
Reviewer 1, Giorgio Dall’Olmo 
Below the review is reproduced in black font and our responses interspersed in blue. 

General	comments	 

This	manuscript	investigates	the	extent	to	which	diel	cycles	of	oxygen	concentrations	measured	by	
profiling	floats	can	be	used	to	estimate	net	community	production.	To	this	aim,	techniques	are	
presented	to	estimate	and	correct	for	the	relatively	slow	time	response	of	oxygen	optodes	and	to	
discriminate	physical	and	biological	drivers	of	diurnal	oxygen	variability,	in	an	oligotrophic	but	
physically-dynamic	region	of	the	ocean.		

In	the	first	part	of	the	manuscript,	the	authors	describe	the	mathematical	background	for	the	
correction,	but	most	importantly	they	demonstrate	how	the	time	response	of	the	optode	can	be	
estimated	from	successive	in-situ	up-	and	down-cast	profiles.	An	analysis	then	is	used	to	estimate	
how	the	uncertainty	in	the	time	response	and	random	errors	in	the	measurements	impact	upon	the	
accuracy	of	correction.	They	conclude	that	the	impact	of	the	correction	for	the	time	response	is	
greatest	near	gradients	in	oxygen,	that	the	correction	is	able	to	restore	the	oxygen	profile	to	its	true	
value,	and	that	random	noise	in	the	measurements	can	be	amplified	three-fold	by	the	correction.	
They	also	recommend	transmitting	time	stamps	and	conducting	occasional	up-	and	down-cast	
profiles	to	determine	the	time	response	of	the	optodes.	

I	found	this	first	part	of	the	manuscript	very	well	written	(as	the	rest	of	the	it)	and	potentially	very	
useful.	I	have	just	a	few	suggestions	that	might	improve	this	work.	1)	It	would	be	useful	to	present	
(or	anticipate)	at	the	start	of	the	manuscript	an	estimate	of	how	large	the	uncertainties	due	the	time	
response	of	optodes	can	be.	This	would	allow	the	reader	to	immediately	understand	that	this	can	be	
a	first	order	problem	that	needs	to	be	tackled.	2)	I	found	it	a	little	disappointing	that	the	correction	
was	applied	based	on	pressure,	rather	than	on	density.	How	would	the	uncertainties	reported	
change	if	the	correction	was	applied	to	profiles	as	a	function	of	density?	3)	Finally,	it	would	be	
extremely	useful	if	the	authors	presented	some	kind	of	function	that	could	be	used	to	predict	the	
magnitude	of	the	correction	based	on	the	oxygen	gradient	(assuming	a	given	time	response).	A	
typical	value	for	the	correction	of	36-39	mmol/m-3	around	the	maximum	gradient	observed	(2.55	
mmol/m-3/dbar)	was	reported,	but	having	a	function	would	be	even	more	helpful.	This	function	
could	be	used	to	derive	oxygen	uncertainties	around	oxyclines	for	profiles	that	are	not	corrected	for	
the	time	response,	which	is	important	to	better	understand	the	data.	Of	course,	this	additional	
analysis	is	not	mandatory,	but	could	definitely	expand	the	impact	of	this	paper.	

Response:	Thank	you,	we	appreciate	the	positive	and	constructive	comments.	Regarding	the	
specific	suggestions: 

1) Excellent suggestion. We added the following in the Introduction: “While pressure and in-air 
gain corrections are typically applied, response-time correction is not done routinely even 
though errors can be of the order of 10 mmol m3 in the euphotic zone.” 

2) We have redone our data processing, now performing the optimization of response time in 
density- rather than pressure-space. This resulted in a significant reduction in the standard 
deviations of the optimal response times but did not otherwise affect our results and conclusions. 
The description of the method has been adjusted accordingly, table 2 has been updated, and a 



panel has been added to figure 2 to show the profiles in both density- and pressure-space. All 
figures that show oxygen data have been redrawn. 

3) We have done this analysis for idealized profiles and found a linear relationship (see figure 
pasted below). We mention this in the revised manuscript where we adding the sentence “For a 
given time constant, the magnitude of the difference between corrected and uncorrected profiles 
varies linearly with gradient strength.” 

 

In	the	second	part	of	the	manuscript,	an	attempt	was	made	to	estimate	gross	primary	production	
(GPP)	and	respiration	(R)	from	the	oxygen	data	(corrected	for	the	time	response)	measured	by	the	
floats	deployed	in	the	Gulf	of	Mexico.	The	authors	found	that	due	to	the	dynamic	nature	of	the	
region	(specifically	due	to	near-inertial	waves)	and	of	its	low	productivity,	it	was	not	possible	to	
estimate	GPP	and	R	using	the	oxygen	data.	While	I	enjoyed	inspecting	the	figures	related	to	this	
section,	I	was	somewhat	left	unsatisfied	by	it.	I	would	have	liked	to	see	depth	vs.	time	sections	of	
oxygen	with	plotted	on	top	isopycnals,	mixed	layer	depth	and	the	depth	of	the	euphotic	zone.	These	
sections	would	have	allowed	me	(and	the	reader)	to	have	a	more	clear	view	of	the	original	data.	
Another	question	I	had	relating	to	the	uncertainties	found	in	the	density-based	estimates	oxygen	
anomalies	(Fig	9),	is	what	would	have	changed	if	instead	of	implementing	the	time-response	
correction	in	pressure	space	you	implementing	it	in	density	space?	Or	in	other	words,	could	the	
uncertainties	in	Fig	9	be	due	to	the	issue	of	pressure-	vs.	density-based	correction?		

Response: As requested, we have added a depth versus time plot of oxygen in a second panel in 
figure 6. As stated in our previous response, we have repeated the analysis in density space.  



Figure 9 has been updated, and the density-based anomalies appear to be slightly smaller than 
before but still of about the same magnitude. 

Overall	this	second	section	made	me	think	that	it	might	have	been	best	to	divide	the	work	
presented	in	this	manuscript	into	two	different	manuscripts:	one	on	the	time-	response	correction	
and	the	other	on	the	GPP/R	estimation.	However,	by	no	means	I	want	to	make	this	decision	for	the	
authors.	I	just	think	that	a	simpler,	concise	manuscript	on	the	time-response	correction	would	have	
been	clearer.	I’ll	leave	to	the	authors	to	decide	what’s	best	for	their	work.	

Response: This is a point we struggled with ourselves. In the end we settled on one manuscript 
because this work is the result of the MSc thesis research of Chris Gordon. He has now moved 
into a position outside of academia and is unable to dedicate the time and effort that would be 
necessary to fully develop two manuscripts. 

A	part	from	the	above	comments,	I	think	this	is	a	very	good	contribution	that	is	definitely	worth	
publishing	in	Biogeosciences.	 

Finally,	I	am	very	often	wrong,	so	please	let	me	know	if	I	have	misunderstood	any	of	your	
arguments.	 

Best	regards,	Giorgio	Dall’Olmo	 

Specific	comments	 

I	have	few	minor	comments	on	the	attached	pdf.	Please	also	note	the	supplement	to	this	comment:	 

Response:	Thank	you	for	catching	the	typos.	We	have	amended	Figure	3	as	requested. 



Reviewer 2, Henry Bittig 
Below the review is reproduced in black font and our responses interspersed in blue. 

Reviewer	Comments:	

In	this	paper	by	Gordon	et	al.,	the	authors	present	and	discuss	(1)	a	method	to	determine	effective	
response	times	from	consecutive	up-	and	downcasts,	and	(2)	how	to	discern	between	physically-	
and	biologically-driven	diel	variations	in	O2	observations	and	the	limits	to	derive	gross	primary	
production	GPP	and	respiration	R	from	them.	 

The	paper	is	structured	logically	and	is	written	excellently.	The	math	around	the	time	response	
correction	is	particularly	well	presented,	and	the	time	response	part	is	applicable	not	only	to	O2	
optode	sensors	and	BGC-Argo	floats,	but	to	any	sensor	on	any	profiling	platform.	The	discussion	
around	GPP/R	estimation	shows	a	high	degree	of	critical	assessment	of	sensor	data	accuracy,	which	
is	a	good	example	and	should	happen	more	often.	I	recommend	to	publish	this	paper	with	minor	
revisions.	

Response:	Thank	you,	we	appreciate	the	positive	and	constructive	comments 

Comments:	 

(1)	The	authors	refer	to	Bittig	et	al.	(2014),	who	studied	oxygen	optode	time	response	and	found	
flow	and	temperature	to	be	the	main	factors	modulating	response	times.	As	the	authors	write,	flow	
around	the	optode	modulates	the	water	boundary	layer	thickness	through	which	O2	has	to	diffuse,	
thus	slowing	down	sensor	response.	The	authors	discuss	the	impact	of	flow	and	conclude	that	flow	
variations	are	of	second	order	importance	in	their	application	and	that	they	can	assume	a	uniform	
(or	at	least	common)	flow	regime	and	thus	one	effective	response	time.	Given	the	variations	in	
profiling	speed,	varying	over	an	order	of	magnitude,	this	could	be	argued.	But	the	desire	for	
simplicity	and	the	results	give	justification	to	this	approach.		

Response:	We	agree.	We	now	do	account	for	the	temperature	dependence	(see	several	more	
detailed	comments	on	that	below)	but	do	not	account	for	variations	in	flow	speed.	This	is	explicitly	
acknowledged	in	the	Discussion.	

