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Abstract. Evaporation (E) and transpiration (T) respond differently to ongoing changes in climate, atmospheric composition, 

and land use. It is difficult to partition ecosystem-scale evapotranspiration (ET) measurements into E and T, which makes it 35 

difficult to validate satellite data and land surface models. Here, we review current progress in partitioning E and T and provide 

a prospectus for how to improve theory and observations going forward. Recent advancements in analytical techniques create 

new opportunities for partitioning E and T at the ecosystem scale, but their assumptions have yet to be fully tested. For example, 

many approaches to partition E and T rely on the notion that plant canopy conductance and ecosystem water use efficiency 

exhibit optimal responses to atmospheric vapor pressure deficit (D). We use observations from 240 eddy covariance flux 40 
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towers to demonstrate that optimal ecosystem response to D is a reasonable assumption, in agreement with recent studies, but 

more analysis is necessary to determine the conditions for which this assumption holds. Another critical assumption for many 

partitioning approaches is that ET can be approximated as T during ideal transpiring conditions, which has been challenged by 

observational studies. We demonstrate that T can exceed 95% of ET from certain ecosystems, but other ecosystems do not 

appear to reach this value, which suggests that this assumption is ecosystem-dependent with implications for partitioning. It is 5 

important to further improve approaches for partitioning E and T, yet few multi-method comparisons have been undertaken to 

date. Advances in our understanding of carbon-water coupling at the stomatal, leaf, and canopy level open new perspectives 

on how to quantify T via its strong coupling with photosynthesis. Photosynthesis can be constrained at the ecosystem and 

global scales with emerging data sources including solar-induced fluorescence, carbonyl sulfide flux measurements, 

thermography, and more. Such comparisons would improve our mechanistic understanding of ecosystem water fluxes and 10 

provide the observations necessary to validate remote sensing algorithms and land surface models to understand the changing 

global water cycle. 

1 Introduction 

Some 70 thousand cubic kilometers of water leave terrestrial ecosystems and enter the atmosphere through evapotranspiration 

(ET) every year (Jung et al., 2018; Oki and Kanae, 2006). Despite its importance, we are unsure whether global ET has been 15 

increasing over time (Brutsaert, 2013, 2017; Brutsaert and Parlange, 1998; Zeng et al., 2018; Zhang et al., 2016) such that the 

water cycle is accelerating (Ohmura and Wild, 2002), or decreasing and causing more river discharge (Gedney et al., 2006; 

Labat et al., 2004; Probst and Tardy, 1987). Global ET volumes from reanalyses, upscaled estimates, and land surface model 

(LSM) outputs disagree (Mueller et al., 2013) by up to 50% (Mao et al., 2015; Vinukollu et al., 2011). LSMs also struggle to 

simulate the magnitude and/or seasonality of ET at the ecosystem scale (Figure 1), suggesting fundamental gaps in our 20 

understanding of the terrestrial water cycle. These issues need to be resolved to effectively manage water resources as climate 

continues to change (Dolman et al., 2014; Fisher et al., 2017). 

Along with technological and data limitations, we argue that a fundamental challenge in modeling ET at the global scale is 

difficulty measuring transpiration (T) through plant stomata and evaporation (E) from non-stomatal surfaces at the ecosystem 

scale (Fisher et al., 2017; McCabe et al., 2017). LSMs and remote sensing algorithms (see Appendix A) rely on process-based 25 

understanding of E and T to estimate ET, but it is not clear how to guide their improvement without accurate ground-based E 

and T observations at spatial scales on the order of a few kilometers or less (Talsma et al., 2018) and temporal scales that 

capture diurnal, seasonal, and interannual variability in water fluxes. Recent statistical ET partitioning approaches (Rigden et 

al. 2018) are similiarly limited by the lack of direct E and T observations for evaluation. Interest in partitioning E and T from 

ecosystem ET measurements has grown in recent years (Anderson et al., 2017b), and many new measurements and modeling 30 

approaches seek to do so, but often rely on assumptions that need further testing. We begin with a brief research review that 

notes recent updates to our theoretical understanding of ET and outlines the challenges in measuring E and T at the ecosystem 
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scale. We then describe current and emerging innovations in partitioning E and T (Table 1) and use observations to challenge 

some of the assumptions upon which these approaches rely. We finish with an outlook of how carefully-designed ecosystem-

scale experiments can constrain models of E and T to improve our understanding going forward.  

2 Background 

2.1 Vegetation plays a central role in evaporation and transpiration partitioning 5 

The ratio of transpiration to evapotranspiration (T/ET) at annual time scales is related to aridity (Good et al., 2017), but appears 

to be relatively insensitive to annual precipitation (P) (Schlesinger and Jasechko, 2014). T/ET is sensitive to ecosystem 

characteristics, namely the leaf area index (LAI) (Berkelhammer et al., 2016; Fatichi and Pappas, 2017; Wang et al., 2014; Wei 

et al., 2015), especially on sub-annual time scales (Li et al., 2019; Scott and Biederman, 2017), noting that LAI is related to P 

at longer time scales. A higher LAI favors T and E from intercepted water (Ei) at the expense of soil E (Esoil) such that LAI 10 

explains some 43% of the variability of annual T/ET across global ecosystems (Wang et al., 2014). Upscaling this relationship 

results in a global estimate of terrestrial annual T/ET of 0.57 ± 0.07 (Wei et al., 2017). Other observational studies suggest that 

annual T/ET averages nearly 2/3 globally (0.61 ± 0.15 (Schlesinger and Jasechko, 2014), 0.64 ± 0.13 (Good et al., 2015), and 

0.66 ± 0.13 across some FLUXNET sites (Li et al., 2019)). Inter-comparison studies agree on the large uncertainty surrounding 

these estimates, with reported global terrestrial annual T/ET ratios ranging from 0.35 to 0.90 (Coenders-Gerrits et al., 2014; 15 

Fatichi and Pappas, 2017; Young-Robertson et al., 2018). Approaches that use stable isotopes tend to produce higher annual 

T/ET values due to assumptions regarding isotopic fractionation (Jasechko et al., 2013; Sutanto et al., 2014). Some LSM 

estimates of annual T/ET arrive at larger values on the order of 0.70 ±0.09 (Fatichi and Pappas, 2017; Paschalis et al., 2018), 

while other LSMs suggest smaller T/ET; for example, T/ET from the IPCC CMIP5 intercomparison ranges from 0.22 to 0.58 

(Wei et al., 2017). Constraining these model results with observations results in an estimate similar to observational studies 20 

but with reduced uncertainty: 0.62 ± 0.06 (Lian et al., 2018). An ongoing challenge is to measure and model T/ET correctly at 

the ecosystem scale across all time scales over which it varies from minutes or less to multiple years or more. For this, an 

understanding of ecosystem water transport and biological responses to micrometeorological forcing is necessary (Badgley et 

al., 2015).  

2.2 Turning theory into practice 25 

Measuring and modeling water fluxes from surface to atmosphere at the ecosystem scale across multiple scales in time is a 

non-trivial challenge. The pools in which water is stored in ecosystems span spatial scales from soil pores to forest canopies. 

Liquid and gaseous water transport occurs through pathways in the soil, xylem, leaves, and plant surfaces that exhibit nonlinear 

responses to hydroclimatic forcing, which is itself stochastic (Katul et al., 2007, 2012). These complex dynamics of water 

storage and transport impact the conductance of water between ecosystems and atmosphere (Mencuccini et al., 2019; Siqueira 30 

et al., 2008), and these conductance terms are central to the Penman-Monteith equation, which combines the thermodynamic, 
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aerodynamic, environmental, and biological variables to which ET (m s−1) responds to represent the mass and energy balance 

of water flux between the land surface and the atmosphere (Monteith, 1965; Penman, 1948) 

𝐸𝑇 =
1

𝜌𝜆

𝑠(𝑅𝑛−𝐺)+𝜌a𝑐p𝐷𝑔a

𝑠+𝛾(1+
𝑔a

𝑔surf
)

.           (1) 

In the Penman-Monteith equation, λ is the latent heat of vaporization (J kg−1), 𝜌 is the density of water (kg m−3), s is the slope 

of the saturation vapor pressure function (Pa K−1), Rn is the surface net radiation (W m−2), G is the ground heat flux (W m−2), 5 

ρa is dry air density (kg m−3), cp is the specific heat capacity of air (J kg−1 K−1), D is the vapor pressure deficit (Pa), γ is the 

psychrometric constant (Pa K−1), ga is the conductance of the atmosphere, and gsurf is surface conductance to water vapor flux 

(both m s-1). gsurf is a spatially-upscaled, effective parameter that includes canopy conductance from stomatal opening (gc) 

associated with T, conductance related soil evaporation (gsoil) associated with Esoil, and conductance related to plant-intercepted 

evaporation (gi) associated with Ei. The combination of Esoil and Ei results in ecosystem-scale E. The biological drivers that 10 

alter gc impact T, but physical drivers impact both E and T. In practice, the Penman-Monteith equation is commonly simplified 

because of the challenge of correctly simulating all relevant conductances (Maes et al., 2018; Priestley and Taylor, 1972). 

