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Abstract. Methane flux measurements by the eddy-covariance technique are subject to large uncertainties, particularly 

linked to the partly highly intermittent nature of methane emissions. Outbursts of high methane emissions, termed event 

fluxes, hold the potential to introduce systematic biases into derived methane budgets, since under such conditions the 

assumption of stationarity of the flow is violated. In this study, we investigate the net impact of this effect by comparing 

eddy-covariance fluxes against a wavelet-derived reference that is not negatively influenced by non-stationarity. Our results 15 

demonstrate that methane emission events influenced 3-4 % of the flux measurements, and did not lead to systematic biases 

in methane budgets for the analyzed summer season; however, the presence of events substantially increased uncertainties in 

short-term flux rates. The wavelet results provided an excellent reference to evaluate the performance of three different 

gapfilling approaches for eddy-covariance methane fluxes, and we show that none of them could reproduce the range of 

observed flux rates. The integrated performance of the gapfilling methods for the longer-term dataset varied between the two 20 

eddy-covariance towers involved in this study, and we show that gapfilling remains a large source of uncertainty linked to 

limited insights into the mechanisms governing the short-term variability in methane emissions. With the capability to 

broaden our observational methane flux database to a wider range of conditions, including the direct resolution of short term 

variability at the order of minutes, wavelet-derived fluxes hold the potential to generate new insight into methane exchange 

processes with the atmosphere, and therefore also improve our understanding of the underlying processes. 25 

1 Introduction 

The eddy covariance (EC) technique, a well-established method for the direct quantification of turbulent surface–atmosphere 

exchange processes (Aubinet et al., 2012), can provide valuable information on current CH4 flux rates between various types 

of ecosystems and the atmosphere (e.g. Taylor et al., 2018; Rößger et al., 2019; Tuovinen et al., 2019), including insights 

into processes and controls (e.g. Pirk et al., 2016; Kittler et al., 2017b; Neumann et al., 2019) that can be used to improve 30 

future projections. However, the data quality of EC measurements depends strongly on the adherence to several theoretical 

assumptions such as e.g. steady-state conditions and horizontal homogeneity (Foken, 2017), which frequently limits data 
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availability. In case of methane fluxes, particularly a potential violation of the required steady-state conditions linked to 

episodic outbursts from wetland sources (Schaller et al., 2019) may lead to low flux data quality, and therefore can 

substantially increase the gap fraction in quality filtered EC time series.  

One potential mechanism for such high methane emission events is so-called ebullition (e.g. Kwon et al., 2017; Peltola et al., 

2018; Männistö et al., 2019), i.e. periodic bubble outgassing with a typical length of seconds to minutes. Even though such 5 

emissions are part of the natural flux signal, and should therefore be accounted for when accumulating longer-term budgets 

of methane exchange, in the context of EC data processing and quality assessment these events are likely to be discarded 

during the quality screening of raw data, or they may be incorrectly handled by the data processing algorithms. In both cases, 

the natural high flux event would be incorrectly accounted for, potentially introducing systematic biases into methane fluxes 

and budgets (Baldocchi et al., 2012). 10 

Spatial heterogeneity in the emission patterns of methane surrounding the flux tower (e.g. Rey-Sanchez et al., 2019) may 

also lead to pronounced variability in the observed CH4 flux time series (Tuovinen et al., 2019). Particularly for wetland 

ecosystems, ecosystem characteristics such as inundation level or vegetation composition may vary at finest spatial scales 

(Muster et al., 2012; McEwing et al., 2015), creating microsite variability with strong gradients in methane emissions. Also 

at landscape (Peltola et al., 2015) to regional scales (Davidson et al., 2016), spatial variability in landscape characteristics 15 

may have a strong influence on the captured flux signal. For flux towers situated in such structured areas, an emission spike 

in the CH4 flux time series can also be created by a temporary shift of the field of view of the sensors from a low flux region 

into a high flux region and back (e.g. Korrensalo et al., 2018). As outlined for the ebullition fluxes above, depending on the 

exact nature of the spike the flux signal may be misinterpreted by the eddy-covariance processing software. 

Since ‘outburst events’ in methane fluxes are in many cases flagged as non-stationary conditions, and therefore discarded as 20 

low-quality data, the assessment of the net impact of this effect needs to consider what will happen to the resulting gaps in 

the quality-filtered EC time series. Gaps are a common feature in eddy-covariance time series, resulting e.g. from power 

failures, instrument malfunctioning, or low data quality linked to the violation of the above-mentioned theoretical 

assumptions (e.g. Foken et al., 2004). If they can be filled with a reliable, unbiased algorithm, additional gaps would not 

pose a major problem. For CO2, several of such well-established frameworks are available (e.g. Reichstein et al., 2005; 25 

Moffat et al., 2007), allowing to generate continuous time series for the assessment of long-term flux budgets. In contrast, for 

CH4 fluxes no consensus on a gap-filling method has yet emerged within the EC-community. Several studies succeeded in 

establishing data-driven links between CH4 fluxes and environmental conditions such as e.g. peat/soil temperature, friction 

velocity or water table (e.g. Wille et al., 2008; Zona et al., 2009; Jackowicz-Korczynski et al., 2010) using both linear and 

non-linear functional relationships. Other approaches include gap interpolation (e.g. Rinne et al., 2007; Tagesson et al., 30 

2012), process-based modeling (Forbrich et al., 2011) or artificial neural networks (e.g. Dengel et al., 2013). Even though 

these different approaches have been shown to perform well in case studies, a solution that has been proven to be uniformly 

applicable is lacking, therefore large uncertainties are still associated with CH4 gapfilling.  
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As an alternative to the regular eddy-covariance raw data processing, the flux calculations can also be performed based on 

the wavelet method by analyzing frequency patterns in the underlying time series of winds and scalars (Collineau and 

Brunet, 1993b, a). In contrast to the eddy-covariance method, the wavelet method is not restricted by the same set of 

theoretical assumptions, and in particular no steady-state conditions are required (e.g. Daubechies, 1990). Wavelets have 

been demonstrated to be a powerful tool for quantifying turbulent fluxes (Mauder et al., 2007; Thomas and Foken, 2007). 5 

The ability to calculate turbulent fluxes for periods as short as one minute has been proven very valuable for attributing flux 

variability to environmental controls, both based on aircraft campaigns (Metzger et al., 2013) and stationary tower 

measurements within a heterogeneous landscape (Xu et al., 2017). Moreover, wavelet techniques have been applied to 

improve the frequency correction with the eddy-covariance method (Nordbo and Katul, 2013). A direct comparison between 

fluxes processed with the wavelet and eddy-covariance method, respectively, found an excellent agreement between both 10 

methods for EC data of highest quality (Schaller et al., 2017).  

Here, we quantify the net impact of failing to resolve methane outburst events with the EC method, comparing both short-

term emission patterns and longer-term flux budgets to a reference flux product derived with wavelet methods. The 

presented study is closely linked to two recently published manuscripts (Schaller et al., 2017; 2019) that demonstrate that 

fluxes during such outburst events, with timescales at the order of only a few minutes, can be precisely quantified using the 15 

wavelet method, while the coarser temporal resolution of the EC method normally fails to resolve these details while 

aggregating over 30 minutes. In this follow-up study, we determine systematic offsets between both methods, and the 

specific role that different types of short-term outburst events play in this context. Since many non-stationary events were 

leading to data gaps in the EC flux time series, we placed a specific focus on evaluating the performance of different gap-

filling algorithms to fill these gaps. Overall, our study aims at evaluating the effect of non-stationary conditions on the long-20 

term methane flux budgets, with a special focus placed on systematic biases introduced by either flux processing approach or 

chosen gap-filling method. 

