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Abstract 47 

A large amount of soil carbon in the Arctic terrestrial ecosystems could be emitted as 48 

greenhouse gases in a warming future. However, lacking detailed microbial processes such 49 

as microbial dormancy in current biogeochemistry models might have biased the 50 

quantification of the regional carbon dynamics. Here the effect of microbial dormancy was 51 

incorporated into a biogeochemistry model to improve the quantification for the last and 52 

this century. Compared with the previous model without considering the microbial 53 

dormancy, the new model estimated the regional soils stored 75.9 Pg more C in the 54 

terrestrial ecosystems during the last century, and will store 50.4 Pg and 125.2 Pg more C 55 

under the RCP 8.5 and RCP 2.6 scenarios, respectively, in this century. This study 56 

highlights the importance of the representation of microbial dormancy in earth system 57 

models to adequately quantify the carbon dynamics in the Arctic.  58 
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1. Introduction 76 

The land ecosystems in northern high latitudes (>45 º° N) occupy 22% of the global 77 

surface and store over 40% of the global soil organic carbon (SOC) (McGuire & Hobbie, 1997; 78 

Melillo et al., 1993; Tarnocai et al., 2009; Hugelius et al., 2014). During the past decades, a 79 

greening accompanying a warming in the region has been documented (Zhou et al., 2001; Lloyd 80 

et al., 2002; Stow et al., 2004; Callaghan et al., 2005; Tape et al., 2006). The regional carbon 81 

dynamics are expected to loom large in the global carbon cycle and exert large feedbacks to the 82 

global climate system (McGuire et al., 2009; Davidson & Janssens, 2006; Bond-Lamberty & 83 

Thomson, 2010). 84 

To date, numerous ecosystem models have been developed to project the feedbacks 85 

between terrestrial ecosystem carbon cycling and climate (Raich et al., 1991; Zhuang et al., 86 

2001, 2002, 2015; Parton et al., 1993; Knorr et al., 2005; Running & Coughlan, 1988), but they 87 

can bias their quantifications due to missing detailed microbial mechanisms in these models 88 

(Schmidt et al., 2011; Todd-Brown et al., 2013; Conant et al., 2011; Treseder et al., 2011). 89 

Microorganisms play a central role in decomposition of litter and soil organic carbon, which 90 

further governs the global carbon cycling and climate change (Xu et al., 2014; Treseder et al., 91 

2011; Wang et al., 2015). An emerging field of research has begun to incorporate microbial 92 

ecology into existing process-based models to remedy the to represent decomposition in ways 93 

that include important microbial processes that were previously ignoredinadequate representation 94 

of soil decomposition process (Zha & Zhuang, 2018; Schimel & Weintraub, 2003; Allison et al., 95 

2010; German et al., 2012). These microbial-based models tend to better reproduce field and 96 

satellite observations than traditional ones that treat soil decomposition as a first-order decay 97 

process without considering microbial activities (Treseder et al., 2011; Wieder et al., 2013; 98 
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Todd-Brown et al., 2011; Lawrence et al., 2009; Moorhead et al., 2006). However, some vital 99 

microbial traits such as microbial dormancy and community shifts are still rarely explicitly 100 

considered in large-scale ecosystem models (Wieder et al., 2015), and this may introduce notable 101 

uncertainties (Graham et al., 2014, 2016; Wang et al., 2015; Bouskill et al., 2012; Kaiser et al., 102 

2014).  103 

Dormancy is broadly recognized as a strategy for microorganisms to cope with periodical 104 

environmental stresses (Harder & Dijkhuizen, 1983). When environmental conditions are 105 

unfavorable for growth, microbes switch to a dormant state, which is a reversible state of low to 106 

zero metabolic activity (Stolpovsky et al., 2011; Lennon & Jones, 2011). In this state, 107 

biogeochemical processes such as soil decomposition are slow (Blagodatskaya et  al., 2013).  At 108 

any given time, there is only a fraction of , likely below 50%, of metabolically active microbes in 109 

natural soilsnumber of microbes, likely below 50% of live microbes, in natural soils (Wang et 110 

al., 2015; Stolpovsky et al., 2011). Soil decomposition and nutrient cycling mainly depend on 111 

these active microbes because only active ones can consume organic matter and replicate 112 

themselves (Wang et al., 2015; Blagodatskaya et al., 2014).  To date, most existing 113 

biogeochemistry models use total rather than active microbial biomass as an indicator of 114 

microbial activities (Wieder et al., 2015)used total microbial biomass as indicator of microbial 115 

activities, rather than the active portion of microbial biomass, which could bias the estimates of 116 

soil decomposition and ecosystem carbon budget (Hagerty et al., 2014; He et al., 2015). 117 

Especially, the Arctic terrestrial ecosystems are nitrogen-limited, neglecting microbial dormancy 118 

will lead to incorrect estimates of nitrogen availability through soil decomposition, failing to 119 

capture nitrogen feedbacks to carbon dynamics (Wang et al., 2015; Stolpovsky et al., 2011; 120 

Thullner et al., 2005). Furthermore, the Arctic Besides, it is also important because ofhas 121 
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experienced a the marked seasonality of (i.e. active ityand /dormant cymicrobial cycles) and the 122 

above-global-average warming,  happening in those latitudes (which might could have increased 123 

the proportion of active microbes in soils) (He et al., 2015). Thus, incorporating dormancy 124 

effects will improve model realism to and show the important role of microbial dormancy 125 

provide a betterin provide a better the projection of the Arctic carbon dynamics.  126 

This study incorporated the effects of microbial dormancy trait into an extant process-127 

based biogeochemistry model (MIC-TEM) (Zha & Zhuang, 2018; He et al., 2015). The dormant 128 

and active microbial physiology has been considered explicitly in the new version of model 129 

(MIC-TEM-dormancy).  The revised model was parameterized, validated, and then applied to 130 

evaluate the carbon dynamics during the last and this centuries in the Arctic terrestrial 131 

ecosystems (north 45 º°N above). By comparing the results of MIC-TEM-dormancy and MIC-132 

TEM, we can show that incorporating microbial dormancy may produce a much different 133 

prediction in historical and future carbon budget. 134 

 and demonstrate the essential role of microbial dormancy.  135 

 136 

2. Methods 137 

2.1 Overview 138 

Due to the importance of microbial dormancy, some recent work has been done to consider 139 

the metabolic activation and deactivation of microbes in soil and its effects on soil carbon (C) 140 

dynamics and climate feedbacks (Wang et al., 2015; Salazar et al., 2018). For example, Wang et 141 

al., (2015) has incorporated transformation processes between active and dormant states to 142 

developed two versions of MEND, that is, MEND with and without dormancy. The two versions 143 

of the model have been applied to quantify model the carbon decomposition in of laboratory 144 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metabolic-activation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/deactivation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/micro-organism
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-carbon
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incubations of four soils. Salazar et al. (, 2018) have also taken ook microbial dormancy into 145 

account to compare their predictions of microbial biomass and soil heterotrophic respiration (RH) 146 

under simulated cycles of stressful (dryness) and favorable (wet pulses) conditions.  Our study 147 

extend those modeling studies to the whole Arctic region by developing a more detailed 148 

biogeochemistry model considering the dormancy impacts. In  Below, this paper, fFirst, we first 149 

describe how we developedd the new model (MIC-TEM-dormancy) by incorporating the 150 

microbial dormancy trait into an existing microbial-based biogeochemistry model (MIC-TEM). 151 

