (higher elevation areas) of the study area (Fig. 5). The results corroborate our245

understanding from point-based results where we found better predictions for lower elevation study points compared to those

at higher elevations. We observed a clear reduction in EDv2.2 GPP within the fire affected region only the second year after

fire (2017), with signs of recovery in 2019. On the other hand, only a slight reduction in MODIS-derived GPP was noted,

12



Figure 5. Mean monthly GPP (kgCm−2yr−1) for July for the RCEW scenario for the pre-fire (2015) and post-fire (2016 to 2019) years,

predicted from EDv2.2 (top-row), derived from MODIS (middle-row) and the difference between two sources (bottom-row). Area surrounded

by red polygon represents the area burnt by Soda Fire.

particularly for the years 2017 and 2018, for burnt areas, in the post-fire years. By the year 2019, a good recovery for MODIS

GPP was observed.250
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Figure 6. Average GPP from EDv2.2 and from MODIS calculated for all the burnt (red), unburnt (green), and total grids (blue) for annual

July snapshot maps from 2015 to 2019 (a-b). Error bars in the figure represent ± one standard deviation.

We calculated Pearson’s correlation coefficients to further explore the association between modeled GPP and MODIS GPP,

which suggested moderate correlations for different areas (Table 3 and Fig. A3). For the entire area and for the unburnt area

correlation increased through the years. Weaker correlations for unburnt area in the beginning years (2015 and 2016) could be

because of higher variation in vegetation productivity in this area. In contrast, correlation for burnt area slightly increased after

fire and dropped back again, revealing more homogeneity and close comparisons immediately after fire.255

When mean GPP values from the EDv2.2 simulation and MODIS were plotted for the entire burnt area, unburnt area, and

whole area (Fig. 6), there was moderate year-to-year agreement among the two sources in terms of GPP for the entire area.

However, there was clear under-prediction of GPP with EDv2.2 compared to that from MODIS, in general. Moreover, while

there was not much difference in GPP between burnt and unburnt areas for EDv2.2 in the pre-fire condition, there was already

a huge difference between these areas for MODIS GPP.260
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EDv.2.2 GPP in the burnt area started to reduce significantly in the second year after fire (2017), continued to remain low

until 2018 and showed some recovery in the fourth year. For the modeled GPP, the burnt region had 20% less GPP than unburnt

area in the pre-fire year (2015), but this gap changed to 22%, 53%, 50% , and 44% through the first (2016), second (2017),

third (2018), and fourth (2019) post-fire years, respectively (Table A1). Though not much variation was observed with MODIS

GPP when considering the absolute numbers, as we looked into percent difference in GPP between burnt and unburnt areas,265

we noticed slight changes through the years. The pre-fire (2015) gap between burnt and unburnt areas for MODIS GPP was

50%, which increased slightly to 55%, 61%, 62% through first, second and third post-fire years, respectively, before reducing

this gap to 45% in 2019.

Modeled GPP for shrub followed the pattern of total GPP showing considerable loss in post fire years. One difference with

the total GPP was observed during the fourth year after fire, which was prior to shrub recovery. In contrast, we observed270

different effects on C3 grass GPP. The GPP for C3 grass in burnt areas were slightly higher than unburnt areas immediately

after fire in 2016 and showed upward growth trends until 2019. Although, the percent of C3 grass is very low in total GPP,

some recovery seen in total GPP in 2019 was primarily associated with the C3 grass growth.

4 Discussion

In general, the shrub and grass dynamics modeled in our study are similar to those documented in the literature. With a275

sustained absence of fire or other disturbance, shrub cover and biomass can dominate over herbaceous species in shrub-steppe

ecosystems (Bukowski and Baker, 2013; Cleary et al., 2010; West and Young, 2000), although the complete disappearance of

the grass component suggested by our models is unlikely without the influence of other stressors (e.g., livestock grazing).