The micrometeorological drivers of the Penman-Monteith equation vary within and across plant canopies and landscapes 

(Jarvis and McNaughton, 1986) as do the turbulent structures that transport water into the atmosphere by which ET can be 

measured using eddy covariance. Because ET is commonly measured above plant canopies with eddy covariance, 15 

micrometeorological variables are commonly measured above plant canopies as well. These measurements do not necessarily 

reflect micrometeorological conditions at evaporating and transpiring surfaces. For example, characteristic profiles of water 

vapor concentration in the atmosphere measured above the plant canopy are different from D at the canopy, leaf, and soil levels 

(De Kauwe et al., 2017; Jarvis and McNaughton, 1986; Lin et al., 2018). Furthermore, the fundamental assumption that D 

reflects the difference between atmospheric water vapor pressure and saturated conditions within the leaf is challenged by 20 

studies demonstrating that leaf vapor pressure need not be saturated (Cernusak et al., 2018). Radiation, temperature, and wind 

speed also vary throughout plant canopies with consequences for modeling T from the canopy and E from the soil and other 

ecosystem surfaces. The space-time variability of environmental drivers within plant canopies should therefore ideally be 

measured or simulated to understand how they impact E and T, and ecosystem modelers must decide if this canopy-resolved 

detail is important to simulate (Medvigy et al., 2009) in diverse ecosystems (Boulet et al., 1999; Polhamus et al., 2013). 25 

Modeling ET at the ecosystem scale is challenging enough before noting that ongoing changes to the Earth system impact all 

of the biotic and abiotic variables that determine it. The decline in incident radiation across some regions of the world due 

largely to anthropogenic aerosols (‘global dimming’) and subsequent increase since about 1990 (‘global brightening’) have 

changed surface Rn (Wild et al., 2005). The observed decrease in wind speed (‘global stilling’) (McVicar et al., 2012a, 2012b) 

is partly due to increases in surface roughness owing to increases in LAI (Vautard et al., 2010) and has decreased ga, which is 30 

a function of wind speed (Campbell and Norman, 1998). Atmospheric heating changes the terms in Eq. 1 that involve 

temperature, namely Rn (via incident longwave radiation), λ, γ, and s through the Clausius-Clapeyron relation. A warming 

climate also increases D in the absence of changes in specific humidity, but specific humidity has increased across many global 
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regions (Willett et al., 2008) resulting in complex spatial and temporal changes in D (Ficklin and Novick, 2017). gc is controlled 

by soil moisture availability (Porporato et al., 2004), plant hydrodynamics (Bohrer et al., 2005; Matheny et al., 2014), and 

environmental variables including D that result in stomatal closure (Oren et al., 1999) (Fig. 2). This dependency on D is 

predicted to become increasingly important as global temperatures continue to rise (Novick et al., 2016), but D is also highly 

coupled to soil moisture (Zhou et al., 2019), and both depend on ET itself through soil-vegetation-atmosphere coupling. 5 

Increases in atmospheric CO2 concentration tend to decrease stomatal conductance at the leaf scale (Field et al., 1995) and 

have been argued to decrease gc on a global scale (Gedney et al., 2006). However, elevated CO2 often favors increases in LAI 

(e.g. Ellsworth et al., 1996), thus leading to an increase in transpiring area which can support greater gc. Atmospheric pollutants 

including ozone also impact gc with important consequences for vegetation function (Hill et al., 1969; Wittig et al., 2007). 

Water fluxes from the land surface impact atmospheric boundary layer processes including cloud formation, extreme 10 

temperatures, and precipitation (Gerken et al., 2018; Lemordant et al., 2016; Lemordant and Gentine, 2018), which feeds back 

to land surface fluxes in ways that are inherently nonlinear and difficult to simulate (Ruddell et al., 2013). In addition to these 

highly nonlinear dynamics of the soil-vegetation-atmosphere system, ongoing land use and land cover changes impact 

vegetation structure and function with important implications for the water cycle. In brief, we need to correctly simulate how 

E and T respond to a range of biotic and abiotic variability for predictive understanding. To do so, we need to accurately 15 

measure E and T in the first place.  

3 Measuring and estimating evaporation and transpiration 

There are multiple established methods to measure ecosystem E and T, including leaf gas exchange, tree-level sap flow, 

lysimeters, soil, leaf, and canopy chambers, potometers, soil heat pulse methods, and stable and radioisotopic techniques. 

Ongoing efforts to synthesize measurements of ecosystem water cycle components – for example SAPFLUXNET (Poyatos et 20 

al., 2016) – are a promising approach to build understanding of different terms of the ecosystem water balance across global 

ecosystems. Multiple reviews and syntheses of E and T measurements have been written (e.g. Abtew and Melesse, 2012; 

Anderson et al., 2017b; Blyth and Harding, 2011; Kool et al., 2014; Shuttleworth, 2007; Wang and Dickinson, 2012), and have 

provided the key insights that ecosystem models use to simulate ecosystem-atmosphere water flux (De Kauwe et al., 2013). 

Rather than reiterate the findings of these studies, we focus on existing and emerging approaches to partition E and T at the 25 

ecosystem scale on the order of tens of meters to kilometers at temporal resolutions on the order of minutes to hours with a 

particular emphasis on new observational and methodological techniques. We do so to align ecosystem-scale observations of 

E and T with satellite-based algorithms which can scale E and T from ecosystem to region to globe (Appendix A). 

ET is commonly approximated as the residual of the water balance at the watershed scale in hydrologic studies – especially 

when the change in water storage can be assumed to be negligible – but now can be measured using eddy covariance at the 30 

ecosystem scale (Wilson et al., 2001). Other approaches including scintillometry (Cammalleri et al., 2010; Hemakumara et al., 

2003), surface renewal (Snyder et al., 1996), and the Bowen Ratio Energy Balance method provide important complements to 
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eddy covariance techniques for measuring ecosystem-scale ET. Such syntheses follow ongoing efforts to compile ET measured 

by eddy covariance via FLUXNET and cooperating consortia (Chu et al., 2017), which synthesize half-hourly to hourly eddy 

covariance flux measurements that have been used to partition ET into E and T with mixed success.  

3.1 Partitioning ET using half-hourly eddy covariance observations 

An early attempt to partition E and T directly from eddy covariance measurements assumed that ET is comprised solely of E 5 

in the absence of canopy photosynthesis (gross primary productivity, GPP) due to the coupled flux of carbon and water through 

plant stomata (Stoy et al., 2006). It was further assumed that Esoil dominated ET during these times, and that Esoil could be 

modeled by simulating solar radiation attenuation through grass, pine forest, and deciduous forest canopies in the Duke Forest, 

NC, USA. T was subsequently approximated as the difference between measured ET and the model for Esoil during times when 

photosynthesis was active. Annual T/ET values from this approach varied from 0.35 to 0.66 in the grass ecosystem (US-Dk1) 10 

across a four year period and between 0.7 to 0.75 in the pine (US-Dk3) and hardwood (US-Dk2) forests, somewhat higher than 

global syntheses (Schlesinger and Jasechko, 2014), remote sensing estimates from PT-JPL (see Appendix A) for the Duke pine 

forest (Fig. 3), and sap flow-based measurements from the deciduous forest (Oishi et al., 2008). These discrepancies arose in 

part because Ei was considered negligible but can be considerable (see section 3.6). The model for Esoil could also not be 

directly validated using measurements from the forest floor alone with available observations. 15 

An under-explored approach for partitioning Esoil from ecosystem ET uses concurrent above and below canopy eddy covariance 

measurements in forest and savanna ecosystems (Misson et al., 2007). Subcanopy eddy covariance measurements have proven 

useful for measuring below-canopy ET, often assumed to be comprised largely of Esoil in ecosystems with poor understory 

cover (Baldocchi et al., 1997; Baldocchi and Ryu, 2011; Moore et al., 1996; Sulman et al., 2016). However, such measurements 

are not yet widely adopted for ET partitioning studies due to a limited understanding of their performance (Perez-Priego et al., 20 

2017); most work to date has used below-canopy eddy covariance to partition canopy GPP and soil respiration (Misson et al., 

2007). Several recent studies demonstrated the additional value of concurrent below-canopy measurements for quantifying the 

coupling and decoupling of below- and above-canopy airspace to accurately apply the eddy covariance technique in forested 

ecosystems (Jocher et al., 2017, 2018; Paul-Limoges et al., 2017; Thomas et al., 2013), arguing that below-canopy eddy 

covariance measurements should be more widely adopted. Other eddy covariance-based partitioning methods take a different 25 

approach and use the relationship between T and GPP to partition ecosystem-scale E and T. 

