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Abstract. The nitrogen cycle and its effect on carbon uptake in the terrestrial biosphere is a recent progression in earth 

system models. As with any new component of a model, it is important to understand the behaviour, strengths, and 

limitations of the various process representations. Here we assess and compare five land surface models with nitrogen cycles 

that are used as the terrestrial components of some of the earth system models in CMIP6. The land surface models were run 

offline with a common spin-up and forcing protocol. We use a historical control simulation and two perturbations to assess 25 

the models’ nitrogen-related performance: a simulation with atmospheric carbon dioxide increased by 200 ppm, and one 

with nitrogen deposition increased by 50 kgN ha-1 yr-1. There is generally greater variability in productivity response 

between models to increased nitrogen than to carbon dioxide. Across the five models the response to carbon dioxide globally 

was 5 to 20% and the response to nitrogen was 2 to 24%. The models are not evenly distributed within the ensemble range, 

with two of the models having low productivity response to nitrogen, and another one low response to elevated atmospheric 30 

carbon dioxide, compared to the other models. In all five models individual grid cells tend to exhibit bimodality, with either 

a strong response to increased nitrogen or atmospheric carbon dioxide, but rarely to both to an equal extent. However, this 

local effect does not scale to either the regional or global level. The global and tropical responses are generally more 

accurately modelled than boreal, tundra, or other high latitude areas compared to observations. These results are due to 

divergent choices in the representation of key nitrogen cycle processes. They show the need for more observational studies 35 

to enhance understanding of nitrogen cycle processes, especially nitrogen-use efficiency and biological nitrogen fixation.  
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1 Introduction 

The terrestrial carbon (C) cycle currently removes around a third of anthropogenic carbon emissions from the atmosphere 

(Friedlingstein et al., 2019; Le Quéré et al., 2018). Changes in this uptake will affect the allowable emissions (Seneviratne et 40 

al., 2016) for targets such as limiting warming to 1.5°C (Millar et al., 2017; Müller et al., 2016). Nitrogen (N) is required to 

synthesise new plant tissue (biomass) out of plant-assimilated C, in differing ratios across biomes and tissue types 

(McGroddy et al., 2004). Therefore, future projections of terrestrial C uptake are dependent on N availability, particularly 

under high atmospheric carbon dioxide (CO2) conditions (Arora et al., 2020; Meyerholt et al., 2020; Wieder et al., 2015b; 

Zaehle et al., 2014b). A key tool for projections of allowable emissions are Earth System Models (ESMs), which project the 45 

responses of the coupled earth system to perturbations in forcings (Anav et al., 2013; Arora et al., 2013; Friedlingstein et al., 

2006; Jones et al., 2013). Of the ESMs that contributed results to the Fifth Phase of the Coupled Model Intercomparison 

Project (CMIP5, Taylor et al., 2012) only two, based on the same land component, included terrestrial N cycling (Thornton 

et al., 2009). A number of studies with stand-alone terrestrial biosphere models (Sokolov et al., 2008; Wårlind et al., 2014; 

Zaehle et al., 2010; Zhang et al., 2013) as well as post-hoc assessments of CMIP5 projections suggest that predictions of 50 

terrestrial C uptake would decrease by 37 – 58% if ESMs accounted for N constraints (Wieder et al., 2015b; Zaehle et al., 

2014b). 

Among the latest generation of models contributing results to CMIP6 (Eyring et al., 2016) at least ten ESMs incorporate the 

N cycle (Arora et al., 2020). These models employ a range of assumptions and process formulations, reflecting divergent 

theory and significant knowledge gaps (Zaehle and Dalmonech, 2011). Initial results imply that the inclusion of an N cycle 55 

has reduced the spread of results across multiple ESMs (Jones and Friedlingstein, 2020). Since N availability is an important 

source of uncertainty for the C cycle, (Meyerholt et al., 2020) an assessment of the sensitivity of the N cycle in these models 

to changes in atmospheric CO2 and N inputs is required. Because of the tight coupling of C and N dynamics, a direct 

evaluation of the N effects on simulated C cycle dynamics using conventional model benchmarking approaches (Collier et 

al., 2018; Luo et al., 2012) is challenging. More insights into the magnitude of a N effect can be gained by comparing model 60 

simulations against perturbation experiments that provide evidence for the responses of terrestrial ecosystems to changes in 

the C and N availability (Thomas et al., 2013; Wieder et al., 2019; Zaehle et al., 2010). 

In this study, we test five land surface models (LSMs) employed in the latest generation of ESMs used in CMIP6. We use a 

set of standardised model forcing and protocol to simulate historical changes in the C and N balance, as well as the response 

to N and C perturbations. The perturbation experiments (described in the methods) are designed to approximate field 65 

experiments undertaken to understand the effects of elevated CO2 or N (e.g. Ainsworth and Long, 2005; LeBauer and 

Treseder, 2008; Song et al., 2019). These simulations reveal the overall pattern of response of the model to these forcings. 

We use a range of observations from the literature and model-to-model comparisons to assess the behaviour and 
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performance of the models. Comparisons between models alone can also provide useful insight into the models’ behaviour. 

The approach of assessing ESM N cycles via their corresponding offline LSMs, driven by a standardised set of model 70 

forcing, has the advantage of making model projections directly comparable while giving a representative view of the latest 

N cycle developments. 

2 Methods 

2.1 Models 

We ran simulations with five LSMs that are the land components of ESMs taking part in CMIP6. The key N process 75 

formulations are summarized in Table 1. A brief description of each model follows.  

The Community Land Model version 4.5 (CLM4.5; Koven et al., 2013; Oleson et al., 2010) is used in the Euro-

Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2; Cherchi et al., 2019) and TaiESM1. The N 

component is described in Koven et al., (2013). CLM4 is the precursor to CLM4.5 and was the first N model for ESMs, used 

in CMIP5 (Thornton et al., 2007, 2009). While the N cycling component of CLM4.5 is similar to CLM4, some features of 80 

CLM4.5, such as leaf physiological traits (Bonan et al., 2012), were modified and there is a vertically resolved soil 

biogeochemistry scheme (Koven et al., 2013) as opposed to the single-layer box modelling scheme for C and N in CLM4. 

The Community Land Model version 5 (CLM5; Lawrence et al., 2019) is used in The Community Earth System Model 

Version 2 (CESM2; Danabasoglu et al., 2020) and the Norwegian Earth System Model version 2 (NorESM2; Seland et al., 

2020). CLM5 is the latest version of CLM and represents a suite of developments on top of CLM4.5. The N component is 85 

described in Fisher et al., (2010); and Shi et al., (2016). The key difference for the N cycle compared to CLM4 is the 

implementation of a C cost basis for acquiring N, derived from the Fixation and Uptake of Nitrogen (FUN) approach (Fisher 

et al., 2010). 

