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Abstract. It is expected that information on the source, reac-
tion pathway, and reaction kinetics of an organic compound
can be obtained from its position-specific isotope compo-
sitions or intramolecular isotope distribution (Intra-ID). To
retrieve the information, we could use its predicted equi-5

librium Intra-ID as a reference for understanding the ob-
served Intra-IDs. Historically, observed, apparently close-to-
equilibrium carbon Intra-ID has prompted an open debate
on the nature of biosystems and specifically the pervasive-
ness of reversible biochemical reactions. Much of the debate10

remains unresolved, and the discussion has not clearly dis-
tinguished between two states of equilibrium: (1) the equi-
librium among the corresponding bond-breaking and bond-
forming positions in reactant and product and (2) the equi-
librium among all carbon positions within a compound. For15

an organic molecule with multiple carbon positions, equilib-
rium carbon Intra-ID can be attained only when a specific
reaction is in equilibrium and the sources of each position
are also in equilibrium with each other. An observed Intra-ID
provides limited information on if the sources and pathways20

are both unconstrained. Here, we elaborate on this insight us-
ing examples of the observed Intra-IDs of hydroxyl-bearing
minerals, N2O, and acetic acid. Research effort aiming to cal-
ibrate position-specific equilibrium and kinetic isotope frac-
tionation factors for defined processes will help to interpret25

observed Intra-IDs of a compound accurately and fully.

1 Introduction

Biosystems are dominated by a series of nonequilibrium ki-
netic processes. The understanding of biosystems is rooted
in the study of the biochemical reaction mechanism. How- 30

ever, a majority of the biochemical reaction mechanisms re-
main elusive since they are difficult to isolate and control in
laboratory experiments. Stable isotope effects can be used
to examine the transition state structure and reversibility of
an elementary reaction. Therefore, they can provide infor- 35

mation on reaction mechanisms (Bigeleisen, 1949; Galimov,
2006; Bennet, 2012). However, a big organic molecule pro-
duced by an organism is the result of complex biochemical
reactions that involve multiple kinetic isotope effects (KIEs)
and equilibrium isotope effects (EIEs). KIE and EIE refer 40

to the two intrinsic parameters for interpreting the observed
isotope fractionations (Bao et al., 2015). According to the
transition state theory (Eyring, 1935a, b), the KIE of an ele-
mentary step can be defined as the equilibrium fractionation
factor between the transition state and reactant (Jones and 45

Urbauer, 1991; Bao et al., 2015):

KIE= βTS/βR, (1)

where the β factor denotes the reduced partition function
ratio of the transition state (TS) or reactant (R). A β fac-
tor is the equilibrium isotope fractionation factor between 50

an atom in a specific bond environment and its atomic form
that can be predicted theoretically (Urey, 1947; Bigeleisen
and Goeppert-Mayer, 1947). For a unidirectional reaction,
the KIE of a reaction can also be defined as
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KIE=h k/lk, (2)

where k denotes the reaction rate constant of heavy (h) or
light (l) isotopes. To adapt to the convention of geochemists,
we define KIE this way so that the normal KIE is less than
1.000, which is the opposite of what Bigeleisen (1949) ini-5

tially defined.
EIE is the isotope fractionation among reactant and prod-

uct, which is determined by the bonding environment of the
target position or compound:

EIE= βP/βR, (3)10

where P denotes the product of a target reaction. It can also
be defined as

EIE=h K/lK, (4)

where K denotes the equilibrium constant of a target reac-
tion. At equilibrium, the EIE of a reaction equals the ra-15

tio of forward reaction KIEf and backward reaction KIEb
(EIE= KIEf/KIEb; Bao et al., 2016).

