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Abstract 47 

A large amount of soil carbon in the Arctic terrestrial ecosystems could be emitted as 48 

greenhouse gases in a warming future. However, lacking detailed microbial processes such 49 

as microbial dormancy in current biogeochemistry models might have biased the 50 

quantification of the regional carbon dynamics. Here the effect of microbial dormancy was 51 

incorporated into a biogeochemistry model to improve the quantification for the last and 52 

this century. Compared with the previous model without considering the microbial 53 

dormancy, the new model estimated the regional soils stored 75.9 Pg more C in the 54 

terrestrial ecosystems during the last century, and will store 50.4 Pg and 125.2 Pg more C 55 

under the RCP 8.5 and RCP 2.6 scenarios, respectively, in this century. This study 56 

highlights the importance of the representation of microbial dormancy in earth system 57 

models to adequately quantify the carbon dynamics in the Arctic.  58 
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1. Introduction 76 

The land ecosystems in northern high latitudes (>45 ºN) occupy 22% of the global 77 

surface and store over 40% of the global soil organic carbon (SOC) (McGuire & Hobbie, 1997; 78 

Melillo et al., 1993; Tarnocai et al., 2009; Hugelius et al., 2014). During the past decades, a 79 

greening accompanying a warming in the region has been documented (Zhou et al., 2001; Lloyd 80 

et al., 2002; Stow et al., 2004; Callaghan et al., 2005; Tape et al., 2006). The regional carbon 81 

dynamics are expected to loom large in the global carbon cycle and exert large feedbacks to the 82 

global climate system (McGuire et al., 2009; Davidson & Janssens, 2006; Bond-Lamberty & 83 

Thomson, 2010). 84 

To date, numerous ecosystem models have been developed to project the feedbacks 85 

between terrestrial ecosystem carbon cycling and climate (Raich et al., 1991; Zhuang et al., 86 

2001, 2002, 2015; Parton et al., 1993; Knorr et al., 2005; Running & Coughlan, 1988), but they 87 

can bias their quantifications due to missing detailed microbial mechanisms in these models 88 

(Schmidt et al., 2011; Todd-Brown et al., 2013; Conant et al., 2011; Treseder et al., 2011). 89 

Microorganisms play a central role in decomposition of litter and soil organic carbon, which 90 

further governs the global carbon cycling and climate change (Xu et al., 2014; Treseder et al., 91 

2011; Wang et al., 2015). An emerging field of research has begun to incorporate microbial 92 

ecology into existing process-based models to represent decomposition in ways that include 93 

important microbial processes that were previously ignored (Zha & Zhuang, 2018; Schimel & 94 

Weintraub, 2003; Allison et al., 2010; German et al., 2012). These microbial-based models tend 95 

to better reproduce field and satellite observations than traditional ones that treat soil 96 

decomposition as a first-order decay process without considering microbial activities (Treseder 97 

et al., 2011; Wieder et al., 2013; Todd-Brown et al., 2011; Lawrence et al., 2009; Moorhead et 98 
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al., 2006). However, some vital microbial traits such as microbial dormancy and community 99 

shifts are still rarely explicitly considered in large-scale ecosystem models (Wieder et al., 2015), 100 

and this may introduce notable uncertainties (Graham et al., 2014, 2016; Wang et al., 2015; 101 

Bouskill et al., 2012; Kaiser et al., 2014).  102 

Dormancy is broadly recognized as a strategy for microorganisms to cope with periodical 103 

environmental stresses (Harder & Dijkhuizen, 1983). When environmental conditions are 104 

unfavorable for growth, microbes switch to a dormant state, which is a reversible state of low to 105 

zero metabolic activity (Stolpovsky et al., 2011; Lennon & Jones, 2011). In this state, 106 

biogeochemical processes such as soil decomposition are slow (Blagodatskaya et al., 2013).  At 107 

any given time, there is only a fraction of, likely below 50%, metabolically active microbes  in 108 

natural soils (Wang et al., 2015; Stolpovsky et al., 2011). Soil decomposition and nutrient 109 

cycling mainly depend on these active microbes because only active ones can consume organic 110 

matter and replicate themselves (Wang et al., 2015; Blagodatskaya et al., 2014).  To date, most 111 

existing biogeochemistry models use total rather than active microbial biomass as an indicator of 112 

microbial activities (Wieder et al., 2015), which could bias the estimates of soil decomposition 113 

and ecosystem carbon budget (Hagerty et al., 2014; He et al., 2015). Especially, the Arctic 114 

terrestrial ecosystems are nitrogen-limited, neglecting microbial dormancy will lead to incorrect 115 

estimates of nitrogen availability through soil decomposition, failing to capture nitrogen 116 

feedbacks to carbon dynamics (Wang et al., 2015; Stolpovsky et al., 2011; Thullner et al., 2005). 117 

Furthermore, the Arctic has experienced a marked seasonality of active and dormant microbial 118 

cycles and the above-global-average warming, which might have increased the proportion of 119 

active microbes in soils (He et al., 2015). Thus, incorporating dormancy effects will improve 120 

model realism to provide a better projection of the Arctic carbon dynamics.  121 
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This study incorporated the effects of microbial dormancy trait into an extant process-122 

based biogeochemistry model (MIC-TEM) (Zha & Zhuang, 2018; He et al., 2015). The dormant 123 

and active microbial physiology has been considered explicitly in the new version of model 124 

(MIC-TEM-dormancy).  The revised model was parameterized, validated, and then applied to 125 

evaluate the carbon dynamics during the last and this centuries in the Arctic terrestrial 126 

ecosystems (north 45 ºN above). By comparing the results of MIC-TEM-dormancy and MIC-127 

TEM, we can show that incorporating microbial dormancy may produce a much different 128 

prediction in historical and future carbon budget. 129 

 130 

2. Methods 131 

2.1 Overview 132 

Due to the importance of microbial dormancy, some recent work has been done to consider 133 

the metabolic activation and deactivation of microbes in soil and its effects on soil carbon (C) 134 

dynamics and climate feedbacks. For example, Wang et al. (2015) has incorporated transformation 135 

processes between active and dormant states to develop two versions of MEND, that is, MEND 136 

with and without dormancy. The two versions of the model have been applied to quantify the 137 

carbon decomposition in laboratory incubations of four soils. Salazar et al. (2018) have also taken 138 

microbial dormancy into account to compare their predictions of microbial biomass and soil 139 

heterotrophic respiration (RH) under simulated cycles of stressful (dryness) and favorable (wet 140 

pulses) conditions.  Our study extends those modeling studies to the whole Arctic region by 141 

developing a more detailed biogeochemistry model considering the dormancy impacts.  Below, we 142 

first describe how we developed the new model (MIC-TEM-dormancy) by incorporating the 143 

microbial dormancy trait into an existing microbial-based biogeochemistry model (MIC-TEM). 144 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metabolic-activation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/deactivation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/micro-organism
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-carbon
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Second, we discuss how parameterization and validation of MIC-TEM-dormancy model were 145 

conducted using observed net ecosystem exchange data, and heterotrophic respiration data at 146 

representative sites. Third, we presented how the model was applied to northern high latitudes 147 

