1	Lability classification of soil organic matter in the northern permafrost region
2	
3	Kuhry et al., Supplement
4	
5	
6	
7	Captions for Tables and Figures in Supplemental Materials
8	
9	Table S1. Overview of field study areas and incubated samples
10	
11	Figure S1. Cross correlations between geochemical parameters for all samples in the four incubation
12	experiments: a-c, PAGE21; d-f, CryoCarb 1-Kolyma; g-i, CryoCarb 2-Taymyr; j-l, CryoCarb
13	3-Seida. All regressions significant (p<0.05).
14	
15	Figure S2. Correlations between geochemical parameters and μ gC-CO ₂ production per gram dry
16	weight (gdw) for all samples in the four incubation experiments: a-c, PAGE21; d-f, CryoCarb
17	1-Kolyma; g-i, CryoCarb 2-Taymyr; j-l, CryoCarb 3-Seida. All regressions significant
18	(p<0.05).
19	
20	Figure S3. µgC-CO ₂ production per gram dry weight as a function of %C of the sample for the
21	different landscape unit classes in the CryoCarb 2-Taymyr (a, top panel) and CryoCarb 3-Seida
22	(b, lower panel) incubation experiments: Alluvial class (red line and diamonds, CryoCarb 2-
23	Taymyr experiment only); Mineral class (brown line and squares); Peaty wetland class (light
24 25	green fine and circles); Peanand class (dark green fine and circles). All regressions significant, $p_{2}0.05$, except for peat deposits in the CryoCarb 2-Taymyr dataset (n s.)
25	$p<0.05$, except for pear deposits in the eryocarb 2^{-1} raying dataset (ii.s.).
20	Figure S4, $u \in CO_2$, production per gram dry weight as a function of C/N of the sample for the
27 28	different landscape unit classes in the PAGE21 (a. top panel left). CryoCarb 1-Kolyma (b.
29	lower panel left). CryoCarb 2-Taymyr (c. top panel right) and CryoCarb 3-Seida (d. lower
30	panel right) incubation experiments: Alluvial class (red line and diamonds); Eolian class (blue
31	line and triangles); Mineral class (brown line and squares); Peaty wetland class (dark green line
32	and circles); Peatland class (light green line and circles). All regressions significant, p<0.05,
33	except for peaty wetland and peat deposits in the PAGE21 dataset and peat deposits in the
34	CryoCarb 1-Kolyma and CryoCarb 3-Seida datasets (n.s.). Note that not all landscape unit
35	classes are represented in all four incubation experiments.
36	
37	Figure S5. a) μ gC-CO ₂ production per gram carbon as a function of %C of the sample and b) μ gC-
38	CO_2 production per cm ³ as a function of %C of the sample, for the different landscape classes
39 40	in the PAGE21 dataset: Alluvial class (red line and diamonds); Eolian class (blue line and triangles): Mineral class (brown line and squares): Peaty wetland class (dark green line and
40 41	circles): Peatland class (light green line and circles). Non-significant regressions $n > 0.05$ are
42	marked n.s.
43	
44	Figure S6. C content (as %C of dry weight) in samples of (a) the PAGE21 and (b) the CryoCarb 1-
45	Kolyma incubation experiments, grouped according to soil horizon criteria. Abbreviations: AL-
46	OL = Active layer topsoil organics; AL-Min = Active layer mineral; AL-Ce = Active layer C-
47	enriched; P-Min = Permafrost layer mineral; P-Ce = Permafrost layer C-enriched; AL-Pty =

48	Active layer thin peat (CryoCarb 1-Kolyma experiment only); AL-Pt = Active layer peat; P-Pt =
49	Permafrost layer peat (CryoCarb 1-Kolyma experiment only); AL-Lss OL = Active layer topsoil
50	organics in Late Holocene loess deposits (PAGE21 experiment only); AL-Lss Min = Active
51	layer mineral in Late Holocene loess deposits (PAGE21 experiment only); P-Lss Min =
52	Permafrost layer mineral in Late Holocene loess deposits (PAGE21 experiment only); P-Yed =
53	Permafrost Pleistocene Yedoma deposits (CryoCarb 1-Kolyma experiment only); Th-Yed =
54	Thawed out Pleistocene Yedoma deposits (CryoCarb 1-Kolyma experiment only). Box-whisker
55	plots show mean and standard deviation (in red) and median, first and third quartiles and
56	min/max values (in black), for the different soil horizon groups.
57	
58	
59	
60	Table in Supplement
61	
62	Page 3
63	
64	
65	
66	Figures in Supplement
67	
68	Pages 4-11
69	
70	
71	

Study area	Geographic location	Approximate coordinates	Permafrost zone	Vegetation zone	Mean Annual/July Temperatures	Nr profiles / incubated soil samples	Partner and incubation experiment	Time of soil sampling
Ny Ålesund	Svalbard	78.9 N, 11.7 E	Continuous	Tundra	-5.8/+5.2	16/24	UCOP_PAGE21	Summer 2013
Adventdalen	Svalbard	78.2 N, 15.9 E	Continuous	Tundra	-6.0/+6.2	35 / 79	UCOP_PAGE21	Summer 2013
Lena Delta	N Siberia	72.3 N, 126.3 E	Continuous	Tundra	-12.5/+10.1	43 / 122	UCOP_PAGE21	Summer 2013
Logata	Taymir Peninsula, N Siberia	73.4 N, 98.4 E	Continuous	Tundra	-14.3/+11.2	33/218	USB_CryoCarb 2	Summer 2011
Shalaurovo	Lower Kolyma, NE Siberia	69.5 N, 161.7 E	Continuous	Tundra	-12.1/+11.7	22 / 279	USB_CryoCarb 1	Summer 2010
Arymas	Taymir Peninsula, N Siberia	72.5 N, 101.7 E	Continuous	Tundra, Forest Islands	-13.3/+12.2	34 / 284	USB_CryoCarb 2	Summer 2011
Cherskiy	Lower Kolyma, NE Siberia	68.8 N, 161.6 E	Continuous	Forest (-Tundra), Lowland, Alpine	-11.1/+12.7	16 / 174	USB_CryoCarb 1	Summer 2010
Seida	NW Russia	67.1 N, 62.9 E	Discontinuous	Tundra, Forest Islands	-6.1/+13.0	8 / 80	USB_CryoCarb 3	Summer 2008
Stordalen Mire	Abisko, N Sweden	68.3 N, 19.1 E	Sporadic	Alpine treeline ecotone	-0.2/+11.6	5 / 13	UCOP_PAGE21	Summer 2013

Table S1

Figure S1.

CryoCarb 1-Kolyma

 $R^2 = 0.79$

50

C/N weight ratio

75

4

 $R^{2} = 0.78$

09

40

20

0

60

40

0

0

25

20 40 %C of dry weight

0.0

0.5

%C of dry weight

β

pD

60

4

Ч

Ċ

2.5

2.0

1.5

1.0

0.5

0.0

0

400

Dry Bulk Density (g cm⁻³)

75 C/N weight ratio CryoCarb 3-Seida 50 25 $R^2 = 0.38$ 0 300 450 150 0 hgC-CO₂ gdw⁻¹ d⁻¹

а

b

Figure S4. a. PAGE21

b. CryoCarb 1-Kolyma

c. CryoCarb 2-Taymyr

d. CryoCarb 3-Seida

Figure S5.

b

Figure S6.

b

.