2 Material and Methods 

2.1 Site description 

The Ambolikha research site (Göckede et al., 2017), located on a floodplain of the Kolyma River approximately 18 km south 25 

of the town of Chersky, northeast Russia, is underlain by continuous permafrost and characterized as wet tussock tundra 

dominated by tussock-forming Carex appendiculata and lugens and Eriophorum angustifolium (Corradi et al., 2005; Kwon 

et al., 2016). Alluvial mineral soils (silty clay) are topped by an organic peat layer (0.15–0.20 m), with some of the organic 

material also present in deeper layers following cryoturbation (Corradi et al., 2005; Merbold et al., 2009). Averaged for the 

period 1960 – 2009, the mean annual air temperature was -11°C and the average annual precipitation summed up to 197 mm 30 

(Göckede et al., 2017). Vegetation height was ~ 0.7 m during the peak of the growing season, reached around the beginning 

of August. 
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Data were collected from two eddy-covariance towers situated about 600 m apart, both elevated ~6 m above sea level. While 

one measurement system was placed within a drainage ditch system (tower 1, 68.61 °N and 161.34 °E, FLUXNET code RU-

Che), therefore capturing fluxes that represent a patch of tundra affected by a lowered water table, the second control 

measurement system (tower 2, 68.62 °N and 161.35 °E, RU-Ch2) measures natural exchange conditions unaffected by the 

hydrological disturbance. For this study, a dataset covering the period June 01 to September 18, 2014, was used. 5 

2.2 Instrument setup 

Both flux towers mentioned above in Section 2.1 were equipped with the same instrumentation, including a sonic 

anemometer (uSonic-3 Scientific, 5 W heating, METEK GmbH, Elmshorn, DE) at the tower top (at heights of 4.9 m and 

5.1 m for drained and control tower, respectively) and a closed-path greenhouse gas analyzer for CH4/CO2/H2O (FGGA, Los 

Gatos Research Inc., CA, USA). Ambient air was drawn by an external vacuum pump (membrane pump, N940, KNF, 10 

13 L min-1 under ambient pressure) from an inlet placed next to the sonic anemometer (vertical sensor separation: 0.30 m) 

through a heated and insulated sampling line (Eaton Synflex decabon with 6.2 mm inner diameter and a length of 16 m and 

13 m for drained and control tower, respectively). The acquisition of high frequency (20 Hz) raw data was handled by the 

software package EDDYMEAS (Kolle and Rebmann, 2007) on a local computer at the field site. 

Ancillary meteorological data were collected at 10 s intervals from both towers and stored as 10-minute averages on a data 15 

logger (CR3000, Campbell Scientific, UT, USA). Acquired parameters include e.g. air temperature and humidity, air 

pressure, precipitation, or soil temperatures. Low-frequency meteorological data underwent a thorough data quality control 

screening, and subsequently were averaged to 30 minutes (see Kittler et al. (2016) for details).  

2.3 Raw data processing 

We based the raw data processing to obtain fluxes from the collected high frequency data on two different methods: 20 

1. The eddy-covariance raw data processing uses the software package TK3 (Mauder and Foken, 2015). When applied in 

stand-alone mode, this tool implements all required conversions, corrections, and quality assessment procedures (Foken 

et al., 2012; Fratini and Mauder, 2014). Details on the TK3 implementation on the Ambolikha datasets are provided by 

Kittler et al. (2016; 2017a). 

2. The second flux processing method (Schaller et al., 2017; 2019) is based on wavelet analysis and uses the sinusoidal and 25 

complex valued Morlet wavelet transform for flux quantification. The Morlet wavelet provides an excellent resolution in 

the frequency domain and can be used to analyze atmospheric turbulence (e.g. Strunin and Hiyama, 2004; Thomas and 

Foken, 2005). Since this study focused on comparing eddy covariance- and wavelet-derived fluxes, the temporal 

integration of the wavelet method was chosen to closely match the eddy covariance method (30 min); however, due to 

the decomposition in time and frequency domain the averaging intervals could not match perfectly, and an averaging 30 

interval of 33 min for the wavelet method was used. A detailed description of the wavelet method, the wavelet transform 

and the corresponding flux data processing can be found in appendix A and in Schaller et al. (2017). 



5 
 

In the context of the presented study, in a first processing step both methods were applied to produce continuous time series 

of uncorrected half-hour fluxes of methane. In a subsequent processing stage, the results provided by both methods 

underwent the same flux correction procedure by the TK3 software package, including 2D coordinate rotation of the wind 

field, cross-wind correction (Liu et al., 2001), and correction for losses in the high-frequency range (Moore, 1986).  

The eddy covariance post-processing quality control is commonly based on the analysis of stationary and well-developed 5 

turbulence conditions (e.g. Foken et al., 2004; 2012). When applied for wavelet fluxes, the test for stationarity can be 

dropped, since wavelet flux data quality is not compromised by non-stationary conditions (see above). The development of 

the turbulence is investigated based on the concept of flux-variance similarity (Wyngaard et al., 1971) via the so-called 

integral turbulence characteristics (ITC, Foken and Wichura, 1996). A low data quality rating by the ITC can e.g. be caused 

by stable atmospheric stratification that suppresses turbulent motions. Data stationarity is tested by comparing signal 10 

covariance at different averaging intervals (e.g. 5-minutes vs. 30-minutes, Foken and Wichura, 1996). In this context, effects 

such as e.g. spikes in the signal, abrupt changes of the signal level, or intermittent turbulence may trigger low flux data 

quality. We grouped eddy covariance fluxes into different categories (Table 1) based on their stationarity flag (SF) ratings. 

Fluxes outside the range -10 nmol m-2 s-1 < CH4 flux < 150 nmol m-2 s-1 (based on the 2.5 % and 97.5 % quantiles for high 

and medium quality CH4 fluxes from tower 2) were sorted out during the post-processing. 15 

Gaps of the eddy covariance time series were filled with three different methods. A linear interpolation (LI) represents the 

simplest method. The mean of a 10-day moving window (MW) centered to the gap was used for a better representation of 

the seasonality. These two methods were chosen since they do not require a sophisticated tool, and can thus be easily 

applied. Finally, a neuronal network approach (NN, Dengel et al., 2013) represents a more sophisticated gapfilling algorithm, 

filling gaps based on prevailing environmental conditions. 20 

To assess the agreement between EC and wavelet fluxes, a regression analysis was applied. With flux data of both methods 

being subject to uncertainties, no independent variable could be identified. Thus, in place of ordinary least-square regression, 

an orthogonal regression  (OR, linear model II regression) was used with the R-package “lmodel2” (Legendre, 2014) and 

Pearson’s correlation coefficients (r) are given. OR is particularly suited for the comparison of time series that are both 

subject to errors of about the same order of magnitude (e.g. Foken, 2017).  25 
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Table 1: Quality flag categories based on the stationarity rating of the eddy covariance flux data. The definition of quality 
categories follows the scheme proposed by Sabbatini et al. (2018), which is based on stationarity tests developed by Foken et al. 
(2004; 2012), but uses stricter thresholds to separate categories. 