JSBACH version 3.20 model (Goll et al., 2017) is used in the Max Planck Earth System Model version 1.2 (MPI-ESM; 

Mauritsen et al., 2019) and Alfred Wegener Institute Earth System Model (AWI-ESM). The N component is described in 90 

Goll et al., (2017). 

The Joint UK Land Environment Simulator version 5.4 (JULES-ES; Best et al., 2011; Clark et al., 2011) is used in the UK 

Earth System Model (UKESM1; Sellar et al., 2020.). The N component is described in Wiltshire et al., (2020) and Sellar et 

al., (2020).  

The Lund-Potsdam-Jena General Ecosystem Simulator version 4.0 (LPJ-GUESS; Olin et al., 2015; Smith et al., 2014) is 95 

used in the European community Earth-System Model (EC-Earth; Hazeleger et al., 2012). The N component is described in 

Smith et al., (2014).  
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2.2 Forcing Data and Model Initialisation 

All models’ pools were spun-up to equilibrium forced by pre-industrial conditions. This comprised of a constant atmospheric 

CO2 concentration of 287.14 ppm, cycling global climate data at 0.5° x 0.5° resolution for the years 1901-1930 from the 100 

CRU-NCEP dataset version 7.0 (New et al., 2000), using constant 1860 land cover from the Hurtt et al., (2020) database, and 

1860s nitrogen deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (Lamarque et al., 

2013). Next, transient historical runs were performed for the 1861-1900 period with the same climate forcing as the spin-up, 

but with time-varying atmospheric CO2 concentrations from synthesized ice core and National Oceanic and Atmospheric 

Administration (NOAA) measurements, as well as annually varying land-use from Hurtt et al., (2020). The N deposition is 105 

taken from the Atmospheric Chemistry and Climate Model Intercomparison Project (Lamarque et al., 2013). The simulations 

were then continued for 1901 – 2015 under all time-varying forcings, including climate. 

The models applied their individual soil and vegetation spin-ups according to their respective conventions. The goal of the 

spin-up procedure is to obtain quasi-steady states of the ecosystem pools in relation to climate, avoiding drifting pool sizes 

due to lack of equilibrium, especially for slow-turnover soil organic matter pools. Because of differences among the models, 110 

pool sizes after spin-up are not expected to be identical.  

2.3 Model Experiments  

In addition to the historical run described above (referred to hereafter as the Control), two experiments were performed for 

the period 1996-2015: increased CO2 (+CO2) and increased N (+N). These two experimental runs are compared to the 

corresponding 1996-2015 simulations from the unperturbed Control runs. SI Table 1 provides a summary of the experiments.  115 

For the increased CO2 experiment (+CO2) the atmospheric CO2 concentration was abruptly increased to constant 550 ppm. 

This is almost twice the pre-industrial atmospheric CO2 of 280 ppm or a 200 ppm increase compared to the 1996 

atmospheric CO2 of ~350 ppm, similar to free-air CO2 enrichment experiments performed in the 1990s (Norby et al., 2005).  

For the increased N experiment (+N) N deposition was abruptly increased by 50 kgN ha-1 yr-1, which is roughly equivalent to 

what has been used in a number of forest N fertilisation trials (Thomas et al., 2013) and around 5 – 10 times higher than 120 

typical background N deposition (Zak et al., 2017).  

2.4 Analytical Framework 

The response of the terrestrial productivity (and with it terrestrial C storage) to changes in the N cycle is in principle 

controlled by two components: (i) the net ecosystem balance of N, i.e. the difference between changes in ecosystem N inputs 

and N losses, which determines the change in the ecosystem N available for plant growth and immobilisation during litter 125 

and soil organic matter decomposition, and (ii) the ratio of carbon production per unit N availability, which can be most 

effectively be described as the N-use efficiency of growth.  
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Because the individual processes and pools considered varies between the five models (Table 1), we use a simplified N 

budget to assess the annual change in the terrestrial N store (𝛥𝑁, including soil and plants):  

 130 

𝛥𝑁 = 𝑁𝑑𝑒𝑝 + 𝐵𝑁𝐹 −  𝑁𝑙𝑜𝑠𝑠      (1) 

 

where Ndep is the N deposition, BNF is the biological N fixation, and Nloss is the N lost from gaseous, leaching, and other 

pathways, as declared by the models. This paradigm assumes that increased ecosystem N input from deposition or fixation 

enters the soil and then becomes available for plant uptake. In a similar way, plant N uptake (Nup) could lead to reduced N 135 

losses, which would (assuming constant N inputs) result in an apparent increase in the ecosystem N capital. Note that crop 

fertilisation is not included here, as it is assumed to be equal in the 3 simulations.  

Whether and how this change in N capital affects plant growth is dependent on the magnitude of the change in plant N 

uptake, as well as relationship between Nup and NPP (whole-plant nitrogen-use efficiency; NUE; (Zaehle et al., 2014a)) 

 140 

𝑁𝑈𝐸 =
𝑁𝑃𝑃

𝑁𝑢𝑝
   .     (2) 

 

where Nup includes plant uptake of soil inorganic N of any origin, i.e. atmospheric deposition, fertilization, decomposition of 

plant litter, or biological nitrogen fixation (BNF). NUE is the outcome of the product of tissue stoichiometry and fractional 

allocation of NPP to different tissue types, and therefore varies with changes in the allocation fractions and tissue C:N.  145 

2.5 Observations for Comparison 

We compare the models to a range of observation-based metrics at global and regional scales, detailed in SI Table 2. Most of 

the numbers from the literature that we cite are based on relatively small numbers of field studies upscaled or averaged to 

give an approximate global value with confidence intervals. No modification of spatial scale or averaging is done to values 

used, but where the CO2 or N increase is specified it is scaled to 200 ppm or 50 kg ha-1 yr-1 accordingly. While these 150 

upscaled values need to be interpreted with caution, in the absence of more robust comparators they are useful benchmarks 

that can provide real-world context in addition to field scale comparisons and inter-model comparisons. Where appropriate, 

comparisons are made at the climate-determined region level (see SI Fig. 1; (Kottek et al., 2006)). 