Scott and Biederman (2017) assumed that T is linearly related to GPP at monthly time scales over many years such that: 

𝑇 = 𝑚WUE𝑟𝐺𝑃𝑃            (2) 

where 𝑚WUE is the inverse of the marginal water use efficiency (the change, Δ, in ET per change in GPP: ΔET/ΔGPP) and r, 

the ratio between the inverse of the transpirational water use efficiency (ΔT/ΔGPP) and the marginal ecosystem water use 30 

efficiency, is assumed to be unity. It follows that the intercept E’ of the relationship 𝐸𝑇 = 𝑚𝐺𝑃𝑃 + 𝐸′ is an estimate of average 

monthly E. This approach is favored in semi-arid ecosystems where there is a close coupling of ET and GPP and when E is a 

considerable fraction of ET.  
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Several recently developed methods for partitioning eddy covariance-measured ET are based on the optimality theory 

assumption that plants minimize water loss per unit CO2 gain (e.g. Hari et al., 2000; Katul et al., 2009; Medlyn et al., 2011; 

Schymanski et al., 2007). An outcome of this approach is that plant water use efficiency WUE, defined here as GPP/T, scales 

with D0.5 from which a relationship between GPP and T can be derived (Katul et al., 2009). Berkelhammer et al. (2016) noted 

that ET follows a linear relationship to GPP × D0.5 and further assumed that the T/ET ratio intermittently approaches 1. They 5 

then separated ET measurements from eddy covariance into GPP classes for which a minimum ET, min(𝐸𝑇)|𝐺𝑃𝑃, can be 

defined. T/ET can then be calculated using: 

𝑇 𝐸𝑇⁄ =
𝐸𝑇

min(𝐸𝑇)|𝐺𝑃𝑃
           (3) 

Applying this approach to different forests revealed considerable synoptic scale variability in T/ET that was dampened at 

seasonal time scales and compared well against isotopic approaches (Berkelhammer et al., 2016). 10 

Zhou et al. (2016) built upon earlier work (Zhou et al., 2014) and assumed that an ecosystem has an actual underlying water 

use efficiency (uWUEa, where WUE in this case is defined as GPP/ET) which is maximal or reaches its potential underlying 

water use efficiency (uWUEp) when T/ET approaches unity. T/ET can thus be calculated from the ratio of actual to potential 

uWUE using optimality assumptions for both: 

𝑢𝑊𝑈𝐸p =
𝐺𝑃𝑃√𝐷

𝑇
            (4) 15 

and 

𝑢𝑊𝑈𝐸a =
𝐺𝑃𝑃√𝐷

𝐸𝑇
 .           (5) 

Again, assuming that T/ET intermittently approaches one in sub-daily eddy covariance measurements, the uWUEp can be 

estimated empirically using 95th quantile regression to find the upper boundary of the relationship between measured ET and 

GPP ×  D0.5. uWUEa can be calculated using eddy covariance observations, and T estimates using this approach compare well 20 

against independent sap flow measurements (Zhou et al., 2018). A semi-empirical model based on the uWUE concept by Boese 

et al. (2017) included radiation and was able to outperform the Zhou et al. (2016) approach, on average, consistent with the 

notion that T is also driven by radiation (Eq. 1) (Pieruschka et al., 2010). It is important to note when applying WUE-based 

approaches that there are important discrepancies between WUE measurements at leaf and canopy scales that still need to be 

resolved (Medlyn et al., 2017; Medrano et al., 2015), and also that GPP estimates from eddy covariance observations may 25 

have considerable uncertainty. 

In a more sophisticated attempt to partition ET utilizing optimality theory, Perez-Priego et al. (2018) utilized a big-leaf canopy 

model where parameters were optimized using half-hourly data in five-day windows. Uniquely, the marginal carbon cost of 

water was factored into the cost function during parameter estimation, so the parameters for each five-day window maximized 

the fit between modeled and observed GPP and also minimized water loss per carbon gain. T was then calculated using gc 30 

from the model, and E was calculated as the residual (ET − T).  
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A modified (in this case binned) parameter optimization approach was used by Li et al. (2019) to estimate gsurf, which follows 

the model proposed by Lin et al. (2018): 

𝑔𝑠𝑢𝑟𝑓 = 𝑔0 + 𝑔1
𝐺𝑃𝑃

𝐷L
𝑚            (6) 

Here, g0 (assumed to correspond to soil conductance), g1 (assumed to correspond to vegetation conductance), and m are 

optimized parameters, DL is the inferred leaf level D, and gsurf is estimated by inverting Eq. 1 and is assumed to represent 5 

ecosystem conductance to water vapor flux. Rather than optimizing using a moving window over time, data were binned using 

independent soil moisture data associated with the eddy covariance site, with g0, g1, and m optimized in each bin to account 

for changes due to water limitations. Partitioning was then calculated as: 

𝑇

𝐸𝑇
=

𝑔1

𝑔surf
            (7) 

and 10 

𝐸

𝐸𝑇
=

𝑔0

𝑔surf
.            (8) 

The Perez-Priego et al. (2018) and Li et al. (2019) methods both circumvent the assumption that T/ET approaches unity at 

some periods by estimating ecosystem conductances directly. The Transpiration Estimation Algorithm (TEA) from Nelson et 

al. (2018) utilizes a non-parametric model and thereby further limits assumptions made about how the ecosystem functions. 

However, TEA must make the assumption that T/ET approaches one, which it does by removing observations when the surface 15 

is likely to be wet. In a validation study which utilized model output as synthetic eddy covariance datasets where E and T are 

known, TEA was able to predict T/ET patterns in both space and time but showed a sensitivity to the minimum modelled E. 

Overall, TEA was able to predict temporal patterns of T across three different ecosystem models and provides an important 

basis for comparison because the model for T is agnostic to underlying ecosystem function.  

3.2 Partitioning ET using high-frequency eddy-covariance observations 20 

Scanlon and Kustas (2010) (see also Scanlon and Sahu, 2008) developed a partitioning approach for E and T using high-

frequency eddy covariance measurements based on the notion that atmospheric eddies transporting CO2 and water vapor from 

stomatal processes (T and net primary production (NPP = GPP – above-ground respiration by autotrophic canopy)) and non-

stomatal processes (E and soil respiration) independently follow flux variance similarity as predicted by Monin Obukhov 

Similarity Theory. In brief, there are two end-member scenarios for a parcel of air transported from a surface: one without 25 

stomata, and one with stomata. An eddy transported away from a surface that is respiring CO2 and evaporating water through 

pathways other than stomata will have deviations from mean CO2 mixing ratio (c’) and water vapor mixing ratio (q’) that are 

positively correlated. An eddy of air transported by a surface with stomata will have a negative relationship between c’ and q’ 

due to CO2 uptake and T during daytime, whose ratio can also be described by a unique WUE at the leaf level. This leaf-level 

WUE is thereby used to establish a functional relationship between the variance of CO2 due to stomatal uptake (σcp
2) and the 30 

correlation between stomatal and non-stomatal CO2 exchange processes (ρcp,cr). Subsequently, ET can be partitioned into its T 



9 

 

and E components by matching the observed correlation of q’ and c’ (ρq,c) to the corresponding value of ρcp,cr (Scanlon and 

Sahu, 2008). The original approach applied wavelet filtering to remove large-scale atmospheric effects that impact the validity 

of underlying flux-variance relationships and was shown to realistically reproduce T/ET relationships over the growing period 

of a corn (maize) crop (Scanlon and Kustas, 2012).  

 Subsequent work by Skaggs et al. (2018) noted that there is an algebraic solution to terms that had previously been 5 

solved using optimization (namely σcp
2 and ρcp,cr, Palatella et al., (2014)) and created an open-source Python module, fluxpart, 

to calculate E and T using the flux variance similarity approach. The first applications of the flux variance similarity approach 

used a leaf-level WUE formulation following Campbell and Norman (1998); fluxpart allows leaf-level WUE to vary as a 

function of D or take a constant value. Leaf-level WUE varies throughout the canopy and in response to other environmental 

conditions and using high-frequency measurements above the canopy rather than leaf-level observations to estimate it results 10 

in uncertainties (Perez-Priego et al., 2018). These uncertainties in leaf-level WUE can be addressed in part by using outgoing 

longwave radiative flux density observations to estimate canopy temperature (Klosterhalfen et al., 2018, 2019). A careful 

comparison of flux variance partitioning results against fluxes simulated by large eddy simulation revealed that it yields better 

results with a developed plant canopy with clear separation of CO2 and water vapor sources and sinks (Klosterhalfen et al., 

2019). It is also possible to separate E and T using conditional sampling of turbulent eddies (Thomas et al., 2008); performance 15 

of the conditional sampling method is a function of canopy height and leaf area index and performance of the flux variance 

similarity method is related to the ratio between sensor height and canopy height (Klosterhalfen et al., 2018), suggesting that 

different methods may deliver better results in different ecosystems with differing measurement set-ups. 