(above 45 ºN) for the 20th and 21st centuries and discussed the dormancy effects on regional carbon 148 

budget.  149 

 150 

2.2 Model description  151 

A non-dormancy version of biogeochemistry model (MIC-TEM) has been developed by 152 

incorporating a microbial module (Allison et al., 2010) into an extant large-scale biogeochemical 153 

model (TEM) to explicitly (Zhuang et al., 2003) consider the effects of microbial dynamics and 154 

enzyme kinetics on carbon dynamics (Zha & Zhuang, 2018). Here we further advanced the MIC-155 

TEM by incorporating algorithms that describe the effects of microbial dormancy dynamics 156 

based on He et al. (2015). Different from He et al. (2015), in which microbial module was driven 157 

with existing data of carbon stocks and fluxes, our study incorporated the microbial module into 158 

an extant MIC-TEM that simulates carbon data dynamically. This coupling enables us to 159 

extrapolate our model to whole northern high-latitudes region, rather than only for temperate 160 

forest region in He et al. (2015).  In our new model (MIC-TEM-dormancy), microbial biomass 161 

pool was divided into two fractions, including the dormant and active microbial biomass pools. 162 

The two microbial biomass pools and the reversible transition between them have been 163 

considered explicitly in the new model (Figure 1), which was ignored in MIC-TEM.  164 

In previous MIC-TEM, heterotrophic respiration (RH) is calculated as: 165 

RH=ASSIM  (1-CUE)                                            (1) 166 
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Where ASSIM and CUE represent microbial assimilation and carbon use efficiency, respectively.  167 

For detailed carbon dynamics in MIC-TEM, see Zha & Zhuang (2018).  168 

Here we revised MIC-TEM by incorporating microbial dormancy dynamics according to 169 

He et al. (2015). In MIC-TEM-dormancy, the soil heterotrophic respiration RH is comprised of 170 

three parts: the maintenance respiration from the active and dormant microorganisms and the CO2 171 

production through the process of microbial assimilation (He et al., 2015):  172 

RH = mRQ
10mic

temp−15

10 Ba + βmRQ
10mic

temp−15

10 Bd + CO2                                (2) 173 

where the first two terms are maintenance respiration from the active and dormant 174 

microorganisms, respectively. The last term is the CO2 produced during the process of microbial 175 

assimilation.  176 

For first two terms, Ba and Bd represents the active and dormant microbial biomass pool, 177 

respectively. The parameter mR denotes the specific maintenance rate at active state (h-1), and  178 

is the ratio of dormant maintenance rate to active maintenance rate. Thus, mR denotes the 179 

maximum specific maintenance rate at dormant state. Temperature sensitivity was expressed as 180 

the Q10 function (Q10

temp−15

10 ), where temp is soil temperature at top 20 cm (units: ℃).  181 

For the third term, the CO2 produced through microbial assimilation is calculated as in He et al. 182 

(2015) and Allison et al. (2010): 183 

                                           CO2=ASSIM  (1-Yg)                                          (3) 184 

Where ASSIM represents the microbial assimilation and the parameter Yg represents carbon use 185 

efficiency.  Microbial assimilation (ASSIM) is calculated as in He et al. (2015): 186 

                                   ASSIM =
1

Yg
 
Φ

α
 mR Q10enz

temp−15

10   Ba (
CNsoil

CNmic
)0.6                                    (4) 187 
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Here parameter  is maintenance weight (h-1), CNsoil and CNmic denotes the C:N ratios of soil and 188 

that of microbial biomass. Besides, Φ is the substrate saturation level and defined as in He et al. 189 

(2015) and Wang et al. (2014): 190 

                                             Φ =
S

Ks+S
                                                      (5) 191 

Where Ks is the half saturation constant for substrate uptake as indicated by the Michaelis–Menten 192 

kinetic, and S is soluble C substrates that are directly accessible for microbial assimilation (Wang 193 

et al., 2014). Here we quantified concentration of soluble C substrates that are directly accessible 194 

for microbial assimilation by using conceptual framework from Davidson et al. (2012): 195 

S = Soluble C  Dliq   θ3                                        (6) 196 

The term ‘Soluble C’ denotes the state variable of soluble carbon pool. Dliq is the diffusion 197 

coefficient of the substrate in the liquid phase, and is formulated as:  198 

Dliq = 1/(1-BD/PD)3    (7) 199 

Where BD is the bulk density and PD is the soil particle density. θ  is the volumetric soil moisture. 200 

Different from MIC-TEM, the transitions between active and dormant microbial biomass are 201 

included in MIC-TEM-dormancy.  202 

Ba→d = (1 − Φ)mRQ
10mic

temp−15

10 Ba                          (8) 203 

     Bd→a= ΦmRQ
10mic

temp−15

10 Bd                               (9) 204 

Where Ba→d  and Bd→a  denote the transition from the active to dormant microbe and from the 205 

dormant to active microbe, respectively (He et al., 2015; Wang et al., 2014).  Thus, dormancy rate 206 

is affected by active and dormant biomass, soil temperature (temp) and soil moisture (θ in Φ). 207 

The active microbial biomass (Ba) is modeled as (He et al., 2015; Wang et al., 2014):  208 

  
dBa

dt
= ASSIM  Yg − mRQ

10mic

temp−15

10 Ba − Ba→d + Bd→a − DEATH − EPROD                (10) 209 



 9 

Where DEATH and EPROD denotes microbial biomass death and enzyme production, which are 210 

modeled as proportional to active microbial biomass with constant rates rdeath and rEnzProd (Allison 211 

et al., 2010): 212 

                                   DEATH = rdeath Ba                                                                    (11) 213 

                                  EPROD = rEnzProd Ba                                                                 (12) 214 

Where rdeath and rEnzProd are the rate constants of microbial death and enzyme production, 215 

respectively.  216 

The dormant microbial biomass (Bd) is modeled as (He et al., 2015; Wang et al., 2014):  217 

