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Abstract. Oceanic primary production forms the basis of the
marine food web and provides a pathway for carbon seques-
tration. Despite its importance, spatial and temporal varia-
tions of primary production are poorly observed, in large
part because the traditional measurement techniques are la-5

borious and require the presence of a ship. More efficient
methods are emerging that take advantage of miniaturized
sensors integrated into autonomous platforms such as gliders
and profiling floats. One such method relies on determining
the diurnal cycle of dissolved oxygen in the mixed layer and10

has been applied successfully to measurements from gliders
and mixed layer floats. This study is the first documented
attempt to estimate primary production from diurnal oxy-
gen changes measured by Argo-type profiling floats, thus
accounting for the whole euphotic zone. We first present a15

novel method for correcting measurement errors that result
from the relatively slow response time of the oxygen optode
sensor. This correction relies on an in-situ determination of
the sensor’s effective response time. The method is conceptu-
ally straightforward and requires only two minor adjustments20

in current Argo data transmission protocols: 1) transmission
of measurement time stamps, and 2) occasional transmis-
sion of downcasts in addition to upcasts. Next, we present
oxygen profiles collected by 10 profiling floats in the north-
ern Gulf of Mexico, evaluate whether community production25

and respiration can be detected, and show evidence of inter-
nal oscillations influencing the diurnal oxygen signal. Our
results show that profiling floats are capable of measuring di-
urnal oxygen variations although the confounding influence
of physical processes does not permit a reliable estimation30

of biological rates in our data set. We offer suggestions for
recognizing and removing the confounding signals.

1 Introduction

Oceanic primary production forms the basis of the oceanic
food web and is a major component of the global carbon 35

cycle by providing a pathway for carbon sequesteration in
the ocean interior. Although primary production is intrinsic
to understanding biogeochemical dynamics in the ocean, its
temporal and spatial variations are not well observed. His-
torically, it has been estimated by performing 12- to 24-hr 40

bottle incubations using 14C (Steeman-Nielsen, 1952; Marra,
2009). These incubations require substantial effort and the
presence of a ship, while only providing point estimates
of production. Satellites estimate production on the global
scale, but rely on assumptions about the photosynthesis- 45

irradiance relationship, the vertical structure of biomass, and
global regressions of observed productivity with sea surface
temperature, all with inherent limitations.

Both of the above methods quantify net primary produc-
tion (NPP), defined as the total rate of photosynthetically 50

fixed carbon minus autotrophic respiration. The total fixation
of carbon is referred to as gross primary production (GPP).
Other definitions of primary production consider losses by
the whole planktonic community including autotrophic and
heterotrophic respiration. Community respiration (R) is the 55

total rate of carbon respired by autotrophs and heterotrophs.
The balance between GPP and R is referred to as net commu-
nity production (NCP = GPP − R), where a positive (nega-
tive) NCP indicates net production (net respiration). A posi-
tive NCP, i.e. net biomass production by the planktonic com- 60

munity, is expressed as an increase in biomass or in exported
carbon or a combination of both.

NCP in the mixed layer can be estimated by measuring
the ratio of dissolved oxygen to dissolved argon ([O2]/[Ar])
(Kaiser et al., 2005; Cassar et al., 2009; Hamme et al., 2012; 65
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Tortell et al., 2014). The two gases have similar physical
properties with regard to their solubility, but Ar is biolog-
ically inactive while oxygen is produced and consumed by
production and respiration. The ratio of [O2]/[Ar] can thus be
used to partition changes in oxygen into physical and biolog-5

ical components, where the biological component represents
NCP over the timescale of mixed layer gas exchange, usu-
ally about 10 to 30 days. This technique offers a better time-
space resolution than 14C incubations as it can be applied in
high-precision and continuously to a steaming ship’s seawa-10

ter flow-through, making it a good candidate for deployment
on ships of opportunity, but does require the presence of a
ship and is limited to the mixed layer.

The emergence and integration of miniaturized biogeo-
chemical sensors into autonomous platforms have opened15

new avenues for measuring production. Numerous studies
have used particulate beam attenuation (Cullen et al., 1992;
Claustre et al., 1999; Kinkade et al., 1999; Gernez et al.,
2010; Dall’Olmo et al., 2011; Omand et al., 2017; White
et al., 2017) or dissolved oxygen (Caffrey, 2003; Riser and20

Johnson, 2008; Johnson, 2010; Nicholson et al., 2015; Briggs
et al., 2018; Barone et al., 2019) to estimate production from
such platforms. Riser and Johnson (2008) measured oxygen
profiles with profiling floats every 10 days in the subtropi-
cal Pacific Ocean. Oxygen below the mixed layer showed a25

steady increase throughout the stratified period. The slope of
the oxygen buildup allowed estimation of seasonally aver-
aged NCP below the mixed layer. GPP and R have also been
estimated from diurnal cycles of oxygen within the mixed
layer observed by gliders (Nicholson et al., 2015) and mixed30

layer floats (Briggs et al., 2018). A similar approach has been
applied to diurnal cycles of beam-c measurements from an
underway ship flow-through (White et al., 2017). In Nichol-
son et al. (2015), approximately 14 glider profiles per day
were averaged over a study period of 110 days to obtain the35

average diurnal cycle of dissolved oxygen within the mixed
layer. The techniques applied in White et al. (2017) and
Briggs et al. (2018) instead used continuous measurements
to observe daily cycles. In Briggs et al. (2018), by measur-
ing the decline of dissolved oxygen through the night, the40

respiration rate R was determined. Then, by measuring the
increase of oxygen during the day and subtracting R, GPP
was calculated.