It should also be noted that flux variance similarity can be used directly with (half-)hourly flux data if the wavelet filtering 

step is negligible (necessary variables of each time period are the CO2 and water vapor flux, their respective variances (σc
2, 20 

σq
2), ρq,c, and an estimated leaf-level WUE), but in practice high-frequency eddy covariance data are required because the 

necessary terms are rarely computed and saved. Of course, all eddy covariance-based ET partitioning approaches need to (i) 

take decoupling between atmosphere, canopy, and subcanopy into account (e.g. Jocher et al., 2017); (ii) critique the energy 

balance closure of the observations (Leuning et al., 2012; Stoy et al., 2013; Wohlfahrt et al., 2009) especially in closed-path 

eddy covariance systems which are prone to water vapor attenuation in the inlet tube (Fratini et al., 2012; Mammarella et al., 25 

2009); and (iii) acknowledge uncertainty of eddy covariance-based GPP estimates. An advantage of eddy covariance-based 

approaches to partition E and T is that they can be complemented by other new approaches that measure or estimate E and T 

at temporal scales that align with the common half-hourly or hourly eddy covariance averaging period and spatial scales that 

align with the eddy covariance flux footprint. 

3.3 Solar-induced fluorescence (SIF) 30 

GPP and T are coupled through stomatal function, and studies of GPP have recently been revolutionized by space and ground-

based observations of solar-induced fluorescence (SIF) (Frankenberg et al., 2011; Gu et al., 2018; Köhler et al., 2018; Meroni 

et al., 2009), the process by which some of the incoming radiation that is absorbed by the leaf is re-emitted by chlorophyll. 
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SIF emission is related to the light reactions of photosynthesis but GPP estimation also requires information on the dark 

reactions and stomatal conductance such that the remote sensing community is currently challenged by how to use SIF to 

estimate GPP. New studies also propose that SIF might be used to monitor T, possibly in combination with surface temperature 

measurements, acknowledging the close link between GPP and T due to their joint dependence on stomatal conductance and 

common meteorological and environmental drivers (Alemohammad et al., 2017; Damm et al., 2018; Lu et al., 2018; Pagán et 5 

al., 2019; Shan et al., 2019).  

While SIF is related to the electron transport rate (Zhang et al., 2014), T primarily depends on stomatal conductance such that 

SIF and T are linked empirically but not mechanistically. This link is expected if GPP and T are tightly coupled. SIF has also 

been proposed to predict the ecosystem-scale WUE (i.e. GPP/T) (Lu et al., 2018), a critical component of many of the E and 

T partitioning algorithms based on eddy covariance ET measurements described above. Shan et al. (2019) showed that T can 10 

be empirically derived from SIF in forest and crop ecosystems with explained total variance ranging from 0.57 to 0.83 and to 

a lesser extent in grasslands with explained variance between 0.13 and 0.22. The authors suggested that the decoupling between 

GPP and T during water stress hampered the use of SIF to predict T, particularly in grasslands, noting that T can occur without 

GPP under periods of plant stress (Bunce, 1988; De Kauwe et al., 2019). There is a strong empirical link between the ratio of 

T over potential evaporation and the ratio of SIF over PAR, and the relationship depends on the atmospheric demand for water, 15 

with larger transpiration for the same SIF when potential evaporation is higher (Alemohammad et al., 2017; Damm et al., 

2018; Lu et al., 2018; Pagán et al., 2019; Shan et al., 2019). These ratios vary with assumptions regarding the potential 

evaporation calculation as well (Fisher et al., 2010). SIF can be measured at unprecedented spatial and temporal scales (Köhler 

et al., 2018) including the scale of the eddy covariance flux footprint (Gu et al., 2018), and this information can in turn be 

incorporated into remote sensing-based approaches for estimating ET using remote sensing platforms (see Appendix A) 20 

following additional mechanistic studies of its relationship with T. 

3.4 Carbonyl sulfide (COS) flux 

Other approaches to estimate GPP and gc use independent tracers such as carbonyl sulfide (COS). When plants open their 

stomata to take up CO2 for photosynthesis, they also take up COS (Campbell et al., 2008), a trace gas present in the atmosphere 

at a global average mole fraction of ~ 500 ppt (Montzka et al., 2007). The leaf-scale uptake of COS, FCOS (pmol m-2 s-1), can 25 

be calculated using  

𝐹COS = −𝐶COS (
1

𝑔b
+

1

𝑔s,COS
+

1

𝑔i
)

−1

.          (9) 

where CCOS (pmol mol-1) is mole fraction of COS and gb, gs,COS, and gi represent the leaf-scale boundary layer, stomatal, and 

internal conductances (here mol m-2 s-1) to COS exchange (Sandoval-Soto et al., 2005; Wohlfahrt et al., 2012). The latter lumps 

together the mesophyll conductance and the biochemical “conductance” imposed by the reaction rate of carbonic anhydrase, 30 

the enzyme ultimately responsible for the destruction of COS (Wehr et al., 2017). Equation 9 also makes the common 

assumption that, because the carbonic anhydrase is highly efficient in catalyzing COS, the COS mole fraction at the diffusion 
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endpoint is effectively zero (Protoschill-Krebs et al., 1996). Provided appropriate vertical integration over the canopy is made, 

Eq. 9 can be used to describe canopy-scale FCOS (Wehr et al., 2017).  

 Because COS and CO2 share a similar diffusion pathway into leaves and because the leaf exchange of COS is 

generally unidirectional, COS has been suggested (Sandoval-Soto et al., 2005; Seibt et al., 2010; Wohlfahrt et al., 2012) and 

demonstrated (Wehr et al., 2017; Yang et al., 2018; Spielmann et al., 2019) to present an independent proxy for estimating 5 

GPP. Motivated by the common boundary layer and stomatal conductances, there has been recent interest in using 

measurements of the COS exchange to estimate the canopy stomatal conductance to water vapor and by extension T (Asaf et 

al., 2013; Wehr et al., 2017; Yang et al., 2018). Solving for gs,COS from Eq. 9 requires measurements of FCOS (e.g. by means of 

eddy covariance; Gerdel et al., 2017) and CCOS, while gb and gi are typically estimated based on models.  

With gs (and by canoy scaling gc) determined this way, and an estimate of they aerodynamic conductance (the canopy-analog 10 

to the leaf boundary-layer conductance, Eq. 1), T may be derived by multiplication with the canopy-integrated leaf-to-air water 

vapor gradient. The first and to-date only study to attempt this was conducted by Wehr et al. (2017), who demonstrated 

excellent correspondence with gc estimated from ET measurements in a temperate deciduous forest. While stomata dominated 

the limitation of the COS uptake during most of the day, co-limitation by the biochemical “conductance” imposed by carbonic 

anhydrase was observed around noon. This finding is consistent with leaf-level studies by Sun et al. (2018) and suggests that 15 

gi in Eq. 9 may not generally be negligible, even though Yang et al. (2018) found the bulk surface conductance of COS (i.e. 

all conductance terms in Eq. 9 lumped together) to correspond well with the surface conductance for water vapor inferred from 

ET. As soils may both emit and take up COS, ecosystem-scale COS flux measurements need to account for any soil exchange, 

even though typically the soil contribution is small (Maseyk et al., 2014; Whelan et al., 2018). One notable exception for larger 

soil FCOS fluxes occurs in some agricultural systems (Whelan et al., 2015), due in part to the relationship of FCOS with soil 20 

nitrogen (Kaisermann et al., 2018). Clearly, further studies are required in order to establish whether the complexities of and 

uncertainties associated with inferring gs from Eq. 9 and non-stomatal fluxes make COS observations a sensible independent 

alternative for estimating canopy T.  

3.5 Advances in thermal imaging 

Thermal remote sensing measures the radiometric surface temperature following the Stefan-Boltzmann Law. ET can be 25 

estimated using thermal remote sensing by applying an ecosystem energy balance residual approach: λE = Rn − G − H 

(Norman et al., 1995). Quantifying the available energy term (Rn − G) is difficult from space and the radiometric surface 

temperature measured by infrared sensors is different from the aerodynamic surface temperature that gives rise to sensible heat 

flux (H) (Kustas and Norman, 1996). Despite these challenges, thermal remote sensing for ET has been widely used with 

multiple satellite platforms including Landsat, MODIS, Sentinel, and GOES (Anderson et al., 2012; Fisher et al., 2017; 30 

Semmens et al., 2016). One of NASA’s newest missions is ECOSTRESS mounted on the International Space Station, which 

produces thermally-derived ET at 70 m resolution with diurnal sampling (Fisher et al., 2017).  
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Advances in thermal imaging (thermography) have made it possible to make radiometric surface temperature observations at 

increasingly fine spatial and temporal resolutions (Jones, 2004) – on the order of millimeters or less – such that E and T can 

be measured individually. Thermography has been used to estimate Esoil (Haghighi and Or, 2015; Nachshon et al., 2011; 

Shahraeeni and Or, 2010) and T from plant canopies (Jones, 1999; Jones et al., 2002), often in agricultural settings (Ishimwe 

et al., 2014; Vadivambal and Jayas, 2010). Researchers are increasingly using tower and UAV-mounted thermal cameras to 5 

measure the temperatures of different ecosystem components at high temporal and spatial resolution (Hoffmann et al., 2016; 

Pau et al., 2018), which could revolutionize the measurement of T from plant canopies (Aubrecht et al., 2016) or even 

individual leaves in a field setting (Page et al., 2018). Such measurements need to consider simultaneous Ei and T from wet 

leaf surfaces.  

