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Abstract. It is expected that information on the source, reaction pathway, and kinetics of an organic compound can be obtained 

from its position-specific isotope compositions or intramolecular isotope distribution (Intra-ID). To retrieve the information, 10 

we could use its equilibrium Intra-ID as a reference for understanding the observed Intra-IDs. Historically, observed, 

apparently close-to-equilibrium carbon Intra-ID had prompted an open debate on the nature of biosystem and specifically the 

pervasiveness of reversible biochemical reactions. Much of the debates remain unresolved, and the discussion has not clearly 

distinguished two states of equilibrium: 1) the equilibrium among the bond-breaking/forming positions in reactant and product, 

and 2) the equilibrium among all carbon positions in a compound. For an organic molecule with multiple carbon positions, 15 

equilibrium carbon Intra-ID can be attained only when a specific reaction is in equilibrium and the sources of each position 

are also in equilibrium with each other. An Intra-ID provides limited information if the sources and pathways are both 

unconstrained. Here, we elaborate on this insight using examples of the Intra-IDs of hydroxyl-bearing minerals, N2O, and 

acetic acid. Research effort aiming at calibrating position-specific equilibrium and kinetic isotope fractionation factors for 

defined processes will help to interpret Intra-IDs of a compound accurately and fully. 20 

1 Introduction 

Biosystems are dominated by a series of non-equilibrium kinetic processes. The understanding of biosystems roots in the study 

of the biochemical reaction mechanism. However, a majority of the biochemical reaction mechanisms remains elusive since 

they are difficult to be isolated and to be controlled in laboratory experiments. Stable isotope effect can be used to examine 

the transition-state structure and reversibility of an elementary reaction, therefore, it can provide information on reaction 25 

mechanisms (Bigeleisen, 1949; Galimov, 2006; Bennet, 2012). However, a big organic molecule produced by an organism is 

the result of complex biochemical reactions that involve multiple kinetic and equilibrium isotope effects (KIE and EIE). KIE 

and EIE refer to the two intrinsic parameters for interpreting the observed isotope fractionations (Bao et al., 2015). The KIE 

of an elementary step can be defined as the equilibrium fractionation factor between transition-state and reactant (Jones and 

https://doi.org/10.5194/bg-2020-120
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

Urbauer, 1991). To adapt to the convention of geochemists, we define KIE this way so that the normal KIE is less than 1.000, 30 

which is the opposite of what Bigeleisen (Bigeleisen, 1949) initially defined. 

An organic compound usually contains multiple positions of the same element, such as carbon, hydrogen, oxygen, or nitrogen. 

Compound-specific isotope composition refers to the bulk isotope composition of an element in an individual compound. 

Position-specific isotope composition refers to the isotope composition of an element at a specific position of an individual 

compound. Information on sources, reaction pathways, and reaction kinetics of an organic molecule are pertinent to each 35 

position. The compound-specific isotope composition averages isotope compositions of all different positions in a compound, 

where information contained in position-specific isotope compositions could be lost (Elsner, 2010; Piasecki et al., 2018). 

We name position-specific isotope compositions in a compound intramolecular isotope distribution or Intra-ID. The most 

common Intra-ID in organic compounds is carbon Intra-ID. When facing with the observed diverse Intra-IDs, earlier 

researchers inferred that the patterns “must be the expression of some logical order” (Schmidt, 2003), which is controlled by 40 

EIE and KIE of biochemical reactions (e.g. Hayes, 2004; Galimov, 2009; Schmidt et al., 2015; Eiler et al., 2018; Gilbert et al., 

2019). The Intra-ID was termed in thermodynamic order or statistical isotope pattern when each position in a molecule reaches 

equilibrium with each other (Galimov, 1985; Schmidt et al., 2015). Here, we name it equilibrium Intra-ID. Such a state can be 

predicted theoretically, i.e. using the reduced partition function ratio (RPFR or β factor) originally defined by Bigeleisen and 

Mayer (1947). The non-equilibrium state is expected to be a norm for a biochemical system since life is a dissipative system. 45 

An equilibrium state determined by thermodynamic properties is a constant state and therefore has been considered as an ideal 

reference state to compare to (Galimov, 1985; Hayes, 2004). 