Thus, this latter dynamic suggests a need for further refinements in PFT development within the EDv2.2 framework, partic-

ularly for the C3 grass that we used to represent perennial grasses in the study area. Nevertheless, the EDv2.2 model captures280

the prevailing trend in ecosystem response to fire, giving it credibility and potential utility as a planning tool. Our modeled

fire effects in these ecosystems are also mostly corroborated by the literature in terms of the vegetation loss, PFT competition

and recovery. Variation in growth and productivity for C3 grass and shrub after fire disturbance can be understood as their role

during different stages of secondary succession. Being an early successional PFT, C3 grass grows quickly and produces high

GPP by exploiting favorable growing conditions following the disturbance (Moorcroft et al., 2001). As shrubs start to recover,285

competition increases at both above and below ground levels for light, water and nutrients, thereby reducing the growth of

grass and causing a net loss in total GPP despite an increase in shrub GPP. Most sagebrush species are easily top-killed by fire,

do not resprout, and have poor seed viability and dispersal capacity; thus, species of big sagebrush typically require several

decades or more to recover to mature conditions post-fire (Baker, 2006; Lesica et al., 2007; Shinneman and McIlroy, 2016). If

fire becomes too frequent, shrubs may be prevented from reestablishing, especially in the presence of fire-adapted, nonnative,290

annual grasses (Brooks et al., 2004). However, even in the presence of nonnative plants, field-based observations suggest that

with enough time between fires, shrubs may gradually recover as nonnative herbaceous species dominance declines (Rew and

Johnson, 2010; Shinneman and Baker, 2009).
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Despite the interannual variability in the observed GPP as evident from the flux tower observation, poor comparisons for the

higher elevation sites (US and RMS) than the lower elevation sites (LS and WBS) could be explained by the fact that the shrub295

parameters we used were mainly developed and calibrated for the lower elevation sites with reasonable agreement (Pandit et al.,

2019), and thus may not have accounted for regional variability. Higher ecosystem productivity and quick post-fire recovery at

the RMS site compared to the other three sites can be associated with higher site productivity, higher precipitation and lower

temperature, as shown in previous studies (Keane et al., 2008; Nelson et al., 2014; Shriver et al., 2018).

With the introduction of fire, we observed drastic change in model predicted GPP values for the burnt area for about 4 years300

post-fire. An increased reduction in GPP values in burnt area until the third year after fire could be the result of fire behavior in

the EDv2.2 model (Longo et al., 2019a), wherein there is a linear increase in burnt area through years given the availability of

fuel. There was some recovery in the GPP in the fourth year after fire, mostly because of the increase in C3 grass GPP. Absence

of major reduction in MODIS GPP in the burnt area in the post-fire years could be mainly because of perennial grasses and

shrubs. Grasses (perennial) could be growing in the second year after fire when conditions are favorable for their growth. The305

seasonality of the fire also affects how quickly perennial grasses grow back, as a late summer or early fall fire might cause less

damage to these grasses (White et al., 2008; Wright and Klemmedson, 1965). A prompt recovery of grass vegetation in the

ecosystem was probably not well captured by the EDv2.2 with the default PFT parameters based on a temperate C3 grass.

Fire disturbance phenomena in the EDv2.2 model could not truly represent the true circumstances in the affected area, even

though we tried to parameterize the fire severity to match the real scenario. The fire disturbance function in the model did310

not burn the entire area at once; rather, it selected grids randomly that met the potential fire criteria and killed the vegetation.

In addition, this process was gradual and spread over the subsequent years, therefore, we saw the most obvious differences

between burnt and unburnt areas until the end of the third year (2018) postfire. Zou et al. (2019) in their study on Region-

specific Ecosystem Feedback Fire (RESFire) model with Community Earth System Model also found a decline in GPP until

the second year after fire, with a recovery in about eight years. Li et al. (2012) also found similar pattern predicted by CLM-315

DGVM in burnt areas while testing different fire parameters (Levis et al., 2004; Thonicke et al., 2001) in the model, showing

annual variability in burnt area that was at maximum only in the fifth year post-fire. Updating of fire and PFT related parameters

along with functional structures for fire-vegetation interactions in the model could better predict burnt areas and vegetation

recovery. These findings based on a regional application of a fire module developed explicitly for global applications of a

DGVM suggest that future effort is needed to develop more realistic treatments of fire when models like EDv2.2 are applied320

over smaller regions.