Quality Stationarity flag (SF) Range of differences [%]* 
High < 3 0 – 30 

Medium 3 – 5 31 – 100 
Low >5 > 100 

*Difference [%] between the covariances calculated over 30 minutes and calculated as a average of six 5-minute 

covariances (for details please refer to Foken and Wichura, 1996). 5 

2.4 Event characterization 

The characterization of high methane emission event types differentiated within the context of this study is based on a 

wavelet approach using the Mexican Hat wavelet. In contrast to the Morlet wavelet, which we used to precisely quantify flux 

rates due to its excellent localization in the frequency domain, the Mexican Hat wavelet has a very good localization in the 

time domain, therefore facilitated an exact localization of single events. Event periods resolved at minute intervals were 10 

identified by the median absolute deviation (MAD, e.g. Hoaglin et al., 2000) test followed by an additional manual 

adjustment. Events were separated into the three categories introduced by Schaller et al. (2019): 

1. Peak events: This simple event starts from a baseline flux level, monotonically changes towards a peak or plateau, and 

subsequently monotonically changes back to the baseline level again.  

2. Updown/Downup events: Similar to two connected peak events with opposite sign, after reaching a first peak the fluxes 15 

overshoot the baseline level to reach a second peak in the opposite direction before approaching the baseline again. An 

up-down event indicates a positive peak followed by a negative one, for a down-up event the sequence would be vice 

versa. 

3. Cluster events: Prolonged periods containing numerous high methane emission events were labeled as cluster events. 

Such periods showed a distinctive pattern of high emissions, compared to the baseline fluxes before and after the event, 20 

but did not display the clearly defined peak structures as defined above.  

3 Results 

3.1 Data coverage and overall quality flags 

Of the 5280 half-hourly flux values that would provide continuous data coverage within the study period June 01 to 

September 18, 2014, about 3.4 % or 6 % of the eddy fluxes were either missing or discarded as lowest data quality for tower 25 

1 and tower 2, respectively (Table 2). For the wavelet datasets, missing flux values had a slightly higher percentage 

compared to the EC dataset, since a required 3-hour window of continuous data focusing on the current timestamp 
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broadened the window of missing fluxes around every gap in the raw data. From the remaining data, a further 11.8 % (tower 

1) or 6.6 % (tower 2) were discarded during the EC quality control procedure as low quality, in all cases linked to non-

stationary flow conditions. Since the wavelet method does not require stationarity, no additional gaps due to low data quality 

occurred. For both methods, the subsequent range test (see Section 2.3 for details) filtered out another 2 – 5 % of data that 

was assigned high to medium quality. Taken together, for each combination of tower and processing method, more than 5 

80 % of the fluxes remained after quality screening. Compared to the wavelets, this percentage is lower by about 7 % for the 

EC method, linked to the requirement of stationary flow conditions. 

Regarding the distribution of gaps over time, no seasonal patterns were found for both towers and both flux processing 

methods, so each part of the study period received about equal data coverage. With respect to diurnal patterns in gap 

distribution, EC data display a higher gap fraction during the night, compared to daytime data coverage. This imbalance is 10 

most pronounced for tower 1 (see also Appendix B, Figures A1 & A2). No such diurnal patterns in gap distribution were 

found within the wavelet flux time series, and also no systematic differences between both towers were found for this 

method. Taken together, wavelet flux data processing provides a better overall data coverage, i.e. less data gaps have to be 

filled to replace unreliable measurements flagged as low quality. Also, the equal distribution of gaps between day and night 

supports an improved performance of gap-filling algorithms. Since gapfilled fluxes are associated with higher uncertainties 15 

than measured fluxes, this indicates that wavelet data processing holds the potential to produce more robust flux budgets. 

Table 2: Gap fraction within the dataset used for this study, separated by flux processing method and tower position. 

 Tower 1 Tower 2 
Gaps [%]  EC Wavelet EC Wavelet 
missing data, or lowest quality in raw dataset 3.43 4.13 5.95 6.93 
low quality flag during post-processing  11.80 - 6.59 - 
range test flag for remaining medium/high quality data  3.39 5.09 2.22 2.52 

TOTAL SUM 18.62 9.22 14.75 9.45 
 

3.2 Flux data quality analysis 

3.2.1 Comparison of non-gapfilled methane fluxes under different stationarity conditions 20 

In this section, we compare measured methane flux rates between EC and wavelet methods, with the intention to derive the 

dependence of differences between methods on the stationarity of the underlying flow conditions. This analysis excludes 

gapfilled results. A comparison between methods focusing on the derivation of long-term flux budgets, which include also 

the gapfilled values, will be presented in the following Section 3.2.2. For both flux processing methods, higher methane 

emissions under all quality and stationarity conditions are observed at tower 2 (see also Figure 1), which features a higher 25 

fraction of inundated areas in its footprint in comparison to tower 1. At tower 2, for both flux processing methods, flux rates 
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display a pronounced increase in mid-July, leading to a peak in August and a subsequent decrease at the beginning of 

September, a pattern that follows the general seasonal trends in soil temperatures. During these times of increased methane 

emissions, a diurnal cycle with higher flux rates during daytime is observed (see also Figure A1), while at tower 1, for both 

flux processing methods no seasonal or diurnal cycle was observed. 

High stationarity (SF < 3). Under highly stationary flow conditions, we found an excellent agreement between half-hourly 5 

flux rates derived with EC and wavelet flux processing, respectively. A direct comparison shows that both methods produce 

highly correlated CH4-fluxes throughout the spectrum of absolute values, a fact that is confirmed by a orthogonal regression 

analysis (Wavelet = Intercept + Slope · EC) that produces slopes close to 1, intercepts close to 0 nmol m-2 s-1, and correlation 

coefficients of 0.98 for both towers (Table 3). Averaging data under high stationarity for the entire study period yields flux 

rates that are only marginally higher for the EC method, compared to the wavelet reference (Table 3, Figure 1).  10 

Medium stationarity (SF 3 – 5). The correlation between half-hourly flux rates derived with both processing methods is 

reduced under medium stationary flow conditions, compared to the high stationarity. This observation is confirmed by the 

OR analysis, which produces coefficients that deviate stronger from the ideal targets as shown above for high stationarity 

(Table 3). Mean flux rates are reduced in comparison to highly stationary conditions, and positive offsets between fluxes 

derived by the EC method and the wavelet method, respectively, are higher for both towers (Table 3, Figure 1).  15 

Table 3: Statistical coefficients of an orthogonal regression analysis (Wavelet = Intercept + Slope · EC) and mean flux rates for the 
two processing methods separated by stationarity classes (SF<3 as high, SF 3 – 5 as medium, and SF>5 as low stationarity). 