It has been reported that different carbon fragments of chlorophyll, different carbon positions in acetoin, malonic acid, citric 

acid, and purine alkaloid have 13β-δ13C correlation with regression coefficients in the range of 0.33-0.51 (Galimov, 2003, 2004, 

and references therein). Galimov (1985, 2004, 2006) interpreted such observed intramolecular 13β-δ13C correlations as 50 

equilibrium-like Intra-IDs produced from sets of reversible biochemical reactions at steady-states which are not far from 

equilibrium. However, other groups interpreted the fair-to-good correlation as fortuitous regardless of the presence or absence 

of complete reversibility of enzymatic reactions (Buchachenko, 2003, 2007; Schmidt, 2003; Schmidt et al., 2015). In contrary 

to these reported equilibrium-like Intra-IDs, measured position-specific δ13C values correlate loosely with their predicted 13β 

values in organic molecules like glucose, nicotine, and tropine are also observed (Rossmann et al., 1991; Gleixner and Schmidt, 55 

1997; Robins et al., 2016; Romek et al., 2016). Such non-equilibrium Intra-ID has been termed non-statistical isotope pattern 

(Rossmann et al., 1991; Gleixner and Schmidt, 1997; Schmidt, 2003; Robins et al., 2016; Romek et al., 2016). Buchachenko 

and Schmidt et al. argued that the observed 13β-δ13C correlations are random Intra-ID that only “simulates” the thermodynamic 

state, which cannot be used as evidence for biochemical reactions favoring equilibrium state (Buchachenko, 2003, 2007; 

Schmidt et al., 2004; Schmidt et al., 2015). We have shown that these 13β-δ13C correlations implicitly normalized the 13β and 60 

δ13C values using the averages of a given system, which is not mathematically rigorous and is misleading (He et al., 2018). 

However, the invalidity of 13β-δ13C correlations cannot fully quell the controversy on the nature of biosystem. 
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It should be noted that the debate on isotope equilibrium in biosystems between Galimov, Buchachenko, and Schmidt (and 

their colleagues) did not clearly distinguish two states of equilibrium: 1) intermolecular isotope equilibrium among the 

corresponding bond-breaking/forming positions in reactant and product in a defined process, and 2) intramolecular isotope 65 

equilibrium among all carbon positions in a defined molecule. Such a difference might also be overlooked when discussing 

the Intra-ID or the site preference (SP) value, i.e. the isotope composition difference among two positions. A fully reversible 

reaction is necessary for isotope equilibrium between corresponding active positions or functional groups. Similarly, a fully 

reversible intramolecular exchange mechanism must exist if different positions in a compound are to attain equilibrium. 

However, the overwhelming majority of biochemical reactions, especially in cases involving large organic molecules, have 70 

very few intramolecular exchange pathways. Here, in contrast to existing optimism, we propose that the utility of parameters 

like SP value in organic molecules could be limited before we obtain sufficient details on the source, pathway, as well as KIE 

and EIE of biochemical reactions. To elaborate this point, we present simple cases starting from hydroxyl-bearing minerals in 

which oxygen occupies more than one position, to the case of N2O in which uni-directional and fully reversible reactions can 

produce similar nitrogen Intra-IDs if there exists a symmetric precursor. After presenting the two inorganic cases, we move to 75 

examine measured carbon Intra-IDs from the literature of a simple organic molecule, acetic acid, in which Intra-IDs are 

pathway dependent. 