These previous studies are encouraging, but required large
averaging periods or neglected at least some portion of the45

water column where production is likely to occur (e.g., White
et al., 2017; Briggs et al., 2018) or both (Riser and Johnson,
2008; Nicholson et al., 2015). Here, we test whether diurnal
cycles of dissolved oxygen can be observed with sufficient
accuracy from Argo-type floats to estimate daily productiv-50

ity for the whole euphotic zone. We use measurements from
ten floats that were deployed in the Gulf of Mexico in 2017
and profiled continuously for several days. This work most
directly extends previous research with autonomous floats by
Briggs et al. (2018) but, by using profiling rather than mixed-55

layer floats, explicitly considers the entire euphotic zone. To
answer the overarching question whether GPP, R and thus
NCP can be estimated from continuously profiling floats, two
sets of specific questions are addressed: 1) Are the floats ca-
pable of sampling at the rate and accuracy required to resolve 60

diurnal scale changes in oxygen? and 2) What are the primary
physical or biological drivers of oxygen change in the upper
ocean at our study site? Are there physical processes that can
confound the biological signal? If so, can the two signals be
separated? 65

The first set of questions addresses technical aspects of
the measurement. It is necessary to determine whether pro-
filing floats are able to properly resolve the diurnal signal.
While oxygen optodes have been shown to be reliable and
stable when deployed on autonomous floats (Tengberg et al., 70

2006; Gruber et al., 2010), with only a weak drift of less than
1% per year (Bushinsky et al., 2016; Bittig and Körtzinger,
2017), they require pressure and salinity, (Bittig et al., 2015),
in-air gain (Johnson et al., 2015; Nicholson and Feen, 2017)
and response time (Bittig et al., 2014, 2018) corrections. 75

While pressure and in-air gain corrections are typically ap-
plied, response-time correction is not done routinely even
though errors can be of the order of 10 mmol m−3 in the eu-
photic zone. The ability to reliably perform these corrections
will be paramount to measuring the diurnal oxygen signal. 80

The second set of research questions addresses the en-
vironmental side of measuring production autonomously in
situ. The floats were deployed in the dynamic but olig-
otrophic shelf break region in the northern Gulf of Mexico
where primary production is low. Given this, the biological 85

signal is much weaker than during the first demonstration
of diurnal oxygen measurement by Briggs et al. (2018) in
the North Atlantic Ocean, which was conducted during the
spring bloom.

This manuscript is structured as follows. In Section 2.1, 90

float functionality and deployment, and sensor calibration
and data processing are described. The first set of research
questions is addressed in Section 3, where the mathematical
formalism underlying the optode measurement, a method for
determining the sensor response time in situ, and an error 95

analysis are presented. The second set of research questions
is addressed in Section 4, where possible drivers of oxygen
variability in the upper ocean are explored including physical
processes that can influence dissolved oxygen in the euphotic
zone. Section 5 contains conclusions and recommendations. 100

2 Methods

2.1 Float functionality and deployment

In May 2017, 10 autonomous ElectroMagnetic-Autonomous
Profiling EXplorer (EM-APEX) floats were deployed in the
northern Gulf of Mexico near the Mississippi delta (Fig- 105

ure 1, Shay et al., 2019). The floats were equipped with a
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Figure 1. a) Photo of float f7939 with the sensors labelled. b) Map of the 10 deployment stations (black crosses in inset) and float trajectories.

Seabird Scientific CTD, 2 electromagnetic current velocity
sensors, a WETLabs EcoPuck bio-optical triplet which mea-
sures chlorophyll fluorescence, optical backscattering and
coloured dissolved organic matter (CDOM) fluorescence,
and an Aanderaa 4330 oxygen optode. This study primarily5

uses data from the oxygen optode and CTD.
The floats operated in two different profiling modes: 1)

the traditional “park-and-profile” mode where floats surfaced
once every 5 to 10 days and drifted at 1000 m depth in be-
tween profiles, and 2) the “continuous” mode where floats10

profiled the top 1000 m continuously, pausing only to trans-
mit data at the surface following an upcast (this resulted in
one profile about every 3 hours). The vertical resolution of
measurements was about 5 dbar. No depth binning was per-
formed on the sensor data. The profiling mode of the floats15

was changed via two-way Iridium communication.
The floats were deployed in a grid (Figure 1b inset), and

a set of discrete shipboard measurements was taken in con-
junction with most deployments. The floats were initially set
to continuous mode for about one week. After that, the floats20

operated in park-and-profile mode until hurricanes Irma and
Nate passed through the Gulf and the floats were switched
back to continuous mode for about 2 weeks. The dataset thus
contains 3 periods of high-frequency sampling (after deploy-
ment and during the passage of the two hurricanes). While25

none of the floats was located directly within the path of the
hurricanes, most of them experienced a sea state affected by
high winds.

Three floats failed less than one month into the deploy-
ment (see Table 1). Location data suggest that during con-30

tinuous mode sampling these floats drifted near or onto shelf
areas with low-density surface waters for which they were
not properly ballasted. Without the required buoyancy to sur-
face, the floats would have been trapped below the surface.
One of the other floats also encountered a low-salinity plume35

and was not surfacing and transmitting for an extended pe-
riod of time, but resumed functioning normally again later.
Two floats transmitted data until the end of 2017, and the re-
maining five floats operated until early 2019, with the last
transmission occurring on March 6, 2019. Three floats were 40

entrained into the Loop Current and left the Gulf, eventually
ending up in the North Atlantic (Figure 1b). In total, the 10-
float fleet measured over 2700 profiles, over 1600 of these
during continuous-mode sampling.

2.2 Sensor calibration and data processing 45

At most deployment stations, a CTD cast to 2000 m, or to
the bottom if shallower, was performed using a SeaBird SBE
9 CTD for comparison between ship measurements and the
first profile recorded by each float. For two floats, the CTD
cast was not carried out because of rough seas. The CTD and 50

float profiles agree within an average Root Mean Square Dif-
ference (RMSD) of 0.16◦C and 0.02 (N = 8) for temperature
and salinity, respectively. The floats slightly underestimated
temperature and salinity with biases of -0.12◦C and -0.01, re-
spectively (Table 1). No adjustment of the float temperature 55

or salinity data was performed.
Oxygen was derived from the optode sensor (Aanderaa

4330) which functions by emitting blue light on an oxygen-
sensitive, permeable foil that is exposed to sea water and
measuring the phase difference between incident and re- 60

turned light (Kautsky, 1939). Sensor phase measurements
were converted to dissolved oxygen concentration following
the established Argo procedure (Thierry et al., 2016, section
7.2.29) using seven manufacturer-provided calibration con-
stants. Salinity compensation and pressure effects were cor- 65

rected for following Bittig et al. (2015).
Oxygen data was also corrected for pre-deployment drift

using in-air measurements from the floats while deployed.
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Table 1. Float number, total number of profiles measured by each
float (Nprof ) and subset of profiles measured in continuous mode
(Ncont), date of first and last transmitted profile, and RMSD and
bias of float temperature (◦C) and salinity relative to ship CTD.