 Data N Intercept  Slope r Mean flux rate [nmol m-2 s-1] 
   [nmol m-2 s-1]   Wavelet EC 

To
w

er
 1

 SF < 3 2728 0.13 0.98 0.98 18.7 ±12.4 19.0 ±12.7 

SF 3 – 5 1486 0.80 0.82 0.82 15.4 ±17.9 17.5 ±20.4 

SF > 5 474 8.87 1.48 0.81 30.0 ±31.7 14.2 ±23.0 

To
w

er
 2

 SF < 3 3847 0.30 0.98 0.98 46.5 ±25.1 47.0 ±25.6 

SF 3 – 5 569 1.38 0.85 0.72 30.3 ±25.5 34.0 ±28.6 

SF > 5 212 7.94 1.60 0.76 35.6 ±32.5 17.3 ±22.7 
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Figure 1: Median and variability of non-gapfilled methane fluxes based on the EC (purple) and wavelet (green) flux processing 
methods for different stationarity classes at towers 1 (a) and tower 2 (b). Black horizontal bars give the median, colored boxes 
indicate the interquartile range covered by the 2nd and 3rd quartile, while whiskers show the minimum and maximum, respectively, 5 
flux rates. 

Low stationarity (SF > 5). For this evaluation of fluxes under low stationarity conditions, measured EC fluxes with low 

quality flags had to be used. Please note that such data would normally have been filtered out during the EC quality control 

procedure, leaving gaps that would subsequently be filled by gapfilling algorithms. A comparison of methods including such 

gapfilled data will be presented in the following section, while here the low EC data quality influences the findings. As to be 10 

expected, under these circumstances the flux processing methods agree less than under medium or high stationarity 

conditions, with both slopes and intercepts derived through the OR analysis increasing considerably (Table 3). Also averaged 

flux rates for the entire study period deviate strongly between methods, with the EC fluxes strongly underestimating the 

wavelet reference. In comparison to high and medium stationarity conditions, also a wider range of wavelet-based fluxes is 

found at both towers. These results indicate that non-stationarity flow conditions cause a low bias in the EC-derived methane 15 

fluxes in comparison to the wavelet method (Table 3, Figure 1).  

3.2.2 Influence of flux processing method and gapfilling on flux budgets 

To evaluate the impact of discarding portions of an EC-dataset due to low stationarity (SF > 5) in flow conditions, in this 

section we only used original EC data with medium to high quality, and subsequently filled all gaps with the three different 

gapfilling algorithms linear interpolation (LI), moving window (MW), and neural network (NN). Since a strong focus is 20 
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placed on the evaluation of the gapfilling methods, timestamps with gaps in the wavelet time series, linked to missing data 

and the range test filter, were subsequently removed also from the gapfilled EC time series to facilitate a direct 

intercomparison between both methods without having to compare gapfilled to gapfilled values. Accordingly, the resulting 

flux budgets discussed in the method intercomparison below are not equal to the total methane emissions during the study 

period; however, with more than 90 % wavelet data coverage for both towers (Table 2), deviations should be moderate, and 5 

overall patterns should be representative. As a reference, filling all gaps in the EC flux time series, at tower 1 seasonal 

budgets sum up to 2.26, 2.09 and 2.08 gC m-2 for LI, MW and ANN respectively, while at tower 2, seasonal budgets are 

5.03, 5.09 and 5.02 gC m-2 across these three methods. 

When integrating the entire dataset, the direct intercomparison of half-hourly fluxes between EC- and wavelet methods 

based on OR analyses yields good agreement for tower 2 across gapfilling methods (slope: 1.01 – 1.05; r: 0.88 – 0.89), while 10 

at tower 1, a weaker agreement between both flux processing methods after the gapfilling of the EC time series was found 

(slope: 1.14 – 1.32; r: 0.69 – 0.74). Plotting the frequency distribution of gapfilled flux rates against wavelet results (Figure 

2) reveals the important role of the gapfilling performance in this context: for both towers, the reference fluxes provided by 

the wavelet processing are positively skewed, with a long tail indicating a prominent role of occasional high to very high 

methane emissions. The gapfilling algorithms, all of which display comparatively restricted flux ranges, cannot reproduce 15 

this distribution, and individual half-hourly flux rates show a poor correlation with the wavelet reference (see also Figure A3 

in Appendix D). This applies particularly to the MW and NN approaches, while the flux distribution of the rather simple 

linear interpolation (LI) at least approximates the positive skewness of the reference. The example of tower 1 demonstrates 

that this systematic deviation may lead to biases in average flux values produced by the gapfilling methods: in this case, 

while wavelet results feature an average methane flux of 30.9±33.4 nmol m-2 s-1 for those timestamps where EC fluxes were 20 

filtered out due to low stationarity, the corresponding gapfilled values in the EC time series had mean flux rates of 24.4±21.2 

(-20%, LI), 18.4±8.6 (-41%, MW) and 18.4±9.3 nmol m-2 s-1(-41%, NN). On the other hand, at tower 2, in spite of the 

differences in frequency distributions (Figure 2), smaller shifts in mean flux rates were found, and gapfilled fluxes tended to 

slightly overestimate the wavelet reference fluxes (see also Figure 4).  

For the calculation of long-term methane budgets, the above-mentioned biases in gapfilling results become more important 25 

at tower 1, in part also because of the overall higher percentage of gaps compared to tower 2 (Table 2). This is reflected in 

the fraction of the cumulative methane budget contributed by gapfilled values, which makes up 12 – 15 % at tower 1, but 

only 6 – 8 % at tower 2 (Table 4). In spite of these deviations, accumulated fluxes for the entire study period are in very 

good agreement between flux processing methods, and also between gapfilling methods: Flux budgets based on wavelets 

sum up to 1.96 gC m-2 and 4.56 gC m-2 for tower 1 and 2, respectively. Across the three gapfilling approaches, deviations to 30 

these reference flux budgets ranged between -0.07 and 0.01 gC (-3.5 – 0.5 %) for tower 1, and between 0.06 and 0.14 gC 

(1.5 – 3.1%) for tower 2.  
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Figure 2: Frequency distribution of flux rates (a: tower 1; b: tower 2) produced by the three gapfilling approaches (red: linear 
interpolation (LI); blue: moving window (MW); orange: neural network (NN)), compared against the reference flux values derived 
from the wavelet raw data processing method (WV, green). 

Table 4: Methane fluxes (FCH4) summed up for the wavelet method and EC method by applying the three different gapfilling 5 
approaches linear interpolation (LI), moving window (MW) and neural network (NN). Note that the same gaps as for the fluxes 
based on the wavelet method are used for the EC flux time series. 

 Budget Wavelet EC_LI EC_MW EC_NN 

To
w

er
 1

 ∑ FCH4 [gC m-2] 1.96 1.97 1.90 1.90 
∑ FCH4_EC - ∑ FCH4_wavelet [gC m-2] - 0.01 -0.07 -0.07 
∑ gapfilled FCH4 [gC m-2] 0 0.31 0.23 0.23 
∑ gapfilled FCH4 / ∑ FCH4_EC  [%] 0 15.59 12.13 12.11 

To
w

er
 2

 ∑ FCH4 [gC m-2] 4.56 4.65 4.70 4.62 
∑ FCH4_EC - ∑ FCH4_wavelet [gC m-2] - 0.09 0.14 0.06 
∑ gapfilled FCH4 [gC m-2] 0 0.32 0.37 0.30 
∑ gapfilled FCH4 / ∑ FCH4_EC  [%] 0 6.95 7.96 6.45 

 

3.3 Analysis of methane emission events 

3.3.1 Distribution of stationarity classes for different event types 10 

We restricted this analysis to flux data from tower 2, since here the overall higher methane fluxes were measured (see also 

Section 3.2.1). Similar patterns were found at tower 1 (not shown). The vast majority of 30-minute flux values (5123 cases, 

or 97%) were categorized as ‘No events’, i.e. none of the three event types could be detected (Figure 3). This category 

differs substantially from the ‘event’ categories regarding the frequency distribution of stability filter (SF) classes: 76 % of 

cases fell into the high stationarity range (classes 1 & 2), and only 12 % were labeled as low stationarity. The ‘detected 15 

events’ statistics combine 26 half-hourly fluxes from the category ‘Peak events’, 9 ‘Updown/Downup events’, and 123 

‘Cluster events’. Across these categories, the percentage of high stationarity data only makes up about 17 % of the dataset, 
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while the percentage of low stationarity data has been more than doubled to 32 %, compared to the ‘no events’ category. The 

majority of cases (~51 %), however, is classified as medium stationarity. 