Second, we discuss how conduct the parameterization and validation of MIC-TEM-dormancy 152 

model were conducted using observed net ecosystem exchange data, and heterotrophic respiration 153 

data at representative sites have been shown. Third, we presented how applyied the model was 154 

applied to to northern high latitudes (above 45 º°N) for the 20th and 21st centuries and , discussed 155 

to demonstrate the dormancy effects on regional carbon budget.  156 

 157 

2.2 Model description.  158 

A non-dormancy version of biogeochemistry model (MIC-TEM) has been developed by 159 

incorporating a microbial module (Allison et al., 2010) into an extant large-scale biogeochemical 160 

model (TEM) to explicitly (Zhuang et al., 2001, 2002, 2003) consider the effects of microbial 161 

dynamics and enzyme kinetics on carbon dynamics (Zha & Zhuang, 2018). Here we further 162 

advanced the MIC-TEM by incorporating algorithms that describe the effects of microbial 163 

dormancy dynamics based on He et al. (2015). Different from He et al. (2015), in which 164 

microbial module was driven with existing data of carbon stocks and fluxes, our study 165 

incorporated the microbial module into an extant MIC-TEM that simulates carbon data 166 

dynamically. This coupling enables us to extrapolate our model to whole northern high-latitudes 167 
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region, rather than only for temperate forest region in He et al. (2015).  In our new model (MIC-168 

TEM-dormancy), microbial biomass pool was divided into two fractions, including the dormant 169 

and active microbial biomass pools. The two microbial biomass pools and the reversible 170 

transition between them have been considered explicitly in the new model (Figure 1), which was 171 

ignored in MIC-TEM (Figure 1).  172 

In previous MIC-TEM, heterotrophic respiration (RH) is calculated as: 173 

RH=ASSIM*(1-CUE)                                            (1) 174 

Where ASSIM and CUE represent microbial assimilation and carbon use efficiency, respectively.  175 

For detailed carbon dynamics in MIC-TEM, see Zha & Zhuang (2018).  176 

Here we revised MIC-TEM by incorporating microbial dormancy dynamics according to 177 

He et al. (2015). In the new model (MIC-TEM-dormancy), the soil heterotrophic respiration RH is 178 

comprised of three parts: the maintenance respiration from the active and dormant microorganisms 179 

and the CO2 production through the process of microbial assimilation (He et al., 2015):  180 

RH = mRQ
10mic

temp−15

10 Ba + βmRQ
10mic

temp−15

10 Bd + CO2                                (2) 181 

where the first two terms are maintenance respiration from the active and dormant 182 

microorganisms, respectively. The last term is the CO2 produced during the process of microbial 183 

assimilation.  184 

For first two terms, Ba and Bd represents the active and dormant microbial biomass pool, 185 

respectively. The parameter mR denotes the specific maintenance rate at active state (h-1), and  186 

is the ratio of dormant maintenance rate to active maintenance rate. Thus, mR denotes the 187 

maximum specific maintenance rate at dormant state. Temperature sensitivity was expressed as 188 

the Q10 function (Q10

temp−15

10 ), where temp is soil temperature at top 20 cm (units: ℃).  189 
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For the third term, the CO2 produced through microbial assimilation is calculated as in He et al. 190 

(2015) and Allison et al. (2010): 191 

                                           CO2=ASSIM*(1-Yg)                                          (3) 192 

Where ASSIM represents the variable of microbial assimilation and the parameter Yg represents 193 

carbon use efficiency.  Microbial assimilation (ASSIM) is calculated as in He et al. (2015): 194 

                                   ASSIM =
1

Yg
 
Φ

α
 mR Q10enz

temp−15

10   Ba (
CNsoil

CNmic
)0.6                                    (4) 195 

Here parameter  is called the maintenance weight (h-1), CNsoil and CNmic denotes the C:N ratios 196 

of soil and that of microbial biomass to consider substrate quality. Besides, Φ is the called substrate 197 

saturation level and defined as in He et al. (2015) and Wang et al. (2014): 198 

                                             Φ =
S

Ks+S
                                                      (5) 199 

Where Ks is the half saturation constant for substrate uptake as indicated by the Michaelis–Menten 200 

kinetic, and S is soluble C substrates that are directly accessible for microbial assimilation (Wang 201 

et al., 2014). Here we quantified concentration of soluble C substrates that are directly accessible 202 

for microbial assimilation by using conceptual framework from Davidson et al. (2012): 203 

S = Soluble C ∗ Dliq ∗ θ3                                        (6) 204 

The term ‘Soluble C’ denotes the state variable of soluble carbon pool. Dliq is the diffusion 205 

coefficient of the substrate in the liquid phase, and is formulated as:  206 

Dliq = 1/(1-BD/PD)3    (7). 207 

Where BD is the bulk density and PD is the soil particle density. θ  is the volumetric soil moisture. 208 

Different from MIC-TEM, the transitions between active and dormant microbial biomass are 209 

included in MIC-TEM-dormancy. We used Ba→d and Bd→a denotes the transition from the active 210 



 9 

to dormant microbe and from the dormant to active microbe, respectively (He et al., 2015; Wang 211 

et al., 2014): 212 

Ba→d = (1 − Φ)mRQ
10mic

temp−15

10 Ba                          (87) 213 

     Bd→a= ΦmRQ
10mic

temp−15

10 Bd                               (98) 214 

Where Ba→d  and Bd→a  denote the transition from the active to dormant microbe and from the 215 

dormant to active microbe, respectively (He et al., 2015; Wang et al., 2014).   216 

Thus, dDormancy rate is affected by active and dormant biomass, substrate availability (Ba, Bd), 217 

soil temperature (temp) and soil moisture (θ in Φ). 218 

The active microbial biomass (Ba) is modeled as (He et al., 2015; Wang et al., 2014):  219 

  
dBa

dt
= ASSIM ∗ Yg − mRQ

10mic

temp−15

10 Ba − Ba→d + Bd→a − DEATH − EPROD                (109) 220 

Where DEATH and EPROD denotes microbial biomass death and enzyme production, which are 221 

modeled as proportional to active microbial biomass with constant rates rdeath and rEnzProd (Allison 222 

et al., 2010): 223 

                                   DEATH = rdeath ∗ Ba                                                                    (110) 224 

                                  EPROD = rEnzProd ∗ Ba                                                                 (121) 225 

Where rdeath and rEnzProd are the rate constants of microbial death and enzyme production, 226 

respectively.  227 

The dormant microbial biomass (Bd) is modeled as (He et al., 2015; Wang et al., 2014):  228 