An organic compound usually contains multiple positions
of the same element, such as carbon, hydrogen, oxygen,
or nitrogen. Compound-specific isotope composition refers20

to the bulk isotope composition of an element in an in-
dividual compound. Position-specific isotope composition
refers to the isotope composition of an element at struc-
turally distinct atomic positions within an individual com-
pound. Information on sources, reaction pathways, and re-25

action kinetics of an organic molecule is pertinent to each
position. The compound-specific isotope composition aver-
ages isotope compositions of all different positions of the
same element in a compound, where information contained
in position-specific isotope compositions could be lost (El-30

sner, 2010; Piasecki et al., 2018).
We named position-specific isotope compositions in a

compound intramolecular isotope distribution or Intra-ID
(He et al., 2018, 2020). Carbon Intra-ID in organic com-
pounds has invoked a long-standing debate about its fun-35

damental controls. When faced with the observed diverse
Intra-IDs, earlier researchers inferred that the patterns “must
be the expression of some logical order” (Schmidt, 2003),
which is controlled by the EIE and KIE of biochemical re-
actions (e.g., Hayes, 2001, 2004; Galimov, 2009; Schmidt40

et al., 2015; Eiler et al., 2018; Gilbert et al., 2019). The
Intra-ID was described as being in a “thermodynamic or-
der” or “statistical isotope pattern” when each position in
a molecule reaches equilibrium with each other (Galimov,
1985; Schmidt et al., 2015). Here, we name it equilibrium45

Intra-ID. The nonequilibrium state is expected to be a norm
for a biochemical system since life is a dissipative system. At
equilibrium, the difference in isotope composition between
two positions depends on temperature only, and therefore the

deviation of an observed Intra-ID from its predicted equilib- 50

rium state has been considered as an ideal reference for in-
terpreting position-specific isotope compositions (Galimov,
1985; Hayes, 2001, 2004; He et al., 2018, 2020; Rustad,
2009; Piasecki et al., 2016).

It has been reported that different carbon fragments of 55

chlorophyll, different carbon positions in acetoin, malonic
acid, citric acid, and purine alkaloid have 13β−δ13C corre-
lation with regression coefficients in the range of 0.33–0.51
(Galimov, 1985, 2003, 2004, 2006, and references therein).
Such a 13β−δ13C correlation is written as δ13C− δ13Cave = 60

χ (β −βave)×103, where χ is the regression coefficient. Gal-
imov interpreted such observed intramolecular 13β−δ13C
correlations as “equilibrium-like” Intra-IDs produced from
sets of reversible biochemical reactions at steady states
which are not far from equilibrium. The 13β−δ13C corre- 65

lations were used as supporting evidence that the theorem
of minimum entropy production can be applied in biochem-
ical systems. However, other groups interpreted the fair-
to-good correlation as fortuitous regardless of the presence
or absence of complete reversibility of enzymatic reactions 70

(Buchachenko, 2003, 2007; Schmidt, 2003; Schmidt et al.,
2015). In contrast to these reported observed equilibrium-
like Intra-IDs, measured position-specific δ13C values are
poorly correlated with their predicted 13β values in organic
molecules like glucose, nicotine, and tropine (Rossmann 75

et al., 1991; Gleixner and Schmidt, 1997; Robins et al.,
2016; Romek et al., 2016). Such an observed nonequilib-
rium Intra-ID has been termed a “non-statistical isotope pat-
tern” (Rossmann et al., 1991; Gleixner and Schmidt, 1997;
Schmidt, 2003; Robins et al., 2016; Romek et al., 2016). 80

Buchachenko (2003, 2007) and Schmidt et al. (2004, 2015)
argued that the observed 13β−δ13C correlations are a ran-
dom Intra-ID that only “simulates” the thermodynamic state,
which cannot be used as evidence for biochemical reac-
tions favoring an equilibrium state. The 13β−δ13C correla- 85

tion used an unweighted arithmetic mean isotope compo-
sition of all the components as the reference of a system.
Strictly, only the mass-weighted isotope composition of all
components should represent that of a system (Hayes, 2001).
In addition, arbitrarily assigning a reference is not mathemat- 90

ically rigorous (He et al., 2018). Therefore, a 13β−δ13C cor-
relation cannot be used as supporting evidence for Galimov’s
hypothesis that the theorem of minimum entropy production
applies in biochemical systems. Nevertheless, the invalidity
of 13β−δ13C correlations cannot fully quell the controversy 95

on the nature of biosystems.
It should be noted that the debate on isotope equilibrium

