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Abstract. We present a new algorithm for the estimation of plant area density (PAD) profiles and plant area index (PAI) for

forested areas based on data from airborne lidar.

The new element in the algorithm is to scale and average returned lidar intensities for each lidar pulse, whereas other

methods either do not use the intensity information at all, only use average intensity values or do not scale the intensity

information, which can cause problems for heterogeneous vegetation. We compare the performance of the new and three5

previously published algorithms over two contrasting types of forest: a boreal coniferous forest with a relatively open structure

and a dense beech forest. For the beech forest site, both summer (full leaf) and winter (bare trees) scans are analyzed, thereby

testing the algorithm over a wide spectrum of PAIs.

Whereas all tested algorithms give qualitatively similar results, absolute differences are large (up to 400 % for the average

PAI at one site). A comparison with ground based estimates shows that the new algorithm performs well for the tested sites.10

Specific weak points for estimation of PAD from airborne lidar data are addressed; the influence of ground reflections and the

effect of small-scale heterogeneity, and we show how the effect of these points is reduced in the new algorithm, by combining

benefits of earlier algorithms. We further show that low-resolution gridding of PAD will lead to a negative bias in the resulting

estimate according to Jensen’s inequality for convex functions, and that the severity of this bias is method-dependent. As a

result, PAI magnitude as well as heterogeneity scales should be carefully considered when setting the resolution for PAD15

gridding of airborne lidar scans.

1 Introduction

Plant area is a key parameter for quantification of air-vegetation exchange of momentum, latent and sensible heat as well as

carbon dioxide. Its vertical distribution, the plant area density (PAD), describes the distribution of plant elements from ground

to canopy top. The PAD profile is a key parameter in high-accuracy atmospheric models for the estimation of fluxes between20

the atmosphere and canopies (Williams et al., 1996; Sogachev et al., 2002; Patton et al., 2016; Smallman et al., 2013). PAD

profiles have also been introduced into wind modelling of heterogeneous forests in the context of understanding how local

inhomogeneities affect the wind field above the crowns (Boudreault et al., 2015; Ivanell et al., 2018). Since wind turbines are

very tall, the wind approaching the turbine is affected by surface conditions from far away. Therefore, large areas of consistent

1



high-quality PAD profiles are attractive as model input. Likewise, atmosphere-biosphere interactions for weather and climate

modelling require PAD information from large areas. With the advent of airborne lidar scans (ALS), such a product is possible

to achieve.

ALS scans, made with a density of 5-10 laser shots over each square meter of ground are now performed routinely on a

country level scale. Besides information on where the laser beam from the airplane was reflected in x, y and z coordinates5

down to centimeter precision, each point is associated with several other attributes. These normally include scanning angle,

number of returns from a pulse, return rank in the pulse and intensity of the return. In this paper, we attempt to use more of this

information compared to previously published methods (Solberg et al., 2006; Morsdorf et al., 2006; Richardson et al., 2009;

Boudreault et al., 2015; Almeida et al., 2019; Hopkinson and Chasmer, 2009; Vincent et al., 2017) with the aim of producing

a more consistent and less-biased estimate of PAD.10

The previously established methods for calculating the PAD profile, and hence also the PAI, from ALS scans, were based

on approximations of the Beer-Lambert law, first introduced in the field of vegetation density estimation by Monsi and Saeki

in 1953 (see Monsi and Saeki (2005) for a translated version). The results have been promising for PAI (Solberg et al., 2006;

Morsdorf et al., 2006; Richardson et al., 2009; Hopkinson and Chasmer, 2009) and even PAD (Boudreault et al., 2015; Vincent

et al., 2017; Almeida et al., 2019) calculations by ALS, when compared with various ground based methods. The potential15

is underlined by relative agreement with ground based methods made with very different techniques as well as the obvious

advantage of producing results with great spatial coverage. Below, we recall the Beer-Lambert law and its adaptation for

vegetative canopies, and then describe three reference models, published by Hopkinson and Chasmer (2009), Boudreault et al.

(2015) and Almeida et al. (2019). We then introduce the new method. The rest of the paper follows standard formats.

2 Background20

2.1 Beer-Lambert law and its adaptation for vegetative canopies

The Beer-Lambert law expresses the light level at a given height as a function of effective canopy density in form of PAD

following:

Q(z) =Q0e
−µ
cosθ

∫ hc
z

PAD(z)dz, (1)

where Q is the amount of radiation that penetrates the canopy to height z, Q0 is the incoming radiation, µ is the extinction25

coefficient, θ is the zenith angle of the incoming radiation and hc is the height of the canopy. The value of µ depends on how

the canopy elements are oriented in space, and the values for common types of trees have been reported in the range of 0.28

to 0.58, see Bréda (2003) for a detailed investigation. By re-arranging Eq. 1, PAD can be isolated and light-level observations

can provide a basis for estimations of vegetation density.

In contrast to ground based optical methods, measurements from ALS are based on the reflected radiation R. Whereas it is30

clear from the Eq. 1, that the radiation level above the canopy Q0 is of high importance for the determination of the determina-

tion of PAD and PAI, the use of the reflected radiation turns the problem on its head. To determine the value of the PAI based
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on ALS data, ground reflections are essential and both for the PAI and the PAD the magnitude of the incoming radiation is not

important provided it is sufficiently strong to produce detectable backscatter. There are several other fundamental differences

between the ground based optical methods for determining PAI and the lidar-based methods; (1) Whereas optical methods are

typically based on observed radiation of natural light, ALS normally use infra red light, (2) the primary information utilized in

ALS-based methods is the exact location describing where the radiation is reflected (e.g. Morsdorf et al. (2006); Solberg et al.5

(2006)) and (3) contrary to the homogeneously lit canopies used to determine plant area using ground based optical methods

(Monsi and Saeki, 2005; Bréda, 2003; Yan et al., 2019), the ALS data are based on discrete lidar pulses, which have a finite

diameter of around 0.1 - 1 m at canopy top (e.g., Hopkinson and Chasmer, 2009; Popescu et al., 2011; Almeida et al., 2019).