3.6 The challenges of measuring evaporation from canopy interception 10 

Ei from wet canopies can return 15-30% or more of incident precipitation back into the atmosphere annually (Crockford and 

Richardson, 2000) and models struggle to simulate it accurately (De Kauwe et al., 2013). Although interception has been 

studied over a century, the underlying physical processes, atmospheric conditions, and canopy characteristics that affect it are 

poorly understood (van Dijk et al., 2015). Accurately estimating Ei from wet canopies is critical for the proper simulation of 

interception loss (Pereira et al., 2016). However, Ei predicted by the Penman-Monteith equation (Eq. 1) during rainfall is often 15 

a factor of two or more smaller than the Ei derived from canopy water budget measurements (Schellekens et al., 1999). A 

recent study using detailed meteorological measurements from a flux tower indicates that the underestimated Ei by the Penman-

Monteith equation might be attributed to the failure in accounting for the downward sensible heat flux and heat release from 

canopy biomass, which can be major energy sources for wet-canopy E (Cisneros Vaca et al., 2018). Storm characteristics (e.g., 

amount, storm duration, and intensity) and canopy structural information (e.g., canopy openness, canopy storage capacity) are 20 

all important parameters for modeling Ei (van Dijk et al., 2015; Linhoss and Siegert, 2016; Wohlfahrt et al., 2006). To partition 

total ET into T, Esoil, and Ei, it is necessary to simulate the dynamics of canopy wetness before, during, and after each storm so 

that models can be applied to the dry and wet portions of the canopy, respectively (Liu et al., 1998), a process that can be 

implemented using a running canopy water balance model (Liu, 2001; Rutter et al., 1971; Wang et al., 2007). Understanding 

the sources of water is therefore useful for quantifying differences among T, Esoil, and Ei, and information from water isotopes 25 

can be helpful to do so.  

3.7 Isotopic approaches 

The hydrogen and oxygen atoms of water molecules exist in multiple isotopic forms, including 2H and 18O, which are stable 

in the environment and can be used to trace the movement of water through hydrologic pathways (Bowen and Good, 2015; 

Gat, 1996; Good et al., 2015; Kendall and McDonnell, 2012). Because heavier atoms preferentially remain in the more 30 

condensed form during phase change, evaporation enriches soils in 2H and 18O (Allison and Barnes, 1983), while root water 

uptake typically removes water from the soil without changing its isotope ratio (Flanagan and Ehleringer, 1991). This 



13 

 

difference in the isotope ratio, R = [2H]/[1H] or [18O]/[16O], of Esoil compared with the isotope ratio of water moving through 

plants is the basis for isotopic partitioning of ET. If ET consists of two components, E and T, with distinct isotopic composition: 

RE for soil evaporation and RT for plant transpiration, then the bulk flux, RET, can be incorporated into a simple mass balance 

of the rate isotope (i.e.: RETET = REE + RTT), which can be rearranged as (Yakir and Sternberg, 2000): 

𝑇

𝐸𝑇
=

𝑅ET−𝑅E

𝑅T−𝑅E
.            (10) 5 

Thus, knowledge of the isotopic ratio of each flux component, RE and RT, as well as the total bulk flux isotope ratio, RET, is 

sufficient to estimate the fraction that passes through plants. 

Techniques to measure the RET have diversified since the widespread deployment of laser-based integrated cavity output 

spectroscopy (ICOS) systems, which are currently monitoring atmospheric stable isotope ratios, RA, at a wide number of sites 

(Wei et al., 2019; Welp et al., 2012). Vertical profiles and high-frequency measurements of RA are used to determine RET 10 

though a number of different methods, all of which are associated with potentially large uncertainty (Griffis et al., 2005, 2010; 

Keeling, 1958). Propagation of uncertainties through Eq. 10 demonstrates that errors in RET, RT, and RE, as well as differences 

between RE and RT, strongly influence the final partitioning estimate (Good et al., 2014; Phillips and Gregg, 2001). The isotopic 

approach becomes uninformative as RE approaches RT. Furthermore, as Ei adds another source term to the isotope mass balance, 

Eq. 10 can be implemented over short periods only when the canopy is dry. If Ei is incorporated as a third source, its magnitude 15 

and isotope ratio must be specified, and these assumptions can strongly influence any final isotope based partitioning estimates 

(Coenders-Gerrits et al., 2014; Schlesinger and Jasechko, 2014). 

The value of RE is derived from the soil water isotope ratio, RS, as well as the temperature and humidity conditions under which 

evaporation happened (Craig and Gordon, 1965). Destructive extraction of water from soil cores can be used to estimate RS, 

though recent studies have highlighted discrepancies between methodologies (Orlowski et al., 2016a, 2016b). In situ 20 

monitoring of RS obtained by pumping soil vapor through ICOS systems has been demonstrated (Gaj et al., 2016; Oerter et al., 

2016; Volkmann and Weiler, 2014), and recently applied to ET partitioning to provide continuous updates on soil isotope 

ratios (Quade et al., 2019). Eddy covariance measurements of 2H and 18O are now possible (Braden-Behrens et al., 2019). 

However, identifying RS remains challenging, and the bulk soil moisture composition (Mathieu and Bariac, 1996; Soderberg 

et al., 2013), depth (Braud et al., 2005), and soil physical composition (Oerter et al., 2014) where evaporation occurs can alter 25 

the RS to RE relationship.  

If water entering the plant is isotopically the same as transpired water, known as the isotopic steady-state assumption, then 

RT = RS. However, preferential uptake at the root-soil interface, differences between plant internal water pools in time, and 

mixing along the water pathways within plants, will invalidate the steady-state assumption (Farquhar and Cernusak, 2005; 

Ogée et al., 2007). Finally, variability between and within plant species and plant/soil microclimates of an ecosystem will 30 

move the system away from the simple two-source model used in Eq. 10. Accurate knowledge of the isotope ratio within 

various water reservoirs of a landscape, including the planetary boundary layer (Noone et al., 2013), and how these translate 

into distinct water fluxes is required to advanced isotope-based partitioning approaches.  
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3.8 Statistical approaches 

In addition to modeling gsurf as the sum of gc, gsoil, and gi, daily gsurf can also be well-approximated using emergent relationships 

between the atmospheric boundary layer and land surface fluxes, as demonstrated by the Evapotranspiration from Relative 

Humidity in Equilibrium (ETRHEQ) method (Rigden and Salvucci, 2015; Salvucci and Gentine, 2013). The ETRHEQ method 

is based on the hypothesis that the best fit daily gsurf minimizes the vertical variance of relative humidity averaged over the 5 

day. Estimates of ET from this approach compare favorably to eddy covariance measurements (Gentine et al., 2016; Rigden 

and Salvucci, 2016), and the method can be applied at weather stations due to its primary dependence on meteorological 

observations. Rigden et al. (2018) recently developed a statistical approach to decompose estimates of gsurf from ETRHEQ 

into gc and gsoil, allowing for ET to be partitioned to T and E. The partitioning approach is based on the assumption that 

vegetation and soil respond independently to environmental variations, and utilizes estimates of gsurf  at ~1600 U.S. weather 10 

stations, meteorological observations, and satellite retrievals of soil moisture. Estimates of T from this statistical approach 

show strong agreement with SIF and realistic dry down dynamics across the U.S. (Rigden et al., 2018); however, the method 

lacks evaluation with E and T observations directly. Fortunately for many of the techniques discussed above, new large-scale 

methods for estimating Esoil based on theory have recently been developed and applied at large scales. 