Our GPP outputs from spin-up simulations by EDv2.2 in a near-bare-earth scenario were influenced largely by meteoro-

logical forcing data. Our use of modeled meteorological data from the WRF model rather than any field measurements may

be an additional source of error. While making these comparisons, we need to consider that there are sources of uncertainty

associated with MODIS derived GPP such as mismatching resolutions and limited optimizations (Robinson et al., 2018).325
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5 Conclusions

In this study, we explored fire-induced alterations to GPP in a dryland shrub ecosystem, in terms of shrub and C3 grass PFTs.

Results show that the fire model in EDv2.2 captures multi-decadal vegetation dynamics fairly well. While on average the

model underestimated GPP compared to flux tower data (≈ 45%), we observed that the model performed well for the lower

elevation sites compared to the higher elevation sites. In these simulations, variations due to the elevation gradient were not330

well captured as the model parameters we used were primarily developed for lower elevation sites. Under the no fire condition,

shrubs were dominant and C3 grasses disappeared while approaching an equilibrium state of only shrubs. Simulation results

from the WBS site matched well with observations, whereas model results from the remaining three sites underestimated

observed GPP data from flux towers. With the introduction of fire, we saw a decline in shrubs and a simultaneous rise in C3

grasses for approximately 3 to 4 decades, followed by slow recovery of shrubs at the expense of grasses. Regional simulation335

of GPP with EDv2.2 showed continued reduction in GPP for several years post-fire, which only started to increase again with

some increase in C3 grass GPP by the fourth year after fire. These modeled GPP trends moderately correlate to what actual

GPP trends may be, as indicated by the post-fire GPP response observed from four years of post-fire MODIS imagery.

This study documents an application of EDv2.2 to understand vegetation productivity trends in a semi-arid shrubland ecosys-

tem under alternate fire scenarios at the point scale and provides spatiotemporal trends in vegetation disturbance due to fire340

disturbance and subsequent recovery at the regional scale. We could reduce uncertainties in comparing model outputs with EC

tower observation and satellite-derived products by improving representation of fire and vegetation characteristics and through

a more detailed accounting of the errors in input forcing data.
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Appendix A

Figure A1. Mean annual trends in shrub, C3 grass (temperate C3 grass) and total AGB (kgCm−2) (shrub and C3 grass AGB showed in stack)

simulated at four EC flux tower sites (LS, WBS, US, and RMS). Figures in the left column represent the trend in the no fire condition, the

middle column the low fire severity condition, and the right column the high fire severity condition. For the model runs with fire conditions,

fire was introduced in the 25th year of simulation. The red dashed line is scaled by the secondary y-axis (right), which shows mean fire

disturbance rate for the simulation years.
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Figure A2. EDv2.2 predicted mean monthly GPP (kgCm−2yr−1) for July for the Soda Fire scenario, separated for shrub and C3 grass PFTs

with fire, without fire, and difference between two scenario for the years 2016 to 2019 (representing post-fire years after Soda Fire).
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Figure A3. Correlation plots between mean monthly GPP (kgCm−2yr−1) values derived from EDv2.2 and MODIS for July of every pre-fire

(2015) and post-fire years (2016-2019), categorized by overall, burnt and unburnt grids.
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Table A1. Percent difference of GPP between burnt and unburnt areas ((GPP in unburnt area - GPP in burnt area)/GPP in unburnt area) for

pre-fire and post-fire years.