Float Nprof Ncont Start Date End Date

f7939 303 194 02-05-2017 08-06-2018
f7940 83 64 02-05-2017 24-05-2017
f7941 446 189 03-05-2017 06-04-2019
f7942 482 384 03-05-2017 13-06-2018
f7943 384 269 03-05-2017 05-03-2018
f7944 70 55 03-05-2017 19-05-2017
f7945 240 55 04-05-2017 10-07-2017
f8081 345 206 06-05-2017 16-01-2019
f8082 101 28 06-05-2017 18-08-2017
f8083 312 213 07-05-2017 31-10-2017

TRMSD Tbias SRMSD Sbias

f7939 0.17 -0.13 0.020 -0.005
f7940 0.14 -0.10 0.016 -0.009
f7941 - - - -
f7942 0.15 -0.11 0.018 -0.008
f7943 0.16 -0.10 0.016 -0.002
f7944 0.17 -0.13 0.026 -0.013
f7945 - - - -
f8081 0.11 -0.10 0.015 -0.011
f8082 0.15 -0.12 0.023 -0.017
f8083 0.21 -0.16 0.031 -0.023

This is possible because the sensor is mounted on a 10 cm
stalk on the top of the float (see figure 1) to record atmo-
spheric oxygen while at the surface. The correction was made
following Johnson et al. (2015) by comparing the float’s in-
air measurement to atmospheric oxygen, which was calcu-5

lated using NCEP reanalysis air pressure at 10 m above sea-
level and the known molar fraction of oxygen in air, and de-
termining a multiplicative factor to be applied to the sensor’s
oxygen measurements. Although the sensor may experience
some drift over time after deployment (Bittig and Körtzinger,10

2017; Johnson et al., 2017), negligible drift occurred in this
case. Therefore, the mean gain for each float was applied to
all oxygen data recorded by that float. A summary of gain
values for each float is given in Table 2.

The optode’s sensing foil is known to respond relatively15

slowly to changes in ambient oxygen because oxygen has to
diffuse through the boundary layer that forms at the inter-
face of water and foil and into the foil itself. The sensor’s
effective response time is thus a combination of the response
times inherent to the sensor itself (related to the thickness20

of its sensing foil) and the boundary layer thickness adja-
cent to the foil. The inherent response time reported by the
manufacturer for the Aanderaa optode used here is 25 s. The
thickness of the boundary layer adjacent to the foil depends
on the flow speed of seawater over the foil (and hence the25

vertical velocity of the float and ambient currents) and the

molecular kinematic viscosity of water, which is temperature
dependent. The problem is not unique to oxygen sensors, but
they have significantly longer response times than other sen-
sors (such as CTDs, Bennett and Huaide, 1986). 30

Methods for correcting the hysteresis in oxygen measure-
ments that results from the relatively slow response time have
been established (Bittig et al., 2014; Bittig and Körtzinger,
2017; Bittig et al., 2018), but require knowledge of the sen-
sor’s effective response time, which is not typically known, 35

and the time stamps of each oxygen measurement, which are
not routinely transmitted. In section 3, we present a novel
method for determining the time constant in situ.

3 Response time correction method

3.1 Mathematical formalism 40

An example of oxygen profiles from consecutive up- and
downcasts (Figure 2a, b) illustrates the hysteresis pattern that
is generally found in the oxycline. As a direct result of the
slow response time of the oxygen sensor, the upcast has a
memory of the low concentration in deeper waters and mea- 45

sures the gradient to be shallower than its true position, while
the reverse is true for the downcast. The true oxygen profile
must lie in between these two measured profiles. In order to
derive a method for estimating the response time and per-
forming a correction of the oxygen profiles, we first present 50

a mathematical formalism describing the cause of the error.
Observation of an oxygen profile by the optode can be de-

scribed as a low-pass filter of the true oxygen profile (Bittig
et al., 2014), given by the following differential equation

h(t) = f(t)− τ ∂h
∂t
, (1) 55

where h(t) is the oxygen measured by the optode at
time t, f(t) is the true oxygen concentration (both in
mmol O2 m−3), and τ is the effective response time (s) which
depends on the sensor and its environment. This differential
equation can be solved using a Laplace transform as follows 60

(see appendix A1 for the full derivation)

h(t) = f(0)e−t/τ +
1

τ

t∫
0

f(t−u)e−u/τdu. (2)

The first term represents the decaying initial measurement
by the sensor, where we have assumed that at time t= 0
the sensor reads the true oxygen concentration correctly (i.e. 65

h(0) = f(0)). The second term is the convolution of the true
oxygen concentration and a decaying exponential which rep-
resents the transfer function of the sensor (i.e. the delay in
measuring the true concentration). Therefore, the observation
h can be expressed more generally as a convolution h= f ∗g 70

where h represents the measurement, f is the true concentra-
tion, and g is a function representing the response of the sen-
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Figure 2. Example of raw oxygen measurements from up- and downcast (thick black and green lines, respectively) and corrected profiles
(thin lines) in a) density and b) pressure coordinates. c) Up- and downcasts (top 150 m) plotted against each other with raw data in blue and
corrected data in orange. d) The Root-Mean-Square-Difference (RMSD) between the up- and downcasts after correcting casts for a range of
time constants, τ , showing the optimal τ value in this case of 76 s in orange.

sor (unitless). To recover the correct oxygen profile, the de-
convolution of the profile and the sensor must be performed.
This is possible if the observation h (with timestamps for
each data point) and the equation describing the sensor trans-
fer function g are known. From eq. 2, the sensor’s transfer5

function can be defined as

g(t) =
1

τ
e−t/τ . (3)

This provides the mathematical basis for correcting the sen-
sor hysteresis.

Up to now, the sensor theory has been discussed in con-10

tinuous time. In order to apply a correction to the data, the
formalism must be discretized. We are discretizing the equa-
tion in Laplace space and then transforming it into the more
familiar time domain. By taking the Laplace transform of the
transfer function (eq. 3) and assigning the proper Laplace15

variable, then discretizing the Laplace transform using a bi-
linear transformation and performing the inverse discrete
Laplace transform (or Z-transform, see Proakis and Mono-
lakis, 1996; Antoniou, 2018), the following relationship can
be derived20

hn = ahn−1 + b(fn + fn−1), n= 1, . . . ,N (4)

with the unitless coefficients

b=
(

1 + 2
τ

tn− tn−1

)−1

, a= 1− 2b.