                                        
dBd

dt
= −βmRQ

10mic

temp−15

10 Bd + Ba→d − Bd→a                                       (13) 218 

The Soluble C pool is modeled as (He et al., 2015; Allison et al., 2010):  219 

d Soluble C

dt
= DECAY − ASSIM + ELOSS + DEATH        (14) 220 

Where DECAY represents the enzymatic decay of soil organic carbon (SOC), and ELOSS 221 

represents the loss of enzyme.  222 

DECAY is regulated by enzyme biomass (ENZ), soil organic carbon (SOC), soil temperature, and 223 

substrate quality (He et al., 2015): 224 

DECAY = VmaxQ10enz

temp−15

10 ENZ
SOC

Kmuptake+SOC
(120 − CNsoil )           (15) 225 

Where Vmax is the maximum SOC decay rate, Kmuptake is half saturation constant for enzymatic 226 

decay. 227 

ELOSS is modeled as a first-order process (Allison et al., 2010) to represent enzyme turnover: 228 

                                ELOSS = renzlossENZ                                    (16) 229 

Where renzloss is the rate constant of enzyme loss.   230 

The soil organic carbon pool (SOC) is modeled as: 231 
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  dSOC

dt
= Litterfall − DECAY                (17) 232 

Where Litterfall is estimated as a function of vegetation carbon (Zhuang et al., 2010).  233 

Last, enzyme pool (ENZ) is modeled as:  234 

                            
dENZ

dt
=EPROD-ELOSS                                          (18) 235 

With the modification of microbial carbon dynamics by considering microbial life-history trait, 236 

soil decomposition is changed since it is controlled by microbes. When microbial dormancy is 237 

considered, the number of active microbes that participate in soil decomposition is much less. The 238 

changes in soil decomposition directly influence the amount of soil respiration, and further 239 

influence soil nitrogen (N) mineralization that determines soil N availability for plants, affecting 240 

gross primary production (GPP). Since both GPP and RH can be affected by microbial dormancy, 241 

net ecosystem production (NEP) will also be affected.  242 

 243 

2.3 Model parameterization and validation 244 

The detailed description of parameters that are related to microbial dormancy can be found 245 

in He et al. (2015) (Table 1). Here we calibrated the MIC-TEM-dormancy at six representative 246 

sites with gap-filled monthly net ecosystem productivity (NEP, gCm-2mon-1) data in northern high 247 

latitudes (Table 2). Site-level climatic data and soil texture data were organized for driving model. 248 

All sites information can be found on AmeriFlux network (Davidson et al., 2000). The results for 249 

model parameterization were presented in Figure 2. We conducted the parameterization using a 250 

global optimization algorithm known as SCE-UA (Shuffled complex evolution) method (Duan et 251 

al., 1994). An ensemble of 50 independent sets of parameters were performed based on prior ranges 252 

from literature (Table 1) to minimize the difference between the monthly simulated and measured 253 

NEP at the chosen sites. The cost function of the minimization is: 254 
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Obj = ∑ (NEPobs,i − NEPsim,i)
2k

i=1                                        (17) 255 

Where NEPobs,i and NEPsim,i are the observed and simulated NEP, respectively. k is the number of 256 

data pairs for comparison. Except for the parameters of microbial dormancy, other parameters are 257 

derived directly from MIC-TEM (Zha & Zhuang, 2018). The optimized parameters were used for 258 

model validation and regional simulations.  259 

For model validation, we chose another six sites that containing monthly NEP data from 260 

AmeriFlux network (Table 3). Moreover, we also conducted site-level validations with monthly 261 

soil respiration data from AmeriFlux network and Fluxnet dataset. The site information was 262 

provided in Table 4. For these sites, we assumed 50% of soil respiration was heterotrophic 263 

respiration (RH) for forest (Hanson et al., 2000), 60% and 70% of that was RH for grassland (Wang 264 

et al., 2009) and tundra (Billings et al., 1977). Because there is a limited amount of available RH 265 

data, we could not conduct a regional validation for all pixels in northern high latitudes.  Instead, 266 

we extracted 61 sites providing data of average annual heterotrophic respiration from ORNL global 267 

Soil Respiration Dataset (https://daac.ornl.gov/SOILS/guides/SRDB_V4.html, Bond-Lamberty et 268 

al., 2018) for model validation. The site-level observed average annual RH was used to compare 269 

with simulated annual RH by MIC-TEM-dormancy and MIC-TEM.  The MIC-TEM-dormancy was 270 

run at monthly time step to keep consistent with the time step of MIC-TEM.  Although microbial 271 

dynamics occur at fine temporal scales (Tang & Riley, 2014), we can still quantify the cumulative 272 

impacts of microbial dynamics on carbon and nitrogen cycling at monthly time by not changing 273 

the model structure. 274 

 275 

2.4 Spatial extrapolation  276 

https://daac.ornl.gov/SOILS/guides/SRDB_V4.html
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For historical simulations during the 20th century, two sets of regional simulations using 277 

MIC-TEM-dormancy and MIC-TEM at a spatial resolution of 0.5° latitude × 0.5° longitude were 278 

conducted. Our model simulation contains two parts: spin-up and transient simulation. A typical 279 

spin-up was conducted to get the model to a steady state for each spatial location, which will be 280 

used as initial conditions for transient simulations (McGuire et al., 1992). During spin-up 281 

procedure, cyclic forcing data was used to force the model run, and repeated continuously until 282 

dynamic equilibrium was achieved at which the modeled state variables show a cyclic pattern or 283 

become constant.  Specifically, this study used the monthly historical climate data from 1900 to 284 

1940 to repeatedly drive the model for the spin-up. Before spin-up procedure, the model was 285 

initialized with default built-in carbon stocks (Raich et al., 1991). During transient simulations, 286 

the calibrated ecosystem-specific parameters were used for regional simulations. The previous 287 

dynamic equilibrium was used as initial value for transient simulation. The historical climatic 288 

forcing data, including the monthly air temperature, precipitation, cloudiness, and atmospheric 289 

CO2 concentrations, were organized from the Climatic Research Unit (CRU TS3.1) from the 290 

University of East Anglia (Harris et al., 2014). We also used gridded data of soil texture (Zhuang 291 

et al., 2003), elevation (Zhuang et al., 2015), and potential natural vegetation (Melillo et al., 1993) 292 

from literatures. In our model, we assumed that soil texture, elevation, and potential natural 293 

vegetation data only vary spatially, not vary over time (Zhuang et al., 2015).  294 

In addition, regional simulations over the 21st century were conducted under two 295 

Intergovernmental Panel on Climate Change (IPCC) climate scenarios (RCP 2.6 and RCP 8.5). 296 

The future climatic forcing data under these two climate change scenarios were derived from the 297 

HadGEM2-ESmodel, which is a member of CMIP5project213 (https://esgf-298 

node.llnl.gov/search/cmip5/). Then the regional estimations were obtained by summing up the 299 