3 Results 

3.1 Control Run Global C and N budgets 155 

A range of pools and fluxes from the models compared to the closest comparable observation-based data show a good 

performance overall and emphasises similarities between the models at the global scale (Fig. 1). For GPP, all the models 
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compare well to the MTE data (Jung et al., 2011) and when the directly comparable time period is used (see SI Fig. 2) the 

models are all within the MTE range. The global GPP value is underlain by some regional variations between models (SI 

Fig. 2 and 3).  160 

Like GPP, the total ecosystem respiration (TER) is similar across all the models and most of the models fall within the range 

of a top-down estimate by Ballantyne et al., (2017) (106 ± 12 GtC yr-1). However, the partitioning between the autotrophic 

and heterotrophic respiration differs (Fig. 1). Autotrophic respiration is overestimated in all the models (Luyssaert et al., 

2007; Piao et al., 2010), while heterotrophic respiration is underestimated (Bond-Lamberty and Thomson, 2010). The 

heterotrophic value from Bond-Lamberty and Thomson, (2010) was reduced by 33% to account for root respiration in line 165 

with Bowden et al., (1993). 

N inputs differ strongly between the models because of widely varying biological nitrogen fixation (BNF, Fig. 1). The other 

major input, N deposition, is a prescribed input with small variations resulting from differences in the land-sea mask of the 

individual models. BNF on the other hand has a wide range among models. An upscaled meta-analysis of BNF covering the 

period of approximately 1990 – 2019 (Davies‐Barnard and Friedlingstein, 2020) has a range of 52 – 130 TgN yr-1 and only 170 

one model is outside of that range. The three models with the highest BNF (JSBACH, CLM5, and JULES-ES) are three of 

the four models that use an NPP based function (the fourth being CLM4.5). CLM5’s process-based function uses a C cost of 

N acquisition where energy from NPP can produce N based on the work by Fisher et al., (2010). JULES-ES, JSBACH, and 

CLM4.5 use an empirical large-scale correlation with NPP (Cleveland et al., 1999). LPJ-GUESS, the lowest BNF model, 

also uses an empirical correlation from Cleveland et al., (1999), based on evapotranspiration rather than NPP. Thus, even 175 

BNF functions based on the same source (Cleveland et al., 1999) can have very different results (Wieder et al., 2015a), due 

to the large range of BNF functions within the source and differences in how they are implemented (Meyerholt et al., 2016). 

BNF dominates N input variability both because of lack of process understanding to constrain model structures and the 

continued uncertainty in available observations.  

Looking at the soil and vegetation C and N pools and the ratios between them, the models have a range of strengths and 180 

weaknesses, with no model falling within the observation-constrained range for all pools. However, due to variations in both 

the modelling and measurement of C and N within different soil depths, not too much emphasis should be placed on the pool 

comparisons shown in Fig. 1. 

3.2 Modelled NPP Responses to +CO2 Experiment 

The ensembles’ global modelled response of NPP to +CO2 concurs with a meta-analysis of NPP responses to +200 ppm CO2 185 

suggests a positive response of 15.6 ± 12.8% (Song et al., 2019) (Table 2), with all models within that range. Other meta-

analyses of productivity (for instance, aboveground woody biomass) changes associated with elevated CO2 give higher 

ranges of response (Table 2). These other measures of productivity suggest a lower limit of around 12%, which encompasses 

all but one of the models. However, models falling within the range of the observations may be equally indicative of biases 
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and lack of precision in the observational estimates, as the fidelity with which the models can predict local and global 190 

response to elevated CO2. 

CLM4.5 has a notably lower NPP response to +CO2 than the other models (Fig. 2), with the exception of areas where the 

absolute magnitude of NPP is very low and small absolute changes (SI Fig. 4) already lead to large proportional changes. 

However, even in these regions, the absolute changes are consistently less than the other four models (SI Fig. 4). The low 

response in CLM4.5 is due to a lack of mechanisms to ameliorate N limitation when C supply increases, for instance via 195 

variable C:N ratios or increased BNF (as is the case for CLM5) (Fisher et al., 2018; Wieder et al., 2019). This strong 

limitation by the N cycle was a key reason why CESM and NorESM in CMIP5 had lower C uptake in response to CO2 

compared to other carbon cycle ESMs (Arora et al., 2013). 

Despite the seeming agreement of the NPP response to +CO2 at the global scale, the regional patterns in response vary 

considerably for key biomes (Fig. 2). In high latitude tundra areas, the +CO2 response ranges between near zero (JULES-200 

ES), very low in CLM4.5, JSBACH and LPJ-Guess to high (CLM5). In most models, this region shows sparse vegetation 

cover and nitrogen availability, allowing for only little increase in response to elevated CO2, whereas the increased BNF in 

CLM5 facilitates a response to increasing CO2 levels. With the exception of JULES-ES, most models predict a large +CO2 

response in very dry ecosystems with marginal productivity.  

The NPP response of the equatorial region overall (SI Table 3 and SI Fig. 1) to +CO2 ranges from 5% for CLM4.5 to 23% 205 

for CLM5 and JSBACH. Looking at latitudinal averages (SI Fig. 4) we can see the overall patterns are consistent across 

most models, and while the percent change varies a lot, the absolute change in NPP shows considerable agreement between 

models, with the exception of CLM4.5. Model responses of NPP to +CO2 in greater Amazonia however, do not reach a 

consensus. Comparing the response in the Amazonia region with that of coastal regions of northern South America, the 

JSBACH response is lower, CLM5 and LPJ-GUESS higher, and JULES-ES and CLM4.5 are approximately the same. 210 

JSBACH’s dip in +CO2 NPP response at the equator (compared to surrounding areas) can also be seen in the absolute values 

averaged by latitude (SI Fig. 4). The process responsible for this spatial pattern is currently unclear, but may be associated 

with the strongly enhanced GPP simulated by the model for this region compared to observation-derived estimates (SI Fig. 

2).  

 215 

3.3 Modelled NPP Responses to +N Experiment 

The response to +N in the models shows a binary distribution, with models exhibiting either a high (>20%) or low (<3%) 

response (Fig. 3) at the global scale. A meta-analysis of NPP responses to +50 kg N ha-1 yr-1 suggests a positive response of 

3 – 10.5% (Song et al., 2019) but none of the models are within this range (Table 2.). Other meta-analyses of productivity 

changes with increased N give higher ranges of response (11 – 39.8%), encompassing three of the five models (Table 2). As 220 

both a percent change and absolute change (see SI Fig. 5) JULES and JSBACH show much lower +N NPP response than the 
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other models considered here. CLM4.5 has the highest response (24%), on account of its high initial N limitation (Koven et 

al., 2013). 

The tundra biome response is high in CLM5 and JULES-ES, and lower but present in LPJ-GUESS and CLM4.5 (Fig. 3 and 

SI Fig. 5). If low NPP is excluded then the tundra mean response across models is 2 – 9% (SI Table 3) much lower than the 225 

average of observations compiled by LeBauer and Treseder, (2008) of 35% (95% confidence interval 12 – 64%). There is a 

high response to +N in Africa & Australia in CLM4.5, CLM5, and LPJ-GUESS, despite aridity likely limiting increase in 

NPP in absolute, if not relative, terms, but insufficient observations to make meaningful comparisons. One area of agreement 

between the models is the lack of +N response of the Amazonian region (Fig. 3) which is consistent with observations which 

show just a 5% +N response in tropical forests (Schulte‐Uebbing and Vries, 2018). However, when other tropical regions are 230 

included in the models the +N NPP response rises to 17 – 20% in LPJ-GUESS, CLM4.5 and CLM5, with JULES-ES and 

JSBACH remaining low (SI Table 3). 