2 Intramolecular isotope distribution 

2.1 Intracrystalline oxygen isotope difference – a failed single mineral geothermometer 

The same element, e.g. carbon, occupies different positions in a compound is not a unique feature of organic compounds. Some 80 

oxygen-bearing minerals have two or more position-specific oxygens. Their isotope composition difference was proposed as 

a potential single mineral geothermometer. For example, it had been proposed that water temperature could be reconstructed 

from intracrystalline oxygen isotope difference of single mineral copper sulfate pentahydrate (CuSO4·5H2O) (Götz et al., 1975), 

kaolinite (Al2Si2O5(OH)4), illite (K0.65Al2.0(Al0.65Si3.35O10)(OH)2) (Bechtel and Hoernes, 1990), or alunite 

(KAl3(SO4)2(OH)6)(Arehart et al., 1992). To be a single-mineral geothermometer, different oxygen sites must have attained 85 

equilibrium within the single mineral, which can be achieved when different positions in a compound have the same source or 

initially different sources are in equilibrium with each other.  

Take alunite precipitation from a solution as an example. Alunite has sulfate and hydroxyl oxygen positions in its structure 

that precipitate from sulfate and hydroxyl ions in the solution (Fig. 1). Alunite with equilibrium Intra-ID can be produced from 

an equilibrium precipitation process, only if both the oxygen isotope compositions of sulfate and hydroxyl ions in the solution 90 

equilibrated with the same ambient water oxygen at the same temperature. However, sulfate oxygen does not readily exchange 

with that of water; the isotope equilibration time for SO4
2- and ambient water at Earth's surface condition is greater than 106 to 

107 years (Lloyd, 1968; Turchyn and Schrag, 2004; Turchyn et al., 2010) while the oxygen in OH can equilibrate with ambient 

water instantly and can readily exchange during alunite’s later burial and diagenetic processes. Thus, the two oxygen positions 
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in alunite can come different sources at different temperature, rendering alunite a flawed single-mineral geothermometer. The 95 

same is true for gypsum (CaSO4·2H2O) in which sulfate oxygen is not in equilibrium with formation water, and the 

crystallization water (·2H2O) oxygen may be in equilibrium with a different type of water. 

2.2 “Equilibrium-like” Intra-ID produced by a kinetic process 

For a compound with two different positions of the same element, a simple way to describe its Intra-ID is to report the 

difference between the two isotope compositions, i.e. the SP value. The concept of SP originated from the study of nitrous 100 

oxide (βNαNO), which is defined as the nitrogen isotope composition difference between the center nitrogen (δ15Nα) and the 

terminal nitrogen (δ15Nβ) (Yoshida and Toyoda, 2000). The predicted equilibrium SP value at room temperature in N2O is 45‰ 

(Yung and Miller, 1997; Wang et al., 2004; Cao and Liu, 2012). Although most observations fit the equilibrium prediction that 

15N preferentially enriches in the αN position by 30-40‰ (Yoshida and Toyoda, 2000; Toyoda et al., 2002; Sutka et al., 2006), 

negative SP values were observed nevertheless (Yamulki et al., 2001; Sutka et al., 2003). 105 

The difference in SP values was explained by the difference in synthetic pathway associated with symmetrical or asymmetrical 

precursors (Schmidt et al., 2004; Toyoda et al., 2005; Sutka et al., 2006). If the precursor of N2O is symmetrical (e.g. -ONNO-, 

Fig. 2 left), the two nitrogens in the precursor are positionally equivalent; any prior isotope composition and fractionation 

difference would be erased by the symmetrical structures of the precursor. When producing N2O from a symmetrical precursor, 

the βN undergoes N-O bond cleavage and therefore has a primary isotope effect which is large, whereas the αN has only a 110 

secondary isotope effect which is negligible (close to 1.000, Bigeleisen and Wolfsberg, 1958). Therefore, 15N depletion is 

expected only on the βN or N2O produced from a symmetrical precursor is expected to have a positive SP value. 

If the precursor is asymmetrical (e.g. -NH(OH)NO, Fig. 2 right), the two nitrogens in the precursor are not positionally 

equivalent. It is expected that the two nitrogens in the precursor were produced from different EIEs or KIEs because they went 

through different reaction pathways and may even have different nitrogen sources (Schmidt et al., 2004; Toyoda et al., 2005; 115 

Sutka et al., 2006). Therefore, during the formation of N2O from an asymmetrical precursor, the difference in the position-

specific δ15N values of the precursors and the difference in isotope fractionation during the formation processes will be 

recorded in the SP value of N2O. Such N2O can have either SP>0 or SP<0. 