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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gridded outputs for our study region. The positive simulated NEP represents a CO2 sink from the 300 

atmosphere to terrestrial ecosystems, while a negative value represents a source of CO2 from 301 

terrestrial ecosystems to the atmosphere. 302 

2.5 Parameter equifinality effects  303 

Our previous studies using TEM has demonstrated that equifinality derived from site-level 304 

parameterization will affect the uncertainty in the estimation of regional carbon dynamics (Tang 305 

and Zhuang, 2008, 2009).  Here equifinality refers to that a number of sets of parameters result in 306 

model simulations that all match the data similarly well.  To quantify this effect on our simulation 307 

uncertainty, we conducted ensemble regional simulations with 50 sets of parameters for both 308 

historical and future studies. The 50 sets of parameters were obtained according to the method in 309 

Tang and Zhuang (2008).  310 

3. Results 311 

3.1 Inversed Model Parameters and model validation 312 

Using SCE-UA ensemble method, 50 independent sets of parameters were converged to 313 

minimize the objective function. Then the optimized parameters are calculated as the mean of these 314 

50 sets of inversed parameters. The boxplot of parameter posterior distributions reflects different 315 

ecosystem properties at these sites (Figure 3). For instance, growth yield was higher in tundra types 316 

than in forests, meaning microorganisms in environment with higher energy limitation tend to 317 

enhance the efficiency of energy transportation. Besides, alpha, the maintenance weight, was also 318 

higher in tundra types than in forests. From the plot for parameter beta, the ratio of dormant 319 

maintenance rate to specific maintenance rate for active biomass in tundra types is lower than that 320 

in forest types. Other microbial related parameters did not differentiate much among different 321 

vegetation types.  322 
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After parameterization, the MIC-TEM-dormancy was validated with monthly NEP data for 323 

six representative ecosystems, and the comparisons between monthly observed NEP and 324 

simulated NEP were presented in Figure 4. With the optimized parameters, the dormancy-based 325 

model was used to reproduce NEP to compare with the measured NEP (Table 5). The R2   ranges 326 

from 0.67 for Atqasuk to 0.93 for Bartlett Experimental Forest (Table 5). Generally, our new 327 

model performs better for forest ecosystems than for tundra ecosystems. Compared with MIC-328 

TEM, dormancy model performs better for alpine tundra, temperate coniferous forest, and 329 

grassland. For other sites, both models show similar performance (Table 5).   Besides, a set of 330 

monthly soil respiration data were selected to evaluate the estimated RH.  The comparisons 331 

between monthly observed RH and simulated RH from two contrasting models were conducted 332 

(Figure 5). MIC-TEM-dormancy has higher R2 and lower root mean square error (RMSE) (Table 333 

6).  Sixty-one sites with average annual RH in northern high-latitude regions were used to further 334 

evaluate the new model performance. The dormancy model has lower intercept and slope with R2 335 

of 0.45, while R2 of MIC-TEM is 0.3 (Figure 6). These analyses indicate that new model is more 336 

realistic in representing RH by considering microbial dormancy. This difference in RH further 337 

affects soil available nitrogen dynamics, influencing nitrogen uptake by plants, the rate of 338 

photosynthesis and NPP (Zhuang et al., 2015; Zha et al., 2018; Thullner et al., 2005).  339 

 340 

3.2 Regional carbon dynamics during the 20th century  341 

Regional extrapolation with both models estimated a regional carbon sink but with different 342 

magnitudes (Figure 7c). With optimized parameters, MIC-TEM estimated a regional carbon sink 343 

of 77.6 Pg with the interannual standard deviation of 0.21 Pg C yr-1 during the 20th century. 344 

However, MIC-TEM-dormancy nearly doubles the sink at 153.5 Pg with the interannual standard 345 
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deviation of 0.12 Pg C yr-1 during the last century (Figure 7c). At the end of the century, MIC-346 

TEM estimated that NEP reaches 1.0 Pg C yr-1 in comparison with MIC-TEM-dormancy estimates 347 

of 1.5 Pg C yr-1 (Figure 7c). Both models simulated similar trends for regional NPP, RH and NEP 348 

(Figure 7). Generally, they show an increasing trend in the 20th century (Figure 7). Meanwhile, 349 

with optimized parameters, MIC-TEM-dormancy estimated NPP and RH at 7.94 Pg C yr-1 and 6.4 350 

Pg C yr-1, which are 5.8% and 16.3% less than the estimations from MIC-TEM, respectively 351 

(Figures 7a and 7b). This pronounced difference of NEP between two models comes from the 352 

disparity between the simulated NPP and RH with them since NEP is calculated as the difference 353 

between NPP and RH. Without considering dormancy, MIC-TEM estimates more active microbial 354 

biomass since it assumes the whole microbial biomass pool will participate in soil decomposition. 355 

The fact is only active part of microbial biomass can affect organic matter decomposition, meaning 356 

MIC-TEM overestimates RH. On the other hand, overestimation of RH can induce higher nitrogen 357 

uptake by plants, which will accelerate rate of photosynthesis and further enhance NPP projection. 358 

Although MIC-TEM estimates higher NPP and RH than MIC-TEM-dormancy does, NEP estimated 359 

from MIC-TEM is actually lower.  360 

The average annual seasonal patterns of NPP, RH and NEP during the 1990s were also 361 

organized from regional simulations with two models (Figure 8). Temporally, both models 362 

projected higher NPP and RH in summer than in winter (Figures 8a and 8b) due to higher soil 363 

temperature and moisture (McGuire et al., 1992). Setting the RH projection from MIC-TEM as a 364 

baseline, MIC-TEM-dormancy averagely projected 33% less RH in summer (May to September), 365 

and 30% more in winter (other months) (Figure 8b), which indicates that without dormancy, 366 

model tends to estimate lower soil respiration compared to dormancy model due to ignorance of 367 

dormant respiration in winter but estimate higher soil respiration due to higher estimation of 368 



 16 

active biomass in summer. In the meantime, seasonal cycle of NPP with MIC-TEM-dormancy 369 

shows a relative flattening pattern compared with MIC-TEM, which is similar to seasonal cycle 370 

of RH (Figure 8a).  Though RH and NPP show the similar seasonal patterns, NEP can still show 371 

different pattern. Here seasonal cycles of NEP with models are close to each other (Figure 8c), 372 

but dormancy model projected slightly higher NEP in summer.  373 

3.3 Regional carbon dynamics during the 21st century 374 

Under the RCP 8.5 scenario, both models estimated the region acts as a carbon sink (Figure 375 

9). The MIC-TEM-dormancy predicted a C accumulation of 129.9 Pg by the end of this century.  376 

with the interannual standard deviation of 0.13 Pg C yr-1, whereas MIC-TEM estimates a C 377 

accumulation of 79.5 Pg with the interannual standard deviation of 0.37 Pg C yr-1 during the 21st 378 

century (Figure 9). Thus, MIC-TEM-dormancy estimates an increase of 50.4 Pg regional carbon 379 

sequestration relative to MIC-TEM, with less interannual variation (Figure 9). Under this 380 

scenario, both models predict similar temporal trends for NEP, namely increasing from the 2000s 381 

and then decreasing from the 2070s onward (Figure 9). MIC-TEM-dormancy predicts that 382 

carbon sink reaches 1.36 Pg C yr-1 in the 2090s, which is 0.26 Pg C yr-1 more than projection of 383 