What	the	authors	do	not	discuss	and	do	not	include	by	using	a	uniform	effective	τ	is	the	variation	in	
response	time	induced	by	temperature.	Bittig	et	al.	(2014)	show	that	a	temperature	change	from	5	
◦C	to	25	◦C	(deep	vs.	surface	waters	in	the	Gulf	of	Mexico)	can	reduce	the	response	time	by	33	%	
within	the	same	profile.	Could	that	explain	some	part	of	(a)	the	uncertainty	in	the	calculation	of	one	
uniform,	effective	response	time	for	the	entire	profile	(e.g.,	table	2)	and	(b)	leading	to	incomplete	
correction	of	the	time	response	thus	adding	uncertainty/bias	in	the	O2	gradient	region	and	
preventing	the	GPP/R	analysis	in	part	4?		

Response:	As	suggested,	we	have	now	adjusted	the	method	to	include	temperature	dependence.	
This	did	not	lead	to	any	qualitative	changes	in	the	derived	time	constants,	which	are	now	reported	
for	a	reference	temperature	of	20	deg	C,	or	the	GPP/R	analysis.	However,	the	temperature	
dependent	correction	should	give	a	final	adjusted	oxygen	concentration	that	is	closer	to	the	truth.	
The	text	has	been	updated	to	reflect	this	adjustment	of	the	method	and	all	figures	that	show	oxygen	
have	been	redrawn.	



By	using	a	simple	two-layer	diffusional	model,	Bittig	et	al.	(2014)	show	that	the	temperature	effect	
can	be	removed,	leaving	one	parameter	(the	boundary	layer	thickness)	to	characterize	the	
temperature-dependent	response	time	at	a	given	flow	regime.	

Response:	Agree.	Now	done.	(see	previous	comment)	

Can	the	authors	(I)	modify	their	approach	to	not	neglect	the	temperature	influence	on	response	
time?	Bittig	and	Körtzinger	(2017)	provide	the	data	of	Bittig	et	al.	(2014)	as	look-up	table	(LUT)	in	
their	supplementary	material	(T_lL_tau_3830_4330.dat1).	The	authors	could	either	use	this	LUT	to	
find	the	corresponding	boundary	layer	thick-	ness	for	their	effective	response	time	at	a	certain	
temperature,	and	modify	the	response	time	applied	for	the	correction	according	to	the	LUT’s	
temperature	dependence.	Or,	they	could	optimize	for	an	effective	boundary	layer	thicknes	lL	instead	
and	apply	the	response	time	for	correction	according	to	the	LUT.		

Response:	Yes,	this	has	been	done.	We	are	now	accounting	for	the	effect	of	temperature	on	
response	time	using	the	LUT.	Neither	the	temperature	dependence	nor	the	analysis	in	isopycnal	
space	over	isobaric	(a	change	made	based	on	the	suggestion	of	the	first	reviewer)	appear	to	have	
changed	the	result	that	GPP/R	cannot	be	determined	reliably.	Thus,	our	previous	conclusions	are	
unaffected.	

Can	the	authors	then	(IIa)	discuss	whether	that	reduced	the	spread	in	response	times	per	float,	and	
(IIb)	whether	that	reduced	RMSEs	between	up-	and	downcasts	and	whether	physical	imprints	on	
diel	O2	variations	(in	isopycnal	space)	are	reduced,	thus	permitting	the	GPP/R	analysis	of	part	4?	If	
that	is	not	the	case,	can	the	authors	explain	or	speculate	why?		

Response:	Redoing	the	response	time	analysis	in	isopycnal	space	(also	see	Responses	to	Reviewer	
1)	significantly	reduced	the	spread	of	time	constants	but	did	not	reduce	RMSD.	In	fact,	in	the	
example	shown	in	Figure	2	RMSD	has	increased,	probably	due	to	density	space	giving	more	weight	
to	the	gradient	area.	 

The	authors	write	that	they	do	not	strive	to	fully	characterize	and	understand	the	flow	around	the	
sensor.	Neither	do	I.	The	suggestion	to	optimize	for	one	effective	boundary	layer	thickness	instead	
of	one	effective	response	time	means	only	to	take	the	demonstrated	temperature-dependence	of	
the	response	time	into	account.		

Response:	Agree.	Done	now.	

(2)	Barone	et	al.	(doi:	10.1002/lom3.10340)	recently	published	a	work	where	glider	measurements	
were	used	to	estimate	GPP/R	from	diel	O2	variations	in	the	subtropical	North	Pacific.	The	method	
proposed	in	that	work	provides	daily	GPP/R	values	and	Barone	et	al.	state	that	the	method	
“resolved	variability	on	time	scales	of	approximately	1	week”.	Could	the	authors	apply	these	
methods	to	their	data,	or	comment	on	Barone	et	al.’s	findings?		

Response:	Thank	you	for	pointing	out	this	relevant	study	to	us,	which	we	have	now	added.	Given	
that	we	show	that	diurnal	fluctuations	in	our	data	set	are	driven	in	large	part	by	internal	waves,	we	
have	not	attempted	further	analysis	into	the	biological	signal.	



	(3)	Data	availability:	The	float	data	are	not	available	under	the	link	provided.	
https://data.gulfresearchinitiative.org/data/R5.x275.000:0002	gives	some	float	data,	however,	
only	for	the	first	set	of	continuous	mode	profiling	during	the	first	couple	of	days,	as	far	as	I	can	tell.	
Moreover,	they	do	not	include	measurement	times,	which	the	authors	rightfully	state	as	being	
important.		

Response:	Thank	you	for	taking	the	time	to	look	into	this.	Indeed,	the	link	we	provided	was	only	for	
the	subset.	This	is	the	proper	link	to	the	data	in	the	GRIDC	database:	
https://data.gulfresearchinitiative.org/data/R5.x275.281:0001 

Since	the	link	above	does	not	include	the	raw	and	metadata	that	an	experienced	Argo	user	would	be	
interested	in,	we	have	prepared	the	float	data	in	an	Argo-like	synthetic	profile	file	(one	NetCDF	file	
per	float	with	all	raw	and	metadata)	and	made	it	available	via	a	permanent	data	archiving	platform	
Zenodo	under	the	doi:	10.5281/zenodo.3890239.	The	link	has	been	added	to	the	paper	under	Data	
Availability. 

(4)	The	authors	provide	code	to	re-apply	their	approach	to	determine	response	times	to	other	or	
similar	data,	which	is	excellent.	However,	the	authors	should	also	comment	on	the	parameters	they	
used.	Notably,	whether	they	used	the	full	depth	range	to	find	the	optimal	τ	(implicit	from	the	paper,	
as	not	stated	otherwise),	or	limited	the	optimization	to	the	upper	O2	gradient	(default	depth	range	
of	25-175	dbar	in	the	code).		

Response:	Agree.	We	have	added	the	following	sentence	to	section	3.2:	“by	matching	consecutive	
profiles	at	each	density	level	from	the	surface	to	1027	kg	m-3”	and	updated	the	code	to	include	
these	values	as	the	default. 

(5)	The	standard	deviations	of	the	in-air	gains	are	very	high,	about	an	order	of	magnitude	higher	
than	observed	usually	for	other	(APEX)	floats	(see	Argo,	Bittig	et	al.	2018,	or	others)!	What’s	the	
reason	for	this	large	scatter?	Do	the	authors	still	have	confidence	in	the	in-air	corrections	given	
these	large	variations?	The	optode	attachment	on	a	short	stalk	looks	comparable	to	other	(APEX)	
floats.		

Response:	There	was	an	error	in	previous	gain	calculation.	We	re-ran	it	and	the	standard	deviation	
is	significantly	reduced.	Table	2	has	been	updated	accordingly.	 

Remarks:	 

-	p.3	l.26:	“No	depth	binning	was	perfomed.”	Depth	resolution	should	be	stated	here.		

Response:	Agree.	The	resolution	was	~5	dbar,	have	stated	that	in	the	text	now. 

-	p.5	table	1:	Please	verify	numbers.	E.g.,	f7941	has	about	the	same	Ncont	as	f7939	but	100	profiles	
more	in	total.	Still	about	the	same	start	and	end	date?	This	does	not	match	the	float	operation	
modes.		

Response:	There	was	an	error	copying	metadata	into	the	table.	This	has	been	corrected	and	the	
number	of	profiles	and	dates	make	more	sense	now.	In	some	cases,	floats	that	failed	earlier	than	
others	still	recorded	more	profiles	because	they	spent	more	time	in	continuous	mode	(ex.	f7941	vs.	
f7942).	 



-	Check	references.	Bittig	and	Körtzinger	(2016)	(discussion	paper)	should	be	Bittig	and	Körtzinger	
(2017)	(published	paper).		

Response:	Yes,	thank	you!	 

-	p.12	l.30:	“based	on	theoretical	considerations	of	flow-dependent	boundary	layer	thickness”	Not	
quite.	Response	times	of	Bittig	and	Körtzinger	(2017)	are	based	on	an	in-situ	comparison	between	
two	optodes,	one	with	well-defined	time	response	(pumped	optode),	the	other	one	with	variable	
response	time	(unpumped)	as	in	this	study.	Response	time	determination	was	empirical	as	in	this	
study.	The	boundary	layer	thickness	as	well	was	empirical	and	a	mere	tool	to	eliminate	the	
temperature-dependence.	Moreover,	the	range	of	response	times	in	the	application	of	Bittig	and	
Körtzinger	(2017)	is	stated	as	60-95	s.	The	range	of	70-140	s	given	in	Bittig	et	al.	(2018)	covers	the	
global	range	of	possible	scenarios,	including	very	cold,	polar	surface	waters	with	longer	response	
times.	The	present	setting	in	the	Guld	of	Mexico	is	better	comparable	to	the	subtropical	setting	of	
Bittig	and	Körtzinger	(2017).		