                                        
dBd

dt
= −βmRQ

10mic

temp−15

10 Bd + Ba→d − Bd→a                                       (132) 229 

The Soluble C pool is modeled as (He et al., 2015; Allison et al., 2010):  230 

d Soluble C

dt
= DECAY − ASSIM + ELOSS + DEATH        (143) 231 
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Where DECAY represents the enzymatic decay of soil organic carbon (SOC), and ELOSS 232 

represents the loss of enzyme.  233 

DECAY is regulated by enzyme biomass (ENZ), soil organic carbon (SOC), soil temperature, and 234 

substrate quality (He et al., 2015): 235 

DECAY = Vmax ∗ Q10enz

temp−15

10 ∗ ENZ ∗
SOC

Kmuptake+SOC
∗ (120 − CNsoil )           (154) 236 

Where Vmax is the maximum SOC decay rate, Kmuptake is half saturation constant for enzymatic 237 

decay. 238 

ELOSS is modeled as a first-order process (Allison et al., 2010) to represent enzyme turnover: 239 

                                ELOSS = renzloss ∗ ENZ                                    (165) 240 

Where renzloss is the rate constant of enzyme loss.   241 

The soil organic carbon pool (SOC) is modeled as: 242 

  dSOC

dt
= Litterfall − DECAY                (176) 243 

Where Litterfall is estimated as a function of vegetation carbon (Zhuang et al., 2010).  244 

Last, enzyme pool (ENZ) is modeled as:  245 

                            
dENZ

dt
=EPROD-ELOSS                                          (187) 246 

With the modification of microbial carbon dynamics by considering microbial life-history trait, 247 

soil decomposition is changed since it is controlled by microbes. When microbial dormancy is 248 

considered, the number of active microbes that participate in soil decomposition is much less than 249 

that we considered beforedifferent. The changes in soil decomposition directly influence the 250 

amount of soil respiration, and further influence soil nitrogen (N) mineralization that determines 251 

soil N availability for plants, affecting gross primary production (GPP). Since both GPP and soil 252 
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respiration (RH) can be affected by microbial dormancy, net ecosystem production (NEP) will also 253 

be affected.  254 

 255 

2.3 Model parameterization and validation 256 

The detailed description of parameters that are related to microbial dormancy can be found 257 

in He et al. (2015) (Table 1). Here we calibrated the MIC-TEM-dormancy at six representative 258 

sites with gap-filled monthly net ecosystem productivity (NEP, gCm-2mon-1) data in northern high 259 

latitudes (Table 2). Site-level climatic data and soil texture data were organized for driving model. 260 

All sites information can be found on AmeriFlux network (Davidson et al., 2000). The results for 261 

model parameterization were presented in Figure 2. We conducted the parameterization using a 262 

global optimization algorithm known as SCE-UA (Shuffled complex evolution) method (Duan et 263 

al., 1994). An ensemble of 50 independent sets of parameters were performed based on prior ranges 264 

from literature (Table 1) to minimize the difference between the monthly simulated and measured 265 

NEP at the chosen sites. The cost function of the minimization is: 266 

Obj = ∑ (NEPobs,i − NEPsim,i)
2k

i=1                                        (17) 267 

Where NEPobs,i and NEPsim,i are the observed and simulated NEP, respectively. k is the number of 268 

data pairs for comparison. Except for the parameters of microbial dormancy, other parameters are 269 

derived directly from MIC-TEM (Zha & Zhuang, 2018). The optimized parameters were used for 270 

model validation and regional simulations.  271 

For model validation, we chose another six sites that containing monthly NEP data from 272 

AmeriFlux network (Table 3). Moreover, we also conducted site-level validations with monthly 273 

soil respiration data from AmeriFlux network and Fluxnet dataset. The site information was 274 

provided in Table 4. For these sites, we assumed 50% of soil respiration was heterotrophic 275 
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respiration (RH) for forest (Hanson et al., 2000), 60% and 70% of that was RH for grassland (Wang 276 

et al., 2009) and tundra (Billings et al., 1977). Because there is a  of limited ations in the amount 277 

of available RH datathere is a limited amount of measured data of heterotrophic respiration, we 278 

could not conduct a regional validation for all pixels in northern high latitudes.  Instead, we 279 

extracted 61 sites providing data of average annual heterotrophic respiration from ORNL global 280 

Soil Respiration Dataset (https://daac.ornl.gov/SOILS/guides/SRDB_V4.html, Bond-Lamberty et 281 

al., 2018) for model validation. The site-level observed average annual RH was used to compare 282 

with simulated annual RH by MIC-TEM-dormancy and MIC-TEM.  The new model (MIC-TEM-283 

dormancy) was run at monthly time step to keep consistent with the time step of MIC-TEM.  284 

Although microbial dynamics occur at fine temporal scales (Tang & Riley, 2014), we can still 285 

quantify the cumulative impacts of microbial dynamics on carbon and nitrogen cycling at monthly 286 

time by not changing the model structure. 287 

 288 

2.4 Spatial extrapolation  289 

For historical simulations during the 20th century, two sets of regional simulations using 290 

MIC-TEM-dormancy and MIC-TEM at a spatial resolution of 0.5° latitude × 0.5° longitude were 291 

conducted. Our model simulation contains two parts: spin-up and transient simulation. A typical 292 

spin-up was conducted to get the model to a steady state for each spatial location, which will be 293 

used as initial conditions for transient simulations (McGuire et al., 1992). During spin-up 294 

procedure, cyclic forcing data was used to force the model run, and repeated continuously until 295 

dynamic equilibrium was achieved at which the modeled state variables show a cyclic pattern or 296 

become constant.  Specifically, this study used the monthly historical climate data from 1900 to 297 

1940 to repeatedly drive the model for the spin-up. Before spin-up procedure, the model was 298 

https://daac.ornl.gov/SOILS/guides/SRDB_V4.html
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initialized with default built-in carbon stocks (Raich et al., 1991). During transient simulations, 299 

the calibrated ecosystem-specific parameters were used for regional simulations. The previous 300 

dynamic equilibrium was used as initial value for transient simulation. The historical climatic 301 

forcing data, including the monthly air temperature, precipitation, cloudiness, and atmospheric 302 

CO2 concentrations, were organized from the Climatic Research Unit (CRU TS3.1) from the 303 

University of East Anglia (Harris et al., 2014). We also used gGridded data of soil texture (Zhuang 304 

et al., 2003), elevation (Zhuang et al., 2015), and potential natural vegetation (Melillo et al., 1993) 305 

from literatures were also used. In our model, we assumed that soil texture, elevation, and potential 306 

natural vegetation data only vary spatially, not vary over time (Zhuang et al., 2015).  307 

In addition, regional simulations over the 21st century were conducted under two 308 

Intergovernmental Panel on Climate Change (IPCC) climate scenarios (RCP 2.6 and RCP 8.5). 309 

The future climatic forcing data under these two climate change scenarios were derived from the 310 

HadGEM2-ESmodel, which is a member of CMIP5project213 (https://esgf-311 

node.llnl.gov/search/cmip5/). Then the regional estimations were obtained by summing up the 312 

gridded outputs for our study region. The positive simulated NEP represents a CO2 sink from the 313 

atmosphere to terrestrial ecosystems, while a negative value represents a source of CO2 from 314 

terrestrial ecosystems to the atmosphere. 315 

2.5 Parameter equifinality effects uncertainty  316 

Our previous studies using TEM has demonstrated that equifinality derived from site-level 317 

parameterization will affect the uncertainty in the estimation of regional carbon dynamics (Tang 318 

and Zhuang, 2008, 2009).  Here equifinality refers to that a number of sets of parameters result in 319 

model simulations that all match the data similarly well.  To quantify this e effect on our simulation 320 

uncertainty, parameter uncertainty in our model, we conducted ensemble regional simulations with 321 