MIC-TEM. Moreover, MIC-TEM-dormancy estimated NPP and RH at 10.2 Pg C yr-1 and 8.9 Pg 384 

C yr-1, which are 1.3 Pg C yr-1 and 1.8 Pg C yr-1 less than the estimations from MIC-TEM, 385 

respectively (Figure 9). 386 

Under the RCP 2.6 scenario, the cumulative NEP from two models diverged by 125.2 Pg C 387 

by 2100. The trajectory of inter-annual NEP estimated with the two models also diverged. The 388 

MIC-TEM predicted the region fluctuates between carbon sinks and sources, and totally acts as a 389 

carbon source of 1.6 Pg C with the interannual standard deviation of 0.24 Pg C yr-1 during the 390 

21st century. In contrast, MIC-TEM-dormancy projected the region acts as a carbon sink of 123.6 391 
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Pg C with an interannual standard deviation of 0.1 Pg C yr-1 (Figure 9). MIC-TEM-dormancy 392 

estimates NPP and RH at 9.9 Pg C yr-1 and 8.7 Pg C yr-1, which are 0.5 Pg C yr-1 and 1.7 Pg C yr-393 

1 less than the estimations from MIC-TEM, respectively (Figure 9). Moreover, simulations under 394 

the two contrasting climate scenarios (RCP 2.6 and RCP 8.5) exhibit a large difference of 81.1 395 

Pg C of cumulative NEP during the 21st century by MIC-TEM, but only 6.3 Pg C of that by 396 

MIC-TEM-dormancy. This difference indicates microbes provide a resistant response to climate 397 

change due to dormancy to some extent (Treseder et al., 2011).  398 

The average annual seasonal patterns of NPP, RH and NEP during the 2990s by two 399 

models were also presented (Figure 10). MIC-TEM-dormancy estimated higher RH in winter, but 400 

lower RH in summer under both future scenarios (Figure 10). NPP is the same in winter with or 401 

without dormancy, and in the late summer is higher than that without dormancy, especially in the 402 

RCP 8.5 scenario.  The combined flattening patterns of NPP and RH result in different patterns 403 

for NEP. Under the RCP 2.6 scenario, MIC-TEM-dormancy predicts higher NEP from June to 404 

October, but lower NEP from January to April compared to MIC-TEM (Figure 10). Under the 405 

RCP 8.5 scenario, MIC-TEM-dormancy predicts higher NEP from June to September, but much 406 

lower NEP in other months than MIC-TEM (Figure 10). 407 

3.4 Regional uncertainty considering equifinality effects during 20th and 21st centuries 408 

The ensemble simulations for the 20th century is shown in Figure 11. Given the 409 

uncertainty in parameters, MIC-TEM-dormancy predicted that the regional cumulative carbon 410 

ranges from a carbon loss of 28.2 Pg to a carbon sink of 362.1 Pg by different ensemble 411 

members, with a mean of 71.2±54.8 Pg (Figure 11). For the 21st century, MIC-TEM-dormancy 412 

predicted that the region acts from a carbon source of 49.3 Pg C to a carbon sink of 296.5 Pg C, 413 

with a mean of 112.7±116.5 Pg under the RCP 2.6 scenario (Figure 12). Under the RCP 8.5 414 
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scenario, MIC-TEM-dormancy predicted that the region acts from a carbon source of 27.1 Pg C 415 

to a carbon sink of 401.3 Pg C, with a mean of 143.1±162.5 Pg (Figure 12).  416 

4. Discussion 417 

Soils are the largest carbon repository in the terrestrial biosphere and hold 2.5 times more 418 

carbon than the atmosphere (Frey et al., 2013; Schlesinger & Andrews, 2000). Especially, a 419 

significant portion of soil organic carbon stored in northern high latitudes (Tarnocai et al., 2009). 420 

Besides, the magnitude of the warming in these regions is larger, almost twice, that of the global 421 

average (Serreze & Francis, 2006) and the changing climate is expected to alter the carbon cycle 422 

through influencing the activities of microorganisms in controlling soil decomposition (Manzoni 423 

et al., 2012; Melillo et al., 2011). Therefore, explicit consideration of microbial traits and 424 

functions in large-scale biogeochemistry models is necessary for better quantification of carbon-425 

climate feedbacks (Thullner et al., 2005; Wang et al., 2015).  Our regional simulations with two 426 

contrasting models (MIC-TEM, MIC-TEM-dormancy) indicate the region was a carbon sink in 427 

past decades, which is consistent with results from other process-based models (White et al., 428 

2000; Houghton et al., 2007; McGuire et al., 2009; Schimel, 2013). However, the magnitudes of 429 

this sink are quite different in two models. Moreover, MIC-TEM-dormancy predicts the sink will 430 

decrease under both RCP 8.5 and RCP 2.6 scenarios during the 21st century, while MIC-TEM 431 

projects that the sink will increase under the RCP 8.5 but change to carbon source under the RCP 432 

2.6 scenario. Estimations based on models without dormancy could fit observations of RH as well 433 

as estimations with dormancy, but at the cost of underestimating microbial biomass (Wang et al., 434 

2014). Differences in predicted RH with and without dormancy increase with temperature and 435 

with the length of the dry periods between wetting events (Salazar et al., 2018). The large 436 

difference in two models suggests the importance of incorporating microbial dormancy effects.   437 
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The large bias between dormancy and non-dormancy models mainly comes from two parts.  438 

First, many important microbial activities such as soil organic carbon decomposition and nutrient 439 

cycling largely depend on the active fraction of microbial communities, not total microbial 440 

biomass (Wang et al., 2014; Blagodatsky et al., 2000). However, only a small part (about 0.1-441 

2%, seldom exceed 5%) of the total soil microbial biomass is recognized to be active under 442 

natural conditions (Blagodatsky et al., 2011; Werf & Verstraete, 1987). Thus, dormancy could be 443 

a prominent feature in soil systems (Wang et al., 2014). Without considering dormancy, the 444 

“effective” microbial biomass for soil decomposition could be overestimated, resulting in 445 

overestimation of heterotrophic respiration (He et al., 2015). He et al. (2015) predicted total soil 446 

RH of all temperate forests (25°N-50°N) from the dormancy model amounted to 7.28 Pg C yr-1 447 

and 8.83 Pg C yr-1 from a no-dormancy model, which is 21.3% higher than the dormancy model. 448 