in biosystems among Galimov, Buchachenko, and Schmidt
(and their colleagues) did not clearly distinguish between two
states of equilibrium: (1) intermolecular isotope equilibrium 100

among the corresponding bond-breaking and bond-forming
positions in reactant and product in a defined process and
(2) intramolecular isotope equilibrium among all carbon po-
sitions in a defined molecule. Such a difference might also
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be overlooked when discussing the Intra-ID or the site pref-
erence (SP) value, i.e., the isotope composition difference
among two positions. A fully reversible reaction is neces-
sary for isotope equilibrium between corresponding active
positions or functional groups. Similarly, a fully reversible5

intramolecular exchange mechanism must exist if different
positions within a compound are to attain equilibrium. How-
ever, an overwhelming majority of biochemical reactions,
especially in cases involving large organic molecules, have
very few intramolecular exchange pathways. Here, we pro-10

pose that the utility of parameters like the SP value in or-
ganic molecules could be limited before we obtain sufficient
details on the source and pathway, as well as on the KIE
and EIE of biochemical reactions. To elaborate this point,
we present simple cases starting from hydroxyl-bearing min-15

erals, in which oxygen occupies more than one position, and
going on to the case of N2O in which unidirectional and fully
reversible reactions can produce similar nitrogen Intra-IDs if
there exists a symmetric precursor. After presenting the two
inorganic cases, we move to examine measured carbon Intra-20

IDs from the literature of a simple organic molecule, acetic
acid, in which Intra-IDs are pathway-dependent.

2 Intramolecular isotope distribution

2.1 Intracrystalline oxygen isotope difference – a
rarely effective single mineral geothermometer25

The same element, e.g., carbon, occupying different posi-
tions in a compound is not a unique feature of organic
compounds. Some oxygen-bearing minerals have two or
more position-specific oxygens, where the oxygen atoms oc-
cupy different positions in a mineral structure and have dif-30

ferent chemical properties. Their isotope composition dif-
ference has been proposed as a potential single-mineral
geothermometer. For example, it has been proposed that wa-
ter temperature could be reconstructed from intracrystalline
oxygen isotope difference in single-mineral copper sulfate35

pentahydrate (CuSO4
q5H2O; Götz et al., 1975), kaolinite

(Al2Si2O5(OH)4), illite (K0.65Al2.0(Al0.65Si3.35O10)(OH)2;
Bechtel and Hoernes, 1990), or alunite (KAl3(SO4)2(OH)6;
Arehart et al., 1992). By analyzing the isotope composition
difference in different oxygens in the same minerals, the40

early researchers attempted to reconstruct the precipitation
temperatures.

To be a single-mineral geothermometer, different oxygen
sites must have attained equilibrium within the single min-
eral, which can be achieved when different positions in a45

compound have the same source or initially different sources
are in equilibrium with each other. Take alunite precipitation
from a solution as an example. Alunite has sulfate and hy-
droxyl oxygen positions in its structure that precipitate from
sulfate and hydroxyl ions in the solution (Fig. 1). Alunite50

with an equilibrium Intra-ID can be produced from an equi-

librium precipitation process only if both the oxygen iso-
tope compositions of sulfate and hydroxyl ions in the so-
lution equilibrated with the same ambient water oxygen at
the same temperature. However, the oxygen of sulfate does 55

not readily exchange with that of water; the isotope equili-
bration time for SO2−

4 and ambient water at Earth surface
conditions is greater than 106 to 107 years (Lloyd, 1968;
Turchyn and Schrag, 2004; Turchyn et al., 2010), while the
oxygen in OH− can equilibrate with ambient water instantly 60

and can readily exchange during alunite’s later burial and dia-
genetic processes. Thus, the two oxygen positions in alunite
can come from different sources at different temperatures,
rendering alunite a flawed single-mineral geothermometer.
The same is true for gypsum (CaSO4

q2H2O) in which sul- 65

fate oxygen is not in equilibrium with formation water and
the crystallization water ( q2H2O) oxygen may be in equilib-
rium with a different type of water.