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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50 sets of parameters for both historical and future studies. The 50 sets of parameters were obtained 322 

according to the method in Tang and Zhuang (2008).  323 

3. Results 324 

3.1 Inversed Model Parameters and model validation 325 

Using SCE-UA ensemble method, 50 independent sets of parameters were converged to 326 

minimize the objective function. Then the optimized parameters are calculated as the mean of these 327 

50 sets of inversed parameters. The boxplot of parameter posterior distributions reflects different 328 

ecosystem properties at these sites (Figure 3). For instance, growth yieldcarbon use efficiency 329 

(CUE) was  much higher in tundra types than in forests, meaning microorganisms in environment 330 

with higher energy limitation tend to enhance the efficiency of energy transportation. Besides, 331 

alpha, the maintenance weight, was also  much higher in tundra types than in forests. FThe opposite 332 

can be seen from the plot for parameter beta, the ratio of dormant maintenance rate to specific 333 

maintenance rate for active biomass in tundra types is lower than thatit in forest types. Other 334 

microbial related parameters did not differentiate much among different vegetation types.  335 

After parameterization, the MIC-TEM-dormancy was validated with monthly NEP data for 336 

six representative ecosystems, and the comparisons between monthly observed NEP and 337 

simulated NEP were presented in Figure 4. With the optimized parameters, the dormancy-based 338 

model was used to reproduce NEP to compare with the measured NEP (Table 5). The statistical 339 

analysis shows that R2   ranges from 0.67 for Atqasuk to 0.93 for Bartlett Experimental Forest 340 

(Table 5). Generally, our new model performs better for forest ecosystems than for tundra 341 

ecosystems. Compared with MIC-TEM, which is no dormancy-based, dormancy model performs 342 

better for alpine tundra, temperate coniferous forest, and grassland. For other sites, bothtwo 343 

models show similar performance (Table 5).   Besides, aAnother set of sites with monthly soil 344 
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respiration data were selected to evaluate validate the ability of the estimated ing RH of our 345 

modelconduct model validation.  The comparisons between monthly observed RH and simulated 346 

RH from two contrasting models were conducted (Figure 5). MIC-TEM-dormancy has higher R2 347 

and lower root mean square error (RMSE) (Table 6).  Sixty-one sites with average annual RH in 348 

northern high-latitude regions were used to further evaluate the new model performance. The 349 

dormancy model has lower intercept and slope with R2 of 0.45, while R2 of MIC-TEM is 0.3 350 

(Figure 6). These analyses indicate that new model is more realistic in representing heterotrophic 351 

respiration (RH) by considering microbial dormancy. This difference in RH further affects soil 352 

available nitrogen dynamics, influencing nitrogen uptake by plants, the rate of photosynthesis 353 

and NPP (Zhuang et al., 2015; Zha et al., 2018; Thullner et al., 2005).  354 

 355 

3.2 Regional carbon dynamics during the 20th century  356 

Regional extrapolation with both models estimated a regional carbon sink but with different 357 

magnitudes (Figure 7c). Here positive values of NEP represent sinks of CO2 into terrestrial 358 

ecosystems, while negative values represent sources of CO2 to the atmosphere. With optimized 359 

parameters, MIC-TEM estimated a regional carbon sink of 77.6 Pg with the interannual standard 360 

deviation of 0.21 Pg C yr-1 during the 20th century. However, MIC-TEM-dormancy nearly doubles 361 

the sink at 153.5 Pg with the interannual standard deviation of 0.12 Pg C yr-1 during the last 362 

century, which estimates 75.9 Pg more carbon sink than MIC-TEM does but with less interannual 363 

variation (Figure 7c). At the end of the century, MIC-TEM estimated that NEP reaches 1.0 Pg C 364 

yr-1 in comparison with MIC-TEM-dormancy estimates of 1.5 Pg C yr-1 (Figure 7c). Both models 365 

simulated similar trends for regional NPP, RH and NEP (Figure 7). Generally, they show an 366 

increasing trend in the 20th century except a slight decrease during the 1960s (Figure 7). 367 
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Meanwhile, with optimized parameters, MIC-TEM-dormancy estimated NPP and RH at 7.94 Pg C 368 

yr-1 and 6.4 Pg C yr-1, which are 5.8% and 16.3% less than the estimations from MIC-TEM, 369 

respectively (Figures 7a and 7b). This pronounced difference of NEP between two models comes 370 

from the disparity between the simulated NPP and RH with them since NEP is calculated as the 371 

difference between NPP and RH. Without considering dormancy, MIC-TEM estimates more active 372 

microbial biomass since it assumes the whole microbial biomass pool will participate in soil 373 

decomposition. The fact is only active part of microbial biomass can affect decompose organic 374 

matter decompositionwork for soil decomposition, meaning MIC-TEM overestimates RH. On the 375 

other hand, oOverestimation of RH can induce higher nitrogen uptake by plants, which will 376 

accelerate rate of photosynthesis and further enhance NPP projection. Although MIC-TEM 377 

estimates higher NPP and RH than MIC-TEM-dormancy does, NEP estimated from MIC-TEM is 378 

actually lower.  379 

The average annual seasonal patterns of NPP, RH and NEP during the 1990s were also 380 

organized from regional simulations with two models (Figure 8). Temporally, both two models 381 

projected higher NPP and RH in summer than in winter (Figures 8a and 8b) due to higher soil 382 

temperature and moisture (McGuire et al., 1992). Setting the RH projection from MIC-TEM as a 383 

baseline, MIC-TEM-dormancy averagely projected 33% less RH in summer (May to September), 384 

and 30% more in winter (other months)MIC-TEM produced less RH in winter but higher RH in 385 

summer than MIC-TEM-dormancy (Figure 8b), which indicates that without dormancy, model 386 

tends to estimate lower soil respiration compared to dormancy model due to ignorance of 387 

dormant respiration in winter but estimate higher soil respiration due to higher estimation of 388 

active biomass in summer. In the meantime, seasonal cycle of NPP with MIC-TEM-dormancy 389 

shows a relative flattening pattern compared with MIC-TEM, which is similar to seasonal cycle 390 
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of RH (Figure 8a). This is because higher RH can cause higher NPP due to the reasons we have 391 

mentioned above. Though RH and NPP show the similar seasonal patterns, NEP can still show 392 

different pattern since it’s the difference between NPP and RH. Here seasonal cycles of NEP with 393 

models are close to each other (Figure 8c), but dormancy model projected slightly higher NEP in 394 

summer. Besides, setting the RH projection from MIC-TEM as baseline, MIC-TEM-dormancy 395 

averagely projected 33% less RH in summer (May to September), and 30% more in winter (other 396 

months). This suggested that relative difference of RH between two models in summer was 397 

higher than in winter.  398 

3.3 Regional carbon dynamics during the 21st century 399 

Under the RCP 8.5 scenario, both models estimated the region acts as a carbon sink (Figure 400 