 
Figure 3: Stationarity flag frequency distribution of half-hourly timestamps, separating between fluxes that were influenced by 
events (a) and those where no events were detected (b). Stationarity flags were grouped into the three classes high (dark blue), 5 
medium (light blue) and low (light brown) stationarity. The total count of timestamps is slightly above the sum of timestamps 
available during the study period (5280) due to an occasional occurrence of several events in a single half-hour window. 

3.3.2 Methane flux rates during different types of events 

Our dataset from tower 2 demonstrates that mean methane flux rates differed between event types (see also Figure 4, similar 

trends observed at tower 1). Across stationarity categories, average fluxes, where wavelet fluxes were available, were highest 10 

during cluster events (wavelet: 52.8 nmol m-2 s-1, gapfilled EC fluxes ranging between 49.8 – 57.2 nmol m-2 s-1). In 

comparison, during peak events flux rates were lower by about 26 % (wavelet: 39.0 nmol m-2 s-1, gapfilled EC: 36.6 –

 41.5 nmol m-2 s-1), while updown/downup events feature the lowest emissions (wavelet: 21.3 nmol m-2 s-1, gapfilled EC: 

22.4 nmol m-2 s-1). At times where no events had been detected, wavelet emissions averaged at 44.0 nmol m-2 s-1, while 

gapfilled EC fluxes were slightly higher around 44.7 – 45.4 nmol m-2 s-1. 15 

Comparing the three different stationarity classes, similar patterns emerge across event types, confirming the overall results 

displayed in Figure 1: During high stationarity, the highest median (Figure 4) and mean flux rates were found across event 

categories, with wavelet flux rates during peak events as the single exception. Results agree well between processing 

methods, with no systematic difference observed in either median or mean flux rates. At medium stationarity, mean flux 

rates are consistently lower than at high stationarity, and the differences in medians as shown in Figure 4 indicate a minor 20 

positive offset in flux rates between EC and wavelet methods. At low stationarity, wavelet-derived flux rates are slightly 

higher again, compared to medium stationarity. EC-based mean fluxes severely underestimate this reference by fractions 

ranging between -26 – -53 %. Replacing these low quality measurement data with gapfilled values clearly improves the 

agreement between wavelet and EC-based time series, albeit with a large scatter across methods. For all event types, using 

any of the three gapfilling algorithms reduces the net offsets to the wavelet-derived fluxes, compared to the original EC data, 25 
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with results tending to overestimate the wavelet reference. For LI and MW gapfilling methods, all mean fluxes are higher 

compared to the wavelets, while NN produces event fluxes lower than this reference, and ‘no event’ fluxes that are slightly 

higher. Detailed results are listed in Table A1, Appendix C. 

 
Figure 4: Methane fluxes based on the EC (purple) and wavelet (green) flux processing method for three stationarity flag (SF) 5 
categories during different event types at tower 2. For SF > 5, where methane fluxes based on the EC method would be excluded 
during the regular post-processing quality control, in addition the values for the three gapfilling methods (red: LI; blue: MW; 
orange: NN) are shown. For details on graph features, please refer to Figure 2. 

3.3.3 Event contribution to methane flux budgets 

As to be expected from the low fraction of half-hourly timestamps containing detected events (~3 % at tower 2, see also 10 

Figure 3), the total flux budgets are dominated by methane emissions from the ‘no events’ category. Summed up for tower 2 

(Table 5), across the four processing versions (wavelet, EC with three gapfilling approaches) the contributions from events 

to the total methane budget ranged between 2.5 – 2.8 %. Owing to the dominant fraction of cluster events in those 

timestamps where events were detected, this event category makes up about 85 % of fluxes influenced by events. 

Regarding the role of flow stationarity, the budgets reflect well the distribution of stationarity flags shown above in Figure 3: 15 

For the fluxes during ‘events’, 44 – 51 % of the budget were emitted during medium stationarity, with the remaining flux 

portions about equally distributed between high and low stationarity. For the ‘no events’ cases, on the other hand, about 

85 % of the total methane emissions can be attributed to high stationarity cases, and only 9 % of the fluxes belong into the 

medium stationarity category.  
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Regarding the intercomparison of wavelet and EC-based flux budgets, including the influence of the gapfilling approaches, it 

needs to be considered that the range test filtered out values at different timestamps between flux processing methods, and 

the resulting gaps can occur within any stationarity category. Accordingly, the performance of the gapfilling algorithm 

slightly influenced also the flux budgets for high and medium stationarity, while the biggest impact is found under low 

stationarity where results are exclusively based on gapfilling output. Sorting by event type, gapfilled EC flux sums tend to be 5 

slightly higher than the wavelet reference, with the exception of NN-budgets for peak and cluster events. Sorting events by 

stationarity, results summarized in Table 5 indicate that events at high stationarity tend to be underestimated by ~18 %, while 

medium and low stationarity cases have a high bias (11 % and 5 %, respectively). For ‘no events’ cases, the gapfilled EC 

methane budgets have a high bias across stationarity categories and gapfilling algorithms, with only minor flux increases for 

high stationarity (~1 %) that increase gradually towards low stationarity. Total flux sums for both ‘events’ and ‘no events’ 10 

cases are on average overestimated by 2.2 % by the gapfilled EC time series, although with different variability across 

methods (events: -5.6 – 7.5 %; no events: 1.7 – 3.1 %). 

  

Table 5: Methane fluxes summed up for the wavelet and EC methods [mgC m-2] for tower 2. For EC fluxes, gaps resulting from 
sorting out low stationarity cases were filled using three different gapfilling approaches (LI: linear interpolation; MW: moving 15 
window; NN: neural network). Please note that gaps in the wavelet method were projected to the EC flux time series to ensure a 
homogeneous database for this method intercomparison. 