The high sampling rate of the ALS scanners allow for the detection of multiple reflections from one single emitted pulse, with

data sets ranging from one to several returns per pulse, all the way up to the full wave form, depending on the type of scanner.10

Regardless of these fundamental differences, the Beer-Lambert law has been used also for the determination of PAD and PAI

using ALS data using the following formulation:

∫ z

0
R(z)dz∫ hc

0
R(z)dz

= e
−µ
cosθ

∫ hc
z

PAD(z)dz, (2)

where R is the reflected radiation at height z, and integration on the right hand side all the way from the forest floor gives the

PAI.15

The method for determining PAI and PAD are based on a grouping of the exact coordinates where the pulses have reflected

on a canopy element, into distinct vertical layers 1,2, ...,k, ...,ktop−1,ktop, where 1 is the layer closest to the ground and ktop

is the highest layer containing plant area density. The effective PAD (assuming constant extinction coefficient, which implies

locally homogeneous distribution of canopy elements) between layer zk and zk+1 can be found by isolation in Eq. 2:

PAD∆z = −cosθl
µ

ln

(∑k
i=1Ri∑k+1
i=1 Ri

)
(3)20

where the overbar indicates average, ∆z = zk+1 − zk and θl is the zenith angle of the lidar beam.

Despite the significant differences behind airborne and ground based estimates of PAI, comparisons have shown promising

agreement in both absolute levels as well as spatial correlations (Solberg et al., 2006; Morsdorf et al., 2006; Richardson

et al., 2009; Solberg et al., 2009). A straightforward interpretation of the correlation was put forward by Solberg et al. (2009),

who concluded that the canopy gap fraction was strongly correlated to the probability of ALS beam penetration below the25

canopy, and hence, strongly linked to PAI. Boudreault et al. (2015) and Almeida et al. (2019) also compared PAD profiles to

observations from reference sensors, with similarly promising results.

Whereas earlier ALS studies used ground based estimates of PAD and PAI as validation, it is generally acknowledged that

also ground based methods carry uncertainty, for instance regarding sky exposure level and difficulties in reproducing footprint,

points often brought up in the discussion sections of earlier work (Solberg et al., 2006; Morsdorf et al., 2006; Richardson et al.,30

2009; Solberg et al., 2009; Vincent et al., 2017). For the datasets presented here, ground based reference data are included for
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two out of the three investigated cases. However, the main focus of the study is instead the comparison between different ALS

methods.

2.2 ALS Reference methods

Two different interpretations of the reflected radiation R in Eq 3 have been applied to ALS data; one based on measured

intensities of the reflected pulses (Hopkinson and Chasmer, 2009) and one based on the relative probability of detecting a5

reflection (Solberg et al., 2006; Morsdorf et al., 2006; Richardson et al., 2009; Boudreault et al., 2015; Almeida et al., 2019).

The latter method can be subcategorized further based on how many reflections (or returns) from each lidar pulse are considered

in the PAD and PAI evaluation. Hence, in total, we use the following three reference methods:

– Intensity ratio, IR. This method makes use of the intensity I of the recorded reflection following Hopkinson and

Chasmer (2009). Over a volume ∆A∆z, the right-hand side of Eq. 3 is calculated from:10 ∑k
i=1Ri∑k+1
i=1 Ri

=

∑k
i=1 Ii∑k+1
i=1 Ii

(4)

It is assumed that the reflected intensity from a vertical section of forest is dependent on vegetation density from that

section. An important assumption for IR method is that the albedo α=R/Q is the same for ground and vegetation.

– First returns ratio, FR. This method has been used in Solberg et al. (2006, 2009); Morsdorf et al. (2006); Richardson

et al. (2009); Boudreault et al. (2015); Almeida et al. (2019) and here the amount of reflected radiation R is rather15

interpreted as the number of reflections from a distinct layer of the canopy. The method is limited to using only the

first returns (r1) for each pulse and it is assumed that the probability of pulse penetration into the canopy decreases

exponentially with height:∑k
i=1Ri∑k+1
i=1 Ri

=

∑k
i=1 r1i∑k+1
i=1 r1i

(5)

– All returns ratio, AR. Assuming the intercepted radiation is related to the total number of returns from a volume ∆A∆z,20

no matter the return number in the pulse. (Almeida et al. (2019), supplementary material).∑k
i=1Ri∑k+1
i=1 Ri

=

∑k
i=1 ri∑k+1
i=1 ri

(6)

The different methods are associated with different uncertainties and advantages. Starting from below, Almeida et al. (2019)

noted that the AR method has a poor theoretical foundation in that the total number of emitted pulses above the canopy are not

same as the number of reflections accounted for, and pointed to the need for further algorithm improvement. They also noted25

a poorer agreement with reference data than when using the FR method, which gives an unbiased probability of interception.

However, the FR method is associated with other documented issues, especially for dense canopies (Blair and Hofton, 1999;

Richardson et al., 2009; Freier, 2017), where the diameter of the laser beam (footprint size) may exceed a typical size gap in
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the canopy. Since the FR method is based on the probability that the beam passes through the canopy top with no obstruction,

the method becomes sensitive to the ratio of the lidar footprint and the typical gap size in the canopy, and a high site-to-site

variability is expected. A further disadvantage of the FR method is that a large part of the dataset is disregarded, since secondary

reflections are not utilized.

The IR method in many ways circumvents the above issues; all reflections are used, and further, since the method is formu-5

lated in terms of intensity rather than relative probability, the framework is closely related to the original Eq 1. Another obvious

advantage is that by using the intensity information for the recorded reflection, information on the size of the reflecting object

can be extracted; a reflection on a thin bare twig will result in a low-intensity reflection, whereas higher intensity reflections can

be expected from a fully leaved branch. Hopkinson and Chasmer (2009) showed improvements using the intensity information

compared to using only the first returns (based on correlation with gap fractions from hemispheric photos) and concluded that10

an intensity based method is less error prone due to the implicit information about the size of the return object that is carried in

the intensity value. A disadvantage of the IR method is that it relies on the assumption of identical albedo for ground and vege-

tation. Wagner et al. (2008) for instance, reported on difference in reflective properties between non-vegetation and vegetation.