See appendix A2 for the detailed derivation. Eq. 4 can be re-
written in the same form as provided by Bittig and Körtzinger25

(2017), their eq. A3,

fn + fn−1

2
=

1

2b
(hn− ahn−1) (5)

and is a recursive formulation similar to the one used for cor-
rection of thermal mass in conductivity cells (Lueck, 1990;
Lueck and Picklo, 1990). Since deconvolution is known to 30

amplify random errors, which is especially relevant where
the truth f(t) is convolved with the transfer function of an
instrument g(t), smoothing of the raw signal may improve
the final estimate (Wiener, 1964).

Eq. 4 provides the recipe for correcting for the slow sen- 35

sor response. Two essential ingredients for applying this cor-
rection, in addition to the raw measurements themselves, are
knowledge of their time stamps and of the effective response
time, τ . In reality, the response time also depends on am-
bient temperature, as described by Bittig et al. (2018). The 40

above formalism can be applied for the response time at a
reference temperature to accomodate the temperature depen-
dence. Next, an in-situ method for determining the measure-
ment’s effective response time is described.

3.2 In-situ determination of measurement response 45

time

In-situ determination of the measurement’s effective time
constant is possible if consecutive up- and downcasts are
recorded, assuming the oxygen profile does not significantly
change between consecutive casts. In our case, the top 200 m 50

were sampled on average within 70 min during continuous
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sampling and timestamps were transmitted. Determination
of the time constant can be thought of as an inverse problem
where the correction method derived in section 3.1 is applied
to a range of plausible time constants. The one that mini-
mizes the discrepancy between consecutive up- and down-5

casts is the optimal value and taken as the effective response
time. Here, the temperature-dependence of the response time
is take into account by optimizing for the effective boundary
layer thickness. More specifically, we applied the correction
method from eq. (5) while systematically sweeping over a10

range of boundary layer thickness values. Using the look-up
table provided by Bittig and Körtzinger (2017) and the tem-
perature profile measured by the float, these can be related to
the effective response time which is then used to correct the
oxygen profiles. The root-mean-square-difference (RMSD)15

between up- and downcasts was calculated by matching con-
secutive profiles at each density level from the surface to
1027 kg m−3, and the one with the minimum RMSD taken as
the effective boundary layer thickness. An illustration of the
process is shown in Figure 2d. The effect of the correction is20

visible in panels 2a-2c.
Since the deconvolution is known to amplify high-

frequency noise, the profiles were smoothed using a first-
order low-pass Butterworth filter (butter(1, 0.7) in MAT-
LAB) prior to performing the correction. This was particu-25

larly important for the downcasts. Profiling floats typically
only measure on the upcast because most of the sensors are
located near or at the top of the float allowing the sensors to
measure undisturbed water on the upcasts. On the downcasts,
water is thought to have been churned up by the body of the30

float increasing random errors. In our case, smoothed profiles
agreed more closely in the oxygen gradient, and their RMSD
after correction was slightly reduced.

For clarity, we provide the response time values at a refer-
ence temperature (T = 20 ◦C) rather than the boundary layer35

thickness. The calculations were done for each pair of con-
secutive up- and downcasts and down- and upcasts, resulting
in a population of N − 1 time constants for each set of N
float profiles. The median time constants for each float are
listed in Table 2. Median optimal time constants ranged from40

67.2-76.7 s across the 10 floats, and the standard deviation of
those values was as low as 3.2 s and as high as 7.7 s. Similar
to the gain correction (see section 2.2), the median optimal
response time of each float was applied to all profiles from
that float.45

The variation of effective response time from profile to
profile for one float is due to its dependence on various fac-
tors, chiefly among them is the flow speed of ambient water
over the sensor. Next, we analyze how deviations from the
average profiling speed and random errors manifest them-50

selves in the final corrected oxygen product.

Table 2. Mean gain values derived from in-air measurements, G,
median time constants, τ20◦C, and median boundary layer thickness
values, lL, for each float with standard deviations (σ).G and σG are
unitless.

Float G σG τ20◦C (s) στ (s) lL (µm) σlL (µm)

f7939 1.20 0.01 75.0 3.2 134 5.7
f7940 1.08 0.01 68.9 5.9 123 10.5
f7941 1.17 0.02 70.5 6.5 126 11.6
f7942 1.20 0.03 69.4 5.6 124 10.0
f7943 1.18 0.02 76.7 5.6 137 10.0
f7944 1.18 0.01 73.9 4.4 132 7.9
f7945 1.19 0.05 72.8 3.2 130 5.8
f8081 1.22 0.01 66.1 7.2 118 12.9
f8082 1.19 0.01 74.5 4.4 133 7.8
f8083 1.16 0.01 67.2 7.7 120 13.8

3.3 Propagation of response-time error and sensor
noise

The optode measurements are subject to systematic and ran-
dom errors. The response time may change with variations 55

in temperature, salinity, pressure, and most importantly flow
speed of ambient water at the sensing interface. The latter is
highly dependent on profiling velocity which varied from 1.4
to 26.5 cm s−1 with a mean of 12.2 cm s−1 for our floats. As
we account for variations in temperature already, we analyze 60

how variations in response time due to changes in bound-
ary layer, as well as random measurement errors, propagate
through the correction process. This is done using an ideal-
ized oxygen profile sampled as it would be by a float but with
different known errors applied. 65

The response time effect is simulated by applying a dis-
cretized version of equation (eq. 1)

hn = αfn + (1−α)hn−1 where α=
∆t

τ + ∆t
(6)

where hn and fn are the the measurement and true oxygen
concentration at timestep n, respectively. At t= 0 we as- 70

sumed oxygen is correctly measured, i.e. h(0) = f(0). The
right-hand-side term with fn represents the real-time contri-
bution to the measurement and the term with hn−1 represents
the sensor’s memory of previous measurements. The recur-
sive structure of the measurement filter results in an expo- 75

nentially weighted moving average with an infinite averaging
window in time. A full derivation is given in appendix B.