Event type Stationarity Wavelet EC_LI EC_MW EC_NN 
Peak  All 16.9 17.3 17.9 15.8 
Updown/downup All 1.8 1.9 1.9 1.9 
Cluster All 102.7 111.3 106.8 96.8 

SUM 121.4 130.5 126.7 114.6 

All events 
SF < 3 29.9 24.0 25.0 24.4 

SF 3 – 5 53.5 61.2 59.1 58.3 
SF >5 37.9 45.3 42.4 31.7 

SUM 121.4 130.5 126.6 114.5 

No events 
SF < 3 3847 3893 3891 3891 

SF 3 – 5 381 401 408 400 
SF >5 207 224 274 218 

SUM 4435 4518 4573 4509 
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4 Discussion 

4.1 Deviations in absolute flux rates between event types and stationarity classes 

Mean absolute methane flux rates showed a uniform pattern with respect to the stationarity of the flow (e.g. Figure 1), with 

fluxes within the highest stationarity class (SF < 3) displaying the highest flux rates. The flux rates under medium 

stationarity were clearly lowest, while low stationarity ranged somewhere in between the other two classes. Also averaged 5 

flux rates for event types (Figure 4) showed some distinctive differences, ranking event types in the order cluster events, no 

events, peak events, and updown/downup events from high to low average flux rates. These patterns in absolute flux rates, 

however, strongly depend on the distribution of events and/or stability classes over season and time of day. Therefore, it 

cannot be ruled out that at least part of the differences between these averaged flux rates have to be attributed to seasonal 

and/or diurnal variability in methane emissions.  10 

Diurnal variability in flux rates, as e.g. observed at tower 2 within the peak summer season, may particularly alter the 

comparison of mean flux rates between ‘events’ and ‘no events’. With the majority of events being detected during nighttime 

(Schaller et al., 2019), higher overall flux rates during the day would mostly raise the ‘no events’ flux rates. Accordingly, the 

slightly lower averaged fluxes during ‘peak events’ (wavelet: 39.0 nmol m-2 s-1), compared to ‘no events’ (wavelet: 

44.0 nmol m-2 s-1) may to a large part reflect the time of sampling, rather than an impact of the mechanism of flux release in 15 

form of an event on the amount of emitted methane. 

4.2 Comparison between wavelet- and EC-derived fluxes under different stationarity classes 

Excluding gapfilled values from the analysis, we achieved an excellent correlation between wavelet- and EC-derived 

methane flux rates at high stationarity of the flow. This agreement across processing methods under well-developed 

atmospheric turbulence, which has been reported before by Schaller et al. (2017; 2019), applies to both the regression 20 

analysis of half-hourly fluxes (Table 3) as well as the statistics on averaged flux rates integrated over the study period (see 

e.g. Figure 1). Given that the assumptions for the application of wavelet flux processing are more relaxed compared to the 

EC-method, mainly because there is no requirement for stationarity of the flow, wavelet-derived fluxes therefore provide a 

solid reference for constraining potential biases in EC-fluxes under non-ideal conditions.  

Under medium stationarity, mean EC-flux rates are slightly higher than the wavelet reference fluxes at both towers (tower 1: 25 

+1.99 nmol m-2 s-1; tower 2: +0.63  nmol m-2 s-1). This offset may be linked to the comparatively high flux contribution from 

half-hourly fluxes influenced by ‘events’ under this category, which is more than one order of magnitude higher than under 

high stationarity (see e.g. Table 5, which also includes gapfilled values, however). Disregarding the possible influence of 

events, even though the differences between flux processing methods are not significant due to the high scatter of flux rates 

across the entire summer season, a persistent offset in this category will affect the computation of net methane flux budgets, 30 

since the overall data quality is still considered high enough that values will not be filtered out during the EC data quality 

screening.  
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Our flux processing method intercomparison under low stationarity clearly indicates that EC-derived methane fluxes under 

such conditions are unreliable, and should be sorted out to ensure plausible results. Mean flux rates for both towers only 

amounted to slightly more than 50 % of the wavelet reference fluxes, therefore the inclusion of such data into the 

computation of long-term methane flux budgets would lead to a systematic and potentially severe underestimation of the 

actual emissions. Since a reliable direct measurement with the EC-method is not reliable, and also gapfilling is associated 5 

with considerable uncertainties (see below), wavelet processing holds the potential to provide novel insights into methane 

exchange processes also under difficult measurement conditions. 

4.3 Role of gapfilling for EC-derived methane budgets 

As demonstrated by the frequency distributions of methane flux rates derived by wavelet processing and three different 

gapfilling methods (Figure 2), all EC gapfilling approaches tested here cannot capture the full range of natural variability of 10 

the methane emissions observed by the reference wavelet fluxes. The wavelet flux distribution indicates that the occurrence 

of high flux rates, or emission outbursts that may be related to ‘events’ as further discussed below, are an important element 

of the methane release dynamics at our study site. These high flux rates, which cause the positive skewness and the long 

positive tail in the wavelet flux frequency distribution, are at best coarsely approximated by the gapfilling algorithms. The 

fact that the simplest gapfilling algorithm, linear interpolation, gets closest to a positively skewed flux distribution as 15 

provided by the wavelet reference indicates that even sophisticated algorithms such as neural networks have limitations 

when it comes to capturing the mechanisms that control episodic high methane emissions from wetland ecosystems.  

While the uncertainty associated with methane gapfilling produces partly large offsets when comparing individual 30-minute 

flux rates to the wavelet results, we found the integrated flux over a longer-term study period to be rather stable across 

gapfilling approaches, and that mean flux rates still agree well with the reference for parts of the dataset. At our tower 2, the 20 

gapfilled mean fluxes ranging between 37.2 – 41.3 nmol m-2 s-1 agree well with the wavelet mean flux of  

37.7 nmol m-2 s-1, while at tower 1 the wavelet reference of 30.9 nmol m-2 s-1 was clearly underestimated (18.4 –

 24.6 nmol m-2 s-1). Based on this finding, we speculate that the decisive factor for the performance of gapfilling algorithms 

is the mean EC flux during high and medium stationarity, which forms the basis to inform gapfilling algorithms, as well as 

the diurnal and seasonal gap distributions.  25 

As any other type of model, gapfilling approaches need to be based on reliable statistical and/or process-based algorithms, 

and in addition need representative training data to produce reliable results. In the tests conducted within the context of this 

study, none of the three gapfilling algorithms could fully hold up to these standards. For the two simple approaches, linear 

interpolation and moving window averaging, with no mechanisms available that link fluxes to controls these methods can 

only rely on the available range of measured fluxes under high to medium stationarity to base their output on. As a 30 

consequence, in the absence of process-based algorithms all gapfilling methods are dependent on the distribution of gaps to 

be filled, and therefore their performance is subject to a certain level of randomness. Regarding the neural network approach, 

since our example at tower 1 demonstrates that this sophisticated algorithm can produce offsets as large as found for the MW 
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method, the established links between environmental controls and methane fluxes, which again are based on observations 

during high or medium stationarity, are not necessarily representative under poorly developed turbulence. This caveat can 

only be improved through reliable, process-based gapfilling algorithms that do not exclusively focus on biogeochemical 

aspects, but also incorporate biogeophysical elements such as atmospheric pressure or turbulence conditions into the 

calculations. 5 

With only up to 11 % of flux values to be filled as gaps resulting from low data quality during our study (Table 2), even a 

systematic underestimation of reference fluxes by the gapfilling methods of -20 – -41 % at tower 1 did not result in 

substantial offsets in net methane emissions budgets integrated over the study period (Table 4). This good agreement in net 

flux budgets may also be linked to the fact that the underestimation of gapfilled values is at least partly balanced by the 

overestimation of fluxes by the EC-method during medium stationarity. In general, however, it can be expected that the 10 

agreement between gapfilled product and reference will significantly deteriorate with an increasing gap fraction within the 

study dataset. To reduce the associated high uncertainties, wavelet tools as presented herein hold the potential to produce 

reference datasets under various environmental conditions that can be used to develop, calibrate and test new process-based 

gapfilling algorithms that are capable to produce reliable results also under low stationarity conditions, i.e. when they are 

needed most. 15 

4.4 Impact of event emissions on methane observations 

Our datasets demonstrate that ‘event’ emissions make up a small but noticeable part of the methane flux time series observed 

at our Ambolikha observation sites in Northeast Siberia. At tower 2, summed up over the study period of 108 days in 

summer 2014, about 3 % (158 cases) of half-hourly flux values were affected by events, contributing 2.5 – 2.8 % of the total 

methane budget emitted during this period. At tower 1 (data not shown), the event fraction was slightly higher (3.7 %, 193 20 

cases), and also the fraction of the total flux affected by events was increased in comparison to tower 2 (3.7 – 5.3 %). 