 

3.4 Comparison of NPP +N and +CO2 Responses 

It might be anticipated that there would be a relationship between the +N and +CO2 responses, as an ecosystem (model) that 235 

is less N limited could respond more strongly to increased atmospheric CO2 (Meyerholt et al., 2020). A lack of response to N 

fertilisation could indicate sufficient N supply and therefore a lacking constraint of N on the response of the vegetation to 

CO2, while a strong response to N fertilisation could indicate insufficient N supply and as a result a strong N limitation of the 

CO2 response. We know that response to increased N supply is globally distributed (LeBauer and Treseder, 2008) and that 

C3 plants, which make up the majority of vegetation worldwide, have a positive photosynthetic response to additional 240 

atmospheric CO2 (Ainsworth and Long, 2005). However, there is evidence that the +CO2 response would be limited by N 

availability (forest NPP response to additional atmospheric CO2 is limited by N availability (Norby et al., 2010)) and it is 

currently unknown whether +N would be similarly affected.  

All the models are consistent with the hypothesis of either N or CO2 fertilisation at grid cell level, but the effect does not 

necessarily scale to either the regional or global level. The prevalent grid cell level spatial trend is bimodal, with grid cells 245 

either having a strong sensitivity to +N or +CO2, but not both (see Fig. 4). Comparing percent change emphasises the 

dichotomy of +N and +CO2 effects, with most values clustered near either zero for +N or zero for +CO2, but SI Fig. 6 

shows that there is no positive relationship or heterogeneous distribution in the absolute values either. The bias toward +CO2 

is clear for JSBACH and JULES-ES, with most values varying in +CO2 sensitivity but not +N (Fig. 4, also seen in the 

absolute anomalies in SI Fig. 6). A slight tendency towards the reverse is true for CLM4.5, CLM5, and LPJ-GUESS, with 250 

more points having a strong +N response and a weaker +CO2 response (Fig. 4). Altogether, LPJ-GUESS and CLM5 show 

the most areas with both +N and +CO2 sensitivity. Wieder et al., (2019) found that there was a trade-off between +N impact 

and +CO2 impact in CLM4, CLM4.5 and CLM5, and this seems to be true for our ensemble of models too.  
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The latitudinal distribution of response shows similarities across models, with high latitudes (shown in purple in Fig. 4) 

generally more +N sensitive, and the mid latitudes (red to orange on Fig. 4) more +CO2 sensitive. While negative NPP 255 

values are present in both +N and +CO2 simulations they occur in different places, with negative NPP occurring in hot arid 

areas for +N and cold arid areas for +CO2 (Fig. 2, 3, and 4). In hot arid areas +N increases simulates GPP and plant growth 

but also plant respiration, which then exceed the additional productivity, giving a decrease in NPP. Such model behaviour 

has been noted before (Meyerholt et al., 2020), however, there is little evidence that such a process would occur in nature. 

The negative values in all models except CLM4.5 also appear to have a regional bias, with a small number of grid cells 260 

responding negatively to both +CO2 and +N in CLM5, JSBACH, and JULES-ES in the subtropics and a larger number of 

negative values in the subtropics in LPJ-GUESS (Fig. 4). These arid areas appear to be sensitive to neither +N nor +CO2, 

probably due to low water availability.  

We can gain further insights by considering the relationship between responses to +CO2 and +N by forest biome (Fig. 5). 

The ideal for the models is to be in the area where the observations for +N and +CO2 intersect. Two of the models achieve 265 

this partially, JSBACH and CLM5, by having tightly clustered forest vegetation C (VegC) response to +N and forest NPP 

response to +CO2. The dichotomy between +N and +CO2 NPP response is averaged out at this scale and the models show 

little of the L-shaped relationship between the +N response and +CO2 response seen at the grid cell level (Fig. 4 and 5).  

According to collated N addition experiments we would expect models to have biome level variation in +N response 

(LeBauer and Treseder, 2008; Schulte‐Uebbing and Vries, 2018). Schulte‐Uebbing and Vries, (2018) show that tropical 270 

forest +N VegC response is lowest and boreal and temperate forest response higher (Fig. 5). While LPJ-GUESS and 

CLM4.5 capture some variation between averaged biomes, none of the models have the biome responses in the correct order 

(Fig. 5). However, all the models except LPJ-GUESS tend toward a lower (tropical) +N response. LPJ-GUESS, however, is 

the only model to have the boreal +N response in the correct range. It is the boreal response that seems to be the main issue, 

as relative to both the temperate and tropical regions most models show the boreal response as being lower, whereas most of 275 

the models have the correct relative +N response for the tropics and temperate regions. Therefore, although the global values 

of model response are acceptable, the relative spatial patterns show limitations in the reliability of all the models. 

 

3.5 N Budget Responses to +N and +CO2 

The models’ responses in different components of the N budget reflect and affect their overall N sensitivity (Fig. 6). N inputs 280 

of BNF and N deposition and loss (we only consider the sum of leaching and gaseous loss so as to be consistent between 

models) are similar between all the models in the Control simulation (Fig. 6a). The uptake of N by vegetation varies more 

strongly between models, reflecting differing levels of N mineralisation and assumed N requirements for growth, as also 

reflected by the different amounts of C and N pools depicted in Fig. 1.  

Changes in the N budget components to +CO2 and +N (Fig. 6b and 6c) are not straightforwardly related to changes to 285 

productivity (Fig. 2 and 3). For instance, the weak response of NPP to +CO2 in CLM4.5 would suggest only small changes 
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in uptake compared to the other models (Fig. 2 and 6). However, the +CO2 induced changes in uptake CLM4.5 are higher 

than that of LPJ-GUESS (Fig. 6b). Similarly, CLM5 has the largest increase in N balance for +CO2 (Fig. 6b) amongst the 

models, but this does not correspond to a larger response of NPP (Fig. 2f) or uptake response to elevated CO2 (Fig. 6b). 

Nevertheless, Fig. 6b reveals a number of important characteristics of the N cycle response to +CO2 underlying the NPP 290 

response presented in Section 3.2. For all models except CLM5, which shows a strong response of BNF to elevated CO2, 

reduced N losses are an important reason for the increased N balance of the ecosystem, which facilitates an increase in NPP 

in the absence of changes in ecosystem stoichiometry. For all models except CLM5, plant N uptake under elevated CO2 is 

more enhanced than the change in the N balance of the ecosystem, implying a net transfer of N from the soil to vegetation. 