This is particularly problematic for less dense forests were many of the returns come from the ground. In the IR method, the

intensity value of first return ground reflections partly determine the PAD of the upper canopy, so PAD and PAI estimates from15

the method are sensitive to the properties of the ground.

Thus, a method that combines the respective strengths of the IR and FR methods has potential to be less sensitive to param-

eters that affect beam width, such as flight altitude and instrument type, and thereby be more suited for PAI and PAD estimates

from ALS.

In order to ensure a comparison where the treatment of the reflections are consistent, the three references methods have20

been slightly modified relative to their original formulations. For the AR method, we use the formulation presented in the

supplementary material by Almeida (2019), with the modification of taking the scanning angle into account in the same way as

done in the FR method by Boudreault et al. (2015). For the IR method, we follow the one way formulation by Hopkinson and

Chasmer (2009), by which the two-way transfer of the pulse through the crown is disregarded. The reason for only using one-

way attenuation is that the scattering from canopy elements and ground does not come from continuous attenuation, but rather25

distinct reflection on objects. That, in combination with the fact that changes in θl (position of the airplane) are negligible under

the short time it takes for the light pulse to return to the sensor, leads to the conclusion that if the path was free of obstacles on

the way down, it should also be free on the way up.

3 Methods

3.1 New method30

The new method will be referred to as SR, Scaled Ratio. Using this method, all reflections from each emitted pulse are identified

in a preprocessing step. Once the reflections are identified, their impacts are scaled according to their intensities in a similar
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way as in the IR method. Mathematically, this individual beam scaling can be expressed as:

rs = Iir

/ Nr∑
ir=1

Iir , (7)

where Iir is the intensity of the ir:th return in the pulse, and the scale is found by summation from the first return in the pulse,

to the number of returns that the pulse contain (Nr). After the intensity scaling the PAD is calculated in the same way as with

the other methods; (1) by estimating the ratio of incoming to outgoing radiation following5 ∑k
i=1Ri∑k+1
i=1 Ri

=

∑k
i=1 rsi∑k+1
i=1 rsi

, (8)

and (2) by calculating PAD using Eq. 3. In this way, for all pulses with only one return (Nr = 1), the scaling weight is 1,

whereas the weight for all other pulses are scaled by their respective backscatter intensity. Hence, for the special case of a data

set with only first returns, the SR method reduces to the FR method and for the special case of only one pulse over the binning

area A, the SR method reduces to the IR method. For the majority of modern ALS datasets, the scanning density is high,10

and the SR method has the potential to combine the benefits of the FR and SR methods, while minimizing their drawbacks

regarding too high influence from difference in ground/vegetation albedo as well as footprint size relative to canopy gap size.

The SR method requires that the backscatter intensity of each return can be connected to the total backscatter intensity of the

emitted pulse which the return belongs to. In order to test this assumption, we estimated what fraction of the reflections in the

datasets fulfilled the criterion that with ir =Nr along with Nr − 1 preceding points satisfy ΠNr
ir=1ir =Nr!. For the data sets15

that has been part of this study, the number of points satisfying the above criterion was more than 99 % of all the investigated

data sets.

Matlab and Python codes for the preprocessing step, the scaling and the calculation of PAD are shared via the link the

Supplementary material. The routine requires .las data files, which are the global standard for storing ALS data (ASPRS,

2013), as inputs, and outputs terrain height, PAI and PAD at a horizontal and vertical resolution set by the user. An early20

version of the SR algorithm was tested in Freier (2017).

The SR method uses all of the standard recorded attributes of the reflections (Table 1) in the .las format, whereas the reference

methods (in addition to zenith angle θ) use either only the position and classification (AR), position, classification and return

number (FR), or position, classification and intensity (IR).

In the comparison with reference methods we follow Solberg et al. (2006); Morsdorf et al. (2006); Richardson et al. (2009);25

Boudreault et al. (2015) in assuming a spherical distribution of the reflecting surfaces of vegetation, corresponding to a value

of µ= 0.5, equivalent of approximating that the effective forest density is the same looking from above, from the side, or from

any other direction of the forest. While choosing a value of µ fitting for the vegetation of interest improves the PAI estimates

(Yan et al., 2019), the focus of this study is the application of Beer-Lambert law itself, and any change in µ would be common

for the investigated methods, and therefore the value µ= 0.5 has been kept throughout the study. To speed up the calculation,30

instead of using pulse specific θl, we have used the average absolute angle within the grid box.

Recently, Vincent et al. (2017) presented a method in which intensity information is used to determine averaging weights

specific to return number, similar to the method presented here. However, the method proposed by Vincent et al. (2017) use
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Table 1. Attributes used to calculate the PAD from ALS with four different methods. The attributes are usually available with data in the .las

format

Scaled return ratio (SR) Intensity ratio (IR) First return ratio (FR) All returns ratio (AR)

Position, X , Y , Z × × × ×

Intensity, I × ×

Return number, ir × ×

Number of Returns (per pulse), NR ×

Classification (ground identification) × × × ×

Scanning angle, θl × × × ×

Table 2. Characteristics of the three ALS data sets used in the study. ? Lantmäteriet (2016). † Personal communication with data provider.

Scan 1:st returns/m2 Footprint diameter [m] % pulses with Nr = 1 % pulses with Nr = 2 % pulses with Nr > 2

Norunda 0.9 0.5-0.8? 73 23 3

Falster summer 32.5 0.1† 53 40 8

Falster winter 8.3 0.4† 47 30 23

the intensity information averaged over the area of interest while the method proposed in this paper uses individual intensity

data for each pulse. If the individual intensities are not available in the data set, or the data set is not ordered in consecutive

returns, using the average data might be the only option. For a discussion on the implications of using average intensities as

scales, please see Section 5.1.