Year MODIS GPP EDv2.2 GPP (total) EDv2.2 shrub GPP EDv2.2 C3 grass GPP

2015 0.50 0.20 0.20 0.05

2016 0.55 0.22 0.33 -0.74

2017 0.61 0.53 0.55 -0.35

2018 0.62 0.50 0.58 -8.71

2019 0.45 0.44 0.55 -34.32

Code and data availability. The original EDv2.2 is available on the GitHub repository at https://github.com/EDmodel/ED2 (ED2345

Model Development Team, 2014, last access: 05 November, 2019). EDv2.2 with shrub PFT parameters used in this study is

available at https://doi.org/10.5281/zenodo.3461233 (Pandit, 2019, last access: 17 June, 2020), and input data are available at

http://doi.org/10.5281/zenodo.4498422 (Pandit, 2021, last access: 04 February, 2021).
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Keane, R. E., Agee, J. K., Fuĺ, P., Keeley, J. E., Key, C., Kitchen, S. G., Miller, R., and Schulte, L. A.: Ecological effects of large fires on US

landscapes: Benefit or catastrophe?, International Journal of Wildland Fire, 17, 696–712, https://doi.org/10.1071/WF07148, 2008.

Kim, Y., Knox, R. G., Longo, M., Medvigy, D., Hutyra, L. R., Pyle, E. H., Wofsy, S. C., Bras, R. L., and Moorcroft, P. R.: Seasonal

carbon dynamics and water fluxes in an Amazon rainforest, Global Change Biology, 18, 1322–1334, https://doi.org/10.1111/j.1365-420

2486.2011.02629.x, 2012.

Knick, S. T., Dobkin, D. S., Rotenberry, J. T., Schroeder, M. A., Vander Haegen, W. M., and van Riper, C.: Teetering on the Edge or Too

Late? Conservation and Research Issues for Avifauna of Sagebrush Habitats, The Condor, 105, 611–634, https://doi.org/10.1650/7329,

2003.

Knorr, W., Jiang, L., and Arneth, A.: Climate, CO2 and human population impacts on global wildfire emissions, Biogeosciences, 13, 267–282,425

https://doi.org/10.5194/bg-13-267-2016, https://bg.copernicus.org/articles/13/267/2016/, 2016.

Knutson, K. C., Pyke, D. A., Wirth, T. A., Arkle, R. S., Pilliod, D. S., Brooks, M. L., Chambers, J. C., and Grace, J. B.: Long-term

effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems, Journal of Applied Ecology, 51, 1414–1424,

https://doi.org/10.1111/1365-2664.12309, 2014.

LCC: Landscape Conservation Cooperatives, 2015: LCC Network Areas OGC Webservices, Landscape Conservation Cooperatives: 2015,430

http://dx.doi.org/10.18122/B2LEAFD001, 2019.

23

https://doi.org/10.1111/j.1469-8137.2010.03340.x
https://doi.org/10.1029/2018MS001453
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001453
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001453
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001453
https://doi.org/10.1111/gcb.13910
https://doi.org/10.1007/s10021-019-00400-x
https://doi.org/10.1007/s10021-019-00400-x
https://doi.org/10.1007/s10021-019-00400-x
https://doi.org/10.1007/s10021-019-00400-x
http://dx.doi.org/10.18122/B2LEAFD001
https://doi.org/10.1002/ecs2.2821
https://doi.org/10.3334/ORNLDAAC/1503
https://doi.org/10.3334/ORNLDAAC/1503
https://doi.org/10.3334/ORNLDAAC/1503
https://doi.org/10.1071/WF07148
https://doi.org/10.1111/j.1365-2486.2011.02629.x
https://doi.org/10.1111/j.1365-2486.2011.02629.x
https://doi.org/10.1111/j.1365-2486.2011.02629.x
https://doi.org/10.1650/7329
https://doi.org/10.5194/bg-13-267-2016
https://bg.copernicus.org/articles/13/267/2016/
https://doi.org/10.1111/1365-2664.12309
http://dx.doi.org/10.18122/B2LEAFD001


Lenihan, J. M., Bachelet, D., Neilson, R. P., and Drapek, R.: Response of vegetation distribution, ecosystem productivity, and fire to climate

change scenarios for California, Climatic Change, 87, 215–230, https://doi.org/10.1007/s10584-007-9362-0, 2007.