Conversely, the N uptake changes in JULES-ES and JSBACH reflect their sensitivity of productivity to +N and +CO2 (Figs. 295 

2,3, and 6). For JULES-ES we can see that this is driven by changes in loss, particularly for +N, which leads to a much 

smaller increase in N balance in JULES-ES than the other models. In common with all the models, in JULES-ES the N loss 

term is a fixed fraction of the mineralisation flux and the soil N pool size. However, JSBACH has less than half the increase 

in N loss of JULES-ES in the +N simulation (Fig. 6c), low changes in BNF compared to other models (Fig. 7b) and almost 

no change in NUE (Fig. 7d). This suggests that in both JULES-ES and JSBACH there is effectively little unmet N demand in 300 

the Control scenario. 

BNF responses to +CO2 in the models differ in magnitude (Fig. 7a) and mostly are smaller than a meta-analysis of CO2 

manipulation suggests (Liang et al., 2016). Only JULES-ES’ responses at the global scale and CLM5’s boreal response are 

within the range of the meta-analysis of observations. CLM5 is a clear outlier, with a large increase in BNF. CLM5 takes a C 

cost approach to BNF, which is different to the other models (Table 1), and BNF can be acquired for a relatively fixed 305 

amount of C (Houlton et al., 2008) and thus when C availability increases under +CO2 the BNF in CLM5 increases. Fisher 

et al., (2018) conducted a parameter sensitivity analysis of both +CO2 and +N fertilization, which illustrates that both 

responses are sensitive to the maximum fraction of C from NPP which is available for fixation (a proxy for the fraction of N 

fixing plants and their efficiency). However, the correct parametrisation of this fraction of C available for fixation is not well 

known and further field studies are required. The BNF +CO2 response in the other four models is determined by their simple 310 

empirical BNF equations (see Table 1) based on NPP or evapotranspiration. However, new analysis suggests that simple 

empirical relationships cannot well represent BNF (Davies‐Barnard and Friedlingstein, 2020). 

The models’ BNF response to +N shows one of two responses: a small increase in JULES-ES, CLM4.5, and JSBACH; or a 

large decrease in CLM5 and LPJ-GUESS (Fig. 7b). The latter models capture the correct BNF sign of response to +N of a 

decrease according to the meta-analysis of Zheng et al., (2019), though the amplitude is too large. The former models 315 

estimate BNF as a function of NPP resulting in increased BNF whatever the source of the additional NPP is and even when 

there is sufficient N. Observational evidence (Zheng et al., 2019) shows BNF reduces when N is supplied from another 

source and it is understood this is because facultative (able to modulate) BNF reduces and obligate BNF is out-competed 

(Menge et al., 2009). Overall, there is little evidence for any of the BNF functions performing well, primarily due to lack of 

robust model parameterisations and parameter values.  320 
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The NUE responses allow comparison between models, though comparisons with observations are limited by a lack of field 

studies. All models have an increase in NUE with +CO2 in line with the current theory of Walker et al., (2015), with the 

exception of JULES-ES in the boreal region (Fig. 7c). It’s unclear why the boreal region is responding differently to both 

other regions in JULES-ES and other models but the boreal region reduction in NUE under +CO2 likely indicates excess N 

from mineralisation, possibly triggered by the combination of soil warming and increased atmospheric CO2. CLM4.5 has 325 

low NUE response to +CO2 due to fixed C:N ratios, which allow little change in NUE. The other models allow either more 

allocation to wood or flexible C:N that results in the larger increases of NUE.  

There is regional variation in models’ NUE response to +N between biomes but all the models in our ensemble reduce NUE 

in response to +N (Fig. 7d). CLM5 and LPJ-GUESS are distinct in their larger NUE response to +N compared to the other 

models, but do not share the same geographical spread of response. There is little consistency between models as to which 330 

regions have the largest change in NUE. CLM5 has the largest NUE change in the temperate region, whereas in JULES it 

occurs in the boreal region. No empirical measurements are currently available for NUE response to +N. On the basis that 

scarcity encourages more frugal use of scarce resource a hypothesis could be that NUE could decrease with increased N 

availability, as the models show. However, water-use efficiency suggests an alternative hypothesis, as it tends to reduce 

during drought (Yu et al., 2017). Overall, the large variations in signal and sign of BNF and NUE responses to +N treatment 335 

between models suggest there is considerable uncertainty in our understanding.  

4 Discussion 

In this paper, we investigated the performance of five nitrogen-enabled land surface models that are part of current 

generation Earth System Models used in the framework of CMIP6 (Eyring et al., 2016). These new N-enabled land surface 

models in CMIP6 reproduce key global carbon cycle metrics. Despite the importance of N availability for regional 340 

productivity, there is large and unconstrained uncertainty in the magnitude of the global and regional N fluxes (Fig. 1). 

We have focused on three general components of N-enabled models that affect the plant N uptake and eventual productivity: 

N inputs via BNF; NUE; and the N losses. We find that all three show considerable heterogeneity of response between 

models. Previous studies suggest that stoichiometric controls and the processing of soil organic matter are important for a 

realistic +CO2 response (Zaehle et al., 2014a). These are essentially contributory factors to NUE, where we find large 345 

variation between models (Fig. 7). The lack of well-constrained observations for global and biome-level NUE and N loss 

responses implies that these areas need more work. N loss is particularly challenging, as there are multiple pathways 

(leaching, flooding, gaseous loss, fire, land use change, etc.) and forms (N2O, N2, etc.) of loss and each model represents 

these in different ways. More observational studies and syntheses of existing observations are needed to quantify the 

nitrogen cycle in different biomes. In particular, better constraints are needed for the N cycle response to perturbations.  350 

All the models show a global average productivity response to increased atmospheric CO2 commensurate with those 

recorded in field studies. However, the regional responses and mechanisms behind this response vary widely, resulting from 
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the interaction of the instantaneous physiological response to elevated CO2 (e.g. Ainsworth and Long, (2005), which is 

embedded in all five models (but see Rogers et al., (2017)), with limitations imposed by temperature, water, light, and 

nitrogen, as well as the response-time of vegetation dynamics. For instance, in LPJ-GUESS and CLM5 the response to 355 

elevated CO2 in semi-arid tropical ecosystems is smaller than that of temperate ecosystems or other models. This suggests a 

combined effect of water and nitrogen limitation on soil organic matter decomposition in these models, and thus low 

nitrogen availability that is not compensated for by changes in BNF. Similarly, tundra and arctic responses to elevated CO2 

varies widely across the models and is associated with the representation of BNF. This large regional variance highlights the 

need for more comprehensive observational data to constrain responses to elevated CO2, particularly in under-sampled 360 

regions such as the high arctic and tropical semi-arid regions (Song et al., 2019).  