3.2 Sites5

The methods were tested on three different data sets from two different sites. One is a dense deciduous (beech) forest, scanned

both with and without leaves, and the other one is a medium dense coniferous (mainly pine) forest. The data sets were chosen

based on that they cover two different and commonly occurring types of forests as well as the availability of both ALS data

and ground based PAI estimates. Table 2 shows a summary of scan characteristics for the three different data sets. The width

of the laser beam at ground differ from around 10 cm in the beech summer scan up to 80 cm in the coniferous forest, due to10

different instruments and flight altitudes. The scanning density also differ between sets (between less than 1 and more than 32

returns per m2), providing contrasting conditions for testing the ALS to PAD methods.

Dense beech forest: Tromnaes

This approximately 80 year old forest of predominantly European beech (Fagus sylvatica L.) is located near the coast on the

island Falster in Denmark. During the leaf-on summer period the canopy is very dense, whereas the winter time tree structure15

is relatively open as seen in Fig. 1. In order to accurately estimate the canopy height and density for the purpose of wind flow

modelling, the forest was scanned during the summer time in 2013. The site was scanned again in a national survey in 2014
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during the leaf-off winter period. In connection with a field campaign of wind observations upwind and downwind of the forest

edge, the forest density was further measured using two LAI-2000 PCAs (LI-COR, Lincoln, NE, USA). The PAI was found

to be approximately 1 and 6 m2 m−2 during leaf-off and leaf-on conditions, respectively. These measurements were performed

using two instruments; one was placed well within the forest and the other, which was used for reference measurement, was

placed well outside the forest. More information on the site can be found in Dellwik et al. (2014).5

placed well outside the forest. More information on the site can be found in Dellwik et al. (2014) and technical data on scanning

height, density and instrumentation is stated in Table 1.

Figure 1. Photos taken at the position of the beech forest mast at the Falster site (Dellwik et al., 2014) illustrating the large difference between

summer (left) and winter (right) canopies.

From the point cloud of the two scans, we focus our analysis on a 300 m × 300 m tile which has the center coordinate at

54.7638◦N, 12.0396◦E. The data sets will be referred to as Falster winter and Falster summer.

Norunda5

The Norunda site is a research site under the ICOS, Integrated Carbon Observation System, infrastructure, located in the south

east Sweden (60.0833◦N, 17.4833◦E). The forest cover is predominately Norway spruce (Picea abies) and Scots pine (Pinus

sylvestris). A minor fraction (15 %) of deciduous trees, mainly birch (Betula sp.) is also present. The forest at the site is marked

by its many clearings, characteristic of Swedish forest management. As part of the ICOS project, the forest density at the site

has been analyzed with digital hemispheric photometry according to the ICOS protocol for ancillary vegetation measurements10

?. The site has also been scanned with airborne laser as part of a national scan over Sweden Lantmäteriet (2016). The scan

was made in November 2010 and the coverage is generally more than 0.5 ground reflections per m2, but sometimes as low as

around 5 ground reflections per 10 m × 10 m square in the most dense parts of the forest. The data set will be referred to as

Norunda.

Ground based estimates of the forest were made in November 2018. Despite the difference of eight years between the ground15

based measurements and the airborne scan, the two data sets should be comparable, since the age of the particular forest stand

is more than hundred years and thus the growth rate is very low.
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Figure 1. Photos taken at the position of the beech forest mast at the Falster site (Dellwik et al., 2014) illustrating the large difference between

summer (left) and winter (right) canopies.

From the point cloud of the two scans, we focus our analysis on a 300 m × 300 m tile which has the center coordinate at

54.7638◦N, 12.0396◦E. The data sets will be referred to as Falster winter and Falster summer.

Norunda

The Norunda site is a research site under the ICOS, Integrated Carbon Observation System, infrastructure, located in the south

east Sweden (60.0833◦N, 17.4833◦E). The forest cover is predominately Norway spruce (Picea abies) and Scots pine (Pinus10

sylvestris). A minor fraction (15 %) of deciduous trees, mainly birch (Betula sp.) is also present. The forest at the site is marked

by its many clearings, characteristic of Swedish forest management. As part of the ICOS project, the forest density at the site

has been analyzed with digital hemispheric photometry according to the ICOS protocol for ancillary vegetation measurements

(Gielen et al., 2018). The site has also been scanned with airborne laser as part of a national scan over Sweden (Lantmäteriet,

2016). The scan was made in November 2010 and the coverage is generally more than 0.5 ground reflections per m2, but15

sometimes as low as around 5 ground reflections per 10 m × 10 m square in the most dense parts of the forest. The data set will

be referred to as Norunda.
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Ground based estimates of the forest were made in November 2018. Despite the difference of eight years between the ground

based measurements and the airborne scan, the two data sets are expected to be comparable, since the age of the particular forest

stand was more than hundred years and thus the growth rate was very low.

3.3 Evaluation parameters

Spatial differences5

Spatial differences are demonstrated by showing differences of PAI from the new method (SR) relative to the reference methods

(IR, FR and AR) for larger areas using a resolution of 10 m × 10 m for the three used ALS scans. Calculation followed the

same procedure for all methods, with the only distinction being the use of Eq. 4, 5, 6 or 8 as a model for the extinction.

Comparison to ground based methods

To provide an independent comparison, PAI from ALS are compared to ground-based estimates. To mimic the footprint of the10

ground-based methods, reflections within a radius of one tree height from the centre of the ground based measurement were

used. This yielded a circular binning area, as opposed to the square used in all other comparisons.

Sensitivity to ground albedo

In order to investigate the sensitivity to ground albedo, a test was constructed where the intensity values of returns classified as

ground were manipulated. Ground intensity values were increased by 10 % after which PAI was calculated and compared to15

PAI derived from the original data set. The same test was done by instead decreasing by 10 %. The manipulation only affects

SR and IR, as FR and AR excludes intensity information (Table 1). SR and IR showed only minor differences in sensitivity

between a 10 % decrease and a 10 % increase in ground intensities, so results are presented as sensitivity to a 10 % ground

intensity alteration.