We simulated the generation of optode measurements by
prescribing a profiling velocity of 15 cm s−1, taking a mea-
surement every 5 m (roughly the vertical resolution of the 80

floats), assigning a timestamp to each oxygen datum, and
then running the model output through the measurement fil-
ter using a prescribed response time (temperature is assumed
to be constant here). Known errors were added to this mea-
surement process as random perturbations of the response 85
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time and as random noise added to the measured oxygen val-
ues. The two error sources were examined individually for
a range of standard deviations to systematically analyze the
effect of each error type. Response times τ (s) were chosen
from a normal distribution with a mean of 75 s and stan-5

dard deviations ranging from 0 to 15 s. Sensor noise er-
rors ε (mmol m−3) were chosen from a normal distribution
with mean zero and standard deviations ranging from 0 to
1.5 (mmol m−3). Following the simulated measurement, the
measured profiles underwent the same correction process as10

the float data: first a 7-pt smoothing and then the response
time correction using the expected value of 75 s. Different
magnitudes of errors were tested and for each trial the mea-
surement and correction process was repeated 50 times.

Panels a and b in Figure 3 show the measured and cor-15

rected profiles for the widest distribution of response time
errors tested (στ = 15 s), in the absence of random sensor
error. In gradient-free segments of the oxygen profile, the er-
ror has little to no effect, while larger deviations from the
true profile occur in the high-gradient segments of the profile,20

with a maximum deviation of almost 10 mmol m−3. In con-
trast to the response time error, random sensor error (Figure
3c and d) does not have a localized effect on the profile, but
the errors appear to be amplified by the correction process.
Figure 4 summarizes the two error analyses by showing the25

standard deviation of the deviation profiles, σdev , for increas-
ingly wide distributions of response time and random errors.
For response time errors, the distribution of deviations has
a maximum value exceeding 1.0 mmol m−3. This demon-
strates that, despite a range of response times estimated for30

the floats, the corrected profiles are close to the true oxy-
gen profile. For random noise, an amplification of the errors
by a factor of 3 occurs through the correction process. This
amplification is consistent with theoretical consideration (see
appendix C).35

3.4 Discussion

The slow response time of the optode is considered a promi-
nent source of error when measuring oxygen on floats (see
Plant et al., 2016; Johnson et al., 2017) but is often not rigor-
ously corrected for. One reason is that the timestamps of the40

oxygen measurements are not typically transmitted (John-
son et al., 2017). Another reason is that the sensor response
time is difficult to characterize without knowledge of the true
profile. To minimize response time errors, some optodes are
pumped to significantly increase the flow speed at the inter-45

face between sensing foil and ambient seawater and thus de-
crease boundary layer thickness and the effective response
time. However, even pumped optodes have a characteristic
response time, albeit reduced. In addition, pumped optodes
have the disadvantages of consuming more energy and being50

unable to record in-air measurements for calibration.
Plant et al. (2016) cited response time errors as the cause

of unrealistically large values of positive NCP just above the

mixed layer and negative NCP below. They chose to cor-
rect mixed layer oxygen by extending surface oxygen values 55

on the assumption that oxygen is completely uniform in the
mixed layer. However, a full correction using the filtering so-
lution provided by Bittig et al. (2014) could have improved
the estimates not only at the mixed layer interface but also
for the entire profile. While oxygen values near the base of 60

the mixed layer were the most obvious evidence of errors in-
duced by the response time, any oxygen gradient would have
been subject to the effects of sensor response time as well
and thus would have been improved by the inverse filtering
correction. 65

Johnson et al. (2017) compared oxygen measurements
made by floats in the Southern Ocean and Winkler titrations
(Winkler, 1888; Carpenter, 1965) from bottle samples at de-
ployment stations. While optode-measured oxygen generally
agreed very well with the Winkler measurements, the ma- 70

jority of error was concentrated around high-gradient areas.
Response time corrections could not be performed in this
case because the floats did not transmit time stamps for each
oxygen measurements and only the upcasts were transmit-
ted. As previously stated, time stamps and knowledge of the 75

measurement’s time constant are the two key pieces of in-
formation required to make the correction. Measurement of
consecutive up- and downcasts allows for an in-situ determi-
nation of the effective response time as shown here.

The effective response times derived here are much longer 80

than the sensor-inherent response times reported on the Aan-
deraa data sheet, but this discrepancy is not surprising. The
data sheet provides an estimate of the inherent sensor re-
sponse time (25 s for 63% of the signal), which is calculated
by subjecting the sensor to a sudden step change in oxygen 85

(by plunging from air into water). Here we have determined
the effective response time of the measurement in situ, which
also accounts for diffusion through the boundary layer at the
sensing interface. This boundary-layer effect is significant
for typical float velocities. The 70 s response times found 90

here are fully consistent with previously reported response
times of 15-45 s for CTD measurements (Bittig et al., 2014)
and 60-95 s for profiling floats in the subtropical ocean (Bit-
tig and Körtzinger, 2017).

Subjecting simulated measurements to varying effective 95

response times and random sensor errors showed that the
combined effects of these two sources of error can cause
significant deviations between the corrected and true pro-
files (Figure 3). The 50 repeated measurements of the oxy-
gen profile with a response time error (standard deviation) 100

of 10 s and random errors on the order of 1.0 mmol m−3

resulted in deviations of approximately 1.0 mmol m−3 and
3.0 mmol m−3, respectively (Figure 4). Taking these two
sources of error and considering them independent from
one another, the combined error estimate is between 3- 105

4 mmol m−3, which is significant considering the precision
needed to detect diurnal cycles in oxygen.
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Figure 3. a) Simulated profile measurements (blue) of the true oxygen profile (black) for 50 different response times drawn randomly from
a normal distribution with standard deviation of 15 s and mean of 75 s, and corrected measurements using a response time of 75 s (orange).
b) Deviations of corrected profiles from the true profile, with line colour representing the randomly drawn response time. c) Simulated
measurement and correction of profiles using a response time of 75 s, with random noise added from a normal distribution with standard
deviation of 1 mmol m−3 and mean of 0 mmol m−3. d) Deviations of corrected profiles in c) from the true profile

Bittig et al. (2018) stated that the relation between the
boundary layer thickness and float profiling velocity must be
established on a case-by-case basis depending on the plat-
form characteristics and optode attachment with respect to
flow direction. For this analysis, effective time response of5

the optode on the up- and downcasts are treated to be equal.
In reality, flow around the optode may not be identical for the
two cast directions; however, the impact of this difference on
the corrections is unknown.