The growth response to N addition across models is more varied. Two of the five models (JULES-ES and JSBACH) have 

little productivity response to increased N availability, indicating that they do not have any significant limitation of the C 

cycle by N availability (Fig. 3). There are four substantial similarities between these two models (Table 1): (i) the use of 

NPP to determine BNF; (ii) a direct control of NPP by N availability, whereas photosynthetic C uptake (GPP) is not directly 365 

affected by N (Goll et al., 2017; Wiltshire et al., 2020); (iii) the use of dynamic (as opposed to prescribed) vegetation, where 

vegetation cover is determined by the climate input to the model; and (iv) the assumption that N availability in pre-industrial 

times was sufficient to sustain the C cycle everywhere on land because observed present-day N limitation is a result of 

anthropogenic changes, most notably increased CO2 (Goll et al., 2017). 

The hypothesis of no pre-industrial N limitation is based on the assumption that prior to industrial times, the conditions of 370 

natural terrestrial ecosystems were stable for sufficient time to permit any lack of N availability to be filled by biological 

nitrogen fixation (Thomas et al., 2015). Consequently, the pre-industrial Control run with both N and C is very similar to the 

C-cycle only version and a C equilibrium is reached before a N equilibrium. The disjoint between the C and N equilibriums 

may lead to varying levels of simulated N availability and may affect the model responses to perturbations. While there is 

evidence for wide-spread (co-) limitation of NPP in recent decades (LeBauer and Treseder, 2008; Song et al., 2019; Vitousek 375 

and Howarth, 1991), there is insufficient data to test the hypothesis of no pre-industrial N limitation. A summary by Thomas 

et al., (2015) suggests reasons that pre-industrial productivity of terrestrial ecosystems was affected by ecosystem N 

availability, e.g. the presence of unavoidable losses to denitrification, or the competitive exclusion of nitrogen fixing species 

as ecosystems mature. The inability of JULES-ES and JSBACH, when initialised in the assumption that pre-industrial N 

availability does not limit vegetation growth, to simulate observed N addition responses comparable to models without this 380 

assumption suggests that this may be an important component of the N cycle constraint on the global C cycle. No pre-

industrial N limitation also drives other model decisions (such as N limitation not being incorporated into the GPP equation, 

see Table 1), which may further contribute to the models being under-sensitive to N compared to observations.  

The models mostly represent changes in productivity from +N in high latitude northern hemisphere regions less well than 

other parts of the world as a percentage, as covered in the results section 3.3, Fig. 5, and SI Table 3. While the low NPP of 385 

these regions make them more likely to have high percentage increases, the mean Polar +N response across the models is 8 – 
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59%, broadly in the range of a meta-analysis of observations  12 – 64% (LeBauer and Treseder, 2008). But looking at the 

maps of response (Fig. 3), the model response is either too low or too high compared to the aforementioned observational 

range. High latitude tundra is an important but difficult to model biome because of the potential for release of methane 

(Nauta et al., 2015), permafrost C and N release (Anisimov, 2007; Burke et al., 2012; O’Connor et al., 2010), albedo changes 390 

with vegetation expansion (Myers-Smith et al., 2011) and the difficulty in representing large amounts of C stored in soil. 

This complexity in C and N cycle is not always well understood or represented in models and therefore could limit the 

ability of models to provide accurate responses to perturbation. A fully integrated model that accounts correctly for all of 

these is not yet possible but is necessary to reduce uncertainties.  

The greater Amazon basin is a critical area of interest for the future of the terrestrial carbon balance under climate change. 395 

Our simulations show that for most models, NPP in this area increases with +CO2, but all the models find a small or no 

change in NPP with +N. These regions are thought to be phosphorus rather than N limited, due to depletion through 

weathering over long periods. This result supports the idea that favourable climate conditions cause a high leaf area index 

(LAI) in this part of the tropics, such that there is little margin for increased NPP from +N (Fisher et al., 2018). For +CO2 

there is the potential for increased NPP because of either increase in NUE or decreases in N losses, giving productivity 400 

increase without an increase in LAI. Reducing the uncertainty in NPP response to +CO2 is important, as the moist tropics 

represent a significant proportion of the world’s aboveground biomass and therefore the size of the overall terrestrial sink 

will be influenced by the CO2 uptake in this biome. 

This experimental setup considers +N and +CO2 separately, but not the combined effects. It cannot be assumed that the 

effect of both +N and +CO2 on productivity are linearly additive. It has been shown elsewhere that LPJ-GUESS (Wårlind et 405 

al., 2014) and BIOME-BGC (Churkina et al., 2009) have a significant non-linear (synergetic) term between CO2 and N 

deposition. An assessment of the combined effects of +N and +CO2 may show a significantly different picture of model 

performance.   

Part of the uncertainty in the models comes from the reanalysis climate dataset used to drive the models. CRU-NCEP was 

chosen for the good spatial and temporal coverage, but some biases exist in the data compared to climatologies such as 410 

WATCH (Weedon et al., 2011). Offline simulations driven by low forcing frequency (six-hourly) CRU-NCEP data 

significantly overestimate evapotranspiration in regions with convective rainfall types and thereby could affect stomatal 

conductance and photosynthesis (Fan et al., 2019). Responses to +N and +CO2 may partially be shaped by other limiting 

factors such as water availability, which will be handled differently between models, limiting the insight on the exact 

processes that control model responses to change. This does not affect all the models equally, as some are known to be 415 

sensitive to the driving climatology. JSBACH, JULES-ES and LPJ-GUESS may be particularly strongly affected due to their 

dynamic vegetation. Lawrence et al., (2019) show that CLM5 corresponds best to benchmarks with GSWP3 forcing dataset 

(Hurk et al., 2016) and work with JULES shows that climate forcing is the biggest cause of variance of those considered 

(Ménard et al., 2015).  
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As well as uncertainty in the models, the observational data also has uncertainties and limitations. Global benchmarks are 420 

approximate measures, as multi-faceted process mechanics are integrated over large domains and generalized, e.g., over 

climate zones that are inherently variable. Of the limited global or regional observations available, many use interpolation or 

proxies such as satellite data to upscale relatively small amounts of direct observational data. The perturbed responses may 

also have uncertainties beyond the spread of the observed responses because of the small observation basis and potential 

biases in the geographical sampling. Therefore, they may suffer from leverage points and skew in the data towards more 425 

accessible, higher income, or higher population areas, such as western Europe, which are not representative of where models 

are impacted most at the global scale. One of the +N global responses cited is based on 126 values from LeBauer and 

Treseder, (2008) but may over-estimate the global response by including high responses from young tropical soils. The NPP 

response to +CO2 response for woody plants total above ground biomass (Fig. 5) is based on just 16 experiments (Baig et 

al., 2015), making the upscaling to biome scale less reliable than if more data were available. These meta-analyses combine 430 

measurements from a range of time periods and places, and different conditions (e.g. gradual or instantaneous perturbations) 

and thus models run at a global scale cannot be expected to be entirely consistent. Hence statements about the marginal 

issues of model accuracy are unlikely to be robust as further observational constraints may alter the perspective. 