Sensitivity to grid size20

All four ALS methods rely on the Beer-Lambert law which assumes homogeneous spatial distribution of the scattering ele-

ments. The assumption is generally violated in forests, which have both vertically and horizontally inhomogeneous distribution

of scattering elements. With vertical binning in thin planes, the effect of vertical inhomogeneity is minimized, but heterogeneity

in the horizontal is still present, and results in a grid size sensitivity of the ALS to PAD methods. The reason for this can be

illustrated by studying a single layer PAI calculation for which the Beer-Lambert law simplifies to25

PAI = −cosθl
µ

ln

(∑
groundRi∑

allRi

)
(9)

Calculating the PAI of an area by reducing the horizontal resolution so that there is only one single cell for the whole area is

then proportional to − ln
(∑

groundRi/
∑

allRi

)
, where the vertical bar represents area average. Calculating the PAI for the
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whole area by taking the average of PAI from a higher resolution is instead proportional to −ln
(∑

groundRi/
∑

allRi

)
.

Because of the curvature of the convex logarithm function, Jensen’s inequality states that −ln
(∑

groundRi/
∑

allRi

)
>

− ln
(∑

groundRi/
∑

allRi

)
which means that sub grid size variations in the ratio of canopy to ground returns leads to lower

PAI estimates for larger grid size. The sensitivity of the routines to grid size was investigated by simply calculating PAD and

PAI for the three data sets with different horizontal resolution, ranging from 10 m × 10 m to 100 m × 100 m. Before calculating5

PAI and PAD the terrain height data was flattened in the vertical direction by subtracting the 10 m × 10 m ground height in

order to avoid effects coming from terrain elevation changes within the grid cell.

4 Results

4.1 Spatial differences and comparison to ground-based methods

(a) SR (b) aerial photo (c)

(d) SR-IR (e) SR-FR (f) SR-AR

Figure 2. PAI evaluation at the Norunda site in a 10 m × 10 m grid : a) the SR method, b) an aerial photo over the site, where the circles

represent the placement of the ground-based observations, c) scatterplot of the hemispheric photo estimates and the ALS methods. The lines

show linear regression forced through zero with shading indicating 95 % confidence level (1.96 times the standard error). SR is represented

by blue and stars, IR is represented by dark green and triangles, FR is represented by bright green and circles and AR is represented by pink

and crosses. d)-f ) the difference between SR and the reference methods IR, FR and AR respectively.
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Maps of the calculated PAI can be seen in Fig. 2, Fig. 3 and 4 for the Norunda and Falster sites, respectively. PAI magnitudes

are shown for the SR method, and for IR, FR and AR, the difference to the SR method is shown. It is immediately clear that

forest characterization by ALS has a big advantage compared to ground-based estimates due to the full horizontal coverage.

In Fig. 2b, details of a road and clearings at the site shown in the aerial photo are clearly visible also in the PAI estimates. In

terms of PAI magnitudes, FR gives the highest values for all three data sets (Fig. 2e, 3e, 4c), whereas the IR method shows the5

lowest values (Fig. 2d, 3d, 4b). Average PAI values over the area at the 10 m × 10 m resolution are given in the first column

of Table 3, showing that for Norunda, the differences between the IR and SR methods is approximately 25%, whereas it is

less than or equal to 12% for the AR and FR methods, respectively. In addition to these differences, larger local differences up

to approximately 100% are visible in Fig. 2 (d-f). A comparison to the ground-based PAI observations is presented in Fig. 2

(c). Whereas the IR method shows a systematic underestimation relative to the ground-based observations, all other methods10

show an overestimation. These systematic differences could likely be removed by calibrating the extinction coefficient µ, as

was done in e.g. Solberg et al. (2009), but it is clear that such calibration would need to be method-specific, and it is therefore

not pursued further here. Another reason for an imperfect match is connected with the unknown footprint of the ground-based

method, see Section 4.3 below.

Whereas the results from SR, FR and AR were relatively similar in Norunda, a larger difference is seen for these methods15

for the summer scan at the dense beech forest at the Falster site (Fig. 3). The SR method indicates a large variability over the

tile (Fig. 3 (a)), with PAI exceeding 10 m2m
−2 in the lower right and upper left corner. A close look at the aerial photo (Fig. 3

(b)) also indicates larger gaps in the forest in the lower left of the image, which could explain the relatively lower PAI in this

area. Whereas the observed spatial variability using the SR method is similar for the IR method (d), it is strongly increased for

the FR method (e) and decreased for the AR method (f). The very high PAI values using the FR method (e) can be explained20

by few pulses penetrating the dense upper canopy, in line with earlier observations on gap fraction versus beam footprint. The

AR results are generally lower in magnitude than SR, whereas the FR are of higher magnitude. Averages over the whole tile

(first column, Table 3) reveal mean differences up to 30% relative to the SR method.

The comparison between the ALS and ground-based observations (Fig. 3 (c)) reveals a high degree of scatter and large

standard errors. In addition to the potential reasons for the difference given above for the Norunda site, there is more uncer-25

tainty regarding the exact coordinates of the ground-based observations. In general, the ground-based observations seem to be

saturated at around 6 m2m−2, whereas the ALS data allows for a larger range.

Fig. 4 shows the spatial variability over the same area as in Fig. 3, but for the winter scan of the site. Overall the SR results

indicate low PAI (a), except for a small area to the right of the clearing, where values above 3 m2m−2 are visible, corresponding

to the location of a few coniferous trees. The IR method shows similar results to the SR (b), whereas much larger differences30

are observed for the FR and AR methods (c) and (d). The mean value over the whole tile (first column, Table 3 indicates

differences up to approximately 300%. The reason for this is examined in detail in the next section, but as can be seen from

Fig. 1, even though the PAD of the upper canopy is low in winter compared to summer, there are relatively few gaps in the

forest without any branches at all, effectively limiting the number of first order returns reaching the ground.
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(a) SR (b) aerial photo (c)

(d) SR-IR (e) SR-FR (f) SR-AR

Figure 3. PAI estimates from the summer scan at the dense beech forest Falster site: a) SR method, b) aerial photo, c) scatterplot of the

ground-based estimates and the ALS methods. The lines show linear regression forced through zero with shading indicating 95 % confidence

level (1.96 times the standard error). SR is represented by blue and stars, IR is represented by dark green and triangles, FR is represented

by bright green and circles and AR is represented by pink and crosses. The circles in the maps displays the positions of the ground based

measurements. d)-f ) shows the difference between SR and the reference methods IR, FR and AR respectively. The black square marks the

edges for the data used in Section 4.2.