The use of a single-mineral geothermometer requires that
oxygens at two different sites have attained equilibrium by 70

exchanging with each other or with the same source oxygen
(e.g., water). Unfortunately, this requirement is difficult to
meet for most minerals. It is, therefore, not surprising that
few successful single-mineral geothermometers exist if any
at all. 75

2.2 Equilibrium-like Intra-ID produced by a kinetic
process

For a compound with two different positions of the same el-
ement, a simple way to describe its observed Intra-ID is to
report the difference between the two isotope compositions, 80

i.e., the site preference (SP) value. The concept of SP orig-
inated from the study of nitrous oxide (βNαNO), which is
defined as the nitrogen isotope composition difference be-
tween the central nitrogen (δ15Nα) and the terminal nitrogen
(δ15Nβ) (Yoshida and Toyoda, 2000). The predicted equilib- 85

rium SP value at room temperature in N2O is 45 ‰ (Yung
and Miller, 1997; Wang et al., 2004; Cao and Liu, 2012). Al-
though most observations fit the equilibrium prediction that
15N preferentially enriches in the αN position by 30 ‰–40 ‰
(Yoshida and Toyoda, 2000; Toyoda et al., 2002; Sutka et al., 90

2006), negative SP values have been observed nevertheless
(Yamulki et al., 2001; Sutka et al., 2003).

In previous literature, the difference in SP values was ex-
plained by the difference in synthetic pathways associated
with symmetrical or asymmetrical precursors (Schmidt et al., 95

2004; Toyoda et al., 2005; Sutka et al., 2006). If the precur-
sor of N2O is symmetrical (e.g., –ONNO–, Fig. 2 left), the
two nitrogens in the precursor are positionally equivalent;
any prior isotope composition and fractionation difference
would be erased by the symmetrical structures of the precur- 100

sor. When producing N2O from a symmetrical precursor, the
βN undergoes N–O bond cleavage and therefore has a pri-
mary isotope effect which is large, whereas the αN has only
a secondary isotope effect which is negligible (close to 1.000;
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Figure 1. Sketch of alunite precipitation from water. The alunite could be a single-mineral geothermometer if three conditions are all fully
satisfied: (1) H2OA = H2OB, (2) T1 = T2 = T3, and (3) all the four reactions are fully reversible and attain equilibrium. White, red, yellow,
pink, and purple spheres represent hydrogen, oxygen, sulfur, aluminum, and potassium atoms, respectively.

Figure 2. Proposed mechanisms for N2O formation from symmet-
rical and asymmetrical precursors (modified from Schmidt et al.,
2004). Light gray, red, blue, and purple spheres represent hydrogen,
oxygen, nitrogen, and iron atoms, respectively.

Bigeleisen and Wolfsberg, 1958). Therefore, 15N depletion is
expected only on the βN of N2O produced from a symmet-
rical precursor and is expected to have a positive SP value.
If the precursor is asymmetrical (e.g., –NH(OH)NO, Fig. 2
right), the two nitrogens in the precursor are not positionally5

equivalent. It is assumed that the two nitrogens in the pre-
cursor were produced from different EIEs or KIEs because
they went through different reaction pathways and may even
have different nitrogen sources. Therefore, during the forma-
tion of N2O from an asymmetrical precursor, the difference10

in the position-specific δ15N values of the precursors and the
difference in isotope fractionation during the formation pro-
cesses will be recorded in the SP value of N2O. Such N2O
can have either SP> 0 or SP< 0.

Nevertheless, the two previously proposed mechanisms15

cannot distinguish N2O with SP> 0 produced from the two
mechanisms. In addition, for N2O produced from a sym-
metric precursor, the SP value cannot provide information
on the reaction kinetics, since both fully reversible and uni-

directional reactions can produce similar observed SP val- 20

ues. When we state that a compound displays an equilib-
rium Intra-ID, the underlying assumption is that there ex-
ists a mechanism for different positions to exchange iso-
topes intramolecularly. However, not all observed apparent
equilibrium or equilibrium-like Intra-IDs are produced by 25

an intramolecular equilibrium process. For reactions like –
ONNO– ↔ N2O, two types of processes could produce
SP> 0. First, the N2O formation reaction is fully reversible
and attains an equilibrium. When fully reversible, the two ni-
trogens in N2O are scrambled when it forms the symmetrical 30

precursor through the reverse reaction. At equilibrium, the
terminal nitrogen in a weaker-bond environment is expected
to be depleted in heavier isotopes than the central nitrogen
by 45 ‰ at surface temperature. Second, the N2O formation
reaction is unidirectional. When unidirectional, only the N– 35