Differences between towers are associated with the higher fraction of extreme outliers as detected by the MAD test at tower 

1 (Schaller et al., 2019), which may be linked to the fact that mean flux rates at this site are lower, so that emission peaks 

differ more strongly from the baseline emissions. Overall, these results indicate that, even when completely ignoring the 

potential presence of such events, regular EC data processing and gapfilling algorithms on average can produce flux rates 25 

that are reasonably close to the wavelet fluxes that resolve events (see detailed discussion below). Consequently, for the case 

study presented herein, the presence of non-stationary methane outburst events did not lead to systematic biases in the EC-

based long-term methane budget that go beyond the regular measurement uncertainty. 

At tower 2, at times without event occurrence the EC-derived fluxes overestimated the wavelet reference by 1.2 % under 

high stationarity, and 5.8 % under medium stationarity. Similar offsets were observed at tower 1 (not shown). During events, 30 

the overestimation of fluxes under medium stationarity (11 %) approximately matched these biases, while under high 

stationarity, fluxes tended to be underestimated by 18 %. At tower 1, on the other hand, event fluxes under both stationarity 

categories were underestimated by 9 – 13 %. With the contributions of total fluxes per stationarity category ranging between 



18 
 

0.7 – 2.8 % across towers, this minor tendency towards underestimating event fluxes did not influence the EC-computed flux 

budgets considerably.  

During low stationarity conditions, all fluxes based on EC-processing will be sorted out, and will subsequently be replaced 

by gapfilling values, independent whether or not an event was contained in the specific half-hourly window. Therefore, the 

correspondence between gapfilling results and wavelet reference fluxes was largely identical between ‘events’ and ‘no 5 

events’ cases at both towers. The influence of events under such circumstances is therefore restricted to the question whether 

or not event occurrences increase the fraction of detected low stationarity cases, which will be filtered out during quality 

screening and therefore create gaps. Data summarized in Table 5 show that, for our dataset from tower 2, the relative fraction 

of cases with low stationarity was ~31 % across half-hourly fluxes that were influenced by events, compared to only 4.7 % 

for ‘no events’ cases. This observation indicates that, in general, more events hold the potential to cause more gaps in the 10 

flux time series, therefore with more events the gapfilling becomes more important.  

Regarding the impact of events on the short-term variability of fluxes, the range of differences between wavelet- and EC-

derived 30-minute flux rates is similar for ‘events’ and ‘no events’ cases (see Appendix D, Fig. A3); however, while during 

‘no events’ cases a large number of values still shows good correspondence, those cases with substantial deviations from the 

1:1 line dominate the method intercomparison for fluxes influenced by events. This is clearly indicated by the root mean 15 

square errors (Table A2), which under all stability categories are higher for the events cases. Under high to medium 

stationarity, the offsets produced by EC-processing appear to be random, therefore the number of events does not seem to 

introduce a systematic bias into the long-term budget. Still, Figure A3 demonstrates that, particularly for medium 

stationarity, the EC-derived flux rates influenced by events have a poor quality overall, with RMSE values >40 nmol m-2 s-1 

found for both towers. 20 

Our findings demonstrate that regular eddy-covariance flux processing yields highly reliable results under high stationarity 

conditions, while for medium to low stationarity, the half-hourly averaged flux rates by the wavelet method should be 

preferred instead when investigating methane emission dynamics at high temporal resolution. Particularly in the presence of 

events, individual EC flux rates are associated with a very high uncertainty, and should only be used for the computation of 

long-term flux budgets. With events often occurring at timescales of only a few minutes, the wavelet flux processing holds 25 

the potential to provide new insights into the characteristics of these important elements of the methane cycle, since it 

facilitates flux computation down to timesteps of one minute without violating underlying theoretical assumptions. As 

demonstrated already for the decomposition of flux signals from spatially varying source areas (Metzger et al., 2013; Xu et 

al., 2017), wavelets provide a valuable tool for investigating the statistics of highly irregular emissions, how they can be 

correlated with environmental conditions, and potentially be resolved by process-based algorithms for gapfilling and/or 30 

extrapolation purposes. 
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5 Conclusions 

Our study investigated the impact of short-term episodic emission outbursts, so-called event fluxes, on the overall data 

quality of methane fluxes observed by eddy-covariance towers over a wet tussock tundra ecosystem in Northeast Siberia. We 

evaluated the EC flux dataset against reference fluxes based on wavelet processing, which are not restricted to stationary 

flow conditions, and can resolve flux patterns down to timesteps of one minute. The wavelet analysis demonstrates that high 5 

methane emission events influenced 3 – 4 % of the flux observations during our study period, with integrated event 

emissions contributing 3 – 6 % to the net methane budget. EC flux data processing tended towards slightly underestimating 

the wavelet fluxes while events were present, but the net impact on long-term flux budgets is minor in relation to other 

uncertainties associated with eddy-covariance measurements. For the intercomparison of flux rates at 30-minute timesteps, 

however, our results demonstrate that the presence of events substantially increases the scatter between wavelet- and EC-10 

derived fluxes, indicating that events introduce additional uncertainty into the EC-results. 

A second focus of this study was placed on the evaluation of common gapfilling approaches for EC-derived methane fluxes. 

Our wavelet-derived fluxes provided an observation-based reference for the fraction of gaps in the EC time series that was 

created because measurements under low stationarity were filtered out by the data quality assessment protocol. None of the 

three gapfilling approaches tested herein could reproduce the range of values provided by the wavelet reference, but resulting 15 

biases in long-term flux budgets were still minor because of the comparatively small fraction of gaps that needed to be filled 

in our datasets. The performance of the gapfilling methods appeared to be dependent on the gap distribution, and the ratio of 

flux rates between the gaps and the remaining dataset. With a profound mechanistic understanding on processes and controls 

that govern the short-term variability in methane emissions still lacking, the quality of gapfilling products retains a certain 

level of randomness, therefore systematic biases even over longer timeframes cannot be ruled out particularly for datasets 20 

that contain a higher gap fraction as the ones used in our study. 