Response:	We	have	adjusted	the	sentence	to	reflect	this.	It	now	reads	“The	70	s	response	times	
found	here	are	fully	consistent	with	previously	reported	response	times	of	15-45	s	for	CTD	
measurements	(Bittig	et	al.	2014)	and	60-95	s	for	profiling	floats	in	the	subtropical	ocean	(Bittig	&	
Kortzinger	2017)”. 

-	p.13	l.41:	“the	impact	of	this	difference	on	the	correction	is	likely	small”	Speculation.	rather:	
“unknown”?		

Response:	Agree.	Changed	as	suggested. 

-	Figure	8:	Why	was	the	mean	taken	from	25-150	dbar	and	not	from	the	surface-150	dbar?		

Response:	We	didn’t	use	oxygen	measurements	when	the	CTD	was	turned	off.	We	have	now	
clarified	this	in	the	text:	“An	observed	time	series	of	mean	oxygen	over	the	upper	150	m	of	the	water	
column	(excluding	the	most	upper	measurements	where	the	CTD	pump	was	turned	off)	from	a	
continuous	mode	sampling	period	is	shown	as	example	in	Figure	6.”	

Typos:	

-	p.12	l.37:	-that			

Response:	OK,	removed.	

-	p.16	l.26:	-and		

Response:	OK,	broke	up	sentence	instead	of	using	“and.”	

-	p.21	eq.C2	and	C3:	Can	you	check	the	sign	in	the	numerator?		

Response:	Sign	in	C3	was	wrong,	now	corrected.	



Reviewer 3, David Nicholson 
Below the review is reproduced in black font and our responses interspersed in blue. 

Reviewer	Comments:	

General	comments:	This	study	seeks	to	apply	dissolved	oxygen	measurements	from	profiling	floats	
to	estimate	primary	production	and	respiration	from	diel	oxygen	cycles.	The	study	region	in	the	
shelf	break	region	of	the	northern	Gulf	of	Mexico	is	a	challeng-	ing	environment	for	this	approach	
because	it	is	a	region	of	low	productivity,	but	high	physical	variability	and	thus	is	a	good	testbed	to	
evaluate	the	limits	of	diel	approaches.	Further,	near	30	N	the	Coriolis	frequency	is	approximately	
24-hours	and	near-inertial	oscillations	can	confound	biologically-driven	diurnal	cycles.	In	general,	
this	study	found	that	physical	variability	was	too	great	to	allow	for	robust	estimates	of	biological	
rates	in	this	challenging	environment.	This	contribution	is	valuable	as	it	is	important	to	recog-	nize	
the	limitations	of	such	methods.		

Given	the	strong	vertical	O2	gradient	and	slow	response	time	of	the	optode	sensors,	a	significant	
portion	of	the	manuscript	is	dedicated	to	optimizing	methods	for	deconvolv-	ing	the	oxygen	time	
series	and	estimate	sensor	response	time	in	situ.	Indeed,	this	is	such	a	major	part	of	the	manuscript,	
I	would	recommend	changing	the	title	of	the	paper	to	in	some	way	reflect	the	time	response	part	of	
the	manuscript.	Although	dynamic	corrections	to	optode	oxygen	sensors	on	floats	has	been	
explored	in	depth	before	(Bittig	et	al.,	2014;	Bittig	and	Körtzinger,	2017)	the	dataset	here	provides	
a	valuable	addition	particularly	because	both	ascent	and	descent	profiles	were	logged,	time-stepped	
and	recorded	in	full	resolution	without	binning.	 

Overall,	I	think	this	is	a	valuable	contribution	that	will	spur	improved	methodologies	for	correcting	
dissolved	oxygen	in	biogeochemical	Argo	applications.	The	results	should	be	further	applicable	to	
other	platforms	such	as	gliders	and	profiling	moorings.	I	have	several	concerns	about	the	analysis	
and	some	suggestions	to	extend	interpretation	that	I	think	would	be	worthwhile	for	the	authors	to	
consider.		

Response:	Thank	you,	we	appreciate	the	positive	and	constructive	comments 

Specific	comments:	 

1.	It	seems	a	7-pt	moving	mean	smoothing	is	performed	prior	to	deconvolution.	With	the	stated	5	m	
resolution	and	12	cm	s-1	average	vertical	velocity	that	works	out	to	averaging	over	about	a	40	sec	
period.	A	moving	average	also	is	a	filter	(and	one	with	a	messy	response	in	the	frequency	domain).	I	
am	concerned	that	this	step	would	alter	the	calculated	sensor	response	time	that	is	determined	by	
deconvolution	after	this	averaging.	Does	the	moving	average	operator	slow	down	and/or	
complicating	the	sensor	response	before	the	deconvolution	is	even	applied?	An	easy	test	is	to	
report	if	the	same	median	time	responses	are	recovered	without	the	moving	mean	step.		

Response:	Agree,	this	is	an	excellent	comment.	We	have	switched	the	filter	to	Butterworth	instead	
of	a	moving	average,	which	is	more	well-behaved	in	the	frequency	domain.	In	running	the	
optimization	for	different	filters	or	no	filters,	there	were	small	differences	in	the	resulting	
response	times.	Generally,	“stronger”	filters	(i.e.	with	more	smoothing)	resulted	in	slightly	
larger	response	times	but	the	differences	were	small	(on	the	order	of	1	second	in	our	tests,	
much	smaller	than	the	standard	deviations	reported).	We	are	reporting	the	filter	



parameters	that	were	used	(on	page	9,	line	9:	butter(1,	0.7)	in	MATLAB),	so	the	analyses	
are	reproducible.	Furthermore,	we	would	like	to	note	that	without	some	smoothing	the	
amplification	of	errors	during	deconvolution	does	compromise	the	profiles	to	an	extent	
that	wasn’t	tolerable.		

2.	Bittig	and	Kortzinger	(2017)	outlined	a	detailed	approach	for	scaling	tau	as	a	function	of	
temperature	and	flow	speed.	What	is	the	implication	of	using	a	constant	tau	here	instead	of	the	
temperature	and	boundary-layer	dependent	tau.	Is	it	possible	to	apply	the	Bittig	approach	as	well	
for	comparison?	There	is	a	significant	vertical	temperature	gradient	in	the	study	region	and	thus	an	
expectation	that	response	time	would	be	slower	in	deeper	water	than	near	the	surface.		

Response:	As	described	in	our	response	to	Reviewer	2	(Henry	Bittig),	we	have	adjusted	our	
method	following	the	temperature	dependence	and	lookup	table	in	Bittig	et	al.	(2018).	The	new	
response	times	(reported	at	reference	temperature	20	deg	C)	in	table	2	are	of	similar	magnitude.	
The	modification	in	our	analysis	did	not	affect	the	results	qualitatively.		

3.	A	recent	publication	by	Barone	et.	al.	(2019)	quantifies	GPP	and	R	from	diel	cycles	with	
uncertainty	and	fit	statistics.	Applying	this	approach	would	provide	a	more	quantitative	assessment	
of	how	good	(or	bad)	daily	diel	fits	are.		

Response:	Thank	you	for	pointing	this	study	out	to	us.	We	have	now	added	it.		

4.	Are	any	corrections	made	for	air-sea	O2	flux?	It	sounds	like	there	was	significant	atmospheric	
forcing.	Barone	et	al.	2019	outlines	how	diel	O2	inventories	can	be	corrected	for	air-sea	flux	prior	to	
fitting	a	diel	cycle.		

Response:	The	air-sea	oxygen	flux	is	quantified	in	Chris	Gordon’s	MSc	thesis	and	comparatively	
small.	We	have	added	this	information	and	reference	to	the	thesis	to	the	revised	manuscript. 

Technical	suggestions:	 

L21:	should	specify	that	12-24	hour	incubations	approximate	NPP	(cite	Marra	2009).	Other	short-
term	incubation	approaches	also	are	fairly	commonly	used	and	measure	something	closer	to	GPP.		

Response:	Agree,	we	have	added	the	time	period	and	citation.	 

P2-L42:	add	(Barone	et	al.,	2019)	and	(Johnson,	2010)	

Response:	Agree, we have added both references here.  

P3-L67:	add	salinity	to	list	of	corrections		

Response:	Agree, we have added it to the list of corrections.  

P6:	L67:	There	is	temperature	dependence	both	to	molecular	diffusivity	and	kinematic	viscosity		

Response:	Agree.	Added	statement	that	it	is	temperature	dependent.	 



P8	L84:	since	tau	is	a	function	of	environment	it	is	also	a	function	of	time	but	treated	as	a	constant.	
How	does	that	impact	interpretation?		

Response:	Since we are now incorporating the temperature dependence, tau has become a 
function of time as well. 

Fig	2:	The	label	‘Scatter’	in	B	seems	odd.	Maybe	use	‘difference’	instead?		

Response:	Agree.	We have just removed “scatter” from the legend completely.  

P9	L29:	change	’listen’	to	’listed’		

Response:	Done. 

P13	L53:	It	seems	possible	that	depending	on	sensor	orientation	there	could	be	a	big	difference	in	
up	vs.	down	response	time.	Was	this	tested	at	all?	Barone	et	al.	(2019)	found	∼35	sec	tau	for	the	
same	sensor	on	Seagliders	(see	supplemental	info).		

Response:	Unfortunately, we don’t see a way to test this with the data we presently have.  
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Bittig,	H.	C.	and	Körtzinger,	A.:	Technical	note:	Update	on	response	times,	in-air	mea-	surements,	
and	in	situ	drift	for	oxygen	optodes	on	profiling	platforms,	Ocean	Sci,	13(1),	1–11,	doi:10.5194/os-
13-1-2017,	2017.	 