3.9 Novel approaches for estimating soil evaporation 15 

Esoil is conventionally measured using lysimeters (Black and Gardner, 1969) with some promising results from carefully-

designed chamber approaches that seek to minimize the impacts of the rapidly humidifying within-chamber atmosphere on 

evaporation (Raz-Yaseef et al., 2010; Yepez et al., 2005). Esoil has received extensive theoretical treatment (e.g. Brutsaert et 

al., 2014) that has resulted in models that align well with observations on ecosystem scales (e.g. Perez-Priego et al., 2018; 

Lehmann et al., 2018; Merlin et al. 2016, 2017). Lehmann et al., (2018) defined a new theoretically-based model for soil 20 

evaporative resistance that correctly described the transition from stage-I evaporation (non-diffusion limited) to stage-II 

evaporation (diffusion limited). The model was able to correctly describe the soil moisture dependence of Esoil across different 

soil types. This approach was extended by Or and Lehman (2019), who developed a conceptual model for soil evaporation 

called the surface evaporative capacitance (SEC) model for Esoil and Ei. Briefly, the transition between stage-I evaporation of 

a drying soil with capillary flow from deep moisture sources and stage-II evaporation characterized by water vapor diffusion 25 

is modeled using an evaporation characteristic length that differs by soil type (Lehmann et al., 2008, 2018). The SEC model 

accurately simulated Esoil datasets from different global regions and adding global maps of precipitation and soil properties 

creates spatially-distributed Esoil estimates to model global Esoil. The SEC model can be used in combination with other 

remotely-sensed ET estimates (e.g. GLEAM, Appendix A) to partition ET.  
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4 Critiquing the assumptions of ET partitioning methods 

4.1 Do ecosystems exhibit optimal responses to D? 

Many WUE-based approaches for partitioning E and T (sections 3.1 & 3.2) hinge on the notion that gc follows an optimal 

response to D. Recent data-driven studies have argued that gc measured using eddy covariance is ‘slightly suboptimal’ avarging 

between D1 and D0.5, with a mean of D0.55 rather than D0.5 (Lin et al., 2018) or is ‘nearly optimal’ and scales with GPP × D0.55 5 

(Zhou et al., 2015). Here, we test the assumption that plant canopies exhibit optimal responses to D by assuming that it serves 

as a constraint on WUE following an implication of optimality theory that one minus the ratio of leaf-internal CO2 (ci) to 

atmospheric CO2 (ca) (1 − ci/ca) also scales with D0.5 (see Eq. 18 in Katul et al., 2009). Using the definition WUE as GPP/T 

and expanding GPP and T using Fick’s Law and excluding differences in mesophyll conductance: 

𝐺𝑃𝑃

𝑇
=

𝑔c𝜀𝑐a(1−
𝑐i
𝑐a

)

𝑔c𝐷
.           (11) 10 

In this equation, gc cancels and ε is the relative diffusivity of H2O and CO2 molecules. If (1 − ci/ca) scales with D0.5, eddy 

covariance-estimated WUE (i.e. GPP/ET) should therefore scale with D−0.5 if it can be assumed that measured ET approaches 

T. We tested this notion using micrometeorological and eddy covariance data from 240 sites that include ecosystem type and 

ecosystem energy balance measurements in the LaThuile FLUXNET database following Stoy et al. (2013). We assumed that 

E is a trivial component of ET when WUE values exceed 95% of observations (Zhou et al. 2016) and use a boundary line 15 

analysis commonly used in studies of leaf and canopy conductance (Schäfer et al., 2011) to describe this 95% threshold. We 

then took the mean of the upper 95% of eddy covariance WUE observations in 0.3 kPa bins of D and fit an exponential model 

to these observations using nonlinear least squares (Fig. 4a) rather than fitting a linear model following log transformation for 

values that approach zero. Using this approach, a mean (± standard deviation) exponential term of −0.53 ± 0.17 from the 240 

sites is calculated (Fig. 4b), which is not significantly different from −0.5 using a one-sample t-test. Repeating this analysis 20 

with the FLUXNET2015 dataset reveals a mean exponential term of −0.49 ± 0.15, which is likewise not different from −0.5. 

Land surface models struggle to simulate this emergent property of ecosystems. Models for the ecosystems shown in Fig. 1 

tend to dramatically over-predict the magnitude of the exponential term with a mean value of −2.9 (Table 2). The exponential 

term of the BEPS model was −0.54 ± 0.06, similar to observations. Combined, these results suggest that an optimal canopy 

response to D may be a reasonable assumption despite the challenges of leaf-to-ecosystem scaling and despite the use of above-25 

canopy rather than DL here, but the considerable variability of the calculated exponential terms suggest that more research is 

necessary to understand conditions under which optimality is a reasonable assumption and when it is not. The discrepancy in 

calculated exponential terms between measurements and models further emphasize the importance of improved carbon and 

water coupling in ecosystem models.  
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4.2 Does T/ET approach unity? 

Also central to many E and T partitioning approaches is the notion that T/ET intermittently approaches 1 (Berkelhammer et 

al., 2016; Nelson et al., 2018; Zhou et al., 2016; Wei et al., 2017), as suggested by modeling analyses and measurements (Wei 

et al., 2015, Wei et al., 2018). This assumption was critiqued by Perez-Priego et al. (2018), who demonstrated that T/ET was 

rarely greater than 0.8 in a Mediterranean ecosystem, even during dry periods when surface soil moisture was less than 0.2 m3
 5 

m−3, and that E scaled with time−0.5 following (Brutsaert, 2014) [see also Boese et al. (2018) and Li et al. (2019)]. These 

findings of a sustained evaporation component and non-zero E/ET even during dry conditions were also supported by lysimeter 

measurements in a semiarid grassland (Moran et al., 2009) and partly confirmed by a recent study based on isotopes in shrubs 

and steppe ecosystem (Wang et al., 2018). The maximum daily T/ET found by Scanlon and Kustas (2012) in a maize 

agroecosystem was also about 0.8, but Rana et al. (2018) found daily values that intermittently exceeded 0.9 in wheat and fava 10 

bean fields and multi-method comparisons suggest that T/ET approaches 0.85 (Rafi et al., 2019). Anderson et al. (2017a) found 

that T/ET routinely exceeded 0.9 in sugarcane, with maximum daily values above 0.95, and Li et al., (2019) also found values 

greater than 0.9 for other crops. We can critique the notion that T/ET approaches 1 by applying the flux variance similarity 

partitioning approach to a wheat canopy from central Montana, USA measured by Vick et al. (2016). Wheat has a 

characteristically high surface conductance (Bonan, 2008) and approaches an ideal transpiring surface during the main growth 15 

period (Bonan, 2008; Priestley and Taylor, 1972). The dryland wheat crops studied here draw water from depth such that 

surface soils are often dry (Vick et al., 2016), minimizing Esoil. Applying the flux variance similarity method of Scanlon and 

Kustas (2010) to the wheat crop suggests that T/ET frequently exceeds 0.95 during daytime periods when the algorithm 

converges (Fig. 5a). Repeating this analysis for a winter wheat crop near Sun River, Montana, USA using the flux variance 

similarity algorithm of Skaggs et al. (2018) confirms this finding with an even higher proportion of T/ET values (20%) that 20 

exceed 0.95. T/ET however exceeded 0.95 in less than 2% of measurements using the approach of Perez-Priego et al. (2018) 

in a Mediterranean savanna ecosystem (Fig. 6). These observations suggest that the notion that T/ET approaches 1 is a good 

assumption in some ecosystems, perhaps in ecosystems with high LAI, with implications for flux partitioning by the methods 

that rely on this assumption.  

5 Research imperatives 25 

Few field experiments have sought to constrain ecosystem E and T estimates using multiple observations to quantify their 

response to environmental variability and to test the assumptions of partitioning approaches (Perez-Priego et al., 2017, 2018). 

Those that have note large discrepancies in T/ET estimates from different techniques (Quade et al., 2019). Despite these 

challenges, a multi-measurement approach is necessary to understand different ecosystem water flux terms (Li et al., 2018), 

but most multi-method ecosystem-scale experiments using eddy covariance measurements seek to constrain the carbon cycle 30 

rather than the water cycle to which it is coupled (Hanson et al., 2004; Williams et al., 2009). Here, we outline the basics of 

an ecosystem-scale experiment designed to address uncertainties in E and T measurements (Fig. 7). 
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It would be best to introduce such an experiment in an ecosystem with relatively simple species distribution and clear separation 

of above and below canopy E and T sources to apply flux variance approaches (Klosterhalfen et al., 2019; Williams et al., 

2004) before addressing more complex ecosystems with multiple canopy layers (Fu et al., 2018; Santos et al., 2016). 