Although their study region and simulation period are different from our study, the results can 449 

still be comparable.  Both studies indicated that the magnitude of RH from no-dormancy model 450 

are higher than dormancy models. Second, high soil respiration stimulates N mineralization in 451 

soils (Zhuang et al., 2001, 2002), making more nutrients for photosynthesis of plants (Raich et 452 

al., 1991; McGuire et al., 1995). Therefore, NPP will be higher due to the N enrichment from 453 

higher RH. However, how NEP will change is still unclear. Our estimates of the northern 454 

extratropical NEP in the 1980s (1.61 Pg C yr-1 with MIC-TEM-dormancy and 0.84 Pg C yr-1 455 

with MIC-TEM) are within ranges (0.6 to 2.3 PgC yr-1) reported in the literature for northern 456 

regions (Schimel et al.,2001).  Moreover, our predicted time trajectory  of NEP in the 21st 457 

century under the RCP 2.6 scenario is very similar to the finding of White et al. (2000), 458 

indicating that NEP increases from the 2000s to the 2070s, and then decreases in the 2090s. 459 

Although our dormancy model can project reasonable carbon fluxes and indicate the importance 460 
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of incorporating microbial dormancy when compared with MIC-TEM (Zha & Zhuang et al., 461 

2018), there are some other microbial traits have not yet been considered in our model. For 462 

instance, one vital common evolutionary trait of microbe is the community shift (Wang et al., 463 

2015) with changing environment, including warming, N fertilization and precipitation (Treseder 464 

et al., 2011; Frey et al., 2013; Allison et al., 2009; Evans & Wallenstein, 2011). Community shift 465 

will influence microbial physiology, temperature sensitivity and growth rates (Classen et al., 466 

2015), which will further affect the rate of soil decomposition and other carbon dynamics 467 

(Treseder et al., 2011; Schimel & Schaeffer, 2012; Todd-Brown et al., 2011). Besides, microbial 468 

community composition was ignored in our model. We didn’t separate among functional 469 

microbial groups, but gather microbes into one “box”. However, microbial community 470 

composition could influence ecosystem functioning, and their variance in responses to 471 

environmental conditions could alter the prediction of the rates of decomposition of organic 472 

material (Balser et al. 2002; Fierer et al. 2007). Especially, some narrowly-distributed functions 473 

can be more sensitive to microbial community composition, and these might benefit most from 474 

explicit consideration of distinguishing functional groups in ecosystem models (McGuire & 475 

Treseder, 2010; Schimel 1995). Thus, functional dissimilarity in microbial communities can be 476 

considered in next step for model development (Strickland et al., 2009; Moorhead et al., 2006). 477 

Moreover, microbial acclimation, a mechanism of adaption to a new temperature regime, is 478 

another important trait to affect soil decomposition. Recent studies have found that the warming-479 

induced elevated respiration of the microbial community could decrease over time because of 480 

acclimation (Melillo et al. 1993; Todd-Brown et al., 2011). This mechanism shall be factored 481 

into future soil decomposition analysis. 482 
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Except for model limitations mentioned above, additional uncertainties may come from 483 

inadequate model parameterization and model assumptions. For example, a critical microbial 484 

parameter, carbon use efficiency (CUE), is a primary control to soil CO2 efflux. Higher CUE 485 

indicates more microbial growth and more carbon uptake by plants, while lower CUE indicates 486 

higher soil decomposition (Manzoni et al., 2012). Theoretical and empirical studies have 487 

suggested that CUE depends on both temperature and substrate quality (Frey et al., 2013) and 488 

decreases as temperature increases and nutrient availability decreases (Manzoni et al., 2012).  489 

Our study considered the CUE sensitivity to temperature, but not nutrient availability. On the 490 

other hand, some model assumptions can also cause uncertainties. For example, we assumed that 491 

vegetation will not change during the transient simulation. However, over the past few decades 492 

in northern high latitudes, temperature increases have led to vegetation shift from one type to 493 

another (Hansen et al., 2006; White et al., 2000). The vegetation changes will affect carbon 494 

cycling in these ecosystems.  495 

While our analysis suggests it is important to incorporate microbial dormancy dynamics 496 

into a process-based biogeochemistry model to more adequately simulate carbon dynamics in 497 

northern high latitudes, we do confront modeling dilemmas.  First, our process-based models 498 

have a relatively large number of parameters, which unavoidably creates the “equifinality” 499 

problem as recognized in our previous studies for the model (e.g., Tang and Zhuang, 2008, 500 

2009).  To alleviate this problem in this analysis, we have conducted parameter ensemble 501 

simulations at both site and regional levels and presented our results with uncertainties, which 502 

could be a standard approach for process-based complex biogeochemistry modeling analyses.  503 

Second, incorporating more ecosystem processes increases the number of parameters in our 504 

model, inducing even larger uncertainties for both site level and regional simulations.  On the 505 
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one hand, the more complex model to a certain degree helps capture observations, on the other 506 

hand, the model uncertainty has not been constrained or even enlarged. We highlight the need to 507 

further investigate this trade-off within the modeling research community.   508 

 509 

5. Conclusions 510 

This study incorporated microbial dormancy into a detailed microbial-based soil 511 

decomposition biogeochemistry model to examine the fate of large Arctic soil carbon under 512 

changing climate conditions.  Regional simulations using MIC-TEM-dormancy indicated that, 513 

over the 20th century, the region is a carbon sink of 166.8 ± 97.7 Pg. This sink could decrease to 514 

175.9 ± 105.4 Pg under the RCP 8.5 scenario or 125.4 ± 85.5 Pg under the RCP 2.6 scenario 515 

during the 21st century. Whether considering microbial dormancy or not can cause large 516 

differences in soil decomposition estimation between two models. Meanwhile, due to available 517 

nitrogen affected by soil decomposition, net primary production is consequently influenced in 518 

these two centuries. The combined changes in soil decomposition and net primary production led 519 

to large differences in carbon budget estimation between two models. Compared with MIC-520 

TEM, MIC-TEM-dormancy projected 75.9 Pg more C stored in the terrestrial ecosystems over 521 

the last century, 50.4 Pg and 125.2 Pg more C under the RCP 8.5 and RCP 2.6 scenarios, 522 

respectively. This study highlights the importance of the representation of microbial dormancy in 523 

earth system models in order to adequately quantify the carbon dynamics in northern high 524 

latitudes. 525 

 526 
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 872 

 873 

 874 
Figure 1. Framework of the dormancy model: microbial biomass is split into two parts, active 875 
microbial biomass and dormant microbial biomass (shown in the green dashed circle). 876 
Maintenance respiration from these two parts, and the CO2 production through microbial 877 
assimilation contributes to heterotrophic respiration. The model was revised based on Zha & 878 
Zhuang (2018).  879 
  880 
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 881 
 882 
Figure 2. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 883 
tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 884 
coniferous forest), (d) Univ. of Mich. Biological Station (Temperate deciduous forest), (e) 885 
KUOM Turfgrass Field (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different. 886 
Error bars represent standard errors among daily measure data in one month. 887 
  888 
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 889 