When we state that a compound displays an equilibrium Intra-ID, the underlying assumption is that there exists a mechanism 

for different positions to exchange isotopes intramolecularly. However, not all apparent equilibrium or equilibrium-like Intra-120 

IDs are produced by an equilibrium process. For reactions like -ONNO- ↔ N2O, two types of processes could produce SP>0. 

First, the N2O formation reaction is fully reversible and attains an equilibrium. When fully reversible, the two nitrogens in N2O 

are scrambled when it forms the symmetrical precursor through the reverse reaction. At equilibrium, the terminal nitrogen in 

a weaker bond environment is expected to be depleted in heavier isotope than the central nitrogen by 45‰ at surface 

temperature. Second, the N2O formation reaction is uni-directional. When uni-directional, only the N-O bond-breaking position 125 

(βN) undergoes a KIE. Thus, the SP value is approximately equal to the KIE value. In this scenario, if the KIE < 1.000, the 
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terminal nitrogen is expected to be depleted in heavier isotope than the central nitrogen by the extent of KIE value. The Intra-

ID would be similar to equilibrium Intra-ID in this case, but it is produced by isotope depletion on the bond-breaking process. 

No intramolecular exchange involves. Therefore, even if the N2O produced by the uni-directional process has SP ≈ 45‰, it is 

not due to equilibrium or equilibrium-like SP. 130 

Here we see that both fully reversible and uni-directional processes can result in a similar SP value, but the underlying 

mechanisms are entirely different. Furthermore, a positive SP value can also be achieved through a combination of nitrogen 

sources and isotope fractionations from an asymmetrical precursor. Thus, without knowing the underlying process, we cannot 

interpret an Intra-ID or SP value uniquely. 

2.3 Position-specific isotope fractionations between reactant and product 135 

As illustrated above, the Intra-ID of a compound can be used to gauge the degree of internal thermodynamic equilibrium only 

if we can determine the processes involved in isotope fractionation. It does not mean, however, that position-specific isotope 

composition is useless. Based on the predicted equilibrium Intra-ID, a predicted isotope fractionation factor of corresponding 

positions between reactant and product in a process can help to evaluate the thermodynamic state of a system and to decipher 

reaction pathways. In this section, we use a simple organic molecule, acetic acid (CH3COOH), and its measured Intra-IDs from 140 

literature as examples to illustrate how position-specific isotope fractionation occurs between reactant and product. 

The relative isotope enrichment between the carboxyl and methyl carbon in acetic acid is defined as ln13αcarb-met= 

ln(13Rcarb/13Rmet) ×1000‰. 13R (= 13C/12C) denotes the carbon isotope molar abundance ratio in a position. Our calculated 

equilibrium Intra-ID of acetic acid has the carboxyl carbon being 47.3 ‰ heavier than the methyl carbon at 25℃ (ln13αcarb-met 

(eq)= 47.3‰, He et al., 2020). The measured δ13Cmet values from literature can be lower, higher, or approximately equal to the 145 

δ13Ccarb values for acetic acids from biological, artificial, or hydrous pyrolysis samples (Table 1). The position-specific δ13C 

values of biological, artificial, or hydrous pyrolysis produced acetic acid are largely overlapping on δ13Cmet-δ13Ccarb space. For 

the majority of biological acetic acids, the δ13Ccarb values are several per mil higher than the δ13Cmet values (Fig. 3 top, ln13αcarb-

met=5.1±4.8‰, n=29), with two cases of ~18‰ higher and one case of -2.2‰ lower in δ13Ccarb values. It is expected that the 

metabolic and catabolic pathways and carbon sources are limited for most natural acetic acid. Therefore, the ln13αcarb-met value 150 

of 5.1±4.8‰ could be characteristic but not necessarily exclusive for biologically produced acetic acid. Man-made acetic acids 

have a very large range of ln13αcarb-met values from -30.2‰ to 24.2‰ (Fig. 3 middle, 7.3±14.3‰, n=24). Biological and hydrous 

pyrolysis produced acetic acids do not have such negative ln13αcarb-met values. Except for the above-mentioned features, the 

production of man-made and biological acetic acid has too many unconstrained parameters. Thus, our discussion will focus 

on the acetic acid derived from hydrous pyrolysis of oil-prone source rocks. 155 

The acetic acids produced from the hydrous pyrolysis of oil-prone source rocks have a ln13αcarb-met value of 18.3±7.7‰ (n=22, 

