
We would like to thank both reviewers for their positive and useful comments on our m/s. The 
suggestion that we evaluate model performance in previous years turned out to be particularly 
valuable. It demonstrated that the assumption of normally distributed model errors (equation 3 in 
the original m/s), along with a small (and now corrected) error in processing lightning inputs, 
made it difficult for the model to capture previous high fires years within it’s posterior accurately. 
We felt that the ability of the model to reproduce the historical record, particularly in dry years, 
was a pre-requisite to applying the framework to assess meteorological influences over 2019 
fires. As such, we have implemented a new error term to improve the model performance in 
previous extreme years. The most substantial revisions of the m/s with regard to this specific 
change are outlined below. 
 
In the revised m/s, we now demonstrated that a logit-transformed, zero-inflated normal 
distribution is a much more appropriate way of representing the conditional probability of 
observation given parameter combinations, by including a new appendix Fig A1: 

 

Figure A1: Distribution of burnt areas in MODIS Collection 6 MCD64A1 burned area product 

(Giglio et al., 2018) and (red line) fitted normal distribution for logit transformed burnt areas greater 

than 0.  

https://paperpile.com/c/wMSPFx/sKH0w


 

We have also replaced our error description and the probability of observations given a 
parameter combination (lines 126-129) with: 

41.47% of the burnt area observations are zero, and the remaining are normally distributed under ogitl  

transformation (Fig. A1). We, therefore, defined the likelihood,  using a zero-inflated normal(Y | ß),P s  

distribution on the logit transformed burnt area, as opposed to a simple normal distribution as used in 

Kelley et al (2019). This better described the observational to the simulated difference in burnt area during 

times of very low or very high burning. Our zero-inflation likelihood term is therefore described as: 
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This new term allows for a much narrower uncertainty range at low burnt areas (see tan in the 
original and revised Figure 1) and, consequently, allows for a broader error term during periods 
of extreme burning. The models full posterior now captures levels of burning during historic dry 
years, as described by the response to reviewer #1s main comment. 
 
The extra detail the model provides means we can focus on capturing drivers over smaller 
geographical areas. We have therefore modified our regions slightly to capture the west-east 
transect across the arc of deforestation in Brazil and to explain variations in burning throughout 
our area of active deforestation (AAD), though the AAD itself remains unchanged. We have 
therefore changed the region description (lines 154-161) to: 

A. Acre, Southern Amazonas States and Brazilian/Peruvian border 

B. Rondônia and Northern Mato Grosso, Brazil. 

C. Tocantins, Brazil,  

D. Maranhão and Piau in coastal deforestation regions  

E. Brazilian, Bolivian and Paraguayan border 

F. Area of Active Deforestation (AAD) 

G. [the areas of the AAD that is on] Southern end of agricultural-humid tropical forest interface in Brazil's 

central states, often associated with arc of deforestation in Brazil's central states 

H. [the areas of the AAD that is on] Drier savanna and woodland in Cerrado and Caatinga in the eastern Basin 

were land has already been heavily converted to agriculture 

I. [the areas of the AAD that is on] Southern dry-deciduous Chiquitano and Gran Chaco forests, mainly 

along the Amazon, La Plata watersheds.  

See the response to reviewer #1 for all changes in relation to region descriptions. 

https://paperpile.com/c/wMSPFx/Zs09I/?noauthor=1


We have split Figure 1 in two (i.e new Fig1. and Fig 2, with Fig. 2 and 3 in the original 

manuscript becoming 3 and 4). Notice the narrower posterior in tan and model performance 

compared to the original version 

 

 

Figure 1: Time series and fire season anomalies for modelled and observed burnt area. See Fig. A2 for locations 

of A-R.  Red lines show monthly burnt area observations from MCD64A1, yellow shows model accounting for 

parameter uncertainty (10-90%) and brown shows full model uncertainty (10-90%).  The red line is dashed 

when observations and model accounting for parameter uncertainty overlap. Vertical grid lines are positioned 

for August each year. Right-hand plots show observed (x-axis) and modelled (y-axis) anomaly, calculated as 

2019 burnt area over 2002-2019 climatological average burnt area for (first column) August and (second 

column) September. The colour indicates the year, with 2019 in red. Thin lines show 10-90% full model 

uncertainty, while dots and thick line indicate 10-90% parameter uncertainty 



 

Figure 2: As Fig. 1, but for the “Area of Active Deforestation” region which incorporates areas where there has 

been a significant increase in agriculture and decrease in tree cover. See Fig. S4, and regions and increased 

agriculture and decreased tree cover in the (G) humid tropical forest, (H) savanna and (I) dry-deciduous 

Forest.  

 
We also have modified the results and figures to capture these new insights (see attached 
revised m/s), though the overall conclusion of the paper - that meteorological conditions did not 
drive the increased burning in deforestation areas of South America in 2019, remain 
unchanged. 
 