9). The MIC-TEM-dormancy predictedesd  a net C accumulation sequestration of 129.9 Pg by 401 

the end of this century. that the sink is 129.9 Pg with the interannual standard deviation of 0.13 402 

Pg C yr-1, whereas MIC-TEM estimates a net C accumulation sequestration of 79.5 Pg the sink is 403 

79.5 Pg with the interannual standard deviation of 0.37 Pg C yr-1 during the 21st century (Figure 404 

9). Thus, MIC-TEM-dormancy estimates an increase of 50.4 Pg regional carbon sequestration 405 

relative to MIC-TEM,  but with less interannual variation (Figure 9). Under this scenario, bBoth 406 

models predict similar temporal trends for NEP, namely increasing from the 2000s and then 407 

decreasing from the 2070s onward (Figure 9). MIC-TEM-dormancy predicts that carbon sink 408 

reaches 1.36 Pg C yr-1 in the 2090s, which is 0.26 Pg C yr-1 more than projection of MIC-TEM. 409 

Moreover, MIC-TEM-dormancy estimated NPP and RH at 10.2 Pg C yr-1 and 8.9 Pg C yr-1, 410 

which are 1.3 Pg C yr-1 and 1.8 Pg C yr-1 less than the estimations from MIC-TEM, respectively 411 

(Figure 9).  412 
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Under the RCP 2.6 scenario, the cumulative NEP from two models diverged by 125.2 Pg C 413 

by 2100. The trajectory of inter-annual NEP estimated with the two models also diverged. The 414 

MIC-TEM predicted the region fluctuates between carbon sinks and sources, and totally acts as a 415 

carbon source of 1.6 Pg C with the interannual standard deviation of 0.24 Pg C yr-1 during the 416 

21st century. In contrast, MIC-TEM-dormancy projected the region acts as a carbon sink of 123.6 417 

Pg C with anthe interannual standard deviation of 0.1 Pg C yr-1 (Figure 9). MIC-TEM-dormancy 418 

estimates NPP and RH at 9.9 Pg C yr-1 and 8.7 Pg C yr-1, which are 0.5 Pg C yr-1 and 1.7 Pg C yr-419 

1 less than the estimations from MIC-TEM, respectively (Figure 9). Moreover, simulations under 420 

the two contrasting climate scenarios (RCP 2.6 and RCP 8.5) exhibit a large difference of 81.1 421 

Pg C of cumulative NEP during the 21st century by MIC-TEM, but only 6.3 Pg C of that by 422 

MIC-TEM-dormancy. This difference indicates microbes provide a resistant response to climate 423 

change due to dormancy to some extent (Treseder et al., 2011).  424 

The average annual seasonal patterns of NPP, RH and NEP during the 2990s by two models were 425 

also presented (Figure 10). MIC-TEM-dormancy estimated higher RH in winter, but lower RH in 426 

summer under both future scenarios (Figure 10). NPP is the same in winter with or without 427 

dormancy, and in the late summer is higher with than that without dormancy (i.e. opposite to 428 

RH), especially in the RCP 8.5 scenario. Similar seasonal cycle pattern appears for NPP 429 

projection. The combined flattening patterns of NPP and RH result in different patterns for NEP. 430 

Under the RCP 2.6 scenario, MIC-TEM-dormancy predicts higher NEP from June to October, 431 

but lower NEP from January to April compared similar NEP in other months to MIC-TEM 432 

(Figure 10). Under the RCP 8.5 scenario, MIC-TEM-dormancy predicts higher NEP from June 433 

to September, but much lower NEP in other months than MIC-TEM (Figure 10). 434 
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3.4 Regional uncertainty considering equifinality effects Ensemble simulations during for 435 

20th and 21st centuries 436 

The ensemble simulations for the 20th century is shown in Figure 11. Given the 437 

uncertainty in parameters, MIC-TEM-dormancy predicted that the regional cumulative carbon 438 

ranges from a carbon loss of 28.2 Pg to a carbon sink of 362.1 Pg by different ensemble 439 

members, with a mean of 71.2±54.8 Pg (Figure 11). For the 21st century, MIC-TEM-dormancy 440 

predicted that the region acts from a carbon source of 49.3 Pg C to a carbon sink of 296.5 Pg C, 441 

with a mean of 112.7±116.5 Pg under the RCP 2.6 scenario (Figure 12). Under the RCP 8.5 442 

scenario, MIC-TEM-dormancy predicted that the region acts from a carbon source of 27.1 Pg C 443 

to a carbon sink of 401.3 Pg C, with a mean of 143.1±162.5 Pg (Figure 12).  444 

4. Discussion 445 

Soils are the largest carbon repository in the terrestrial biosphere and hold 2.5 times more 446 

carbon than the atmosphere (Frey et al., 2013; Schlesinger & Andrews, 2000). Especially, a 447 

significant portion of soil organic carbon currently stored in northern high latitudes region 448 

(Tarnocai et al., 2009). Besides, the magnitude of the warming in these regions is larger, almost 449 

twice, that of the global average climate over this region has warmed in recent decades (Serreze 450 

& Francis, 2006) and the changing climate is expected to alter the carbon cycle through 451 

influencing the activities of microorganisms in controlling soil decomposition (Manzoni et al., 452 

2012; Melillo et al., 2011). Therefore, explicit consideration of microbial traits and functions in 453 

large-scale biogeochemistry models is necessary for better quantification of carbon-climate 454 

feedbacks (Thullner et al., 2005; Wang et al., 2015).  Our regional simulations with two 455 

contrasting models (MIC-TEM, MIC-TEM-dormancy) indicate the region was a carbon sink in 456 

past decades, which is consistent with results from other process-based models (White et al., 457 
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2000; Houghton et al., 2007; McGuire et al., 2009; Schimel, 2013). However, the magnitudes of 458 

this sink are quite different in two models. Moreover, MIC-TEM-dormancy predicts the sink will 459 

decrease under both RCP 8.5 and RCP 2.6 scenarios during the 21st century, while MIC-TEM 460 

projects that the sink will increase under the RCP 8.5 but change to carbon source under the RCP 461 

2.6 scenario. Estimations based on models without dormancy could fit observations of RH as well 462 

as estimations with dormancy, but at the cost of underestimating microbial biomass (Wang et al., 463 

2014). Differences in predicted RH with and without dormancy increase with temperature and 464 

with the length of the dry periods between wetting events (Salazar et al., 2018). The large 465 

difference in two models suggests the importance of incorporating microbial dormancy effects.   466 

The large bias between dormancy and non-dormancy models mainly comes from two parts.  467 

First, many most important microbial activities such as soil organic carbon decomposition and 468 

nutrient cycling largely depend on the active fraction of microbial communities, not total 469 

microbial biomass (Wang et al., 2014; Blagodatsky et al., 2000). However, only a small part 470 