Bittig,	H.	C.,	Fiedler,	B.,	Scholz,	R.,	Krahmann,	G.	and	Körtzinger,	A.:	Time	response	of	oxygen	
optodes	on	profiling	platforms	and	its	dependence	on	flow	speed	and	tem-	perature,	Limnol.	
Oceanogr.	Methods,	12(8),	617–636,	doi:10.4319/lom.2014.12.617,	2014.		
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Abstract. Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestra-

tion. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because

the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging

that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such

method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to5

measurements from gliders and mixed layer floats. This study is the first documented attempt to estimate primary production

from diurnal oxygen changes measured by Argo-type profiling floats, thus accounting for the whole euphotic zone. We first

present a novel method for correcting measurement errors that result from the relatively slow response time of the oxygen

optode sensor. This correction relies on an in-situ determination of the sensor’s effective response time. The method is concep-

tually straightforward and requires only two minor adjustments in current Argo data transmission protocols: 1) transmission of10

measurement time stamps, and 2) occasional transmission of downcasts in addition to upcasts. Next, we present oxygen profiles

collected by 10 profiling floats in the northern Gulf of Mexico, evaluate whether community production and respiration can be

detected, and show evidence of internal oscillations influencing the diurnal oxygen signal. Our results show that profiling floats

are capable of measuring diurnal oxygen variations although the confounding influence of physical processes does not permit

a reliable estimation of biological rates in our data set. We offer suggestions for recognizing and removing the confounding15

signals.

1 Introduction

Oceanic primary production forms the basis of the oceanic food web and is a major component of the global carbon cycle by

providing a pathway for carbon sequesteration in the ocean interior. Although primary production is intrinsic to understanding

biogeochemical dynamics in the ocean, its temporal and spatial variations are not well observed. Historically, it has been20

estimated by performing 12- to 24-hr bottle incubations using 14C (Steeman-Nielsen, 1952; Marra, 2009). These incubations

require substantial effort and the presence of a ship, while only providing point estimates of production. Satellites estimate

production on the global scale, but rely on assumptions about the photosynthesis-irradiance relationship, the vertical structure

of biomass, and global regressions of observed productivity with sea surface temperature, all with inherent limitations.
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Both of the above methods quantify net primary production (NPP), defined as the total rate of photosynthetically fixed carbon

minus autotrophic respiration. The total fixation of carbon is referred to as gross primary production (GPP). Other definitions

of primary production consider losses by the whole planktonic community including autotrophic and heterotrophic respiration.

Community respiration (R) is the total rate of carbon respired by autotrophs and heterotrophs. The balance between GPP and R

is referred to as net community production (NCP = GPP − R), where a positive (negative) NCP indicates net production (net5

respiration). A positive NCP, i.e. net biomass production by the planktonic community, is expressed as an increase in biomass

or in exported carbon or a combination of both.

NCP in the mixed layer can be estimated by measuring the ratio of dissolved oxygen to dissolved argon ([O2]/[Ar]) (Kaiser

et al., 2005; Cassar et al., 2009; Hamme et al., 2012; Tortell et al., 2014). The two gases have similar physical properties with

regard to their solubility, but Ar is biologically inactive while oxygen is produced and consumed by production and respiration.10

The ratio of [O2]/[Ar] can thus be used to partition changes in oxygen into physical and biological components, where the

biological component represents NCP over the timescale of mixed layer gas exchange, usually about 10 to 30 days. This

technique offers a better time-space resolution than 14C incubations as it can be applied in high-precision and continuously to

a steaming ship’s seawater flow-through, making it a good candidate for deployment on ships of opportunity, but does require

the presence of a ship and is limited to the mixed layer.15

The emergence and integration of miniaturized biogeochemical sensors into autonomous platforms have opened new avenues

for measuring production. Numerous studies have used particulate beam attenuation (Cullen et al., 1992; Claustre et al., 1999;

Kinkade et al., 1999; Gernez et al., 2010; Dall’Olmo et al., 2011; Omand et al., 2017; White et al., 2017) or dissolved oxygen

(Caffrey, 2003; Riser and Johnson, 2008; Johnson, 2010; Nicholson et al., 2015; Briggs et al., 2018; Barone et al., 2019)

to estimate production from such platforms. Riser and Johnson (2008) measured oxygen profiles with profiling floats every20

10 days in the subtropical Pacific Ocean. Oxygen below the mixed layer showed a steady increase throughout the stratified

period. The slope of the oxygen buildup allowed estimation of seasonally averaged NCP below the mixed layer. GPP and R

have also been estimated from diurnal cycles of oxygen within the mixed layer observed by gliders (Nicholson et al., 2015)

and mixed layer floats (Briggs et al., 2018). A similar approach has been applied to diurnal cycles of beam-c measurements

from an underway ship flow-through (White et al., 2017). In Nicholson et al. (2015), approximately 14 glider profiles per day25

were averaged over a study period of 110 days to obtain the average diurnal cycle of dissolved oxygen within the mixed layer.

The techniques applied in White et al. (2017) and Briggs et al. (2018) instead used continuous measurements to observe daily

cycles. In Briggs et al. (2018), by measuring the decline of dissolved oxygen through the night, the respiration rate R was

determined. Then, by measuring the increase of oxygen during the day and subtracting R, GPP was calculated.

These previous studies are encouraging, but required large averaging periods or neglected at least some portion of the water30

column where production is likely to occur (e.g., White et al., 2017; Briggs et al., 2018) or both (Riser and Johnson, 2008;

Nicholson et al., 2015). Here, we test whether diurnal cycles of dissolved oxygen can be observed with sufficient accuracy

from Argo-type floats to estimate daily productivity for the whole euphotic zone. We use measurements from ten floats that

were deployed in the Gulf of Mexico in 2017 and profiled continuously for several days. This work most directly extends

previous research with autonomous floats by Briggs et al. (2018) but, by using profiling rather than mixed-layer floats, explicitly35
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considers the entire euphotic zone. To answer the overarching question whether GPP, R and thus NCP can be estimated from

continuously profiling floats, two sets of specific questions are addressed: 1) Are the floats capable of sampling at the rate and

accuracy required to resolve diurnal scale changes in oxygen? and 2) What are the primary physical or biological drivers of

oxygen change in the upper ocean at our study site? Are there physical processes that can confound the biological signal? If

soyes, can the two signals be separated?5

The first set of questions addresses technical aspects of the measurement. It is necessary to determine whether profiling floats

are able to properly resolve the diurnal signal. While oxygen optodes have been shown to be reliable and stable when deployed

on autonomous floats (Tengberg et al., 2006; Gruber et al., 2010), with only a weak drift of less than 1% per year (Bushinsky

et al., 2016; Bittig and Körtzinger, 2017), they require pressure and salinity, (Bittig et al., 2015), in-air gain (Johnson et al.,

2015; Nicholson and Feen, 2017) and response time (Bittig et al., 2014, 2018) corrections. While pressure and in-air gain10

corrections are typically applied, response-time correction is not done routinely even though errors can be of the order of

10 mmol m−3 in the euphotic zone. The ability to reliably perform these corrections will be paramount to measuring the

diurnal oxygen signal.

The second set of research questions addresses the environmental side of measuring production autonomously in situ. The

floats were deployed in the dynamic but oligotrophic shelf break region in the northern Gulf of Mexico where primary produc-15

tion is low. Given this, the biological signal is much weaker than during the first demonstration of diurnal oxygen measurement

by Briggs et al. (2018) in the North Atlantic Ocean, which was conducted during the spring bloom.

This manuscript is structured as follows. In Section 2.1, float functionality and deployment, and sensor calibration and data

processing are described. The first set of research questions is addressed in Section 3, where the mathematical formalism

underlying the optode measurement, a method for determining the sensor response time in situ, and an error analysis are20

presented. The second set of research questions is addressed in Section 4, where possible drivers of oxygen variability in the

upper ocean are explored including physical processes that can influence dissolved oxygen in the euphotic zone. Section 5

contains conclusions and recommendations.

2 Methods

2.1 Float functionality and deployment25

In May 2017, 10 autonomous ElectroMagnetic-Autonomous Profiling EXplorer (EM-APEX) floats were deployed in the north-

ern Gulf of Mexico near the Mississippi delta (Figure 1, Shay et al., 2019). The floats were equipped with a Seabird Scientific

CTD, 2 electromagnetic current velocity sensors, a WETLabs EcoPuck bio-optical triplet which measures chlorophyll fluo-

rescence, optical backscattering and coloured dissolved organic matter (CDOM) fluorescence, and an Aanderaa 4330 oxygen

optode. This study primarily uses data from the oxygen optode and CTD.30

The floats operated in two different profiling modes: 1) the traditional “park-and-profile” mode where floats surfaced once

every 5 to 10 days and drifted at 1000 m depth in between profiles, and 2) the “continuous” mode where floats profiled the top

1000 m continuously, pausing only to transmit data at the surface following an upcast (this resulted in one profile about every
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Figure 1. a) Photo of float f7939 with the sensors labelled. b) Map of the 10 deployment stations (black crosses in inset) and float trajectories.

3 hours). The vertical resolution of measurements was about 5 dbardb. No depth binning was performed on the sensor data.

The profiling mode of the floats was changed via two-way Iridium communication.

The floats were deployed in a grid (Figure 1b inset), and a set of discrete shipboard measurements was taken in conjunction

with most deployments. The floats were initially set to continuous mode for about one week. After that, the floats operated in

park-and-profile mode until hurricanes Irma and Nate passed through the Gulf and the floats were switched back to continuous5

mode for about 2 weeks. The dataset thus contains 3 periods of high-frequency sampling (after deployment and during the

passage of the two hurricanes). While none of the floats was located directly within the path of the hurricanes, most of them

experienced a sea state affected by high winds.