Fig. 3 bottom). ln13αcarb-met values of ~30‰ were produced at 310~350 ℃ from Mahogany Shale or Black Shale with a proposed 

mechanism of uni-directional pyrolysis of precursor acid forms (R-CH2COOH ↔ R + CH3COOH, Fig. 4, Dias et al., 2002b). 
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If we consider only the primary KIE between the methylene carbon in R-*CH2COOH and the methyl carbon in acetic acid 

(*CH3COOH), it is expected that a uni-directional process would lead to a 13C depletion only on the methyl carbon position in 160 

acetic acid. The Intra-ID of the produced acetic acid should equal to the δ13C value difference between the precursors minus 

the primary KIE. The primary KIE is expected to be more negative than the predicted equilibrium isotope fractionation factor, 

which is -14‰ (He et al., 2020). Thus, as long as the δ13C value difference between the methylene and carboxyl carbon in R-

CH2COOH is greater than -14‰, the acetic acid produced from uni-directional pyrolysis of such precursor acid should have a 

carboxyl carbon with a higher δ13C value than that of the methyl carbon. If the carboxyl carbon in the precursor acid has a 165 

higher δ13C than that of the methylene carbon, the pyrolysis process can easily produce acetic acid with a ln13αcarb-met value 

close to an apparent equilibrium Intra-ID. Such apparently “equilibrium-like” Intra-ID does not involve intramolecular 

exchange, but it is the product of uni-directional precursor acid pyrolysis. 

3 Implications 

Life sustains itself by feeding on negative entropy. Boltzmann first considered living organisms from a thermodynamic 170 

perspective, and Schrodinger later applied equilibrium thermodynamics to living systems (Popovic, 2018). Those attempts 

were not pursued further, since, as we all know today, a living system is a dissipative system. The establishment of 

nonequilibrium thermodynamics by Prigogine and his coworkers has guided researchers to the theorem of minimum entropy 

production in biological systems (Prigogine and Wiame, 1946). Since then, efforts in applying nonequilibrium 

thermodynamics to living systems have been continued with mixed success (Stoward, 1962; Schneider and Kay, 1994; 175 

Hayflick, 2007; Demirel, 2010; Barbacci et al., 2015; Gerber et al., 2016). 

The theorem on minimum entropy production applies only to linear thermodynamic systems. Therefore, it is necessary to 

demonstrate that the magnitude of reaction rate on the scale of interest in a living system is linearly dependent on the 

generalized force operating on the system. It is reasonable to view that a complex interacting and constantly involving non-

linear system is constructed by a series of synergistic reactions, and there should exist local linearity, local steady-state, even 180 

local equilibrium (Galimov, 2006).  

Local nonequilibrium of biochemical system is potentially significant for the increasing complexity and orderliness of life 

(Prigogine and Wiame, 1946; Galimov, 2006). Such a system should consist of a set of reversible but not necessarily 

equilibrium reactions conjugated with energy supplies that maintain in a steady-state not far from equilibrium. Such close-to-

equilibrium steady-state should be expressed as a tendency toward equilibrium inter- and intra-molecular stable isotope 185 

distributions, i.e. a linear inter- and intra-molecular 13β-δ13C correlation with a regression coefficient smaller than but close to 