Lesica, P., Cooper, S. V., and Kudray, G.: Recovery of big sagebrush following fire in southwest Montana, Rangeland Ecology and Manage-

ment, 60, 261–269, https://doi.org/10.2111/1551-5028(2007)60[261:ROBSFF]2.0.CO;2, 2007.435

Levis, S., Bonan, G. B., Vertenstein, M., and Oleson, K. W.: The Community Land Model’s Dynamic Global Vegetation Model (CLM-

DGVM): Technical Description and User’s Guide, NCAR/Tn-459+Ia, p. 50, https://doi.org/10.5065/D6P26W36 CN - 03559 LA - en,

2004.

Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model,

Biogeosciences, 9, 2761–2780, https://doi.org/10.5194/bg-9-2761-2012, 2012.440

Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., Kim, Y., Zhang, K., Bonal, D., Burban, B., Camargo,

P. B., Hayek, M. N., Saleska, S. R., da Silva, R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeo-

chemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2

– Part 2: Model evaluation for tropical South America, Geoscientific Model Development, 12, 4347–4374, https://doi.org/10.5194/gmd-

12-4347-2019, https://gmd.copernicus.org/articles/12/4347/2019/, 2019a.445

Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann, A. L., Zhang, K., Rollinson, C. R., Bras, R. L.,

Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally

heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 1: Model description, Geoscientific Model Development,

12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, 2019b.

McArthur, E. D. and Stevens, R.: Composite Shrubs, USDA Forest Service Gen. Tech. Rep., pp. 493–534, https://doi.org/10.1016/B978-0-450

08-044859-6.50022-8, 2004.

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic scaling of ecosystem function and dy-

namics in space and time: Ecosystem Demography model version 2, Journal of Geophysical Research: Biogeosciences, 114, 1–21,

https://doi.org/10.1029/2008JG000812, 2009.

Medvigy, D. M.: The state of the regional carbon cycle: Results from a coupled constrained ecosystem-atmosphere model, Ph.D. thesis,455

Harvard University, Cambridge, MA, 2006.

Miller, R. F., Chambers, J. C., Pyke, D. A., Pierson, F. B., and Jason Williams, C.: A review of fire effects on vegetation and soils in the great

basin region: Response and ecological site characteristics, USDA Forest Service - General Technical Report RMRS-GTR, 2013.

Moorcroft, P. R.: Recent advances in ecosystem-atmosphere interactions: An ecological perspective, Proceedings of the Royal Society B:

Biological Sciences, 270, 1215–1227, https://doi.org/10.1098/rspb.2002.2251, 2003.460

Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling vegetation dynamics: The ecosystem demography model (ED),

Ecological Monographs, 71, 557–586, https://doi.org/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2, 2001.

Murphy, T., Naugle, D. E., Eardley, R., Maestas, J. D., Griffiths, T., Pellant, M., and Stiver, S. J.: Trial by fire, Rangelands, 35, 2–10,

https://doi.org/10.2111/RANGELANDS-D-13-00009.1, 2013.

National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce: NCEP North American465

Regional Reanalysis (NARR), https://rda.ucar.edu/datasets/ds608.0/, last access: 17 November, 2018, 2005.

Nelson, Z. J., Weisberg, P. J., and Kitchen, S. G.: Influence of climate and environment on post-fire recovery of mountain big sagebrush,

International Journal of Wildland Fire, 23, 131–142, https://doi.org/10.1071/WF13012, 2014.