(about 0.1-2%, seldom exceed 5%) of the total soil microbial biomass is recognized to be active 471 

under natural conditions (Blagodatsky et al., 2011; Werf & Verstraete, 1987). Thus, dormancy 472 

could be a prominent feature in soil systems (Wang et al., 2014). Without considering dormancy, 473 

the “effective” microbial biomass for soil decomposition could be overestimated, resulting in 474 

overestimation of heterotrophic respiration (He et al., 2015). Our regional estimate of RH is 6.4 475 

Pg C yr-1 during the 20th century by MIC-TEM-dormancy, while 7.7 Pg C yr-1 by MIC-TEM. No 476 

dormancy model simulated 20.3% higher respiration than dormancy model. For future 477 

simulations, MIC-TEM-dormancy predicted 8.7 Pg C yr-1 and 9.0 Pg C yr-1 of RH under RCP 2.6 478 

and RCP 8.5 scenarios during the 21st century, respectively. Nevertheless, no dormancy model 479 

simulated 19.5% and 21.2% higher respiration than dormancy model under RCP 2.6 and RCP 8.5 480 
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scenarios, respectively. He et al. (2015) predicted total soil RH of all temperate forests (25°N-481 

50°N) from the dormancy model amounted to 7.28 Pg C yr-1 and 8.83 Pg C yr-1 from a no-482 

dormancy model, which is 21.3% higher than the dormancy model. Although their study region 483 

and simulation period are different from our study, the results can still be comparable.  Both 484 

studies indicated that the magnitude of RH and proportion from no-dormancy model are higher 485 

than dormancy models. Second, high soil respiration stimulates N mineralization in soils 486 

(Zhuang et al., 2001, 2002), making more nutrients for photosynthesis of plants (Raich et al., 487 

1991; McGuire et al., 1995). Therefore, NPP will be higher due to the N enrichment from higher 488 

RH. However, how NEP will change is still unclear. Our regional estimate of NEP during the 20th 489 

century by MIC-TEM-dormancy is 1.54 Pg C yr-1, and is 0.78 Pg C yr-1 by MIC-TEM. Our 490 

estimates of the northern extratropical NEP in the 1980s (1.61 Pg C yr-1 with MIC-TEM-491 

dormancy and 0.84 Pg C yr-1 with MIC-TEM) are within ranges (0.6 to 2.3 PgC yr-1) reported in 492 

the literature for northern regions (Schimel et al., (2001). reported that a range of estimates of the 493 

northern extratropical NEP is from 0.6 to 2.3 PgC yr-1 in the 1980s. In comparison with our 494 

estimates of 1.61 Pg C yr-1 with MIC-TEM-dormancy and 0.84 Pg C yr-1 with MIC-TEM, our 495 

regional estimates of NEP are in reasonable range. Moreover, our predicted time trajectory trend 496 

of NEP in the 21st century under the RCP 2.6 scenario is very similar to the finding of White et 497 

al. (2000), indicating that NEP increases from the 2000s to the 2070s, and then decreases in the 498 

2090s. Moreover, future simulations under two contrasting climate scenarios (RCP 2.6 and RCP 499 

8.5) exhibit a large difference of 81.1 Pg C of cumulative NEP during the 21st century by MIC-500 

TEM, but only 6.3 Pg C of that by MIC-TEM-dormancy. This difference indicates microbes 501 

provide a resistant response to climate change due to dormancy to some extent (Treseder et al., 502 

2011).  503 
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Although our dormancy model can project reasonable carbon fluxes and indicate the 504 

importance of incorporating microbial dormancy when compared with MIC-TEMno dormancy 505 

model (MIC-TEM; Zha & Zhuang et al., 2018), there are some other microbial traits have not yet 506 

been considered in our model. For instance, one vital common evolutionary trait of microbe is 507 

the community shift (Wang et al., 2015) with changing environment, including warming, N 508 

fertilization and precipitation (Treseder et al., 2011; Frey et al., 2013; Allison et al., 2009; Evans 509 

& Wallenstein, 2011). Community shift will influence microbial physiology, temperature 510 

sensitivity and growth rates (Classen et al., 2015), which will further affect the rate of soil 511 

decomposition and other carbon dynamics (Treseder et al., 2011; Schimel & Schaeffer, 2012; 512 

Todd-Brown et al., 2011). Moreover, microbial acclimation is another important trait to affect 513 

soil decomposition. Recent studies have found the capacity of the microbial community to 514 

maintain the warming-induced elevated respiration could decrease over time because of 515 

acclimation (Melillo et al. 1993; Todd-Brown et al., 2011). This mechanism of adaption to a new 516 

temperature regime shall be factored into future soil decomposition analysis. Besides, microbial 517 

community composition was ignored in our model. We didn’t separate among functional 518 

microbial groups, but gather microbes into one “box”. However, microbial community 519 

composition could influence ecosystem functioning, and their variance in responses to 520 

environmental conditions could alter the prediction of the rates of decomposition of organic 521 

material (Balser et al. 2002; Fierer et al. 2007). Especially, some narrowly-distributed functions 522 

can be more sensitive to microbial community composition, and these might benefit most from 523 

explicit consideration of distinguishing functional groups in ecosystem models (McGuire & 524 

Treseder, 2010; Schimel 1995). Thus, functional dissimilarity in microbial communities can be 525 

considered in next step for model development (Strickland et al., 2009; Moorhead et al., 2006). 526 



 23 

Moreover, microbial acclimation, a mechanism of adaption to a new temperature regime, is 527 

another important trait to affect soil decomposition. Recent studies have found that the warming-528 

induced elevated respiration of the microbial community could decrease over time because of 529 

acclimation (Melillo et al. 1993; Todd-Brown et al., 2011). This mechanism shall be factored 530 

into future soil decomposition analysis. 531 

Except for model limitations mentioned aboveabove model limitations, additional 532 

uncertainties may come from inadequate model parameterization and model assumptions. For 533 

example, a critical microbial parameter, carbon use efficiency (CUE), is a primary control to soil 534 

CO2 efflux. Higher CUE indicates more microbial growth and more carbon uptake by plants, 535 

while lower CUE indicates higher soil decomposition (Manzoni et al., 2012). Theoretical and 536 

empirical studies have suggested that CUE depends on both temperature and substrate quality 537 

(Frey et al., 2013) and decreases as temperature increases and nutrient availability decreases 538 

(Manzoni et al., 2012).  Our study considered the CUE sensitivity to temperature, but not nutrient 539 

availability. On the other hand, some model assumptions can also cause uncertainties. For 540 

example, we assumed that vegetation will not change during the transient simulation. However, 541 

over the past few decades in northern high latitudes, temperature increases have led to vegetation 542 

shift from one type to another (Hansen et al., 2006; White et al., 2000). The vegetation changes 543 

will affect carbon cycling in these ecosystems.  544 

 545 

5. Conclusions 546 

This study incorporated microbial dormancy into a detailed microbial-based soil 547 

decomposition biogeochemistry model to examine the fate of large Arctic soil carbon under 548 

changing climate conditions.  Regional simulations using MIC-TEM-dormancy indicated that, 549 
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over the 20th century, the region is a carbon sink of 153.5 Pg. This sink could decrease to 129.9 550 

Pg under the RCP 8.5 scenario or 123.6 Pg under the RCP 2.6 scenario during the 21st century. 551 