Three floats failed less than one month into the deployment (see Table 1). Location data suggest that during continuous

mode sampling these floats drifted near or onto shelf areas with low-density surface waters for which they were not properly10

ballasted. Without the required buoyancy to surface, the floats would have been trapped below the surface. One of the other

floats also encountered a low-salinity plume and was not surfacing and transmitting for an extended period of timedata for a

few days, but resumed functioning normally again later. Two floats transmitted data until the end of 2017, and the remaining

five floats operated until early 2019summer of 2018, with the last transmission occurring on March 6, 2019June 2, 2018. Three

floats were entrained into the Loop Current and left the Gulf, eventually ending up in the North Atlantic (Figure 1b). In total,15

the 10-float fleet measured over 27002500 profiles, over 1600 of these during continuous-mode sampling.

2.2 Sensor calibration and data processing

At most deployment stations, a CTD cast to 2000 m, or to the bottom if shallower, was performed using a SeaBird SBE 9

CTD for comparison between ship measurements and the first profile recorded by each float. For two floats, the CTD cast
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Table 1. Float number, total number of profiles measured by each float (Nprof ) and subset of profiles measured in continuous mode (Ncont),

date of first and last transmitted profile, and RMSD and bias of float temperature (◦C) and salinity relative to ship CTD.

Float Nprof Ncont Start Date End Date

f7939 303302 194 02-05-2017 08-06-201829-05-2018

f7940 83 64 02-05-2017 24-05-2017

f7941 446415 189 03-05-2017 06-04-201929-05-2018

f7942 482481 384 03-05-2017 13-06-201802-06-2018

f7943 384 269 03-05-2017 05-03-2018

f7944 70 55 03-05-2017 19-05-2017

f7945 240186 55 04-05-2017 10-07-201730-05-2017

f8081 345322 206 06-05-2017 16-01-201930-05-2018

f8082 101 28 06-05-2017 18-08-2017

f8083 312 213 07-05-2017 31-10-2017

TRMSD Tbias SRMSD Sbias

f7939 0.17 -0.13 0.020 -0.005

f7940 0.14 -0.10 0.016 -0.009

f7941 - - - -

f7942 0.15 -0.11 0.018 -0.008

f7943 0.16 -0.10 0.016 -0.002

f7944 0.17 -0.13 0.026 -0.013

f7945 - - - -

f8081 0.11 -0.10 0.015 -0.011

f8082 0.15 -0.12 0.023 -0.017

f8083 0.21 -0.16 0.031 -0.023

was not carried out because of rough seas. The CTD and float profiles agree within an average Root Mean Square Difference

(RMSD) of 0.16◦C and 0.02 (N = 8) for temperature and salinity, respectively. The floats slightly underestimated temperature

and salinity with biases of -0.12◦C and -0.01, respectively (Table 1). No adjustment of the float temperature or salinity data

was performed.

Oxygen was derived from the optode sensor (Aanderaa 4330) which functions by emitting blue light on an oxygen-sensitive,5

permeable foil that is exposed to sea water and measuring the phase difference between incident and returned light (Kautsky,

1939). Sensor phase measurements were converted to dissolved oxygen concentration following the established Argo proce-

dure (Thierry et al., 2016, section 7.2.29) using seven manufacturer-provided calibration constants. Salinity compensation and

pressure effects were corrected for following Bittig et al. (2015).
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Oxygen data was also corrected for pre-deployment drift using in-air measurements from the floats while deployed. This is

possible because the sensor is mounted on a 10 cm stalk on the top of the float (see figure 1) to record atmospheric oxygen

while at the surface. The correction was made following Johnson et al. (2015) by comparing the float’s in-air measurement

to atmospheric oxygen, which was calculated using NCEP reanalysis air pressure at 10 m above sea-level and the known

molar fraction of oxygen in air, and determining a multiplicative factor to be applied to the sensor’s oxygen measurements.5

Although the sensor may experience some drift over time after deployment (Bittig and Körtzinger, 2017; Johnson et al., 2017),

negligible drift occurred in this case. Therefore, the mean gain for each float was applied to all oxygen data recorded by that

float. A summary of gain values for each float is given in Table 2.

The optode’s sensing foil is known to respond relatively slowly to changes in ambient oxygen because oxygen has to diffuse

through the boundary layer that forms at the interface of water and foil and into the foil itself. The sensor’s effective response10

time is thus a combination of the response times inherent to the sensor itself (related to the thickness of its sensing foil) and the

boundary layer thickness adjacent to the foil. The inherent response time reported by the manufacturer for the Aanderaa optode

used here is 25 s. The thickness of the boundary layer adjacent to the foil depends on the flow speed of seawater over the foil

(and hence the vertical velocity of the float and ambient currents) and the molecular kinematic viscosity of water, which is

temperature dependent. The problem is not unique to oxygen sensors, but they have significantly longer response times than15

other sensors (such as CTDs, Bennett and Huaide, 1986).

Methods for correcting the hysteresis in oxygen measurements that results from the relatively slow response time have been

established (Bittig et al., 2014; Bittig and Körtzinger, 2017; Bittig et al., 2018), but require knowledge of the sensor’s effective

response time, which is not typically known, and the time stamps of each oxygen measurement, which are not routinely

transmitted. In section 3, we present a novel method for determining the time constant in situ.20

3 Response time correction method

3.1 Mathematical formalism

An example of oxygen profiles from consecutive up- and downcasts (Figure 2a, b) illustrates the hysteresis pattern that is

generally found in the oxycline. As a direct result of the slow response time of the oxygen sensor, the upcast has a memory

of the low concentration in deeper waters and measures the gradient to be shallower than its true position, while the reverse is25

true for the downcast. The true oxygen profile must lie in between these two measured profiles. In order to derive a method

for estimating the response time and performing a correction of the oxygen profiles, we first present a mathematical formalism

describing the cause of the error.

Observation of an oxygen profile by the optode can be described as a low-pass filter of the true oxygen profile (Bittig et al.,

2014), given by the following differential equation30

h(t) = f(t)− τ ∂h
∂t
, (1)
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Figure 2. Example of raw oxygen measurements from up- and downcast (thick black and green lines, respectively) and corrected profiles

(thin lines) in a) density and b) pressure coordinates. c) Up- and downcasts (top 150 m) plotted against each other with raw data in blue and

corrected data in orange. d) The Root-Mean-Square-Difference (RMSD) between the up- and downcasts after correcting casts for a range of

time constants, τ , showing the optimal τ value in this case of 76 s in orange.

where h(t) is the oxygen measured by the optode at time t, f(t) is the true oxygen concentration (both in mmol O2 m−3), and

τ is the effective response time (s) which depends on the sensor and its environment. This differential equation can be solved

using a Laplace transform as follows (see appendix A1 for the full derivation)

h(t) = f(0)e−t/τ +
1

τ

t∫
0

f(t−u)e−u/τdu. (2)

The first term represents the decaying initial measurement by the sensor, where we have assumed that at time t= 0 the sensor5

reads the true oxygen concentration correctly (i.e. h(0) = f(0)). The second term is the convolution of the true oxygen con-

centration and a decaying exponential which represents the transfer function of the sensor (i.e. the delay in measuring the true

concentration). Therefore, the observation h can be expressed more generally as a convolution h= f ∗g where h represents the

measurement, f is the true concentration, and g is a function representing the response of the sensor (unitless). To recover the

correct oxygen profile, the deconvolution of the profile and the sensor must be performed. This is possible if the observation10

h (with timestamps for each data point) and the equation describing the sensor transfer function g are known. From eq. 2, the

sensor’s transfer function can be defined as

g(t) =
1

τ
e−t/τ . (3)

This provides the mathematical basis for correcting the sensor hysteresis.
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Up to now, the sensor theory has been discussed in continuous time. In order to apply a correction to the data, the formalism

must be discretized. We are discretizing the equation in Laplace space and then transforming it into the more familiar time

domain. By taking the Laplace transform of the transfer function (eq. 3) and assigning the proper Laplace variable, then

discretizing the Laplace transform using a bilinear transformation and performing the inverse discrete Laplace transform (or

Z-transform, see Proakis and Monolakis, 1996; Antoniou, 2018), the following relationship can be derived5

hn = ahn−1 + b(fn + fn−1), n= 1, . . . ,N (4)

with the unitless coefficients

b=
(

1 + 2
τ

tn− tn−1

)−1

, a= 1− 2b.

See appendix A2 for the detailed derivation. Eq. 4 can be re-written in the same form as provided by Bittig and Körtzinger

(2017), their eq. A3,10

fn + fn−1

2
=

1

2b
(hn− ahn−1) (5)

and is a recursive formulation similar to the one used for correction of thermal mass in conductivity cells (Lueck, 1990; Lueck

and Picklo, 1990). Since deconvolution is known to amplify random errors, which is especially relevant where the truth f(t)

is convolved with the transfer function of an instrument g(t), smoothing of the raw signal may improve the final estimate

(Wiener, 1964).15

Eq. 4 provides the recipe for correcting for the slow sensor response. Two essential ingredients for applying this correction,

in addition to the raw measurements themselves, are knowledge of their time stamps and of the effective response time, τ . In

reality, the response time also depends on ambient temperature, as described by Bittig et al. (2018). The above formalism can

be applied for the response time at a reference temperature to accomodate the temperature dependence. Next, an in-situ method

for determining the measurement’s effective response time is described.20

3.2 In-situ determination of measurement response time

In-situ determination of the measurement’s effective time constant is possible if consecutive up- and downcasts are recorded,

assuming the oxygen profile does not significantly change between consecutive casts. In our case, the top 200 m were sampled

on average within 70 min during continuous sampling and timestamps were transmitted. Determination of the time constant

can be thought of as an inverse problem where the correction method derived in section 3.1 is applied to a range of plausible25

time constants. The one that minimizes the discrepancy between consecutive up- and downcasts is the optimal value and taken

as the effective response time. Here, the temperature-dependence of the response time is take into account by optimizing for

the effective boundary layer thickness. More specifically, we applied the correction method from eq. (5) while systematically

sweeping over a range of boundary layer thickness values. Using the look-up table provided by Bittig et al. (2018) and the

temperature profile measured by the float, these can be related to the effective response time which is then used to correct the30

8



Table 2. Mean gain values derived from in-air measurements,G, and median time constants, τ20◦Cmτ , for each float with standard deviations

(σ). G and σG are unitless.