Observations should occur on time scales commensurate with satellite remote sensing overpasses (see Appendix A); the half-

hourly time step used in most eddy covariance observations is likely sufficient to approximate conditions captured by polar-5 

orbiting satellites. For example, MODIS has a 10:30 local overpass time for TERRA and 13:30 overpass for AQUA; GOME2 

makes SIF observations in the morning, and OCO-2 flies over at 13:30 local time. There will be more opportunities to study 

diurnal patterns in E and T with the forthcoming and ongoing OCO-3, ECOSTRESS and Geostationary Carbon Cycle 

Observatory (GeoCarb) missions. There are also under-explored opportunities to study ET partitioning usnig geostationary 

satellites like GOES (Bradley et al., 2010), which compromises temporal resolution on the order of minute with spatial 10 

resolution from the distant geostationary orbit on the order of kilometres. These length scales may be well-captured by 

scintillometry, and ET partitioning approaches that employ scintillometry are largey lacking to date. A short measurement time 

step to align with satellite overpass times is possible for chambers, lysimeters, and sapflux measurements but not some isotopic 

approaches (Fig. 7). Critically, thermography, SIF, and COS flux can also be measured at these time scales. An ideal E and T 

partitioning experiment would make them both above and below plant canopies, in conjunction with below-canopy eddy 15 

covariance, to isolate Esoil (Fig. 7). For full water balance accounting, observations of drainage from the rooting zone using 

drainage lysimeters, soil moisture at multiple soil levels spanning the root zone, the flow of water down plant stems (stem 

flow), leaf wetness sensors, the amount of water held in plants themselves, and of course multiple precipitation gauges are 

required. Such a multi-measurement approach would also create an opportunity to compare the performance of emerging 

technologies like distributed temperature sensing from fiber optic cables (Schilperoort et al., 2018), modeling cosmic ray 20 

neutron fields for soil water source estimation (Andreasen et al., 2016), and Global Navigation Satellite System Reflectometry 

(GNSS-R) for soil moisture estimation (Zribi et al., 2018). It remains difficult to assimilate E and T measurements into models 

using conventional data assimilation techniques because observations may contain substantial bias error yet still provide 

valuable information (Williams et al., 2009). Emerging approaches from machine learning in the earth and environmental 

sciences may therefore be particularly useful for combining the best information from different measurement techniques into 25 

a mass and energy conserving model of the surface-atmosphere exchange of water (Reichstein et al., 2019). Regardless of the 

specifics of the multi-measurement approach for constraining E and T measurements, we advocate more investment into the 

study of ET (“green water”) given its central importance in provisioning resources to an increasingly resource-scarce planet 

(Schyns et al., 2019). 

6 Conclusion 30 

New measurement techniques and analytical approaches for partitioning E and T at the ecosystem scale provide critical 

opportunities to improve land surface models and remote sensing products, and ultimately our understanding of the global 
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water cycle. Ecosystem scale experiments that measure E and T using multiple approaches are needed to understand how E 

and T respond differently to climate variability and change across different global ecosystems, and also to critique the 

assumptions made by ET partitioning approaches to improve their skill. By strengthening our focus on the water cycle in 

studies of coupled carbon and water fluxes, our understanding of the role of the land surface in the climate system can only 

improve. 5 

A1 Appendix A 

For completeness we briefly describe common algorithms used by remote sensing platforms for estimating E, T, and ET, noting 

that additional approaches exist and are under development (El Masri et al., 2019). Many widely-used algorithms including 

SEBAL (Bastiaanssen et al., 1998), METRIC (Allen et al., 2007; Su, 2002), and SEBS (Su, 2002) use an energy balance 

approach that does not explicitly seek to separate T from E, but remain highly valuable for water resource management and 10 

hydrology.  

A1.1 PT-JPL 

The Priestley-Taylor Jet Propulsion Lab (PT-JPL) global ET remote sensing retrieval algorithm (Fisher et al., 2008) is based 

on the potential evapotranspiration (PET) formulation of Priestley and Taylor (1972), which replaces the adiabatic terms in 

Eq. 1 with a parameter, 𝛼𝑃𝑇, that takes a value of 1.26 under ideal evaporating conditions 15 

𝑃𝐸𝑇 = 𝛼𝑃𝑇
𝑠(𝑅𝑛−𝐺)

𝑠+𝛾
           (A1) 

To reduce PET to ET, Fisher et al. (2008) introduced ecophysiological constraint functions (f-functions, unitless multipliers 

between zero and one) following Jarvis (1976). These are based on D, relative humidity (RH), the normalized difference 

vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI, Huete, 1988). PT-JPL calculates T, Esoil and Ei 

explicitly using 20 

𝐸𝑇 = 𝑇 + 𝐸𝑠𝑜𝑖𝑙 + 𝐸𝑖           (A2) 

𝑇 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑔𝑓𝑇𝑒𝑚𝑝𝑓𝑀𝛼𝑃𝑇
𝑠(𝑅𝑛𝑐−𝐺)

𝑠+𝛾
         (A3) 

𝐸𝑠𝑜𝑖𝑙 = (𝑓𝑤𝑒𝑡 + 𝑓𝑆𝑀(1 − 𝑓𝑤𝑒𝑡))𝛼𝑃𝑇
𝑠(𝑅𝑛𝑠−𝐺)

𝑠+𝛾
         (A4) 

𝐸𝑖 = 𝑓𝑤𝑒𝑡𝛼𝑃𝑇
𝑠(𝑅𝑛𝑐−𝐺)

𝑠+𝛾
           (A5) 

Where fwet is relative surface wetness (RH4), fg is green canopy fraction, fTemp is a plant temperature constraint, fM is a plant 25 

moisture constraint, and fSM is a soil moisture constraint. Rnc and Rns are net radiation absorbed by canopy and soil respectively. 

PT-JPL has been tested against measured ET from hundreds of FLUXNET sites worldwide, with a monthly average r2 of 0.90 

across all sites and a slope/bias of 1.07 using in situ data (Fisher et al., 2008, 2009). The PT-JPL model forms the core ET 



19 

 

retrieval algorithm in the ECOSTRESS mission (Fisher et al., 2017; Hulley et al., 2017) on board the International Space 

Station. New applications of the PT-JPL algorithm have included canopy indices derived from CubeSats (Aragon et al., 2018). 

A1.2 PM-MOD16 

The PM-MOD16 algorithm estimates ET on eight-day intervals at 1 km2 pixels across the global terrestrial surface using 

MODIS observations following (Mu et al., 2011) using Eq. (A2). The PM-MOD16 algorithm follows the Penman-Monteith 5 

model (Eq. 1) rather than the Priestley-Taylor model (Eq. A1) by modeling conductance terms (or resistance terms as the 

inverse of the conductance terms in Eq. 1) rather than including f-functions as in the PT-JPL algorithm. It explains ca. 86% of 

the variability in eddy covariance-observed ET from 46 sites in North America (Mu et al., 2011). 

A1.3 GLEAM 

The Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011a, 2011b) also uses a Priestley-Taylor 10 

approach (eq. A1) to estimate ET. It employs the Gash (1979) analytical model for canopy rainfall interception and semi-

empirical stress functions that vary between 0 and 1 (similar to the f-functions of the PT-JPL model) to reduce PET to T for 

canopies with different characteristics. For T, this stress function is calculated based on the content of water in vegetation and 

root zone. The former is approximated based on microwave vegetation optical depth and latter is calculated using a multilayer 

soil model driven by observations of precipitation and updated through assimilation of microwave surface soil moisture. 15 

Validation studies against eddy covariance data at daily time scales show average correlations typically ranging from 0.81–

0.86 (Martens et al., 2017).  

A1.4 DTD 

The Dual-Temperature Difference (DTD) model follows the notion that diurnal changes in air and radiometric surface 

temperatures are related to surface-atmosphere heat flux (Norman et al., 2000). It has since been applied to MODIS 20 

observations to estimate ET (Guzinski et al., 2013) and to partition E and T using a Priestly-Taylor scheme described in Song 

et al. (2018). DTD estimates of E and T compared well to estimates derived using the flux variance similarity algorithm of 

Skaggs et al. (2018).  

A1.5 ALEXI/DisALEXI 

Atmosphere-Land Exchange Inverse (ALEXI) is a multi-scale surface energy balance modeling system, building on the two-25 

source energy balance (TSEB) land-surface representation of Norman et al. 1995). The TSEB partitions the composite 

radiometric surface temperature, Temprad, into soil and canopy temperatures, Temps and Tempc, based on the local vegetation 

cover fraction apparent at the thermal sensor view angle, f(θ):   

𝑇𝑒𝑚𝑝𝑟𝑎𝑑 ≅ 𝑓(𝜃)𝑇𝑒𝑚𝑝𝑐 + (1 − 𝑓(𝜃))𝑇𝑒𝑚𝑝𝑠        (A6) 



20 

 

With information about Temprad, LAI, and radiative forcing, the TSEB evaluates the soil (subscript ‘s’) and canopy (‘c’) energy 

budgets separately, computing system and component fluxes of Rn, H, and ET (i.e. ET from soil and canopy), and G. Because 

angular effects are incorporated in Eq. A6, the TSEB can accommodate thermal data acquired at off-nadir viewing angles by 

geostationary satellites. The TSEB has a built-in mechanism for detecting thermal signatures of stress in the soil and canopy. 