Whether considering microbial dormancy or not can cause large differences in soil 552 

decomposition estimation between two models. Meanwhile, due to available nitrogen affected by 553 

soil decomposition, net primary production is consequently influenced in these two centuries. 554 

The combined changes in soil decomposition and net primary production led to large differences 555 

in carbon budget estimation between two models. Compared with MIC-TEM, MIC-TEM-556 

dormancy projected 75.9 Pg more C stored in the terrestrial ecosystems over the last century, 557 

50.4 Pg and 125.2 Pg more C under the RCP 8.5 and RCP 2.6 scenarios, respectively. This study 558 

highlights the importance of the representation of microbial dormancy in earth system models in 559 

order to adequately quantify the carbon dynamics in northern high latitudes. 560 
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 906 
Figure 1. Framework of the dormancy model: microbial biomass is split into two parts, active 907 
microbial biomass and dormant microbial biomass (shown in the green dashed circle). 908 
Maintenance respiration from these two parts, and the CO2 production through microbial 909 
assimilation contributes to heterotrophic respiration. The model was revised based on Zha & 910 
Zhuang (2018).  911 
  912 
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 913 
Figure 2. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 914 
tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 915 
coniferous forest), (d) Univ. of Mich. Biological Station (Temperate deciduous forest), (e) 916 
KUOM Turfgrass Field (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different. 917 
Error bars represent standard errors among daily measure data in one month. 918 
  919 
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 920 

 921 
Figure 3. Boxplot of parameter posterior distribution that are obtained after ensemble inverse 922 
modeling for MIC-TEM-dormancy all six sites: US-Ivo: Ivotuk (alpine tundra), CA-NS3: UCI-923 
1964 burn site (boreal forest), US-Ho1: Howland Forest (temperate coniferous forest), US-UMB: 924 
Univ. of Mich. Biological Station (temperate deciduous forest), US-KUT: KUOM Turfgrass 925 
Field (grassland), US-Atq: Atqasuk (wet tundra). 926 
  927 
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 928 
Figure 4. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 929 
tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 930 
coniferous forest), (d) Bartlett Experimental Forest (Temperate deciduous forest), (e) Brookings 931 
(Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different.  932 
  933 
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 934 
Figure 5. Comparison between observed and simulated RH (gC m-2mon-1) at: (a) US-EML (alpine 935 
tundra), (b) CA-SJ2 (boreal forest), (c) US-Ho2 (temperate coniferous forest), (d) US-UMB 936 
(Temperate deciduous forest), (e) US-Ro4 (Grassland), and (f) RU-Che (Wet tundra). Note: 937 
scales are different.  938 
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 939 
Figure 6. Linear regression between simulated and observed annual RH (gC m-2yr-1) for: (a) MIC-940 
TEM-dormancy, and (b) MIC-TEM.  941 
 942 
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 943 

 944 

Figure 7. Simulated annual net primary production (NPP, top panel), heterotrophic respiration (RH, 945 

center panel) and net ecosystem production (NEP, bottom panel) during the 20th century by 946 

dormancy model and MIC-TEM, respectively. 947 
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 948 

Figure 8. Annual seasonal pattern of simulated (a) net primary production (NPP, top panel), (b) 949 
heterotrophic respiration (RH, center panel) and (c) net ecosystem production (NEP, bottom 950 
panel) during the 1990s from dormancy model and MIC-TEM. 951 

(a) 

(b) 

(c) 
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 952 

Figure 9. Predicted changes in carbon fluxes: (i) NPP, (ii) RH, and (iii) NEP for all land areas north 953 
of 45 º°N in response to transient climate change under the RCP 8.5 scenario (left panel) and RCP 954 
2.6 scenario (right panel) with dormancy model and MIC-TEM, respectively. The decadal running 955 
mean is applied.  956 
 957 
 958 

 959 
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(a) 968 

 969 

(b)  970 

 971 

Figure 10. Annual seasonal pattern of simulated net primary production (NPP, top panel), 972 
heterotrophic respiration (RH, center panel) and net ecosystem production (NEP, bottom panel) 973 
during the 2090s from dormancy model and MIC-TEM under: (a) RCP 2.6 scenario (top panel) 974 
and (b) RCP 8.5 scenario (bottom panel). 975 
 976 

 977 
 978 
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  979 
 980 
Figure 11. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 981 
(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM-dormancy 982 
with ensemble of parameters. 983 
 984 
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 1010 
 1011 
 1012 

  1013 
Figure 12. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 1014 
(RH, center panel) and net ecosystem production (NEP, bottom panel) under RCP 8.5 scenario 1015 
(left panel) and RCP 2.6 scenario (right panel) by MIC-TEM-dormancy with ensemble of 1016 
parameters. The decadal running mean is applied. The grey area represents the upper and lower 1017 
bounds of simulations. 1018 
  1019 
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Table 1. Parameters associated with detailed microbial dormancy in MIC-TEM-dormancy 1020 
 1021 

 1022 
 1023 
 1024 

parameter unit description Parameter range  references 

mR h-1 Specific maintenance rate at active state [0.001, 0.08] Wang et al. (2014) 
     

Q10mic - 

Temperature effects on microbial metabolic activity (rate change per 10 

°C increase in temperature). Based on 0.65 eV activation energy for 

soils 

[1.5, 3.5] He et al. (2015) 

     

Q10enz - 
Temperature effects on enzyme activity (rate change per 10 °C increase 

in temperature). Based on 6% rate increase per degree Celsius 
1.79 He et al. (2015) 

     

𝜶 - the ratio of mR to the sum of maximum specific growth rate [0.01, 0.5]  Wang et al. (2014) 
     

β - Ratio of dormant microbial maintenance rate to mR [0.0005, 0.005] Wang et al. (2014) 
     

Yg - carbon use efficiency [0.3, 0.7] He et al. (2015) 
     

Ks mgC cm-2 Half-saturation constant for directly accessible substrate [0.01, 10] Wang et al. (2014) 

     

Kmuptake mgC cm-2 
Half-saturation constant for enzymatic 

decay of SOC 
[200, 1000] He et al. (2015) 

rdeath h-1 Potential rate of microbial death [2e-4, 2e-3] Allison et al. (2010) 
     

rEnzProd h-1 Enzyme production rate of microbe [1e-4, 8e-4] He et al. (2015) 
     

renzloss h-1 Enzyme loss rate [0.0005, 0.002] Allison et al. (2010) 
     

Vmax mgC cm-2 h-1 Maximum SOC decay rate [1e-4, 5e-3] He et al. (2015) 
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Table 2. Site description and measured NEP data used to calibrate MIC-TEM-dormancy 1025 

 1026 
 1027 
 1028 
 1029 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 
(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data range Citations 

Univ. of Mich. 