O bond-breaking position (βN) undergoes a KIE. Thus, the
SP value is approximately equal to the KIE value. In this
scenario, if there is a normal KIE, the terminal nitrogen is
expected to be depleted in heavier isotopes than the central
nitrogen by the extent of the KIE value. Such an observed 40

Intra-ID would be similar to the predicted equilibrium Intra-
ID, but it is produced by isotope depletion on the unidirec-
tional bond-breaking process. No intramolecular exchange is
involved. Therefore, even if the N2O produced by the unidi-
rectional process has SP≈ 45 ‰, it is not due to a close-to- 45

equilibrium intramolecular isotope exchange. Therefore, it is
necessary to distinguish between the mechanisms and reac-
tion kinetics that can produce an observed Intra-ID.

Here we see that both fully reversible and unidirectional
processes can result in a similar SP value, but the underlying 50

mechanisms are entirely different. Furthermore, a positive SP
value can also be achieved through a combination of nitro-
gen sources and isotope fractionations from an asymmetrical
precursor. Thus, without knowing the underlying process, we
cannot interpret an observed Intra-ID or SP value uniquely. 55
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2.3 Position-specific isotope fractionations between
reactant and product

As illustrated above, the observed Intra-ID of a compound
can be used to gauge the degree of internal thermodynamic
equilibrium only if we can determine the mechanisms in-5

volved in isotope fractionation. It does not mean, however,
that position-specific isotope composition is useless. Based
on the predicted equilibrium Intra-ID, a predicted isotope
fractionation factor (α) of corresponding positions between
the reactant and product in a process can help to evaluate the10

thermodynamic state of a system and to decipher reaction
pathways. In this section, we use a simple organic molecule,
acetic acid (CH3COOH), and its measured Intra-IDs from the
literatureCE1 as examples to illustrate how position-specific
isotope fractionation occurs between reactant and product.15

The relative isotope enrichment between the carboxyl and
methyl carbon in acetic acid is defined as ln13αcarb-met =

ln(13Rcarb/
13Rmet). 13R(= 13C/12C) denotes the carbon iso-

tope molar abundance ratio in a position. Our calculated
equilibrium Intra-ID of acetic acid has the carboxyl car-20

bon being 47.3 ‰ heavier than the methyl carbon at 25 ◦C
(ln13αcarb−met(eq) = 47.3‰; He et al., 2020). The measured
δ13Cmet values from literature can be lower, higher, or ap-
proximately equal to the δ13Ccarb values for acetic acids from
biological, artificial, or hydrous pyrolysis samples (Table 1).25

The position-specific δ13C values of biological, artificial, or
hydrous-pyrolysis-produced acetic acid are largely overlap-
ping in δ13Cmet−δ

13Ccarb space. For the majority of biolog-
ical acetic acids, the δ13Ccarb values are several per mille
higher than the δ13Cmet values (Fig. 3 top; ln13αcarb−met =30

5.1± 4.8‰, n= 29), with two cases of ∼ 18 ‰ higher and
one case of −2.2 ‰ lower in δ13Ccarb values. It is ex-
pected that the metabolic and catabolic pathways and carbon
sources are limited for most natural acetic acid. Therefore,
the ln13αcarb-met value of 5.1± 4.8 ‰ could be characteris-35

tic but not necessarily exclusive for biologically produced
acetic acid. Artificial acetic acids have a very large range of
ln13αcarb-met values from−30.2 ‰ to 24.2 ‰ (Fig. 3 middle;
7.3± 14.3 ‰, n= 24). Biological and hydrous-pyrolysis-
produced acetic acids do not have such negative ln13αcarb-met40