24

https://doi.org/10.1007/s10584-007-9362-0
https://doi.org/10.2111/1551-5028(2007)60[261:ROBSFF]2.0.CO;2
https://doi.org/10.5065/D6P26W36 CN - 03559 LA - en
https://doi.org/10.5194/bg-9-2761-2012
https://doi.org/10.5194/gmd-12-4347-2019
https://doi.org/10.5194/gmd-12-4347-2019
https://doi.org/10.5194/gmd-12-4347-2019
https://gmd.copernicus.org/articles/12/4347/2019/
https://doi.org/10.5194/gmd-12-4309-2019
https://doi.org/10.1016/B978-0-08-044859-6.50022-8
https://doi.org/10.1016/B978-0-08-044859-6.50022-8
https://doi.org/10.1016/B978-0-08-044859-6.50022-8
https://doi.org/10.1029/2008JG000812
https://doi.org/10.1098/rspb.2002.2251
https://doi.org/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2
https://doi.org/10.2111/RANGELANDS-D-13-00009.1
https://rda.ucar.edu/datasets/ds608.0/
https://doi.org/10.1071/WF13012


NOAA: National Oceanic and Atmospheric Administration: Monthly total precipitation for Boise area, NOAA online weather data, https:

//w2.weather.gov/climate/xmacis.php?wfo=boi, last access: 24 October, 2019, 2019.470

Pandit, K.: Modified source codes for ED2 with shrub parameters, Zenodo, https://doi.org/10.5281/zenodo.3461233, last access: 17 June,

2020, 2019.

Pandit, K.: Data for ED2 fire scenarios, Zenodo, https://doi.org/10.5281/zenodo.4498422, last access: 04 February, 2021, 2021.

Pandit, K., Dashti, H., Glenn, N. F., Flores, A. N., Maguire, K. C., Shinneman, D. J., Flerchinger, G. N., and Fellows, A. W.: Developing

and optimizing shrub parameters representing sagebrush (Artemisia spp.) ecosystems in the northern Great Basin using the Ecosystem475

Demography (EDv2.2) model, Geoscientific Model Development, 12, 4585–4601, https://doi.org/10.5194/gmd-12-4585-2019, 2019.

Pilliod, D. S., Welty, J. L., and Arkle, R. S.: Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel compo-

sition predict wildfire trends, Ecology and Evolution, 7, 8126–8151, https://doi.org/10.1002/ece3.3414, 2017.

Pyke, D., Chambers, J., Pellant, M., Knick, S., Miller, R., Beck, J., Doescher, P., Schupp, E., Roundy, B., Brunson, M., and McIver,

J.: Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat — Part 1 . Con-480

cepts for Understanding and Applying Restoration, United States Geological Survey - United States Department of the Interior,

https://doi.org/10.3133/circ1416, 2015.

Renwick, K. M., Fellows, A., Flerchinger, G. N., Lohse, K. A., Clark, P. E., Smith, W. K., Emmett, K., and Poulter, B.: Model-

ing phenological controls on carbon dynamics in dryland sagebrush ecosystems, Agricultural and Forest Meteorology, 274, 85–94,

https://doi.org/10.1016/j.agrformet.2019.04.003, https://doi.org/10.1016/j.agrformet.2019.04.003, 2019.485

Rew, L. J. and Johnson, M. P.: Reviewing the Role of Wildfire on the Occurrence and Spread of Invasive Plant Species in Wildland Areas

of the Intermountain Western United States, Invasive Plant Science and Management, 3, 347–364, https://doi.org/10.1614/ipsm-08-107.1,

2010.

Rigge, M., Shi, H., Homer, C., Danielson, P., and Granneman, B.: Long-term trajectories of fractional component change in the Northern

Great Basin, USA, Ecosphere, 10, https://doi.org/10.1002/ecs2.2762, 2019.490

Robinson, N., Allred B.W.and Smith, W., Jones, M. O., Moreno, A., Erickson, T. A., Naugle, D. E., and Running, S. W.: Terrestrial pri-

mary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m, Remote Sensing in Ecology and

Conservation, 4, 264–280, https://doi.org/https://doi.org/10.1002/rse2.74, 2018.