The technique we propose for determining the effec-10

tive time constant is a simple and practical method for in-
situ application and more straightforward than character-
izing flow surrounding the optode. It can easily be per-
formed by any end-user of optode data from floats, as long
as time stamps and occasional up- and downcasts are trans-15

mitted. In our case, the difference between the measured
and corrected profiles is substantial. In the study region,
where the maximum oxygen gradient of each profile aver-
aged 3.8 mmol m−3 dbar−1, median differences between ob-
served and corrected profiles ranged from 31-43 mmol m−3

20

at the maximum gradient. For a given time constant, the mag-
nitude of the difference between corrected and uncorrected
profiles varies linearly with gradient strength.

The key assumption made in our method for in-situ re-
sponse time determination is that the up- and downcasts25

should match. We performed this comparison in pressure

space. Conducting the analysis in density space instead
would be a natural extension and may avoid potential errors
resulting from isopycnal movements. A potential limitation
of the method is that the float measures disturbed water dur- 30

ing the downcast, as the optode sits at the top of the float.
Such a change in the flow field at the sensor interface may
affect the response time during downcasts. It seems unlikely
that this has a large effect on our results, but the response
times for up- and downcasts are probably not exactly the 35

same.

4 Biological & physical drivers of dissolved oxygen
variations

4.1 Measurement of diurnal oxygen cycles

Next, we attempt to estimate GPP, R, and NCP from 40

hysteresis-corrected oxygen measurements collected during
continuous mode profiling. The approach relies on an abil-
ity to determine diurnal variations in oxygen in the euphotic
zone and the following assumptions. During daylight hours,
oxygen increases at a rate proportional to the difference be- 45

tween GPP and R, while during the night oxygen decreases
at the rate R. Then, GPP can be estimated from diurnal oxy-
gen cycles of this idealized structure. This is essentially what
Briggs et al. (2018) assumed when they applied a linear fit
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Figure 4. Standard deviation of the error profiles for increasingly
wide distributions of a) response time and b) random error. For ran-
dom errors, σdev increases linearly with σε, with a slope of 3.09
(unitless).

to their nighttime data, where the slope represents the res-
piration rate, and extrapolated forward to noon the next day
to project the dissolved oxygen concentration in the absence
of any production (Figure 5, dashed lines). An estimate for
morning GPP was then obtained with the help of a second5

linear fit applied to the daytime data where the difference be-
tween the extrapolated nighttime fit and the value of the day-
time fit at noon represents oxygen production in the morn-
ing (Figure 5, light green bars). The oxygen produced in the
second half of the day can be calculated in a similar manner10

(Figure 5, dark green bars). No correction for air-sea flux was
performed on the data as the expected change was compara-
tively small (Gordon, 2019).

An observed time series of mean oxygen over the upper
150 m of the water column (but excluding measurements15

within the uppermost 5 m where the pumped CTD automat-
ically turns off as it approaches the sea surface) from one
of the continuous mode sampling period is shown as exam-
ple in Figure 6. In the timeseries, the up- and downcasts are
brought into agreement by removing the constant bias be-20

tween them, which exists despite the response time correc-
tion. While oxygen is often changing periodically with in-
creases during the day and decreases during the night, there
also are several instances when oxygen changes cannot be
reconciled with the expected day-night pattern of a biologi-25

cally driven cycle. Light and dark red bars represent unrealis-
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Figure 5. Schematic showing method for calculating GPP and R us-
ing oxygen data (points) after Briggs et al. (2018). Respiration rates
are determined as nighttime slopes (solid black lines), which are
then projected forward and backward in time (dashed black lines).
The differences between these projections and oxygen at noon ob-
served yields the morning and afternoon GPP (light and dark green
bars respectively).

tic negative gross production values (GPP, by definition, must
be positive). This time series illustrates that in the study re-
gion, estimating production from diurnal oxygen changes is
not straightforward. It appears that processes other than bi- 30

ological production and consumption are affecting oxygen,
complicating the expected signal. We obtained similar re-
sults during other periods and for other floats. A confounding
physical driver of short-term oxygen variations is explored in
section 4.2. 35

4.2 Physically induced variations in dissolved oxygen

Vertical oscillations of isopycnals may occur in ocean envi-
ronments due to several processes including internal or near-
inertial waves, barotropic or baroclinic tides, and mesoscale
eddies, and may influence dissolved oxygen dynamics in the 40

euphotic zone. Such isopycnal displacements will push the
oxygen gradient up and down creating a periodic signal in
vertically integrated integrated oxygen. Although a spectrum
of internal motions are present (Garrett and Munk, 1972,
1979), in this section we examine an example that likely rep- 45

resents a near-inertial wave as the observed oscillations have
a period of 24 hr, corresponding to the Coriolis frequency at
30◦N (Alford et al., 2016). Caution must be exercised as to
not misconstrue the physical oscillatory signal with a biolog-
ical one. 50

Vertical oscillations were visible in our float data in many
instances. As an example, a 3-day period immediately fol-
lowing the deployment of float f7940 on May 2, 2017 is
examined here. This float was deployed shortly before pas-
sage of an atmospheric front with elevated wind speeds up 55

to about 35 km hr−1. Vertical oscillations are apparent by
coincident up and down movements of the oxygen gradient
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Figure 6. a) Mean oxygen in the euphotic zone for continuous mode measurements in September from float f8081, with attempts to estimate
GPP. Legend is the same as figure Figure 5, but orange and red bars indicate when the method obviously fails because other processes than
production and respiration are driving changes in oxygen. Grey shaded sections show local nighttime. b) Oxygen data over the same period
with overlaid isopycnal contours.

moving in concert with isopycnals (Figure 7). A tight corre-
lation of oxygen isolines and isopycnal (or isotherm) depths
identifies when physical oscillations are driving changes in
oxygen.