4.2 Single grid cell PAD and sensitivity to ground albedo

In order to illustrate how the ALS methods work, a grid cell encapsulating a single tree was selected. The location of the

grid cell is highlighted in Fig. 3 and 4 with a black square. Fig. 5 shows the used reflections and the resulting PAD for the

four different methods. The top row shows the summer results, whereas the bottom row shows the winter results. The size of

the markers in the plots (a)-(d) and (f)-(i) indicates the weight that the algorithm gives to the reflections in the four different5

methods. Since intensity is not regarded in the FR and AR methods, all markers in (c)-(d) and (h)-(i) have the same size. As the

SR method restricts the weight of the return, less difference in marker size are seen in plots (a) and (f), whereas more variability

is seen for the IR method, where the reflections are not scaled. The first reflections are marked in blue, the second in red and

the third reflection in black.
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(a) SR (b) SR-IR (c) SR-FR (d) SR-AR

Figure 4. PAI estimates from Falster winter scan by various methods. a) show PAI in a 10 m × 10 m square grid based on the SR method.

b), c) and d) shows the difference between IR and the reference methods IR, FR and AR respectively. The black square marks the edges for

the data used in Section 4.2.

There is a marked difference between the lidar returns in the summer and winter scan. In summer (top row), the majority

of the returns come from the upper part of the foliage, predominately by first and second order returns of relatively high

backscatter intensity. In winter (bottom row), the intensity of the returns from the upper canopy is much lower, and the only

returns with high intensity comes from the stem and larger branches, as well as the ground.

The reason for the high PAI values in FR and AR relative to SR and IR in the case of Falster winter becomes apparent from5

Fig. 5. The ground returns used in the AR method are often higher-order returns, which are not included in FR. As seen in Fig.

1 b, many of the gaps in the winter canopy are smaller than the 40 cm beam width for the Falster winter scan, making first

order returns in the lower canopy less likely. The data in Table 2 confirms that higher order returns are more prevalent in Falster

winter than the other two scans. The AR method include higher order returns, but neither FR nor AR takes into account the low

intensity in the returns from the upper canopy, ultimately leading to a relatively higher estimate of PAD and PAI. Compared10

to the winter PAI reported in Dellwik et al. (2014) from ground-based observations, the average PAI in FR (see Table 3) was

more than four times higher and for AR more than two times higher.

The way first order ground returns are treated in the methods that use the intensity of the back scatter (SR and IR) leads to a

different sensitivity regarding the ground albedo. The difference in scaling technique between the SR and IR methods is visible

in Fig. 5, particularly in the winter scan, through the dominance (large size) of the ground reflections in IR. Since SR uses15

scaling of each pulse, the intensity of a higher order ground reflection is always smaller than that of a single first reflection, no

matter the actual back scattered intensity.

The sensitivity to ground albedo was investigated through artificially changing the intensity values of the ground returns

according to Section 3.3. For the open pine forest of the tile at the Norunda site (Fig.2, the mean difference in sensitivity was

large, with SR showing only 0.4 % change of PAI for a 10 % change in ground return intensity. The corresponding number20

for IR was 5.3 %. For the beech forest tile taken during the summer (Fig. 3), the sensitivity to a 10 % change in ground return

intensity was 0.8 and 2.7 %, for SR and IR, respectively. For the bare trees in winter the corresponding values were 2.4 and

13
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Figure 5. Backscatter reflections from within a 10 m × 10 m grid box, taken from the Falster summer (top row) and winter (bottom row)

scans. The color indicate return number: First returns - blue, second returns - red, third returns - black, fourth returns - purple and fifth returns

- green. The size of the marker indicate weight of the return according to the four methods. Scaled return number, SR (a and f ) is determined

from Eq. 7, for IR (b and g) it is scaled by the medium intensity of the first order canopy returns in the grid box and for FR and AR (c, d, h

and i), all returns are weighted the same. Note that the scale changes between the summer and winter. The grey lines indicate the path of the

lidar beam between first and higher order returns. Thus, lines are only shown for beams which has more than one return. e and j shows the

corresponding PAD for summer and winter scan respectively, SR is represented by blue stars, IR is represented by dark green triangles, FR

is represented by bright green circles and AR is represented by pink crosses. The location of the grid cell can be seen in Fig. 3 and 4.

6.0 %. The larger difference in Norunda comes from the larger share of first order ground returns (see Table 2), owing to the

more open structure of the forest. Compared to the absolute differences between the methods, the albedo sensitivity is relatively

small, however, indicating systematic differences over the areas.

4.3 Sensitivity to grid size

Since the canopy elements are heterogeneously distributed on all scales that are suitable for gridding when PAD and PAI5

are calculated, the homogeneity assumption used when applying the Beer-Lambert law is violated. To illustrate the effect

of that violation, the mapping of PAI from
∑

groundRi/
∑

allRi by Eq. 9 is shown in Fig. 6 in the x-y plane. Jensen’s in-

equality is seen from the strong curvature of Eq. 9, which has the effect that an even distribution in
∑

groundRi/
∑

allRi

becomes positively skewed, with the long tail on the high PAI side. Lowering the resolution means narrowing the distribution

of
∑

groundRi/
∑

allRi, thereby shortening the long tail more than the short tail in the PAI distribution, effectively lowering10

the PAI average.
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(a) (b) (c)

Figure 6. The mapping of PAI from the ratio of ground returns to total number of returns (
∑

groundRi/
∑

allRi at 10 m × 10 m resolution)

by Eq. 9 (black line in the x-y plane). On the vertical axis are shown the respective distributions of PAI (y-z plane) and
∑

groundRi/
∑

allRi

(x-z plane), at 10 m × 10 m resolution, for the four methods (SR -blue, IR - dark green, FR - light green and AR - pink). The dashed lines

indicate the area average PAI from averaging PAI at 10 m × 10 m resolution. For scans Norunda (a), Falster summer (b) and Falster winter

(c).