Running, S. W., Nemani, R. R., Heinsch, F. A. N. N., Zhao, M., Reeves, M., and Hashimoto, H.: A Continuous Satellite-Derived Measure

of Global Terrestrial Primary Production, BioScience, 54, 547–560, https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2,495

2004.

Schroeder, M. A., Aldridge, C. L., Apa, A. D., Bohne, J. R., Braun, C. E., Bunnell, S. D., Connelly, J. W., Deibert, P. A., Gardner, S. C.,

Hilliard, M. A., Kobriger, G. D., McAdam, S. M., McCarthy, C. W., McCarthy, J. J., Mitchell, D. L., Rickerson, E. V., and Stiver, S. J.:

Distribution of Sage-Grouse in North America, The Condor, 106, 363–376, https://doi.org/10.1650/7425, 2004.

Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., and Hall, F. G.: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis500

using improved leaf models and a new canopy integration scheme, Remote Sensing of Environment, 42, 187–216, 1992.

Seyfried, M. S., Harris, R. C., Marks, D. G., and Jacob, B.: A Geographic Database for Watershed Research, Reynolds Creek Experimental

Watershed, Idaho, USA, ARS Technical Bulletin, NWRC-2000-, 2000.

Shinneman, D. J. and Baker, W. L.: Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tecto-

rum) in seeded and unseeded semiarid ecosystems, International Journal of Wildland Fire, 18, 191–202, https://doi.org/10.1071/WF07043,505

2009.

25

https://w2.weather.gov/climate/xmacis.php?wfo=boi
https://w2.weather.gov/climate/xmacis.php?wfo=boi
https://w2.weather.gov/climate/xmacis.php?wfo=boi
https://doi.org/10.5281/zenodo.3461233
https://doi.org/10.5281/zenodo.4498422
https://doi.org/10.5194/gmd-12-4585-2019
https://doi.org/10.1002/ece3.3414
https://doi.org/10.3133/circ1416
https://doi.org/10.1016/j.agrformet.2019.04.003
https://doi.org/10.1016/j.agrformet.2019.04.003
https://doi.org/10.1614/ipsm-08-107.1
https://doi.org/10.1002/ecs2.2762
https://doi.org/https://doi.org/10.1002/rse2.74
https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2
https://doi.org/10.1650/7425
https://doi.org/10.1071/WF07043


Shinneman, D. J. and McIlroy, S. K.: Identifying key climate and environmental factors affecting rates of post-fire big sage-

brush (Artemisia tridentata) recovery in the northern Columbia Basin, USA, International Journal of Wildland Fire, 25, 933–945,

https://doi.org/10.1071/WF16013, 2016.

Shriver, R. K., Andrews, C. M., Pilliod, D. S., Arkle, R. S., Welty, J. L., Germino, M. J., Duniway, M. C., Pyke, D. A., and Bradford,510

J. B.: Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a

dominant woody shrub in temperate drylands, Global Change Biology, 24, 4972–4982, https://doi.org/10.1111/gcb.14374, 2018.

Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Huang, X.-Y., Wang, W., and Powers, J.: A Description

of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN–468+STR, 113 pp., NCAR TECHNICAL NOTE,

https://doi.org/10.5065/D68S4MVH, 2008.515

Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two

contrasting approaches within European climate space, Global Ecology and Biogeography, 10, 621–637, https://doi.org/10.1046/j.1466-

822X.2001.00256.x, 2001.

Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire disturbance for global vegetation dynamics: Coupling fire into a

dynamic global vegetation model, Global Ecology and Biogeography, 10, 661–677, https://doi.org/10.1046/j.1466-822X.2001.00175.x,520

2001.

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread

and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011,

https://doi.org/10.5194/bg-7-1991-2010, https://bg.copernicus.org/articles/7/1991/2010/, 2010.

Trugman, A. T., Fenton, N. J., Bergeron, Y., Xu, X., Welp, L. R., and Medvigy, D.: Climate, soil organic layer, and nitrogen jointly525

drive forest development after fire in the North American boreal zone, Journal of Advances in Modeling Earth Systems, 8, 1180–1209,

https://doi.org/10.1002/2015MS000576, 2016.