The depths of the 20.6◦C isotherm and5

136.2 mmol O2 m−3 iso-concentration are highly cor-
related over this time period (Figure 7c, r = 0.96, p < 0.01).
The time series of these depths are also highly corre-
lated with the time series of integrated oxygen (Figure
8, r = 0.83, p < 0.01). The extrema are aligned as well,10

as the maximum depths of the isotherm correspond with
the maximum values of integrated oxygen, and similarly
minimal depths correspond to integrated oxygen minima,
occurring near noon and at midnight, respectively.

Since the vertical movement of isopycnals and oxygen iso-15

lines creates a tight correlation between the two, it should
be possible to remove the variability due to vertical motions
by analyzing changes in oxygen in density space rather than
pressure space. This is done by calculating the anomaly (by
subtracting an average profile over a time period from each20

constituent profile) at each density level, and then mapping
that anomaly back to pressure space. Figure 9 shows the
anomalies calculated in pressure and density space compared
to each other. Anomalies calculated in density space are sig-
nificantly smaller, indicating that most of the variability in25

oxygen can be accounted for by corresponding changes in
density. This technique offers a path to removing the oscil-
latory signal, and therefore isolating underlying signals such

as biological production. In this case, however, the remain-
ing anomaly is on the order of expected errors based on the 30

analysis performed in Section 3.3, and so a biological signal
cannot be discerned in light of the accumulated error.

4.3 Discussion

The data and analysis presented in this section show that diur-
nal changes in oxygen can be measured with a profiling float; 35

however, the changes observed here could not unequivocally
be linked to biological production and respiration. This made
estimates of daily GPP, R, and NCP based on these observa-
tions unreliable or impossible. Compared to previous work
by Briggs et al. (2018), which focused on diurnal oxygen cy- 40

cles in the North Atlantic spring bloom, the Gulf of Mexico
has relatively low production. Nicholson et al. (2015) studied
diurnal oxygen cycles in a similarly low-productivity region
in the subtropical North Pacific, but accumulated and aver-
aged many days in order to derive an estimate of production. 45

In a more recent study, Barone et al. (2019) were able to re-
solve variability in production on the time scale of 1 week in
the same region.

The location of the floats and the timing of the continuous
mode observations also contributed to the difficulty in esti- 50

mating production. Continuous mode was turned on when
strong storms were passing through the Gulf likely causing
physical drivers to dominate variations in oxygen. Addition-
ally, the floats were deployed near the shelf break and to-
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Figure 8. Isotherm depth and mean oxygen comparison. a) Timeseries of mean oxygen between 25-150 dbar. A period of about 24 hr is
observed, however it is not in phase with the day/night cycle (nighttime indicated by shaded areas) as would be expected for a biological
signal. b) Scatter of mean oxygen concentration against isotherm depth (see Figure 7d).

pography is a known factor contributing to the formation of
internal motions (Alford et al., 2016) under external phys-
ical forcings. Furthermore, the temporal resolution was on
the low end for making diurnal measurements. In continuous
mode, the floats still recorded full profiles to at least 1000 m5

because of other research objectives. In a study more directly
focused on diurnal oxygen cycles, profiling to only 200 to
300 m would significantly increase the temporal resolution
of the oxygen time series, while still capturing the entire eu-
photic zone.10

Vertical oscillations, and other physical drivers, can influ-
ence euphotic-zone oxygen with implications for the mea-
surement of biologically driven changes. In attempting to
measure biological productivity using oxygen, it is important

to understand such effects, and take them into consideration. 15

Vertical oscillations can be identified in float data by observ-
ing the synchronous movement of physical and biochemical
variables in the water column. When identified, the charac-
teristically tight correlation of density and oxygen may still
allow for the isolation of the underlying biological signal. In 20

our case, although the vertical oscillation signal can mostly
be captured by variations in density (Figure 9), the remaining
signal cannot always be attributed to biological changes in
the water column. For our data, this analysis showed anoma-
lies on the same scale as the expected error from the oxygen 25

optode. In Plant et al. (2016), evidence of internal waves was
also present in the data, and a similar method was used to
remove this signal. In their case, using density to map the
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Figure 9. Anomalies of oxygen profiles from Figure 7b shown in
pressure (blue) and density (orange) space.

observations to a physical model that did not include vertical
oscillations, it was possible to isolate the biological signal.

Elevated winds acting on this region with variable topogra-
phy can generate internal oscillations with a period of about
24 hr (determined by the Coriolis frequency at 30◦N, where5

the autonomous floats in this study were deployed). With-
out consideration of the physical data, if this oscillation was
aligned with the expected day-night cycle, it could falsely
appear to be driven by biological productivity. The diurnal-
scale period of the internal oscillations could also be prob-10

lematic if production is estimated by accumulating and aver-
aging data as in Nicholson et al. (2015). That study quantified
average NCP over 110 days by accumulating multiple glider
measurements of oxygen into one 24-hr cycle. Only oxygen
data that fit the theoretical biological curve defined a priori15

to a satisfactory degree (p < 0.05) were accumulated (73 of
110 days satisfied this condition). This approach could allow
physically driven oscillations that are aligned with the day-
night cycle to be attributed to biology.

5 Conclusions and recommendations20

In the Introduction, we posed two sets of questions rele-
vant for the estimating of NPP and R from the diurnal oxy-
gen cycle measured by continuously profiling autonomous
floats. The first set addressed the technical question whether
the sensor and platform can take sufficiently frequent and25

accurate measurements. The second set contained oceano-
graphic questions about what primary physical or biological
processes drive changes in dissolved oxygen, and how they
manifest themselves in the data. Addressing the first led to
the development of a novel method for determining the ef-30

fective in situ time constant of an oxygen optode deployed on
a profiling float, without needing to characterize the physical
flow around that sensor. The second was addressed by ana-
lyzing physical and oxygen measurements from our study in
the Gulf of Mexico and provides context and techniques to 35

future studies seeking to quantify production using profiling
floats.

Oxygen optodes are challenged to make accurate measure-
ments in gradients because of their slow response time. How-
ever, the resulting errors can be corrected if timestamps of the 40

measurements and the effective response time are known. We
developed an optimization procedure to determine the effec-
tive time constant in situ by using both the up- and down-
casts measured by the floats. The effective time constant de-
termined in the field represents the combination of the inher- 45

ent sensor response time and the response time that results
from boundary layer effects. The time constants derived by
this method are similar to estimates provided in the previous
literature. While the oxygen measurements were improved
significantly by the correction procedure, remaining errors, 50

especially near gradients, may prohibit reliable production
estimates in low-productivity environments or where physi-
cal processes have large effects on the oxygen signal.