 890 
 891 
Figure 3. Boxplot of parameter posterior distribution that are obtained after ensemble inverse 892 
modeling for MIC-TEM-dormancy all six sites: US-Ivo: Ivotuk (alpine tundra), CA-NS3: UCI-893 
1964 burn site (boreal forest), US-Ho1: Howland Forest (temperate coniferous forest), US-UMB: 894 
Univ. of Mich. Biological Station (temperate deciduous forest), US-KUT: KUOM Turfgrass 895 
Field (grassland), US-Atq: Atqasuk (wet tundra). 896 
  897 



 34 

 898 
 899 
Figure 4. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 900 
tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 901 
coniferous forest), (d) Bartlett Experimental Forest (Temperate deciduous forest), (e) Brookings 902 
(Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different.  903 
  904 
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 905 
 906 
Figure 5. Comparison between observed and simulated RH (gC m-2mon-1) at: (a) US-EML (alpine 907 
tundra), (b) CA-SJ2 (boreal forest), (c) US-Ho2 (temperate coniferous forest), (d) US-UMB 908 
(Temperate deciduous forest), (e) US-Ro4 (Grassland), and (f) RU-Che (Wet tundra). Note: 909 
scales are different.  910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
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 920 
Figure 6. Linear regression between simulated and observed annual RH (gC m-2yr-1) for: (a) MIC-921 
TEM-dormancy, and (b) MIC-TEM.  922 
 923 
 924 

 925 

 926 

 927 

 928 

 929 

 930 



 37 

 931 

Figure 7. Simulated annual net primary production (NPP, top panel), heterotrophic respiration (RH, 932 

center panel) and net ecosystem production (NEP, bottom panel) during the 20th century by 933 

dormancy model and MIC-TEM, respectively. 934 

 935 

 936 

 937 

 938 

 939 
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 940 

Figure 8. Regional annual seasonal pattern of simulated (a) net primary production (NPP, top 941 
panel), (b) heterotrophic respiration (RH, center panel) and (c) net ecosystem production (NEP, 942 
bottom panel) during the 1990s from dormancy model and MIC-TEM. The region is all land 943 
areas north of 45 ºN.  944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
 952 
 953 
 954 

(a) 

(b) 

(c) 
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 955 

Figure 9. Predicted changes in carbon fluxes: (i) NPP, (ii) RH, and (iii) NEP for all land areas north 956 
of 45 ºN in response to transient climate change under the RCP 8.5 scenario (left panel) and RCP 957 
2.6 scenario (right panel) with dormancy model and MIC-TEM, respectively. The decadal running 958 
mean is applied.  959 
 960 
 961 

 962 
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 967 
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 969 

 970 

 971 
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(a) 973 

 974 

(b)  975 

 976 

Figure 10. Regional annual seasonal pattern of simulated net primary production (NPP, top 977 
panel), heterotrophic respiration (RH, center panel) and net ecosystem production (NEP, bottom 978 
panel) during the 2090s from dormancy model and MIC-TEM under: (a) RCP 2.6 scenario (top 979 
panel) and (b) RCP 8.5 scenario (bottom panel). The region is all land areas north of 45 ºN.  980 
 981 
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 982 
 983 
Figure 11. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 984 
(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM-dormancy 985 
with ensemble of parameters. 986 
 987 
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  1011 
 1012 
Figure 12. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 1013 
(RH, center panel) and net ecosystem production (NEP, bottom panel) under RCP 8.5 scenario 1014 
(left panel) and RCP 2.6 scenario (right panel) by MIC-TEM-dormancy with ensemble of 1015 
parameters. The decadal running mean is applied. The grey area represents the upper and lower 1016 
bounds of simulations. 1017 
 1018 
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Table 1. Parameters associated with detailed microbial dormancy in MIC-TEM-dormancy 1019 
 1020 

 1021 
 1022 
 1023 

parameter unit description Parameter range  references 

mR h-1 Specific maintenance rate at active state [0.001, 0.08] Wang et al. (2014) 
     

Q10mic - 

Temperature effects on microbial metabolic activity (rate change per 10 

°C increase in temperature). Based on 0.65 eV activation energy for 

soils 

[1.5, 3.5] He et al. (2015) 

     

Q10enz - 
Temperature effects on enzyme activity (rate change per 10 °C increase 

in temperature). Based on 6% rate increase per degree Celsius 
1.79 He et al. (2015) 

     

𝜶 - the ratio of mR to the sum of maximum specific growth rate [0.01, 0.5]  Wang et al. (2014) 
     

β - Ratio of dormant microbial maintenance rate to mR [0.0005, 0.005] Wang et al. (2014) 
     

Yg - carbon use efficiency [0.3, 0.7] He et al. (2015) 
     

Ks mgC cm-2 Half-saturation constant for directly accessible substrate [0.01, 10] Wang et al. (2014) 

     

Kmuptake mgC cm-2 
Half-saturation constant for enzymatic 

decay of SOC 
[200, 1000] He et al. (2015) 

rdeath h-1 Potential rate of microbial death [2e-4, 2e-3] Allison et al. (2010) 
     

rEnzProd h-1 Enzyme production rate of microbe [1e-4, 8e-4] He et al. (2015) 
     

renzloss h-1 Enzyme loss rate [0.0005, 0.002] Allison et al. (2010) 
     

Vmax mgC cm-2 h-1 Maximum SOC decay rate [1e-4, 5e-3] He et al. (2015) 
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Table 2. Site description and measured NEP data used to calibrate MIC-TEM-dormancy 1024 

 1025 
 1026 
 1027 
 1028 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 
(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data range Citations 

Univ. of Mich. 

Biological 

Station 

84.71W 

45.56 N 

 

234 

Temperate 

deciduous 

forest 

Located within a protected forest owned by the 

University of Michigan. Mean annual temperature is 

5.83 ̊C with mean annual precipitation of 803mm 

01/2005-

12/2006 
Gough et al. (2013) 

       
Howland Forest 

(main tower) 

68.74W 

45.20N 

60 Temperate 

coniferous   

forest 

Closed coniferous forest, minimal disturbance. 01/2004-

12/2004 

Davidson et al. (2006) 

       

UCI-1964 burn 

site 

98.38W 

55.91N 

260 Boreal forest Located in a continental boreal forest, dominated by 

black spruce trees, within the BOREAS northern study 

area in central Manitoba, Canada. 