An initial iteration assumes that T is occurring at potential (non-moisture limited) rate, while Esoil is computed as a residual to 5 

the system energy budget. If the vegetation is stressed and transpiring at significantly less than the potential rate, T will be 

overestimated and the residual Esoil will become negative. Condensation onto the soil is unlikely midday on clear days, and 

therefore Esoil < 0 is considered a signature of system stress. Under such circumstances, T is iteratively down-regulated until 

Esoil = 0, noting that this assumption has been challenged by recent observations in some ecosystems (Perez-Priego et al., 

2018).  10 

For regional-scale applications of the TSEB, air temperature boundary conditions are difficult to specify with adequate 

accuracy due to localized land-atmosphere feedback. To overcome this limitation, the TSEB has been coupled with an 

atmospheric boundary layer (ABL) model, thereby simulating land-atmosphere feedback internally. In ALEXI (Anderson, 

1997; Anderson et al., 2007), the TSEB is applied at two times during the morning ABL growth phase (between sunrise and 

local noon) using TIR from geostationary satellites. Energy closure over this interval is provided by a simple slab ABL model 15 

(McNaughton and Spriggs, 1986), which relates the rise in air temperature in the mixed layer to the time-integrated influx of 

H from the land surface. As a result, ALEXI uses only time-differential temperature signals, thereby minimizing flux errors 

due to absolute sensor calibration and atmospheric and emissivity corrections (Kustas et al., 2001). For local scale applications 

on length scales similar to many flux footprints on the order of 100 m, the coarse-scale flux estimates can be spatially 

disaggregated using the DisALEXI technique (Norman et al., 2003). DisALEXI uses air temperature diagnosed by ALEXI at 20 

a nominal blending height along with high resolution LAI and LST data from polar orbiting satellites to estimate fluxes at finer 

scales. 
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Tables 

Table 1: A summary of recent approaches for estimating transpiration (T) and/or for partitioning evapotranspiration (ET) into 

evaporation (E) and T at the ecosystem scale. The reader is referred to Kool et al. (2014) for a comprehensive review E and T 

measurement methodologies. 

Approach Advantages Disadvantages Selected References 

Flux variance 

similarity 

Uses high-frequency eddy 

covariance data. Open source 

software is available  

Necessary terms rarely computed 

and/or high frequency data to calculate 

terms rarely shared. Sensitive to water 

use efficiency assumptions. 

Scanlon and Kustas (2010); 

Scanlon and Sahu (2008); 

Skaggs et al. (2018) 

Analyses of half-

hourly to hourly 

eddy covariance 

data 

Use widely-available eddy 

covariance data 

Often rely on assumptions regarding 

water use efficiency and the maximum 

value of the T/ET ratio 

Berkelhammer et al. (2016); 

Lin et al. (2018); Li et al. 

(2019); Scott and Biederman 

(2017); Zhou et al. (2016) 

Solar-induced 

fluorescence  

Measurements are available 

at ecosystem to global scales.  

Relies on an empirical relationship 

between T and gross primary 

productivity; mechanistic link not yet 

understood. Uncertainty in SIF 

retrieval. 

Damm et al. (2018); Lu et al. 

(2018); Shan et al. (2019) 

Carbonyl sulfide 

(COS) flux 

Can be measured using eddy 

covariance techniques to 

estimate canopy 

conductance. 

COS flux can also arise from non-

stomatal sources. 

Whelan et al. (2018); 

Wohlfahrt et al. (2012) 

Surface 

evaporative 

capacitance 

Based on theory of Esoil and 

can be estimated using 

remote sensing. 

Applies only to Esoil. Or and Lehman (2019) 

  5 
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Table 2: The exponential term (m) of the model WUE = kDm fit using nonlinear least squares to the 95th percentile of WUE values 

in 0.3 kPa bins of D (see Fig. 4). Sites: CA-Ca1 (Schwalm et al., 2007), CA-Obs (Griffis et al., 2003; Jarvis et al., 1997), US-Ho1 

(Hollinger et al., 1999). Models: BEPS (Liu et al., 1999), CAN-IBIS (Williamson, 2008), CNCLASS (Arain et al., 2006), ECOSYS 

(Grant et al., 2005), ED2 (Medvigy et al., 2009), ISAM , ISOLSM (Riley et al., 2002), LOTEC (Hanson et al., 2004), ORCHIDEE 

(Krinner et al., 2005), SIB (Baker et al., 2008), SIBCASA (Schaefer et al., 2009), SSIB2 (Zhan et al., 2003), TECO (Weng and Luo, 5 
2008). Data are available from Ricciuto et al. (2013). 

Model CACa1 CAObs USHo1 

BEPS -0.6 -0.5 -0.5 

CAN-IBIS -4.8 -2.5 -4.7 

CNCLASS -3.3 -4.1 -3.3 

ECOSYS -2.3 -1.6 -0.7 

ED2 -2.1 -2.4 -3.4 

ISAM -4.8 -0.9 -1.3 

ISOLSM -4.7 -0.8 -1.4 

LOTEC -4.7 -2.2 -4.4 

ORCHIDEE -2.3 -3.9 -4.5 

SIB -3.6 -2.8 -2.3 

SIBCASA -4.5 -2.9 -3.6 

SSIB2 -4.7 -3.1 -4.1 

TECO -4.1 -3.3 -1.8 

Measurements -0.5 -0.4 -0.5 
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Figure 1: The mean monthly latent heat flux (λE) - the energy used for evapotranspiration - from eddy covariance measurements 

from four research sites (‘MEASURED’) and 13 ecosystem models from the North American Carbon Program Site-Level Interim 

Synthesis (Schwalm et al., 2010). Sites: CA-Ca1 (Schwalm et al., 2007), CA-Obs (Griffis et al., 2003; Jarvis et al., 1997), US-Ho1 

(Hollinger et al., 1999), US-Me2 (Thomas et al., 2009). Models: BEPS (Liu et al., 1999), CAN-IBIS (Williamson, 2008), CNCLASS 5 
(Arain et al., 2006), ECOSYS (Grant et al., 2005), ED2 (Medvigy et al., 2009), ISAM (Jain and Yang, 2005), ISOLSM (Riley et al., 

2002), LOTEC (Hanson et al., 2004), ORCHIDEE (Krinner et al., 2005), SIB (Baker et al., 2008), SIBCASA (Schaefer et al., 2009), 

SSIB2 (Zhan et al., 2003), TECO (Weng and Luo, 2008). Data are available from Ricciuto et al. (2013).   
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Figure 2: The relationship between above-canopy vapor pressure deficit (D) and evapotranspiration (ET in mm per half hour, hh) 

visualized using Kernel Density Estimation (Botev et al., 2010) for more than 1.5 million half hourly eddy covariance observations 

with a solar zenith angle less than 60° from 241 eddy covariance research sites in the La Thuile FLUXNET database that included 

ecosystem type and soil heat flux measurements described in Stoy et al. (2013).   5 
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Figure 3: The Priestley - Taylor Jet Propulsion Lab (PT-JPL) estimate of transpiration (T) in energy flux units compared against T 

estimated using eddy covariance measurements and models of soil evaporation in a loblolly pine forest for 2001-2005 from Stoy et 

al. (2006). Measurements were taken at 10:30 Eastern Standard Time (UTC - 5:00).   
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Figure 4: A. An example of a boundary-line analysis for the relationship between vapor pressure deficit (D) and ecosystem water 

use efficiency defined as gross primary productivity (GPP) divided by evapotranspiration (ET) for the case of a single ecosystem in 

the LaThuile FLUXNET database, in this case Vielsalm, Belgium (BE-Vie) using GPP/ET values that represent the 95th percentile 

of 0.3 kPa D bins and parameters of the model GPP/ET = kDm fit using nonlinear least squares. The value of m for BE-Vie is -0.53; 5 
values m = -0.5 following (Medlyn et al., 2011) and m = -1 following (Leuning, 1995) are shown for reference with the same fitted 

value of k.  B. The distribution of the best-fit exponential parameter (m) for 240 sites in the La Thuile FLUXNET database that 

contained full energy balance measurements and ecosystem type information used in Stoy et al. (2013).   
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Figure 5: The distribution of fraction of evapotranspiration arising during daytime hours from transpiration (T) and evaporation 

(E) estimated using the flux variance similarity approach of Scanlon and Kustas (2010) from (a) a winter wheat field near Moore, 

MT, USA described in Vick et al. (2016) using a version of the original algorithm, and (b) a winter wheat field near Sun River, MT 

using Fluxpart (Skaggs et al., 2018).   5 
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Figure 6: The distribution of the T/ET ratio for half hourly observations from the partitioning approach of Perez-Priego et al. (2018) 

for the Majadas de Tietar (ES-Lma), Spain research site.   
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Figure 7: A schematic of an ecosystem experiment designed to measure transpiration and evaporation from soil and intercepted 

water using multiple complementary measurement approaches. 