values.
Except for the abovementioned features, the produc-

tion of artificial and biological acetic acid has too many
unconstrained parameters. Thus, our discussion will fo-
cus on the acetic acid derived from hydrous pyrolysis of45

oil-prone source rocks. The acetic acids produced from
the hydrous pyrolysis of oil-prone source rocks have a
ln13αcarb-met value of 18.3± 7.7 ‰ (n= 22; Fig. 3 bot-
tom). At 310–350 ◦C, ln13αcarb-met values of ∼ 30 ‰ from
Mahogany shale or Black shale with a proposed mecha-50

nism of unidirectional pyrolysis of precursor acid forms
(R−CH2COOH↔ R+CH3COOH; Fig. 4; Dias et al.,
2002b). If we consider only the primary KIE between the
methylene carbon in R–*CH2COOH and the methyl carbon

in acetic acid (*CH3COOH), it is expected that a unidirec- 55

tional process would lead to a 13C depletion only at the
methyl carbon position in acetic acid. The observed Intra-
ID of the produced acetic acid should equal the δ13C value
difference between the precursors minus the primary KIE
value. The primary KIE value is expected to be more nega- 60

tive than the predicted equilibrium isotope fractionation fac-
tor, which is −14 ‰ (He et al., 2020). Thus, as long as the
position-specific δ13C value difference between the methy-
lene and carboxyl carbon in R−CH2COOH is greater than
−14 ‰, the acetic acid produced from unidirectional pyrol- 65

ysis of such precursor acid should have a carboxyl carbon
with a higher δ13C value than that of the methyl carbon.
If the carboxyl carbon in the precursor acid has a higher
δ13C value than that of the methylene carbon, the pyroly-
sis process can easily produce acetic acid with an apparent 70

ln13αcarb-met value close to the predicted equilibrium Intra-
ID. Such apparently “equilibrium-like” Intra-ID does not in-
volve intramolecular exchange, but it is the product of unidi-
rectional precursor acid pyrolysis.

3 Implications 75

Life sustains itself by feeding on negative entropy. Persis-
tent efforts are devoted to describing living systems by rigor-
ous mathematics. Boltzmann first considered living organ-
isms from a thermodynamic perspective, and Schrödinger
later applied equilibrium thermodynamics to living systems 80

(Popovic, 2018). Those attempts were not pursued further,
since, as we all know today, a living system is an open system
that is not in thermodynamic equilibrium, i.e., a dissipative
system. The establishment of nonequilibrium thermodynam-
ics by Prigogine and his coworkers has guided researchers 85

to the theorem of minimum entropy production in biological
systems (Prigogine and Wiame, 1946). The theorem of mini-
mum entropy production in biological systems states that al-
though a biosystem has increasing entropy, it is usually stable
in a steady state. If the system is displaced from the steady 90

state, it tends to return to its original state since the entropy is
minimal at this state. Since then, efforts in applying nonequi-
librium thermodynamics to living systems have been con-
tinued with mixed success (Stoward, 1962; Schneider and
Kay, 1994; Hayflick, 2007; Demirel, 2010; Barbacci et al., 95

2015; Gerber et al., 2016). The theorem of minimum entropy
production applies only to linear thermodynamic systems.
Therefore, it is necessary to demonstrate that the magnitude
of the reaction rate on the scale of interest in a living system
is linearly dependent on the driving force responsible for the 100

reaction system. It is reasonable to assume that a complex
interacting and constantly evolving nonlinear system is con-
structed by a series of synergistic reactions and there should
exist local linearity, a local steady state, and even local equi-
librium (Galimov, 2006). 105
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Local nonequilibrium of biochemical systems is poten-
tially significant for the increasing complexity and ordering
in the structure of life (Prigogine and Wiame, 1946; Galimov,
2006). Such a system should consist of a set of reversible re-
actions but not necessarily equilibrium reactions conjugated 5

with energy supplies that are maintained in a steady state
not far from equilibrium. Galimov (1985, 2004, 2006) ar-
gued that such a close-to-equilibrium steady state should be
expressed as a tendency toward equilibrium inter- and in-
tramolecular stable isotope distributions, i.e., a linear inter- 10