Our findings demonstrate that wavelet analyses hold the potential to enhance our understanding in methane exchange 

processes between terrestrial ecosystems and the atmosphere. With excellent agreement between wavelet- and EC-derived 

fluxes demonstrated under ideal turbulence conditions, wavelet fluxes facilitate to quantify biases in EC-datasets linked to 

non-ideal conditions, e.g. medium to low stationarity of the flow. Moreover, the provision of observationally-based reference 25 

fluxes at times when the EC-method produces data gaps can support the development of novel process-based modeling 

algorithms that are representative for a wider range of environmental conditions, which can be employed e.g. for the 

improvement of gapfilling algorithms. Finally, the option to resolve fluxes down to temporal resolutions of one minute 

facilitates new insights into the intermittent nature of methane emissions, and its impact on the quality of methane flux 

observations. 30 
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Appendix A: Wavelet approach to calculate turbulent fluxes 

The following description of the wavelet method is a slightly shortened version of the description provided by Schaller et al. 

(2017), which is the companion paper introducing the methodology that the presented study is based upon. It has been 

included here again to facilitate an easier overview on the procedure, without having to read other manuscripts. For more 

details, please refer to Schaller et al. (2017). 5 

A continuous wavelet transform of a discrete time series x(t) can be written as convolution of x(t), 

 𝑇 𝑎, 𝑏 = 𝑥 𝑡 ∙ 𝜓!,!∗
!
!! 𝑡 𝑑𝑡        (Eq. A1) 

where T(a,b) is the wavelet coefficient and Ψa,b(t) is referred to as wavelet function 

 Ψ!,! 𝑡 = !
!
∙Ψ !!!

!
.         (Eq. A2) 

The wavelet Ψ requires a dilation parameter a, which controls the scale of the wavelet and thus the current frequency of 10 

interest, and a translation parameter b that indicates the temporal position of the wavelet in the time series. For as complex-

valued wavelet, the conjugate Ψ!,!∗ 𝑡  denoted by a star sign is used. 

As mentioned in the main text above, this study used the complex-valued Morlet wavelet for quantification of flux rates, and 

the Mexican Hat wavelet for the exact localization of CH4 emission events (see Schaller et al., 2017 for more details). The 

expression T2(a,b) across all times and scales provides the total energy of the time series. The average of the wavelet 15 

scalogram 𝑇! 𝑎, 𝑏  is used to obtain the wavelet spectrum (Torrence and Compo, 1998) 

 𝐸! 𝑗 = !"
!!
∙ !
!
∙ 𝑇! 𝑎, 𝑏!!!

!!!         (Eq. A3) 

over a given number N of values in the time series, taking the time step δt and a wavelet-specific reconstruction factor 𝐶!into 

account. From this it is now possible to obtain the global variance of the time series, 𝜎!!, by integrating over all scales j = 0 

to J 20 

 𝜎!! =
!"
!!
∙ !"
!
∙ !! !,!

! !
!
!!!

!!!
!!!         (Eq. A4) 

with δj referring to the spacing between discrete scales and J being the maximum number of scales.  

For two simultaneously recorded time series x(t) and y(t) the wavelet cross spectrum can now be obtained in analogy to Eq. 

(A3) as 

 𝐸!" 𝑗 = !"
!!
∙ !
!
∙ 𝑇! 𝑎, 𝑏 ∙ 𝑇!∗ 𝑎, 𝑏!!!

!!! ,       (Eq. A5) 25 

where 𝑇!∗ 𝑎, 𝑏  denotes the complex conjugate of the wavelet transform of the second time series y(t) (Hudgins et al., 1993). 

Summing up over all scales yields the covariance (Stull, 1988) 

 𝑥!𝑦! = !!
!!
∙ !"
!
∙ !! !,! ∙!!∗ !,!

! !
!
!!!

!!!
!!!        (Eq. A6) 

for the chosen averaging interval. If the chosen time series x and y are the vertical wind velocity w and a corresponding gas 

concentration c, the flux 𝑤′𝑐′ can be calculated now using Equation (A6).  30 
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Appendix B: Seasonal and diurnal pattern of flux rates and data gaps 

 
Figure A1: Fingerprint plots showing the diurnal distribution of flux rates and gaps (white) for both towers and processing 
methods. 

 5 
Figure A2: Seasonal (left) and diurnal (right) distribution of data availability for wavelet- (green lines) and EC-derived (purple 
lines) methane fluxes. 
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Appendix C: Mean methane flux rates for different event categories 

Table A1: Mean methane fluxes for the wavelet method and EC method, split into three stationarity categories. For the lowest 
stationarity, in addition to measured EC values, model results by the three different gapfilling approaches linear interpolation 
(LI), moving window (MW) and neuronal network (NN) are given. Absolute flux values are given in cells with white background, 
while grey shading indicates flux differences between EC- and wavelet processing, where numbers in brackets give the percentage 5 
deviation.  

 Flux calculation method Peak 
[nmol m-2 s-1] 

Updown/downup 
[nmol m-2 s-1] 

Cluster 
[nmol m-2 s-1] 

No event 
[nmol m-2 s-1] 

H
ig

h 
st

at
io

na
rit

y Wavelet 40.97 32.83 68.94 46.52 

EC 34.87 35.71 55.16 47.03 

EC-Wavelet -6.1 (-14%) 2.88 (8.8%) -13.78 (-20%) 0.51 (1.1%) 

M
ed

iu
m

 
st

at
io

na
rit

y Wavelet 34.2 9.81 47.22 31.67 

EC 31.87 9.07 50.06 33.1 

EC-Wavelet -2.33 (-6.8%) -0.74 (-7.5%) 2.84 (6.0%) 1.43 (4.5%) 

Lo
w

 
 s

ta
tio

na
rit

y 

Wavelet  42.42 NA 53.59 34.05 
EC_measured 31.5 NA 32.71 16.07 
EC_gapfilled LI 45.34 NA 65.17 36.8 
EC_gapfilled MW 50.28 NA 59.43 45.02 
EC_gapfilled NN 33.75 NA 45.22 35.72 

EC_measured-Wavelet -10.92 (-26%) NA -20.88 (-39%) -17.98 (-53%) 
EC_gapfilled LI-Wavelet 2.92 (6.9%) NA 11.58 (22%) 2.75 (8.1%) 
EC_gapfilled MW-Wavelet 7.86 (19%) NA 5.84 (11%) 10.97 (32%) 
EC_gapfilled NN-Wavelet -8.67 (-20%) NA -8.37 (-16%) 1.67 (4.9%) 
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Appendix D: Comparison of methane flux rates at half-hourly resolution between methods 

 
Figure A3: Impact of events on the direct intercomparison of half-hourly flux rates between wavelet and eddy-covariance 
processing methods, sorted by tower and stationarity flag (SF) category. The displayed dataset includes gapfilled data, where 
linear interpolation was used to fill gaps for the EC method under low stationarity. Fluxes influenced by events are plotted in red, 5 
while ‘no events’ cases are black. The thin grey line gives the 1:1 line, the black line the fit of the orthogonal regression (OR) 
analysis.  

Table A2: Deviations between 30-minute averaged fluxes based on wavelet- and EC-processing, expressed as the root mean square 
error [nmol m-2 s-1]. Time series include gapfilled values from linear interpolation for the EC time series. 

 Tower 1 Tower 2 
Stationarity No events Events No events Events 
High (SF < 3) 2.64 11.89 4.54 34.04 
Medium (SF 3 – 5) 12.11 40.75 21.97 48.61 
Low (SF > 5) 27.67 42.06 28.12 60.76 
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