5 Conclusions 

This is the first systematic comparison of the responses to increased N (+N) and CO2 (+CO2) in LSMs with terrestrial N 435 

cycles contributing to CMIP6. The five models considered here yield fair overall agreement with global and tropical 

observations but are less robust in high latitude regions. 

The models are not equally sensitive to either +CO2 or +N, with individual grid cells tending to respond to either +N or 

+CO2. However, at the regional and global scale this pattern is averaged away and there is little correlation. Within this 

ensemble there is clear distinction between models that show strong N limitation, e.g. CLM4.5, which has a low NPP 440 

response to +CO2, and models that show very weak N limitation, e.g. JULES-ES and JSBACH, which have a low NPP 

response to +N. The two models with intermediate N limitation (CLM5 and LPJ-GUESS) capture the global scale response 

to +CO2 and +N reasonably well. However, although CLM5 performs well by many metrics, it is an outlier compared to 

other models or observations as its BNF and the NUE response to CO2 appears to be larger than supported by observations. 

Similarly, LPJ-GUESS captures NPP responses to +CO2 and +N well at the global level but overestimates the vegetation C 445 

response to +N in forested tropical and temperate biomes.  

The model initialisation with or without the assumption of sufficient N in pre-industrial times is a key determinant of the 

differences between the models. The presence of N limitation before the rise of atmospheric CO2 levels is an important and 

challenging question to resolve. While further modern constraints on +N response may inform which approach is more 

realistic, understanding from reconstructions or other data sources could help resolve this question.   450 
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The wide range of empirical or semi-mechanistic representations for key processes such as BNF, NUE, and N loss, show 

how important further process understanding is for many parts of the N cycle. These parts of the models are influential, but 

because N cycle components are a recent addition to LSMs, fewer data are available to evaluate N cycle processes than for C 

cycle components. The addition of this representation of N limitation on C uptake is a big step forward in this generation of 

models, addressing the biggest systematic bias in future projections of land C sinks. However, it is now crucial to better 455 

constrain their behaviour at regional and process levels. Consequently, better observational constraints are required to 

understand whether models are working appropriately, even when the process understanding is improved.  
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Figure 1. 1996-2005 mean model estimates of the major ecosystem C and N component pools and fluxes in comparison with 

observation-based estimates from the literature. C = Carbon; N = Nitrogen; rh = Heterotrophic respiration; ra = Autotrophic 

respiration; GPP = Gross primary productivity; SOM = Soil organic matter; BNF = Biological nitrogen fixation; The N uptake 

flux refers to root uptake of inorganic N. Ranges shown represent the 95% confidence intervals, standard deviation, or similar 810 
uncertainty metrics, where available. Where observation-based ranges or values are available an arrow indicates that either the 

model value is higher than the range or lower. Where there is no arrow, the model is within the observation-based range or there 

is no observation-based range to compare to. N loss is the loss via gaseous loss and leaching. The black numbers indicate 

observation-based estimates from the literature: a) Heterotrophic respiration: Bond-Lamberty and Thomson, (2010), soil 

respiration estimate for 2008. To account for the included root respiration, we reduced the literature estimate by 33% according to 815 
(Bowden et al., 1993); b) Autotrophic respiration: Piao et al., (2010), Luyssaert et al., (2007), present day estimate for forests from 

2007; c) GPP: Jung et al., (2011), averaged estimate for 1982-2011; d) SOM+Litter, and Vegetation C: Carvalhais et al., (2014), 

present day estimate from 2014; e) BNF: (Davies‐Barnard and Friedlingstein, 2020) upscaled averages for 1980-2019; f) N 

deposition: (Lamarque et al., 2013), estimate for 2000; g) C:N ratios for soil and vegetation: Wang et al., (2018); h) Soil nitrogen in 

the top 1 meter and soil carbon in the top 1 meter (Batjes, 2014); i) Total Ecosystem Respiration: (Ballantyne et al., 2017).  820 
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Figure 2. Model estimates of 1996-2005 mean net primary productivity (NPP) response to +CO2. (a) – (e) Model estimates, shown 

as the anomaly compared to the model control scenario. Values above 50% are given the 50% colour. (f) Global percent change in 825 
mean NPP.  

 

 



27 

 

 

Figure 3. Model estimates of 1996-2005 mean net primary productivity (NPP) response to +N. (a) – (e) Model estimates, shown as 830 
the anomaly compared to the model control scenario. Values above 50% are given the 50% colour. (f) Globally integrated values. 

Global percent change in mean NPP. 
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Figure 4. Model estimates of 1996-2005 mean net primary productivity (NPP) response to +N vs +CO2, as a percent anomaly of 

the control scenario. Each grid box is plotted against the corresponding grid box for the other variable. The percent change is 

capped at 250% and values above are not plotted. The colour of the points indicates the latitude either North or South. 

 840 



29 

 

 

Figure 5. Average 1996-2005 model predictions of woody plant NPP responses to +CO2 (y-axis) and aboveground forest vegetation 

C pool size responses to nitrogen (N) addition (x-axis) for each of the models (as labelled). Area outlined in yellow indicates 

synthesis of observed woody plant NPP responses to +CO2 (Baig et al., 2015). Other coloured areas indicate biome-wise estimates 

of aboveground forest C change per added N (Schulte‐Uebbing and Vries, 2018). For +CO2, NPP is restricted to simulated 845 
vegetation with NPP > 0.2 kg C m-2 yr-1 to exclude non-forest areas. For +N, forest VegC in CLM5, CLM4.5, and LPJ-GUESS is 

taken from wood C and N, whereas all C and N is included for JULES-ES and JSBACH due to model output limitations. The 

biomes are allocated according to Köppen-Geiger climate classification (Kottek et al., 2006). The lower limits for Temperate and 

Boreal +N are the same value.  
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Figure 6. Global averaged 1996-2005 biological nitrogen fixation (BNF), N deposition, N loss via gaseous and leaching, the balance 

of those three inputs/losses, and the plant N uptake of the models. The top panel represents the Control scenario, and the second 855 
and third panels the response to +CO2 and +N perturbations (see methods). Note that the y-axis scale is 4x smaller for +CO2 

response than the Control or +N response. All changes are relative to a nominal N pool in the terrestrial biosphere. Gas and 
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Leaching loss is therefore shown as a negative (a loss from that N pool) in the Control. In the +CO2 and +N responses a positive 

change in Gas&Leach indicates less losses than in the Control scenario, and a negative change more losses than the Control.  
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Figure 7. Averaged 1996-2005 responses in biological nitrogen fixation (BNF) and nitrogen-use efficiency (NUE; see Eq. 1) to 

+CO2 and +N perturbations for the global (all vegetation types) or forest region averages. (a) Model BNF responses to +CO2. 