Given the small productivity of the Gulf of Mexico, oxy-
gen optodes on autonomous floats were not able to provide 55

sufficient precision to estimate production on a diurnal scale,
likely because of a combination of sensor error and non-
biological changes in oxygen. For processes like the vertical
oscillation of isopycnals, analysis in density space can reveal
underlying signals, and inspection of anomalies may be use- 60

ful in calculating diurnal scale biological changes in oxygen.
The need for highly accurate oxygen measurements when

estimating production from autonomous platforms leads to
the following recommendations for future deployments of
autonomous floats with oxygen optodes: 65

– Include timestamps for every oxygen measurement on
float data transmission. The corrections discussed and
applied here must be performed on oxygen as a time
series. Correction for sensor response time is impossible
without this information. 70

– Program the float mission to include a calibration period
upon float deployment where both up- and downcasts
are recorded. This will provide a very practical and ro-
bust method to calculate the effective in-situ response
times. 75

This work contributes to improved quality control of oxy-
gen measurements by optodes, may stimulate further use of
profiling floats for observing diurnal cycles of dissolved oxy-
gen for calculation of GPP and R, and enhances our under-
standing of processes driving changes in oxygen in the shelf 80

break region in the northern Gulf of Mexico. Our methods
and findings are applicable to other regions.
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Code availability. MATLAB code for determining sensor response
time: https://github.com/MEMG/optode-response-time

Data availability. Float data at doi: 10.5281/zenodo.3890239

Appendix A: Optode mathematical formalism

A1 Laplace solution5

Recall filter differential equation

h(t) = f(t)− τ ∂h
∂t
. (A1)

This can be re-written as an initial value problem assum-
ing that the first measurement has the correct value (h(0) =
f(0))10

h′+
1

τ
h=

1

τ
f. (A2)

Taking the Laplace transform of the above equation, we ob-
tain

L{h′+ 1

τ
h}= L{1

τ
f} (A3)

sH(s)−h(0) +
1

τ
H(s) =

1

τ
F (s). (A4)15

Re-arranging to solve for H(s) and substituting h(0) = f(0)
yields

H(s) =
( 1

s+ 1
τ

)
f(0) +

1

τ

( 1

s+ 1
τ

)
F (s). (A5)

For the first term, we can take the inverse Laplace transform
directly, as we reconize the following form20

L{eαt}=
1

s−α
. (A6)

For the second term, because f(t) is unknown, the solution
is written as a convolution. The final solution is

h(t) = f(0)e−t/τ +
1

τ

t∫
0

f(t−u)e−u/τdu. (A7)

A2 Discretized solution25

The transfer function of the oxygen optode is expressed as

g(t) =
1

τ
e−t/τ , (A8)

and the Laplace transform of this expression is

G(s) = L{g(t)}= (1 + sτ)−1. (A9)

In order to convert this continuous-time domain (analog) fil- 30

ter to a discrete-time domain (digital) filter, we apply a bi-
linear transform. The bilinear transform is a first order ap-
proximation of making the change of variables z = es∆t (or
s= 1

∆t ln(z)), where ∆t is the time between measurements.
This approximation is made by taking the first term in the 35

Taylor series of the change of variables

s=
2

∆t

1− z−1

1 + z−1
. (A10)

Substituting the above into eq. A9 yields

G(z) =G(s)
∣∣∣
s= 2

∆t
1−z−1

1+z−1

(A11)

=
(

1 +
2τ

∆t

1− z−1

1 + z−1

)−1

, (A12) 40

which can be re-arranged to

G(z) =
(1 + 2τ/∆t)−1(1 + z−1)

1 + 1−2τ/∆t
1+2τ/∆tz

−1
. (A13)

Finally, substituting in b= (1+2τ/∆t) and a= 1−2b yields

G(z) =
b(1 + z−1)

1− az−1
. (A14) 45

The inverse Z-transform (i.e. discrete inverse Laplace trans-
form) of eq. A14 yields eq. 4.

Appendix B: Discretized optode filter

Recall filter differential equation

h(t) = f(t)− τ ∂h
∂t
. (B1) 50

Discretizing the above equation using finite difference

hn = fn− τ
hn−hn−1

∆t
, (B2)

then re-arranging and factoring out hn, yields

hn(1 + τ∆τ) = fn +
τ

∆t
hn−1. (B3)

The solution 55

hn =
( ∆t

τ + ∆t

)
fn +

( τ

τ + ∆t

)
hn−1 (B4)

can be derived with some simple algebra. Defining α=
∆t

τ+∆t yields

hn =
( ∆t

τ + ∆t

)
fn +

(τ + ∆t

τ + ∆t
− ∆t

τ + ∆t

)
hn−1 (B5)

hn = αfn + (1−α)hn−1. (B6) 60

https://github.com/MEMG/optode-response-time
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Appendix C: Error propagation

Adding error into the inverse filtering solution (eq. 5) as an
addition to the observations yields

fn + fn−1

2
=

1

2b
(hn− ahn−1) +

1

2b
(εn− aεn−1) (C1)

where εn is the error at timestep n. Our goals is to obtain the5

coefficient in front of the error term. Assuming that the error
ε is i.i.d., the variance of this additional term is as follows

σ2
f =

1 + a2

4b2
σ2
ε . (C2)

Replacing a= 1− 2b and re-arranging yields

1 + a2

4b2
=

1

2
b−2− b−1 + 1. (C3)10

Replacing b−1 = 1 + 2 τ
∆t , and simplifying we obtain

1

2
b−2− b−1 + 1 =

1

2

(
1 + 4

τ2

∆t2

)
. (C4)

The variance of the error will by multiplied by the above
factor. The standard deviation therefore is amplified by its
square root15

σf
σε

=

√
1

2

(
1 + 4

τ2

∆t2

)
. (C5)

The above gives the general result. For our error analysis,
τ = 75 s and ∆t= 33 s, we obtain an amplification of√

1

2

(
1 + 4

τ2

∆t2

)
=

√
1

2

(
1 + 4

(75)2

(33)2

)
(C6)

≈ 3.3. (C7)20

The above does not account for any smoothing, and is con-
sistent with our numerical results.
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