1 (Galimov, 2006). The observed correlations between position-specific δ13C and 13β had been used to support the hypothesis 

that the theorem of minimum entropy production can be applied in biochemical systems (Galimov, 1985, 2004, 2006). In 

addition, such “equilibrium-like” Intra-ID in organic molecules was proposed as a “special feature of biological systems”, 

which could be used as a criterion to identify biologically produced extraterrestrial organic molecules (Galimov, 2003). As we 190 
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have illustrated above, observed Intra-ID in organic molecules is the product of a set of equilibrium or dis-equilibrium 

processes as well as their source isotope compositions. An Intra-ID itself cannot be used as conclusive evidence for the 

thermodynamic state of a system. Therefore, even if a compound does have a linear intramolecular 13β-δ13C correlation with a 

slope of 1, it does not constitute supporting evidence for the existence of an equilibrium state among biochemical reactions in 

organisms. 195 

A compound often consists of different elements, for instance, H and O in H2O (Dansgaard, 1964;Craig, 1961), N and O in 

NO3
- (Casciotti and McIlvin, 2007; Wankel et al., 2009), S and O in SO4

2- (Antler et al., 2013), or C and H in organic 

compounds (Elsner, 2010; Palau et al., 2017). The isotope fractionation relationship between these different elements, i.e. (αA-

1)/(αB-1), lnαA/lnαB, or ΔδA/ΔδB, is often used to characterize a reaction pathway. The isotope composition difference of 

different elements is only useful if the isotope fractionation relationships are considered and their isotope compositions are 200 

normalized, e.g. ∆(15,18)=(δ15N-δ15Nm)-(15α-1/18α-1)×(δ18O-δ18Om), δ15Nm and δ18Om are the average isotope composition in 

a given profile (Sigman et al., 2005). The normalization procedure was necessary because the source isotope compositions can 

affect the values of the product. Similarly, if the same element at different positions have different sources, their source isotope 

composition difference must also be considered. In fact, the two or more oxygens in the same compound do not have a 

mechanism to exchange; these oxygens behave like different elements. A simple comparison of position-specific isotope 205 

compositions in one sample, e.g. ln13αcarb-met values of one acetic acid sample, offer little information. 

4 Conclusions 

Organic compounds usually have an element, e.g. carbon, at different positions and therefore have Intra-IDs. The deviation of 

an Intra-ID from its equilibrium state has been used to evaluate the thermodynamic state of a system. Our analysis of oxygen-

bearing minerals, N2O, and acetic acids show that both isotope sources and all reaction processes need to be in equilibrium to 210 

reach an intramolecular equilibrium state. However, such a condition is rarely satisfied. When different positions of the same 

element cannot exchange with each other, these different positions behave independently like different elements. Observed 

Intra-ID that is apparently similar to the equilibrium one can also be produced from a combination of different sources and 

uni-directional processes. Thus, an Intra-ID itself is not conclusive without adequate information on sources and reaction 

kinetics. Compared to position-specific isotope compositions, position-specific isotope fractionation of a defined process is 215 

more informative to identifying bond-breaking/forming positions of a large molecule, to predicting its transition-state structure, 

to evaluating the reversibility of a biochemical process, and to determining and qualifying a process in a complex system. All 

in all, an understanding of a reaction process at molecular level will always be the first step required for later sound and wide 

application of stable isotope composition. 
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Figure 1. Sketch of alunite precipitation from water. The alunite could be a single-mineral geothermometer if three conditions are 

fully all satisfied: (1) H2OA = H2OB, (2) T1=T2=T3, and (3) all the four reactions are fully reversible and attain equilibrium. White, 385 
red, yellow, pink, and purple spheres represent hydrogen, oxygen, sulfur, aluminum, and potassium atoms, respectively. 

 

Figure 2. Proposed mechanisms for N2O formation from symmetrical and asymmetrical precursors (Modified from Schmidt et al., 

2004). Light gray, red, blue, and purple spheres represent hydrogen, oxygen, nitrogen, and iron atoms, respectively. 
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 390 

Figure 3. ln13αcarb-met values of biological, man-made, and hydrous pyrolysis produced acetic acid. 

 

Figure 4. Acetic acid produced from pyrolysis of precursor acid forms has an Intra-ID that is depleted in 13C in the methyl position. 

Dark gray, light grey, and red spheres represent carbon, hydrogen, and oxygen atoms, respectively. 
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