Walton, T. P., White, R. S., and Wambolt, C. L.: Artemisia reproductive strategies: a review with empahasis on plains silver sagebrush.,

General Technical Report - US Department of Agriculture, Forest Service, 1986.

Weiss, A. and Norman, J. M.: Partitioning solar radiation into direct and diffuse, visible and near-infrared components, Agricultural and530

Forest Meteorology, 34, 205–213, https://doi.org/10.1016/0168-1923(85)90020-6, 1985.

Welch, B. L. and Criddle, C.: Countering misinformation concerning big sagebrush, USDA Forest Service - Research Paper RMRS-RP, pp.

1–33, https://doi.org/10.2737/rmrs-rp-40, 2003.

West, N. and Young, J.: Intermountain valleys and lower mountain slopes, North American Terrestrial Vegetation, 2000.

Whisenant, S. G.: Changing fire frequencies on Idaho’s Snake River Plains: ecological and management implications, General Technical535

Report - US Department of Agriculture, Forest Service, pp. 4–10, https://doi.org/10.1016/0006-3207(92)90659-b, 1990.

White, J. D., Gutzwiller, K. J., Barrow, W. C., Randall, L. J., and Swint, P.: Modeling mechanisms of vegetation change due to fire in a

semi-arid ecosystem, Ecological Modelling, 214, 181–200, https://doi.org/10.1016/j.ecolmodel.2008.02.032, 2008.

Wright, H. A. and Klemmedson, J. O.: Effect of Fire on Bunchgrasses of the Sagebrush-Grass Region in Southern Idaho, Ecology, 46,

680–688, https://doi.org/10.2307/1935007, http://doi.wiley.com/10.2307/1935007, 1965.540

Wylie, B. K., Johnson, D. A., Laca, E., Saliendra, N. Z., Gilmanov, T. G., Reed, B. C., Tieszen, L. L., and Worstell, B. B.: Calibration of

remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem, Remote Sensing of Environment, 85, 243–255,

https://doi.org/10.1016/S0034-4257(03)00004-X, 2003.

26

https://doi.org/10.1071/WF16013
https://doi.org/10.1111/gcb.14374
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1046/j.1466-822X.2001.00256.x
https://doi.org/10.1046/j.1466-822X.2001.00256.x
https://doi.org/10.1046/j.1466-822X.2001.00256.x
https://doi.org/10.1046/j.1466-822X.2001.00175.x
https://doi.org/10.5194/bg-7-1991-2010
https://bg.copernicus.org/articles/7/1991/2010/
https://doi.org/10.1002/2015MS000576
https://doi.org/10.1016/0168-1923(85)90020-6
https://doi.org/10.2737/rmrs-rp-40
https://doi.org/10.1016/0006-3207(92)90659-b
https://doi.org/10.1016/j.ecolmodel.2008.02.032
https://doi.org/10.2307/1935007
http://doi.wiley.com/10.2307/1935007
https://doi.org/10.1016/S0034-4257(03)00004-X


Zhang, K., de Almeida Castanho, A. D., Galbraith, D. R., Moghim, S., Levine, N. M., Bras, R. L., Coe, M. T., Costa, M. H., Malhi, Y., Longo,

M., Knox, R. G., Mcknight, S., Wang, J., and Moorcroft, P. R.: The fate of Amazonian ecosystems over the coming century arising from545

changes in climate, atmospheric CO2, and land use, Global Change Biology, 21, 2569–2587, https://doi.org/10.1111/gcb.12903, 2015.

Zou, Y., Wang, Y., Ke, Z., Tian, H., Yang, J., and Liu, Y.: Development of a REgion-Specific Ecosystem Feedback Fire (RESFire) Model in the

Community Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 417–445, https://doi.org/10.1029/2018MS001368,

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001368, 2019.

27

https://doi.org/10.1111/gcb.12903
https://doi.org/10.1029/2018MS001368
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001368