Float G σG τ20◦Cmτ (s) στ (s)

f7939 1.201.17 0.010.18 75.076.5 3.28.5

f7940 1.081.03 0.010.12 68.969.0 5.915.5

f7941 1.171.14 0.020.17 70.567.0 6.516.9

f7942 1.201.17 0.030.24 69.464.5 5.614.9

f7943 1.181.15 0.020.19 76.775.0 5.616.5

f7944 1.181.15 0.010.12 73.976.0 4.413.9

f7945 1.191.16 0.050.14 72.873.5 3.213.3

f8081 1.221.18 0.010.20 66.168.0 7.216.0

f8082 1.191.15 0.010.09 74.573.0 4.418.8

f8083 1.161.12 0.010.18 67.266.5 7.720.4

oxygen profiles. The root-mean-square-difference (RMSD) between up- and downcasts was calculated by matching consecu-

tive profiles at each density level from the surface to 1027 kg m−3, and the one with the minimum RMSD taken as the effective

boundary layer thicknesseffective time constant for that pair of profiles. An illustration of the process is shown in Figure 2d.

The effect of the correction is visible in panels 2a - 2c.

Here, we applied the correction method from eq. (5) while systematically sweeping over the range of response times from5

0 to 150 s on 0.5 s increments. The root-mean-square-difference (RMSD) between up- and downcasts was calculated for each

response time and the one with the minimum RMSD taken as the effective time constant for that pair of profiles. An illustration

of the process is in Figure 2c. The effect of the correction is visible in panels 2a and 2b.

Since the deconvolution is known to amplify high-frequency noise, the profiles were smoothed using a first-order low-pass

Butterworth filter (butter(1, 0.7) in MATLAB)7-pt moving mean prior to performing the correction. This was particularly10

important for the downcasts. Profiling floats typically only measure on the upcast because most of the sensors are located near

or at the top of the float allowing the sensors to measure undisturbed water on the upcasts. On the downcasts, water is thought

to have been churned up by the body of the float increasing random errors. In our case, smoothed profiles agreed more closely

in the oxygen gradient, and their RMSD after correction was slightly reduced.

For clarity, we provide the response time values at a reference temperature (T = 20 ◦C) rather than the boundary layer15

thickness. The calculations were done for each pair of consecutive up- and downcasts and down- and upcasts, resulting in a

population of N − 1 time constants for each set of N float profiles. The median time constants for each float are listedlisten in

Table 2. Median optimal time constants ranged from 67.2-76.7 s64.5-76.5 s across the 10 floats, and the standard deviation of

those values was as low as 3.28.5 s and as high as 7.720.4 s. Similar to the gain correction (see section 2.2), the median optimal

response time of each float was applied to all profiles from that float.20
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The variation of effective response time from profile to profile for one float is due to its dependence on various factors,

chiefly among them is the flow speed of ambient water over the sensor. Next, we analyze how deviations from the average

profiling speed and random errors manifest themselves in the final corrected oxygen product.

3.3 Propagation of response-time error and sensor noise

The optode measurements are subject to systematic and random errors. The effective response time may change with variations5

in temperature, salinity, pressure, and most importantly flow speed of ambient water at the sensing interface. The latter is highly

dependent on profiling velocity which varied from 1.4 to 26.5 cm s−1 with a mean of 12.2 cm s−1 for our floats. To As we

account for variations in temperature already, we analyze how such variations in response time due to changes in boundary

layer, as well as random measurement errors, propagate through the correction process. an This is done using an idealized

oxygen profile was sampled as it would be by a float but with different known errors applied.10

The response time effect is simulated by applying a discretized version of equation (eq. 1)

hn = αfn + (1−α)hn−1 where α=
∆t

τ + ∆t
(6)

where hn and fn are the the measurement and true oxygen concentration at timestep n, respectively. At t= 0 we assumed

oxygen is correctly measured, i.e. h(0) = f(0). The right-hand-side term with fn represents the real-time contribution to the

measurement and the term with hn−1 represents the sensor’s memory of previous measurements. The recursive structure of15

the measurement filter results in an exponentially weighted moving average with an infinite averaging window in time. A full

derivation is given in appendix B.

We simulated the generation of optode measurements by prescribing a profiling velocity of 15 cm s−1, taking a measurement

every 5 m (roughly the vertical resolution of the floats), assigning a timestamp to each oxygen datum, and then running the

model output through the measurement filter using a prescribed response time (temperature is assumed to be constant here).20

Known errors were added to this measurement process as random perturbations of the response time and as random noise

added to the measured oxygen values. The two error sources were examined individually for a range of standard deviations

to systematically analyze the effect of each error type. Response times τ (s) were chosen from a normal distribution with a

mean of 75 s and standard deviations ranging from 0 to 15 s. Sensor noise errors ε (mmol m−3) were chosen from a normal

distribution with mean zero and standard deviations ranging from 0 to 1.5 (mmol m−3). Following the simulated measurement,25

the measured profiles underwent the same correction process as the float data: first a 7-pt smoothing and then the response time

correction using the expected value of 75 s. Different magnitudes of errors were tested and for each trial the measurement and

correction process was repeated 50 times.

Panels a and b in Figure 3 shows the measured and corrected profiles for the widest distribution of response time errors

tested (στ = 15 s), in the absence of random sensor error. In gradient-free segments of the oxygen profile, the error has little30

to no effect, while larger deviations from the true profile occur in the high-gradient segments of the profile, with a maximum

deviation of almost 10 mmol m−3. In contrast to the response time error, random sensor error (Figure 3c and d) does not have a

localized effect on the profile, but the errors appear to be amplified by the correction process. Figure 4 summarizes the two error

10
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Figure 3. a) Simulated profile measurements (blue) of the true oxygen profile (black) for 50 different response times drawn randomly from

a normal distribution with standard deviation of 15 s and mean of 75 s, and corrected measurements using a response time of 75 s (orange).

b) Deviations of corrected profiles from theand true profile, with line colour representing the randomly drawn response time. c) Simulated

measurement and correction of profiles using a response time of 75 s, with random noise added from a normal distribution with standard

deviation of 1 mmol m−3 and mean of 0 mmol m−3. d) Deviations of corrected profiles in c) from the true profile

analyses by showing the standard deviation of the deviation profiles, σdev , for increasingly wide distributions of response time

and random errors. For response time errors, the distribution of deviations has a maximum value exceeding 1.0 mmol m−3.

This demonstrates that, despite arelatively large ranges of response times estimated for the floats, the corrected profiles are

close to the true oxygen profile. For random noise, an amplification of the errors by a factor of 3 occurs through the correction

process. This amplification is consistent with theoretical consideration (see appendix C).5

3.4 Discussion

The slow response time of the optode is considered a prominent source of error when measuring oxygen on floats (see Plant

et al., 2016; Johnson et al., 2017) but is often not rigorously corrected for. One reason is that the timestamps of the oxygen

measurements are not typically transmitted (Johnson et al., 2017). Another reason is that the effective sensor response time is

difficult to characterize without knowledge of the true profile. To minimize response time errors, some optodes are pumped to10

significantly increase the flow speed at the interface between sensing foil and ambient seawater and thus decrease boundary

layer thickness and the effective response time. However, even pumped optodes have a characteristic response time, albeit
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Figure 4. Standard deviation of the error profiles for increasingly wide distributions of a) response time and b) random error. For random

errors, σdev increases linearly with σε, with a slope of 3.09 (unitless).

reduced. In addition, pumped optodes have the disadvantages of consuming more energy and being unable to record in-air

measurements for calibration.

Plant et al. (2016) cited response time errors as the cause of unrealistically large values of positive NCP just above the mixed

layer and negative NCP below. They chose to correct mixed layer oxygen by extending surface oxygen values on the assumption

that oxygen is completely uniform in the mixed layer. However, a full correction using the filtering solution provided by Bittig5

et al. (2014) could have improved the estimates not only at the mixed layer interface but also for the entire profile. While

oxygen values near the base of the mixed layer were the most obvious evidence of errors induced by the response time, any

oxygen gradient would have been subject to the effects of sensor response time as well and thus would have been improved by

the inverse filtering correction.

Johnson et al. (2017) compared oxygen measurements made by floats in the Southern Ocean and Winkler titrations (Winkler,10

1888; Carpenter, 1965) from bottle samples at deployment stations. While optode-measured oxygen generally agreed very well

with the Winkler measurements, the majority of error was concentrated around high-gradient areas. Response time corrections

could not be performed in this case because the floats did not transmit time stamps for each oxygen measurements and only

the upcasts were transmitted. As previously stated, time stamps and knowledge of the measurement’s effective time constant

are the two key pieces of information required to make the correction. Measurement of consecutive up- and downcasts allows15

for an in-situ determination of the effective response time as shown here.
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The effective response times derived here are much longer than the sensor-inherent response times reported on the Aanderaa

data sheet, but this discrepancy is not surprising. The data sheet provides an estimate of the inherent sensor response time (25 s

for 63% of the signal), which is calculated by subjecting the sensor to a sudden step change in oxygen (by plunging from air

into water). Here we have determined the effective response time of the measurement in situ, which also accounts for diffusion

through the boundary layer at the sensing interface. This boundary-layer effect is significant for typical float velocities. The5

70 s response times found here are fully consistent with previously reported response times of 15-45 s for CTD measurements

(Bittig et al., 2014) and 60-95 s70-140 s for profiling floats in the subtropical ocean (Bittig and Körtzinger, 2017) based on

theoretical considerations of flow-dependent boundary layer thickness.