Biological 

Station 

84.71W 

45.56 N 

 

234 

Temperate 

deciduous 

forest 

Located within a protected forest owned by the 

University of Michigan. Mean annual temperature is 

5.83 ̊C with mean annual precipitation of 803mm 

01/2005-

12/2006 
Gough et al. (2013) 

       
Howland Forest 

(main tower) 

68.74W 

45.20N 

60 Temperate 

coniferous   

forest 

Closed coniferous forest, minimal disturbance. 01/2004-

12/2004 

Davidson et al. (2006) 

       

UCI-1964 burn 

site 

98.38W 

55.91N 

260 Boreal forest Located in a continental boreal forest, dominated by 

black spruce trees, within the BOREAS northern study 

area in central Manitoba, Canada. 

01/2004-

10/2005 

Goulden et al. (2006) 

 

       

KUOM Turfgrass 

Field 

93.19W 

45.0N 

301 Grassland A low-maintenance lawn consisting of cool-season 

turfgrasses. 

01/2006-

12/2008 

Hiller et al. (2011) 

       

Atqasuk 157.41W 

70.47N 

  15 Wet tundra 100 km south of Barrow, Alaska. Variety of moist-wet 

coastal sedge tundra, and moist-tussock tundra surfaces 

in the more well-drained upland. 

01/2005-

12/2006 

Oechel et al. (2014); 

 

       

Ivotuk 155.75W 

68.49N 

568 Alpine tundra 300 km south of Barrow and is located at the foothill of 

the Brooks Range and is classified as tussock sedge, 

dwarf-shrub, moss tundra. 

01/2004-

12/2004 

McEwing et al. (2015) 
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Table 3. Site description and measured NEP data used to validate MIC-TEM-dormancy 1030 
 1031 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data range Citations 

Bartlett 

Experimental Forest 

71.29W/ 

44.06N 

272 Temperate 

deciduous 
forest 

Located within the White Mountains National Forest in north-central 

New Hampshire, USA, with mean annual temperature of 5.61 °C and 
mean annual precipitation of 1246mm. 

01/2005- 

12/2006 

Jenkins et al. (2007); 

Richardson et al. (2007); 
 

       

Howland Forest 

(main tower) 

68.74W/ 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, minimal disturbance. 01/2003- 

12/2003 

Davidson et al. (2006) 

       

UCI-1964 burn site 98.38W/ 

55.91N 

260 Boreal forest Located in a continental boreal forest, dominated by black spruce trees, 

within the BOREAS northern study area in central Manitoba, Canada. 

01/2002- 

12/2003 

Goulden et al. (2006) 

 

 

       

Brookings 96.84W/ 
44.35N 

510 Grassland Located in a private pasture, belonging to the Northern Great Plains 
Rangelands, the grassland is representative of many in the north central 

United States, with seasonal winter conditions and a wet growing 

season. 

01/2005- 
12/2006 

Gilmanov et al. (2005) 

       

Atqasuk 157.41W/ 

70.47N 

15 Wet tundra 100 km south of Barrow, Alaska. Variety of moist-wet coastal sedge 

tundra, and moist-tussock tundra surfaces in the more well-drained 

upland. 

01/2003- 

12/2004 

Oechel et al. (2014); 

 

       

Ivotuk 155.75W/ 
68.49N 

568 Alpine tundra 300 km south of Barrow and is located at the foothill of the Brooks 
Range and is classified as tussock sedge, dwarf-shrub, moss tundra. 

01/2005- 
12/2005 

McEwing et al. (2015) 

 1032 
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Table 4. Site description and measured RH data used to validate MIC-TEM-dormancy model 1033 
 1034 
 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 

Site  

 

Location 

(Longitude (degrees) 

/Latitude (degrees)) 

Elevation 

(m) 

Vegetation type Data range Citations 

US-EML 149.25W/ 

63.88N 

700 Alpine tundra 01/2009- 

12/2013 

Belshe et al. (2012) 

 

      

CA-SJ2 104.65W/ 

53.95N 

      580 Boreal forest 01/2004- 

12/2008 

Coursolle et al. (2006) 

      

US-Ho2 68.75W/ 

45.21N 

91 Temperate coniferous 

forest 

01/2000- 

12/2004 

Davidson et al. (2006) 

 

 

      

US-UMB 84.71W/ 

45.56N 

 234 Temperate deciduous 

forest 

01/2005- 

12/2006 
Gough et al. (2013) 

      

US-Ro4          93.07W/ 

 44.68N 

274 Grasslands 01/2016- 

12/2017 

Griffis et al. (2011) 

 

      

RU-Che          161.34E/ 

  68.61N 

  6 Wet tundra 01/2002- 

12/2005 

Merbold et al. (2009) 
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Table 5. Model validation statistics for Dormancy model and MIC-TEM at six sites with NEP data 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 

Site Name     Vegetation type Models Intercept Slope R-square Adjusted R-square p-value 

Ivotuk     Alpine tundra 
MIC-TEM 0.85 0.83 0.70 0.67 <0.001 

Dormancy -0.51 1.09 0.75 0.73 <0.001 

        

UCI-1964 burn site     Boreal forest 
MIC-TEM 0.18 1.03 0.912 0.9080 <0.001 

Dormancy -0.21 0.96 0.90 0.894 <0.001 

        

Howland Forest 

(main tower) 

Temperate 

coniferous forest 

MIC-TEM 7.29 0.72 0.85 0.83 <0.001 

Dormancy 0.27 1.05 0.89 0.88 <0.001 

        

Bartlett Experimental 

Forest 

Temperate 

deciduous forest 

MIC-TEM -6.05 0.91 0.944 0.941 <0.001 

Dormancy -2.34 1.13 0.93 0.924 <0.001 

        

Brookings       Grassland 
MIC-TEM 3.05 0.71 0.84 0.83 <0.001 

Dormancy 0.17 0.95 0.90 0.898 <0.001 

        

Atqasuk      Wet tundra 
MIC-TEM 7.22 1.85 0.71 0.70 <0.001 

Dormancy 0.19 0.82 0.67 0.66 <0.001 
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Table 6. Model validation statistics for Dormancy model and MIC-TEM at six sites with RH data 1063 
 1064 

Site ID Vegetation type Models Intercept Slope R-square Adjusted R-square RMSE p-value 

US-EML Alpine tundra MIC-TEM 2.90 0.91 0.79 0.78 3.55 <0.001 

Dormancy 1.81 0.74 0.87 0.85 2.69 <0.001 

         

CA-SJ2 Boreal forest MIC-TEM 7.59 1.12 0.84 0.83 9.8 <0.001 

Dormancy 2.6 0.74 0.86 0.85 3.97 <0.001 

         

US-Ho2 Temperate coniferous 

forest 

MIC-TEM 4.07 0.89 0.86 0.84 12.39 <0.001 

Dormancy 6.59 0.71 0.91 0.89 11.83 <0.001 

         

US-UMB Temperate deciduous 

forest 

MIC-TEM -4.73 1.32 0.81 0.8 20.05 <0.001 

Dormancy 13.6 0.67 0.85 0.84 12.94 <0.001 

         

US-Ro4 Grassland MIC-TEM 9.34 0.87 0.81 0.79 11.25 <0.001 

Dormancy 4.81 0.65 0.86 0.84 9.21 <0.001 

         

RU-Che Wet tundra MIC-TEM 2.5 0.67 0.72 0.71 6.24 <0.001 

Dormancy 1.96 0.77 0.81 0.79 5.95 <0.001 