Black line and grey area indicate mean and 95% CI of the global estimate published by Liang et al., (2016). (b) Model BNF 

responses to +N. Black lines and grey areas indicate means and 95% confidence intervals of the forest estimates published by 

Zheng et al., (2019). (c) Model NUE responses to +CO2. (d) Model NUE responses to +N. Forest biomes are according to Köppen-870 
Geiger climate classification (Kottek et al., 2006), see SI Fig. 1. 
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Table 1. Key nitrogen cycle algorithms applied by the models. C = Carbon; N = Nitrogen; GPP = gross primary productivity; NPP 

= net primary productivity; PFT = plant functional type. 

 

  CLM4.5 CLM5 JSBACH JULES-ES LPJ-GUESS 

Key references Oleson et al. 

(2013) 

Lawrence et al. 

(2020) 

Goll et al. (2017), 

Mauritsen et al. 

(2019) 

Wiltshire et al. 

(2020) 

Smith et al. (2014) 

N effect on 

GPP 

Downregulation of 

GPP to match 

stoichiometric 

constraint from 

allocable N 

Leaf N 

compartmentalized 

into different pools 

to co-regulate 

photosynthesis 

according to the 

LUNA model 

No direct effect No direct effect Reduction of rubisco 

capacity in case of N 

stress 

N effect on 

autotrophic 

respiration 

N content-

dependent tissue-

level maintenance 

respiration 

Updated PFT-

specific N-

dependent leaf 

respiration scheme 

No direct effect N content-dependent 

maintenance 

respiration for roots 

and stems 

N content-dependent 

maintenance respiration 

for roots and stems; leaf 

respiration reduced 

under N stress 

Vegetation pool 

C:N 

stoichiometry 

Fixed for all pools Flexible for all 

pools  

Fixed for all pools 

except labile 

Flexible leaf 

stoichiometry from 

which root and stem 

C:N are scaled with 

fixed fractions 

Flexible for leaves and 

fine roots, fixed 

otherwise 

Retranslocation 

of N from shed 

leaves 

Fraction of leaf N 

moved to mobile 

plant N pool prior 

to shedding. 

Fraction depends 

on PFT-specific 

fixed live leaf and 

leaf litter C:N 

ratios. 

Fraction of leaf N 

moved to mobile 

plant N prior to 

shedding via two 

pathways: a free 

retranslocation, or a 

paid-for 

retranslocation 

dependent on PFT-

Fraction of leaf N 

moved to mobile 

plant N pool prior to 

shedding 

Fraction of leaf N 

moved to labile store 

with PFT specific 

retranslocation 

coefficient  

Fraction of leaf N 

moved to mobile plant 

N pool prior to 

shedding. Fraction 

depends on N stress. 
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specific dynamic 

leaf C:N range and 

minimum leaf litter 

C:N and available 

carbon to spend for 

extraction in FUN 

model  

Biological N 

fixation 

  

Monotonically 

increasing function 

of NPP 

Symbiotic N 

fixation according 

to the FUN model, 

asymbiotic N 

fixation linearly 

dependent on 

evapotranspiration 

Non-linear function 

of NPP 

Linear function of 

NPP, 0.0016 kg N 

per kg C NPP  

Linear function of 

ecosystem 

evapotranspiration, 

0.102 cm yr-1 ET 

+0.524 per kg N ha-1  

Ecosystem N 

loss 

  

Denitrification loss 

as fraction of gross 

N mineralization + 

fraction of soil 

inorganic N pool in 

case of N 

saturation (CLM-

CN) / 

Denitrification as 

fraction of 

nitrification 

(CENTURY) 

Leaching as 

function of soil 

inorganic N pool 

size 

Fractional fire loss 

as fraction of 

vegetation and 

litter pools  

Denitrification as 

fraction of 

nitrification 

(CENTURY) 

Leaching as 

function of soil 

inorganic N pool 

size 

Fractional fire loss 

as fraction of 

vegetation and litter 

pools 

Denitrification 

proportional to soil 

inorganic N pool 

and soil moisture 

Leaching 

proportional to soil 

inorganic N pool 

and drainage 

Denitrification is a 

fixed fraction (1%) of 

mineralization flux 

Leaching of nitrogen 

is a function of soil 

inorganic N pool, 

drainage, and a 

parameter 

representing the 

effective solubility of 

nitrogen 

Denitrification as fixed 

fraction of 

mineralization flux 

Leaching as function of 

soil inorganic N pool 

and drainage 

N loss from fire events 

Plant N uptake 

  

Function of plant N 

demand, soil 

inorganic N 

Soil uptake of 

inorganic N 

according to the 

Plant N demand-

based, limited by 

soil inorganic N 

Demand based on 

GPP and limited by 

soil inorganic N 

Determined to maintain 

optimal leaf N for 

photosynthesis, limited 
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availability, and 

competition with 

heterotrophs 

FUN model availability availability  by soil inorganic N 

availability, fine root 

mass, soil temperature 

and plant N status  
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Table 2. Percent change in mean global NPP from perturbations. The observations come from meta-analyses which may not be 

directly comparable, but which provide a useful context.  
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 +CO2 +N 

CLM4.5 5.4% 24.1% 

CLM5 19.6% 22.1% 

JSBACH 19.3% 2.5% 

JULES-ES 16.7% 1.8% 

LPJ-GUESS 17.5% 21.7% 

Mean whole plant NPP percent change 

based on meta-analyses of field scale 

measurements  

15.6% (2.8 – 28.4%) (Song et al., 2019)  

 

6.5% (3 – 10.5%) (Song et al., 2019) 

 

Mean productivity value percent change 

based on meta-analyses of field scale 

measurements 

26% (12.2 – 39.8%) (Song et al., 2019) 

(ANPP) 

22.3% (13.9 – 31.4%) (Baig et al., 2015) 

(total woody plant biomass) 

21.4% (11 – 32.8%) (Baig et al., 2015) 

(above-ground woody plant biomass) 

20% (7.5 – 32.5%) (Song et al., 2019)  

(ANPP) 

29% (22 -35%) (LeBauer and Treseder, 

2008) (ANPP) 

 

 

 