Subjecting simulated measurements to varying effective response times and random sensor errors showed that the combined

effects of these two sources of error can cause significant deviations between the corrected and true profiles (Figure 3). The10

50 repeated measurements of the oxygen profile with a response time error (standard deviation) of 10 s and random errors on

the order of 1.0 mmol m−3 resulted in deviations of approximately 1.0 mmol m−3 and 3.0 mmol m−3, respectively (Figure 4).

Taking these two sources of error and considering them independent from one another, the combined error estimate is between

3-4 mmol m−3, which is significant considering that the precision needed to detect diurnal cycles in oxygen.

Bittig et al. (2018) stated that the relation between the boundary layer thickness and float profiling velocity must be estab-15

lished on a case-by-case basis depending on the platform characteristics and optode attachment with respect to flow direction.

For this analysis, effective time response of the optode on the up- and downcasts are treated to be equal. In reality, flow

around the optode may not be identical for the two cast directions; however, the impact of this difference on the corrections is

unknownlikely small.

The technique we propose for determining the effective time constant is a simple and practical method for in-situ application20

and more straightforward than characterizing flow surrounding the optode. It can easily be performed by any end-user of

optode data from floats, as long as time stamps and occasional up- and downcasts are transmitted. In our case, the difference

between the measured and corrected profiles is substantial. In the study region, where the maximum oxygen gradient of each

profile averaged 3.82.55 mmol m−3 dbardb−1, median differences between observed and corrected profiles ranged from 31-

4336-39 mmol m−3 at the maximum gradient. For a given time constant, the magnitude of the difference between corrected25

and uncorrected profiles varies linearly with gradient strength.

The key assumption made in our method for in-situ response time determination is that the up- and downcasts should

match. We performed this comparison in pressure space. Conducting the analysis in density space instead would be a natural

extension and may avoid potential errors resulting from isopycnal movements. A potential limitation of the method is that the

float measures disturbed water during the downcast, as the optode sits at the top of the float. Such a change in the flow field at30

the sensor interface may affect the response time during downcasts. It seems unlikely that this has a large effect on our results,

but the response times for up- and downcasts are probably not exactly the same.
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Figure 5. Schematic showing method for calculating GPP and R using oxygen data (points) after Briggs et al. (2018). Respiration rates are

determined as nighttime slopes (solid black lines), which are then projected forward and backward in time (dashed black lines). The differ-

ences between these projections and oxygen at noon observed yields the morning and afternoon GPP (light and dark green bars respectively).

4 Biological & physical drivers of dissolved oxygen variations

4.1 Measurement of diurnal oxygen cycles

Next, we attempt to estimate GPP, R, and NCP from hysteresis-corrected oxygen measurements collected during continuous

mode profiling. The approach relies on an ability to determine diurnal variations in oxygen in the euphotic zone and the

following assumptions. During daylight hours, oxygen increases at a rate proportional to the difference between GPP and5

R, while during the night oxygen decreases at the rate R. Then, GPP can be estimated from diurnal oxygen cycles of this

idealized structure. This is essentially what Briggs et al. (2018) assumed when they applied a linear fit to their nighttime data,

where the slope represents the respiration rate, and extrapolated forward to noon the next day to project the dissolved oxygen

concentration in the absence of any production (Figure 5, dashed lines). An estimate for morning GPP was then obtained with

the help of a second linear fit applied to the daytime data where the difference between the extrapolated nighttime fit and the10

value of the daytime fit at noon represents oxygen production in the morning (Figure 5, light green bars). The oxygen produced

in the second half of the day can be calculated in a similar manner (Figure 5, dark green bars). No correction for air-sea flux

was performed on the data as the expected change was comparatively small (Gordon, 2019).

An observed time series of mean euphotic zone oxygen over the upper 150 m of the water column (but excluding measure-

ments within the uppermost 5 m where the pumped CTD automatically turns off as it approaches the sea surface) from one of15

the continuous mode sampling period is shown as example in Figure 6. In the timeseries, the up- and downcasts are brought

into agreement by removing the constant bias between them, which exists despite the response time correction. While oxygen

is often changing periodically with increases during the day and decreases during the night, there also are several instances

when oxygen changes cannot be reconciled with the expected day-night pattern of a biologically driven cycle. Light and dark

red bars represent unrealistic negative gross production values (GPP, by definition, must be positive). This time series illustrates20
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Figure 6. a) Mean oxygen in the euphotic zone for continuous mode measurements in September from float f8081, with attempts to estimate

GPP. Legend is the same as figure Figure 5, but orange and red bars indicate when the method obviously fails because other processes than

production and respiration are driving changes in oxygen. Grey shaded sections show local nighttime. b) Oxygen data over the same period

with overlaid isopycnal contours.

that in the study region, estimating production from diurnal oxygen changes is not straightforward. It appears that processes

other than biological production and consumption are affecting oxygen, complicating the expected signal. We obtained similar

results during other periods and for other floats. A confounding physical driver of short-term oxygen variations is explored in

section 4.2.

4.2 Physically induced variations in dissolved oxygen5

Vertical oscillations of isopycnals may occur in ocean environments due to several processes including internal or near-inertial

waves, barotropic or baroclinic tides, and mesoscale eddies, and may influence dissolved oxygen dynamics in the euphotic zone.

Such isopycnal displacements will push the oxygen gradient up and down creating a periodic signal in vertically integrated

integrated oxygen. Although a spectrum of internal motions are present (Garrett and Munk, 1972, 1979), in this section we

examine an example that likely represents a near-inertial wave as the observed oscillations have a period of 24 hr, corresponding10

to the Coriolis frequency at 30◦N (Alford et al., 2016). Caution must be exercised as to not misconstrue the physical oscillatory

signal with a biological one.

Vertical oscillations were visible in our float data in many instances. As an example, a 3-day period immediately following

the deployment of float f7940 on May 2, 2017 is examined here. This float was deployed shortly before passage of an atmo-
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Figure 7. Co-variation of isotherm and iso-concentration depths. a-b) Profiles of temperature and dissolved oxygen, where the profiles with

the minimum and maximum depths of the 20.6◦C isotherm and 136.2 mmol O2 m−3 iso-concentration are shown in green and orange

respectively, and all other profiles are shown on a grey color scale indicative of time with lighter shades indicating older and darker shades

more recent measurements. c-d) Depths of the isotherm and iso-concentration plotted against each other in c) and as a timeseries in d) ,

showing their co-variation.

spheric front with elevated wind speeds up to about 35 km hr−1. Vertical oscillations are apparent by coincident up and down

movements of the oxygen gradient moving in concert with isopycnals (Figure 7). A tight correlation of oxygen isolines and

isopycnal (or isotherm) depths identifiesidentify when physical oscillations are driving changes in oxygen.

The depths of the 20.6◦C isotherm and 136.2 mmol O2 m−3 iso-concentration are highly correlated over this time period

(Figure 7c, r = 0.96, p < 0.01). The time series of these depths are also highly correlated with the time series of integrated5

oxygen (Figure 8, r = 0.83, p < 0.01). The extrema are aligned as well, as the maximum depths of the isotherm correspond with

the maximum values of integrated oxygen, and similarly minimal depths correspond to integrated oxygen minima, occurring

near noon and at midnight, respectively.

Since the vertical movement of isopycnals and oxygen isolines creates a tight correlation between the two, it should be

possible to remove the variability due to vertical motions by analyzing changes in oxygen in density space rather than pressure10

space. This is done by calculating the anomaly (by subtracting an average profile over a time period from each constituent

profile) at each density level, and then mapping that anomaly back to pressure space. Figure 9 shows the anomalies calculated

in pressure and density space compared to each other., and Anomalies calculated in density space are significantly smaller,

indicating that most of the variability in oxygen can be accounted for by corresponding changes in density. This technique

offers a path to removing the oscillatory signal, and therefore isolating underlying signals such as biological production. In this15
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Figure 8. Isotherm depth and mean oxygen comparison. a) Timeseries of mean oxygen between 25-150 dbardb. A period of about 24 hr is

observed, however it is not in phase with the day/night cycle (nighttime indicated by shaded areas) as would be expected for a biological

signal. b) Scatter of mean oxygen concentration against isotherm depth (see Figure 7d).
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Figure 9. Anomalies of oxygen profiles from Figure 7b shown in pressure (blue) and density (orange) space.

case, however, the remaining anomaly is on the order of expected errors based on the analysis performed in Section 3.3, and so

a biological signal cannot be discerned in light of the accumulated error.

4.3 Discussion

The data and analysis presented in this section show that diurnal changes in oxygen can be measured with a profiling float;

however, the changes observed here could not unequivocally be linked to biological production and respiration. This made5

estimates of daily GPP, R, and NCP based on these observations unreliable or impossible. Compared to previous work by

Briggs et al. (2018), which focused on diurnal oxygen cycles in the North Atlantic spring bloom, the Gulf of Mexico has
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relatively low production. Nicholson et al. (2015) studied diurnal oxygen cycles in a similarly low-productivity region in the

subtropical North Pacific, but accumulated and averaged many days in order to derive an estimate of production. In a more

recent study, Barone et al. (2019) were able to resolve variability in production on the time scale of 1 week in the same region.