01/2004-

10/2005 

Goulden et al. (2006) 

 

       

KUOM Turfgrass 

Field 

93.19W 

45.0N 

301 Grassland A low-maintenance lawn consisting of cool-season 

turfgrasses. 

01/2006-

12/2008 

Hiller et al. (2011) 

       

Atqasuk 157.41W 

70.47N 

  15 Wet tundra 100 km south of Barrow, Alaska. Variety of moist-wet 

coastal sedge tundra, and moist-tussock tundra surfaces 

in the more well-drained upland. 

01/2005-

12/2006 

Oechel et al. (2014); 

 

       

Ivotuk 155.75W 

68.49N 

568 Alpine tundra 300 km south of Barrow and is located at the foothill of 

the Brooks Range and is classified as tussock sedge, 

dwarf-shrub, moss tundra. 

01/2004-

12/2004 

McEwing et al. (2015) 
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Table 3. Site description and measured NEP data used to validate MIC-TEM-dormancy 1029 
 1030 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data range Citations 

Bartlett 

Experimental Forest 

71.29W/ 

44.06N 

272 Temperate 

deciduous 
forest 

Located within the White Mountains National Forest in north-central 

New Hampshire, USA, with mean annual temperature of 5.61 °C and 
mean annual precipitation of 1246mm. 

01/2005- 

12/2006 

Jenkins et al. (2007); 

Richardson et al. (2007); 
 

       

Howland Forest 

(main tower) 

68.74W/ 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, minimal disturbance. 01/2003- 

12/2003 

Davidson et al. (2006) 

       

UCI-1964 burn site 98.38W/ 

55.91N 

260 Boreal forest Located in a continental boreal forest, dominated by black spruce trees, 

within the BOREAS northern study area in central Manitoba, Canada. 

01/2002- 

12/2003 

Goulden et al. (2006) 

 

 

       

Brookings 96.84W/ 
44.35N 

510 Grassland Located in a private pasture, belonging to the Northern Great Plains 
Rangelands, the grassland is representative of many in the north central 

United States, with seasonal winter conditions and a wet growing 

season. 

01/2005- 
12/2006 

Gilmanov et al. (2005) 

       

Atqasuk 157.41W/ 

70.47N 

15 Wet tundra 100 km south of Barrow, Alaska. Variety of moist-wet coastal sedge 

tundra, and moist-tussock tundra surfaces in the more well-drained 

upland. 

01/2003- 

12/2004 

Oechel et al. (2014); 

 

       

Ivotuk 155.75W/ 
68.49N 

568 Alpine tundra 300 km south of Barrow and is located at the foothill of the Brooks 
Range and is classified as tussock sedge, dwarf-shrub, moss tundra. 

01/2005- 
12/2005 

McEwing et al. (2015) 

 1031 
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Table 4. Site description and measured RH data used to validate MIC-TEM-dormancy model 1032 
 1033 
 1034 
 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
 1044 

Site  

 

Location 

(Longitude (degrees) 

/Latitude (degrees)) 

Elevation 

(m) 

Vegetation type Data range Citations 

US-EML 149.25W/ 

63.88N 

700 Alpine tundra 01/2009- 

12/2013 

Belshe et al. (2012) 

 

      

CA-SJ2 104.65W/ 

53.95N 

      580 Boreal forest 01/2004- 

12/2008 

Coursolle et al. (2006) 

      

US-Ho2 68.75W/ 

45.21N 

91 Temperate coniferous 

forest 

01/2000- 

12/2004 

Davidson et al. (2006) 

 

 

      

US-UMB 84.71W/ 

45.56N 

 234 Temperate deciduous 

forest 

01/2005- 

12/2006 
Gough et al. (2013) 

      

US-Ro4          93.07W/ 

 44.68N 

274 Grasslands 01/2016- 

12/2017 

Griffis et al. (2011) 

 

      

RU-Che          161.34E/ 

  68.61N 

  6 Wet tundra 01/2002- 

12/2005 

Merbold et al. (2009) 
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Table 5. Model validation statistics for Dormancy model and MIC-TEM at six sites with NEP data 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 

Site Name     Vegetation type Models Intercept Slope R-square Adjusted R-square p-value 

Ivotuk     Alpine tundra 
MIC-TEM 0.85 0.83 0.70 0.67 <0.001 

Dormancy -0.51 1.09 0.75 0.73 <0.001 

        

UCI-1964 burn site     Boreal forest 
MIC-TEM 0.18 1.03 0.912 0.9080 <0.001 

Dormancy -0.21 0.96 0.90 0.894 <0.001 

        

Howland Forest 

(main tower) 

Temperate 

coniferous forest 

MIC-TEM 7.29 0.72 0.85 0.83 <0.001 

Dormancy 0.27 1.05 0.89 0.88 <0.001 

        

Bartlett Experimental 

Forest 

Temperate 

deciduous forest 

MIC-TEM -6.05 0.91 0.944 0.941 <0.001 

Dormancy -2.34 1.13 0.93 0.924 <0.001 

        

Brookings       Grassland 
MIC-TEM 3.05 0.71 0.84 0.83 <0.001 

Dormancy 0.17 0.95 0.90 0.898 <0.001 

        

Atqasuk      Wet tundra 
MIC-TEM 7.22 1.85 0.71 0.70 <0.001 

Dormancy 0.19 0.82 0.67 0.66 <0.001 
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Table 6. Model validation statistics for Dormancy model and MIC-TEM at six sites with RH data 1062 
 1063 

Site ID Vegetation type Models Intercept Slope R-square Adjusted R-square RMSE p-value 

US-EML Alpine tundra MIC-TEM 2.90 0.91 0.79 0.78 3.55 <0.001 

Dormancy 1.81 0.74 0.87 0.85 2.69 <0.001 

         

CA-SJ2 Boreal forest MIC-TEM 7.59 1.12 0.84 0.83 9.8 <0.001 

Dormancy 2.6 0.74 0.86 0.85 3.97 <0.001 

         

US-Ho2 Temperate coniferous 

forest 

MIC-TEM 4.07 0.89 0.86 0.84 12.39 <0.001 

Dormancy 6.59 0.71 0.91 0.89 11.83 <0.001 

         

US-UMB Temperate deciduous 

forest 

MIC-TEM -4.73 1.32 0.81 0.8 20.05 <0.001 

Dormancy 13.6 0.67 0.85 0.84 12.94 <0.001 

         

US-Ro4 Grassland MIC-TEM 9.34 0.87 0.81 0.79 11.25 <0.001 

Dormancy 4.81 0.65 0.86 0.84 9.21 <0.001 

         

RU-Che Wet tundra MIC-TEM 2.5 0.67 0.72 0.71 6.24 <0.001 

Dormancy 1.96 0.77 0.81 0.79 5.95 <0.001 