Table 3. Values of average PAI for the two sites, using different calculation methods and grid resolutions. ∗: A number of PAD estimates

were not possible due to fully attenuated first returns before the ground level. The data was filled with PAD values of 0.1. Less than 1 % of

the estimates were affected except for Falster summer at a resolution of 10 m × 10 m, where 4 % were affected.

Site and method 10 m × 10 m 20 m × 20 m 50 m × 50 m 100 m × 100 m

Norunda SR 2.56 2.42 (0.95) 2.35 (0.92) 2.29 (0.90)

Norunda IR 1.95 1.80 (0.92) 1.70 (0.87) 1.64 (0.84)

Norunda FR 2.87∗ 2.69 (0.94) 2.58 (0.90) 2.51 (0.87)

Norunda AR 2.60 2.51 (0.96) 2.45 (0.94) 2.41 (0.93)

Falster summer SR 7.09 6.58 (0.93) 5.94 (0.84) 5.68 (0.80)

Falster summer IR 6.34 5.74 (0.90) 5.03 (0.79) 4.75 (0.75)

Falster summer FR 9.23∗ 8.68∗ (0.94) 7.39 (0.80) 6.77 (0.73)

Falster summer AR 6.45 6.07 (0.94) 5.62 (0.87) 5.46 (0.85)

Falster winter SR 1.60 1.45 (0.91) 1.31 (0.82) 1.23 (0.77)

Falster winter IR 1.17 1.01 (0.86) 0.86 (0.74) 0.79 (0.68)

Falster winter FR 4.63∗ 4.13 (0.89) 3.76 (0.81) 3.48 (0.75)

Falster winter AR 2.66 2.59 (0.97) 2.50 (0.94) 2.48 (0.93)

The sensitivity of the routines to grid size was investigated by evaluating PAD and PAI for the three data sets with different

horizontal resolution, ranging from 10 m × 10 m to 100 m × 100 m. Table 3 summarizes the sensitivity to grid size, showing

that for a magnitude change in grid size, the change in PAI ranges from between a few percent to more than 30 % depending on

site and method. The AR method was found to be the least sensitive to grid size changes, followed by the SR method. The FR

method was the most sensitive. The results indicate that IR and FR sees more heterogeneity than the AR and SR methods. This5

is also observed in Fig. 6, where the distributions of
∑

groundRi/
∑

allRi for IR is skewed towards high values (low PAI) and
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FR towards low values (high PAI). The observation in Section 4.1 that the AR method predicts less variations in PAI spatially,

mainly by underprediction in dense areas relative to the other routines can also be seen in Fig. 6, particularly in Fig. 6 (c),

Falster winter, where the distribution of
∑

groundRi/
∑

allRi is much less skewed for AR then for the other methods. As also

noted in Section 4.1, the SR method behaves as the FR method in sparse regions and like the IR method in dense regions,

thus avoiding overprediction in the most dense areas and underprediction in the least dense areas. As shown in Section 4.2 the5

weight of the first order ground returns is limited in the SR method, while for IR the reflectively of the ground leads to lower

PAI estimates, thereby widening the overall estimated PAI distribution.
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Figure 7. Average PAD profiles for the Norunda (upper), Falster summer (middle) and Falster winter (lower) sites. The averages are based

on 10 m × 10 m (red full line), 20 m × 20 m (blue dashed line), 50 m × 50 m (green dash dotted line) and 100 m × 100 m (black dotted line)

resolution. From methods SR, IR, FR and AR (left to right).

Average PAD profiles for the three data sets under varying grid size is seen in Fig. 7, where the data in Table 3, when split

up into vertical profiles, reveal some differences between the methods. The difference in PAD magnitude follow that of PAI,

with magnitudes particularly contrasting for Falster winter, but there are also some differences in the shape of the profile. In10

Norunda and Falster summer, the SR and AR methods appear very similar from Table 1 and Fig. 2 (a), (d) and (g) as well

as Falster summer (g). However, studying the PAD profiles, the SR method shows a less bottom heavy profile, with a PAD

maximum above 10 m height, in the canopy of most trees, whereas the AR method has the maximum PAD at around 5 m. For
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Falster summer, the difference between SR and AR is mainly in the dense regions (see, Fig. 3 (a) and (d)) which in the average

profiles translates to a less pronounced upper canopy peak in AR. In the Falster winter case, the profiles reveal a difference

between the intensity based SR and IR, with maximums at lower height and the FR and AR with maximums at higher heights.

This is consistent with the case study in Section 4.2, where a lack of intensity information regards the upper canopy reflections

with higher weight.5

5 Discussion

5.1 Comparison between ALS routines

In general, the methods resulted in similar spatial patterns and magnitudes of PAD. Systematic differences were however found

for specific conditions. For winter (leafless conditions) the results showed differences between area averaged PAI of more than

400 %. Both FR and AR showed over predictions relative to estimates in Dellwik et al. (2014), and furthermore, values by FR10

and AR exceeded the maximum for beech trees reported in Bréda (2003). In addition, the ratio of winter to summer PAI was

in excess of 0.4 for both FR and AR, also outside the reported range in Bréda (2003). We attributed this to the high weights of

reflections from the upper canopy, a result that follow from the lack of intensity information in connection to the tiny frontal

area of branches to the footprint area of the lidar. The FR method further showed problems in the summer scan of the same

forest, with low amount of ground returns making PAI estimates very high and sometimes impossible due to lack of ground15

returns (argument in the logarithm of Eq. 3 becomes zero). The result indicates that using the intensity information provides

a key benefit when the lidar footprint is large compared to common gap sizes in the forest. On the other hand, the results

also show sensitivity to ground albedo when the intensity information is used. This sensitivity was present in both IR and

SR method, but the effect in SR was limited to between 7.5 and 40 % of the sensitivity in IR. Overall, the scaling technique

introduced in SR limits effect related to ground albedo and foot print to gap size ratio, which indicates it might be less sensitive20

to stand characteristics as well as scanning parameters such as flight height and scan density. The present study included needle

and broadleaf trees for in-leaf and leafless conditions, and dense helicopter scan with small lidar footprint as well as sparse

scans with a relatively larger footprint, but future studies systematically varying scan characteristics in different types of forests

could help further quantify differences between methods.