The location of the floats and the timing of the continuous mode observations also contributed to the difficulty in estimating

production. Continuous mode was turned on when strong storms were passing through the Gulf likely causing physical drivers5

to dominate variations in oxygen. Additionally, the floats were deployed near the shelf break and topography is a known

factor contributing to the formation of internal motions (Alford et al., 2016) under external physical forcings. Furthermore, the

temporal resolution was on the low end for making diurnal measurements. In continuous mode, the floats still recorded full

profiles to at least 1000 m because of other research objectives. In a study more directly focused on diurnal oxygen cycles,

profiling to only 200 to 300 m would significantly increase the temporal resolution of the oxygen time series, while still10

capturing the entire euphotic zone.

Vertical oscillations, and other physical drivers, can influence euphotic-zone oxygen with implications for the measurement

of biologically driven changes. In attempting to measure biological productivity using oxygen, it is important to understand

such effects, and take them into consideration. Vertical oscillations can be identified in float data by observing the synchronous

movement of physical and biochemical variables in the water column. When identified, the characteristically tight correlation15

of density and oxygen may still allow for the isolation of the underlying biological signal. In our case, although the vertical

oscillation signal can mostly be captured by variations in density (Figure 9), the remaining signal cannot always be attributed

to biological changes in the water column. For our data, this analysis showed anomalies on the same scale as the expected error

from the oxygen optode. In Plant et al. (2016), evidence of internal waves was also present in the data, and a similar method

was used to remove this signal. In their case, using density to map the observations to a physical model that did not include20

vertical oscillations, it was possible to isolate the biological signal.

Elevated winds acting on this region with variable topography can generate internal oscillations with a period of about

24 hr (determined by the Coriolis frequency at 30◦N, where the autonomous floats in this study were deployed). Without

consideration of the physical data, if this oscillation was aligned with the expected day-night cycle, it could falsely appear to be

driven by biological productivity. The diurnal-scale period of the internal oscillations could also be problematic if production25

is estimated by accumulating and averaging data as in Nicholson et al. (2015). That study quantified average NCP over 110

days by accumulating multiple glider measurements of oxygen into one 24-hr cycle. Only oxygen data that fit the theoretical

biological curve defined a priori to a satisfactory degree (p < 0.05) were accumulated (73 of 110 days satisfied this condition).

This approach could allow physically driven oscillations that are aligned with the day-night cycle to be attributed to biology.

5 Conclusions and recommendations30

In the Introduction, we posed two sets of questions relevant for the estimating of NPP and R from the diurnal oxygen cycle

measured by continuously profiling autonomous floats. The first set addressed the technical question whether the sensor and

platform can take sufficiently frequent and accurate measurements. The second set contained oceanographic questions about
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what primary physical or biological processes drive changes in dissolved oxygen, and how they manifest themselves in the

data. Addressing the first led to the development of a novel method for determining the effective in situ time constant of an

oxygen optode deployed on a profiling float, without needing to characterize the physical flow around that sensor. The second

was addressed by analyzing physical and oxygen measurements from our study in the Gulf of Mexico and provides context

and techniques to future studies seeking to quantify production using profiling floats.5

Oxygen optodes are challenged to make accurate measurements in gradients because of their slow response time. However,

the resulting errors can be corrected if timestamps of the measurements and the effective response time are known. We devel-

oped an optimization procedure to determine the effective time constant in situ by using both the up- and downcasts measured

by the floats. The effective time constant determined in the field represents the combination of the inherent sensor response

time and the response time that results from boundary layer effects. The time constants derived by this method are similar to10

estimates provided in the previous literature. While the oxygen measurements were improved significantly by the correction

procedure, remaining errors, especially near gradients, may prohibit reliable production estimates in low-productivity environ-

ments or where physical processes have large effects on the oxygen signal.

Given the small productivity of the Gulf of Mexico, oxygen optodes on autonomous floats were not able to provide sufficient

precision to estimate production on a diurnal scale, likely because of a combination of sensor error and non-biological changes15

in oxygen. For processes like the vertical oscillation of isopycnals, analysis in density space can reveal underlying signals, and

inspection of anomalies may be useful in calculating diurnal scale biological changes in oxygen.

The need for highly accurate oxygen measurements when estimating production from autonomous platforms leads to the

following recommendations for future deployments of autonomous floats with oxygen optodes:

– Include timestamps for every oxygen measurement on float data transmission. The corrections discussed and applied20

here must be performed on oxygen as a time series. Correction for sensor response time is impossible without this

information.

– Program the float mission to include a calibration period upon float deployment where both up- and downcasts are

recorded. This will provide a very practical and robust method to calculate the effective in-situ response times.

This work contributes to improved quality control of oxygen measurements by optodes, may stimulate further use of profiling25

floats for observing diurnal cycles of dissolved oxygen for calculation of GPP and R, and enhances our understanding of

processes driving changes in oxygen in the shelf break region in the northern Gulf of Mexico. Our methods and findings are

applicable to other regions.

Code availability. MATLAB code for determining sensor response time: https://github.com/MEMG/optode-response-time

Data availability. Float data at doi: 10.5281/zenodo.389023930
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Appendix A: Optode mathematical formalism

A1 Laplace solution

Recall filter differential equation

h(t) = f(t)− τ ∂h
∂t
. (A1)

This can be re-written as an initial value problem assuming that the first measurement has the correct value (h(0) = f(0))5

h′+
1

τ
h=

1

τ
f. (A2)

Taking the Laplace transform of the above equation, we obtain

L{h′+ 1

τ
h}= L{1

τ
f} (A3)

sH(s)−h(0) +
1

τ
H(s) =

1

τ
F (s). (A4)

Re-arranging to solve for H(s) and substituting h(0) = f(0) yields10

H(s) =
( 1

s+ 1
τ

)
f(0) +

1

τ

( 1

s+ 1
τ

)
F (s). (A5)

For the first term, we can take the inverse Laplace transform directly, as we reconize the following form

L{eαt}=
1

s−α
. (A6)

For the second term, because f(t) is unknown, the solution is written as a convolution. The final solution is

h(t) = f(0)e−t/τ +
1

τ

t∫
0

f(t−u)e−u/τdu. (A7)15

A2 Discretized solution

The transfer function of the oxygen optode is expressed as

g(t) =
1

τ
e−t/τ , (A8)

and the Laplace transform of this expression is

G(s) = L{g(t)}= (1 + sτ)−1. (A9)20

In order to convert this continuous-time domain (analog) filter to a discrete-time domain (digital) filter, we apply a bilinear

transform. The bilinear transform is a first order approximation of making the change of variables z = es∆t (or s= 1
∆t ln(z)),

20



where ∆t is the time between measurements. This approximation is made by taking the first term in the Taylor series of the

change of variables

s=
2

∆t

1− z−1

1 + z−1
. (A10)

Substituting the above into eq. A9 yields

G(z) =G(s)
∣∣∣
s= 2

∆t
1−z−1

1+z−1

(A11)5

=
(

1 +
2τ

∆t

1− z−1

1 + z−1

)−1

, (A12)

which can be re-arranged to

G(z) =
(1 + 2τ/∆t)−1(1 + z−1)

1 + 1−2τ/∆t
1+2τ/∆tz

−1
. (A13)

Finally, substituting in b= (1 + 2τ/∆t) and a= 1− 2b yields

G(z) =
b(1 + z−1)

1− az−1
. (A14)10

The inverse Z-transform (i.e. discrete inverse Laplace transform) of eq. A14 yields eq. 4.

Appendix B: Discretized optode filter

Recall filter differential equation

h(t) = f(t)− τ ∂h
∂t
. (B1)

Discretizing the above equation using finite difference15

hn = fn− τ
hn−hn−1

∆t
, (B2)

then re-arranging and factoring out hn, yields

hn(1 + τ∆τ) = fn +
τ

∆t
hn−1. (B3)

The solution

hn =
( ∆t

τ + ∆t

)
fn +

( τ

τ + ∆t

)
hn−1 (B4)20

can be derived with some simple algebra. Defining α= ∆t
τ+∆t yields

hn =
( ∆t

τ + ∆t

)
fn +

(τ + ∆t

τ + ∆t
− ∆t

τ + ∆t

)
hn−1 (B5)

hn = αfn + (1−α)hn−1. (B6)

21



Appendix C: Error propagation

Adding error into the inverse filtering solution (eq. 5) as an addition to the observations yields

fn + fn−1

2
=

1

2b
(hn− ahn−1) +

1

2b
(εn− aεn−1) (C1)

where εn is the error at timestep n. Our goals is to obtain the coefficient in front of the error term. Assuming that the error ε is

i.i.d., the variance of this additional term is as follows5

σ2
f =

1 + a2

4b2
σ2
ε . (C2)

Replacing a= 1− 2b and re-arranging yields

1 + a2

4b2
=

1

2
b−2− b−1 + 1. (C3)

Replacing b−1 = 1 + 2 τ
∆t , and simplifying we obtain

1

2
b−2− b−1 + 1 =

1

2

(
1 + 4

τ2

∆t2

)
. (C4)10

The variance of the error will by multiplied by the above factor. The standard deviation therefore is amplified by its square root

σf
σε

=

√
1

2

(
1 + 4

τ2

∆t2

)
. (C5)

The above gives the general result. For our error analysis, τ = 75 s and ∆t= 33 s, we obtain an amplification of√
1

2

(
1 + 4

τ2

∆t2

)
=

√
1

2

(
1 + 4

(75)2

(33)2

)
(C6)

≈ 3.3. (C7)15

The above does not account for any smoothing, and is consistent with our numerical results.
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