and intramolecular 13β−δ13C correlation with a regression
coefficient smaller than but close to 1. In addition, such an
equilibrium-like Intra-ID in organic molecules was proposed
as a “special feature of biological systems”, which could be
used as a criterion to identify biologically produced extrater- 15

restrial organic molecules (Galimov, 2003). As we have il-
lustrated above, the observed Intra-ID in organic molecules
is the product of a set of equilibrium or nonequilibrium pro-
cesses as well as their source isotope compositions. An ob-
served Intra-ID itself cannot be used as conclusive evidence 20

for the thermodynamic state of a system. Therefore, even if a
compound does have a linear intramolecular 13β−δ13C cor-
relation with a slope of 1, it does not constitute supporting
evidence for the existence of an equilibrium state among bio-
chemical reactions in organisms. To apply nonequilibrium 25

thermodynamics to living systems, further solid evidence is
needed.

A simple comparison of position-specific isotope compo-
sitions in one sample, e.g., ln13αcarb-met values of one acetic
acid sample, offers little information on the reaction mecha- 30

nisms and reaction kinetics of the reaction it involves. Al-
though the position-specific atoms are the same element,
without an exchange mechanism, they behave independently
as different elements. It would be helpful if we could con-
sider the position-specific atoms independently. The iso- 35

tope fractionation relationship of different elements in the
same compound, i.e., (αA− 1)/(αB− 1), lnαA/ lnαB, or
1δA/1δB, (named the bonded isotope effect; He and Bao,
2019), is often used to characterize a reaction pathway, for in-
stance, δD and δ18O in H2O (Dansgaard, 1964; Craig, 1961), 40

δ15N and δ18O in NO−3 (Casciotti and McIlvin, 2007; Wankel
et al., 2009), δ34S and δ18O in SO2−

4 (Antler et al., 2013), or
δ13C and δD in organic compounds (Elsner, 2010; Palau et
al., 2017). The isotope composition difference in different el-
ements is only useful if the isotope fractionation relationships 45

are considered and their isotope compositions are normal-
ized; e.g., δ(15,18)= (δ15N−δ15Nm)−(

15α−1/18α−1)×
(δ18O−δ18Om), where δ15Nm and δ18Om are the average iso-
tope composition in a given ocean water column (Sigman et
al., 2005). The normalization procedure is necessary because 50

the source isotope compositions can affect the values of the
product. Similarly, if the same element at different positions
have different sources, their source isotope composition dif-
ference must also be considered. Position-specific isotope re-
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Figure 3. ln13αcarb-met values of biological, artificial, and hydrous-pyrolysis-produced acetic acid.

Figure 4. Acetic acid produced from pyrolysis of precursor acid
forms has an Intra-ID that is depleted in 13C in the methyl position.
Dark gray, light gray, and red spheres represent carbon, hydrogen,
and oxygen atoms, respectively.

search can build upon our understanding of the bonded iso-
tope effect.

4 Conclusions

An organic compound usually has an element, e.g., carbon,
at different positions and therefore has an Intra-ID. The de-5

viation of an observed Intra-ID from its equilibrium state has
been used to evaluate the thermodynamic state of a system.
Our analysis of oxygen-bearing minerals, N2O, and acetic
acids shows that both isotope sources and all reaction pro-
cesses need to be in equilibrium to reach an intramolecular10

equilibrium state. However, such a condition is rarely sat-
isfied. When different positions of the same element can-
not exchange with each other, these different positions be-
have independently like different elements. Observed Intra-
ID that is apparently similar to the equilibrium one can also15

be produced from a combination of different sources and uni-
directional processes. Thus, an observed Intra-ID itself is not
conclusive without adequate information on sources and re-
action kinetics. Compared to position-specific isotope com-
positions, position-specific isotope fractionation of a defined20

process is more informative for identifying bond-breaking

and bond-forming positions of a large molecule, for predict-
ing its transition state structure, for evaluating the reversibil-
ity of a biochemical process, and for determining and qual-
ifying a process in a complex system. All in all, an under- 25

standing of a reaction process at the molecular level will al-
ways be the first step required for the later sound and wide
application of stable isotope composition.
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