The method of Vincent et al. (2017) is similar to the method presented herein, and thus potentially carries many of the25

advantages of the SR method. However, their use of weights based on the average intensity per return number and number of

returns, is a key difference from using the actual intensity fraction of the return within the pulse. In their study, Vincent et al.

(2017) found that return number within the pulse and total number of returns in the pulse described 51 % of the variance in

intensity, which indicates that using average intensity numbers omits roughly half of the variations that is captured by using

pulse-specific intensity information. For the data sets presented in this study, the average intensity roughly splits evenly among30

the returns in the two full-leaf scans, but the leafless scan was very different, for which the average ground return consistently

was more than twice as intense as any of the canopy returns, regardless of the number of returns. When we tested the difference

between the SR method using individual and average weights the absolute relative difference in PAI estimates between the two
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was less than 5 % in the full leaf scans, but for the winter scan the difference was on average 25 %. Hence, if possible, the use

of individual weights should be preferred, especially during the leafless state.

In cases of strong heterogeneity and focus on actual PAD, as opposed to effective PAD, the method presented in Detto

et al. (2015) provides an alternative to the approximation Beer-Lambert law, and future research in that direction is interesting,

especially with increasing access to computational power.5

5.2 Effects of resolution

How to optimally select resolution for PAI/PAD estimation by ALS is still an open question. From Table 3, it is clear that a

coarser resolution leads to a systematically lower PAI. The results agree with Boudreault et al. (2015), who presented a study

for grid resolution using the FR algorithm in a spruce forest, varying resolution from 5 m × 5 m to 30 m × 30 m. The results

also agree with the analysis of Dufrêne and Bréda (1995), who presented a comparison between LAI from litter collection10

and observations from ground-based PAI observations using the Plant Canopy Analyzer (LI2000, LiCor Inc., Nevada), which

is based on light penetration from five concentric rings. The PAI readings from the Plant Canopy analyzer systematically

decreased in magnitude when rings at higher zenith angles were included in the estimate. The inclusion of more rings at high

zenith angles can directly be translated to an enlargement of the measurement footprint, which makes the results by Dufrêne

and Bréda (1995) comparable to the ALS based results on gridding resolution from this study. As stated above, Jensen’s15

inequality for convex functions explains these systematic changes. Hence, when estimating PAI for heterogeneous forests from

instruments that are based on the exponential decay of radiation into the canopy, the results can be expected to be resolution

dependent. It should also be noted that results shown in Fig. 6 demonstrate that grid size sensitivity is dependent on the

magnitude of PAD/PAI, with dense forests having a more non-linear mapping from ALS to PAD/PAI than less dense, and that

this dependence enhances grid size sensitivity. Additionally, as discussed above, forest density in combination with the scan20

density (number of returns per m2) sets an upper limit to the possible resolution. Whereas the results in Table 3 shows that

systematic changes with resolution occurred for all four tested methods, there was significant variability between the tested

methods, where FR always showed the highest sensitivity and AR and SR the lower showed the lowest sensitivity.

The optimal resolution likely depends on the application. In wind modelling there is for example the optimal ratio of reso-

lution of PAD field and flow field to consider, where the resolution of the flow field puts an upper limit to the resolution to the25

PAD field. Ivanell et al. (2018) concluded that for a predominantly forested area, where the drag force by the forest on the wind

was modelled by means of PAD profiles, the value of the surface roughness below the canopy had very little impact on the

flow above the forest. This implies that for wind modelling, uncertainty in the lower part of the canopy is acceptable. Further

research in how to optimally choose grid resolution is needed.

6 Conclusion30

We presented a new method to calculate PAI and PAD from airborne laser scans (ALS), which uses all available reflection

attributes commonly stored in the ALS datasets, and combines benefits from earlier published algorithms. In order to evaluate
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the performance of the new method, it was used together with three reference methods on sites with contrasting characteristics.

The results of the new routine showed no marked weakness with respect to sensitivity to forest characteristics, grid resolution,

beam attenuation and ratio of ground to canopy returns, whereas all reference methods were challenged in either of those

categories. In summary, the results indicate that the new algorithm is robust and would therefore perform well for a wider

range of vegetation types than tested here.5

The new routine is applicable provided that each data point in the data set contains information on the number of returns in

the pulse, the return number of the specific point and that the data is ordered such that consecutive reflections from the same

pulse are grouped in the data set. For the ALS datasets that we have used in this study, this criterion has been fulfilled.

The results showed a dependence on the grid resolution of the derived PAI and PAD fields that was systematic for all methods.

The grid sensitivity was linked to the violation of the homogeneity assumption in the Beer-Lambert law, which can also be10

explained by the Jensen’s inequality for convex functions. The grid resolution sensitivity is varying between the methods (from

7 and 32 % reduction in PAI for a magnitude change in grid size), where the new method showed the second least sensitivity.

Despite the identified issues with airborne lidars for the determination of plant area and plant density, the similarities between

the four tested methods highlight the prospect of obtaining PAD and PAI with great spatial coverage, that are both precise and

accurate, especially in regards to the uncertainty levels in established ground based methods (Yan et al., 2019). The use of15

airborne lidar scans to derive maps of PAD and PAI also provides a promising way to greatly reduce the subjectivity, and likely

uncertainty, of any atmospheric modelling that involves air-canopy interactions, such as drag, heat transfer and gas exchange.
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