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Abstract    The   sudden   increase   in   Amazon   fires   early   in   the   2019   fire   season   made   global   headlines.   While   it   has   

been   heavily   speculated   that   the   fires   were   caused   by   deliberate   human   ignitions   or   human-induced   landscape   

changes,   there   have   also   been   suggestions   that   meteorological   conditions   could   have   played   a   role.   Here,   we   ask   

two   questions:   were   the   2019   fires   in   the   Amazon   unprecedented   in   the   historical   record?;   and   did   the   

meteorological   conditions   contribute   to   the   increased   burning?   To   answer   this,   we   take   advantage   of   a   recently   

developed   modelling   framework   which    optimizes optimises    a   simple    fire   model   against   observations   of    burnt   

area    model ,   and   whose   outputs   are   described   as   probability   densities.   This   allowed   us   to   test   the   probability   of   

the   2019   fire   season   occurring   due   to   meteorological   conditions   alone.    We The   observations    show   that   the   burnt   

area   was    indeed    higher   than    in    previous   years    in   regions   where   there   is   already   substantial   deforestation   activity   

in   the   Amazon ,   with .    11%   of   the   area    recording recorded    the   highest   early   season   (June-August)   burnt   area   since   

the   start   of   our   observational   record ,   with   areas   in   Brazil's   central   arc   of   deforestation   recording   the   highest   ever   

monthly   burnt   area   in   August .   However,   areas   outside   of   the   regions   of   widespread   deforestation   show   less   

burnt   area   than   the   historical   average ,    and   the    optimized optimised    model   shows   that    there   is   a   71%   probability   

that   this   low   burned   area   would   have   been   expected   over   the   entire   Amazon   region,   including   regions   already   

witnessing   deforestation   and   of this   low   burned   area   would   have   extended   over   much   of   the   eastern   Amazon   

region,   including   in   Brazil's   central   arc   of   deforestation   with    high   fire   occurrence   in   2019.   We   show   that   there   is   

a    <7 9 %   chance   of   the   observed    June- August   fires   being   caused   by   meteorological   conditions   alone,   decreasing   

to    <1%   in   Paraguay   and   Bolivia   dry-forests   and   at   the   eastern   end   of   the   Amazons   arc   of   deforestation.   This   

suggests 6-7%   along   the   agricultural-humid   forest   interface   in   Brazil's   central   states,   and   8%    in   Paraguay   and   

Bolivia   dry-forests.   Our   results   suggest    that   changes   in   land   use    and   land ,    cover   or    land    management   are   the   

likely   drivers   of   the    large substantial    increase   in   the   2019   early   fire   season   burnt   area ,   especially   in   Brazil .   Burnt   

area   for    the   peak   of   the   fire   season   in   September   returned   to   levels   expected   from   meteorology   conditions   in   the  

arc   of   deforestation September   in   the   arc   of   deforestation   had   a   14-26%   probability   of   being   caused   by   

meteorological   conditions ,   potentially   coinciding   with   a   shift   in    fire-related    policy   from   South   American   

governments ,   but   remained   high   in   Bolivia   and   Paraguay.   ¶   

.     
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1   Introduction   

South   American   fires   made   global   headlines   in   August   2019,   with   the   largest   increase   in   fire   activity   seen   in   

nearly   ten   years    (INPE,   2019;   Lizundia-Loiola   et   al.,   2020) .   Of   the   roughly   100,000   fires   burning   by   the   end   of   

the   month,   around   half   were   in   the   Amazon   rainforest   region    (Andrade,   2019;   INPE,   2019) .   While   fires   in   drier   

savannah   regions   of   South   America   such   as   the   Cerrado   are   more   common,   fires   in   the   rainforest   are   not   a   

natural   occurrence   and   are   rarely   ignited   without   human   intervention    (Aldersley   et   al.,   2011) .   As   such,   fires   in   

humid,   tropical   regions   where   the   vegetation   is   not   adapted   to   frequent   burning    (Kelley,   2014;   Staver   et   al.,   

2020;   Zeppel   et   al.,   2015) ,   have   much   higher   tree   mortality   rates    (Brando   et   al.,   2014;   Cochrane   and   Schulze,   

1999;   Pellegrini   et   al.,   2017) .   As   a   result,   an   estimated   906,000   hectares   of   the   Amazon   biome   was   lost   to   fires   

in   2019    (Butler,   2017) .   The   amount   of   carbon   and   trace   gas   emission   was   also   a   major   concern   given   the   high   

biomass   of   the   areas   being   burnt,   and   smoke   from   these   fires   reached   cities   as   far   as   São   Paulo   more   than   

2,700km 2,700   km    away    (Lovejoy   and   Nobre,   2019) .   Usually,   small-scale   fires   in   Amazonia   are   associated   with   

deliberate   but   localised   deforestation,   although   in   dry   years ,    there   is   more   risk   of   these   fires   escaping   into   much   

larger   areas    (Aragão   et   al.,   2018) .   Hence   the   substantial   increase   in   fires   in   2019   sparked   much   debate   about   

whether   the   level   of   burning   was   unprecedented,   whether   increased   burning   was   driven   by   a   drier   than   normal   

fire   season   and   if   raised   levels   of   direct   deforestation   played   a   role    (Arruda   et   al.,   2019;   Escobar,   2019) .     

The   Amazon    was has    not    been    the   only   place   with   recent   unusual   and   high   fire   activity,   with   large-scale   fire   

events   worldwide   in   the   last   couple   of   years   including   in   the   Arctic,   Mediterranean,   Australia,   UK   and   the   US.  

In   November   2018   over   80   people   were   killed   in   the   Camp    fire Fire    in   Paradise   California,   the   most   destructive   

in   California’s   history,   with   the   Camp,   Woolsey   and   Carr   Fires   together   costing   an   estimated   $27   billion   in   

damages    (Nauslar   et   al.,   2019) .    Hundreds   of   fires   burnt   throughout   the   2019   summer   in   Siberia   and   Alaska,   

releasing   over   150   Mega   tonnes   of   CO 2    to   the   atmosphere.   Also   released   were California   2020   fire   season   is   set   

to   be   even   more   damaging    (Anon,   2020) ,   though   the   true   extent   and   costs   are   still   increasing   at   the   time   of   

writing.   Hundreds   of   fires   burnt   in   Siberia   and   Alaska   throughout   the   2019   and   2020   northern   hemisphere   

summers,   releasing   over   150   Mega   tonnes   of   CO 2    in   2019   abd   244   Mega   tonnes   in   2020   into   the   atmosphere   

(Witze,   2020) .   Of   major   concern   was   the   release   of    large   quantities   of   black   carbon   with   the   potential   to   further   

accelerate   local   arctic   ice   melt    (Patel,   2019) .   The   UK   saw   some   burning,   including   a   peatland   fire   in   north-east   

Sutherland   that   doubled   Scotland's   carbon   emission   for   six   days   in   May   2019    (Wiltshire   et   al.,   2019) .   Between   

September   2019   and   February   2020,   fires   across    eastern southeastern    Australian    temperate   woodlands    burnt   

around   18.6   million   hectares,   destroyed   over   5,900   buildings,   and   killed   at   least   34   people    (Boer   et   al.,   2020;   

RFS,   2019;   Sanderson   and   Fisher,   2020) .   Unusual   fire   events   such   as   these   are   expected   to   increase   in   frequency   

in   the   future   from   both   changes   in   climate   and   socio-economic   pressures   on   the   landscape    (Fonseca   et   al.,   2019;   

Jones   et   al.,   2020) .   Given   the   concerns   raised   and   the   extent   to   which   much   of   these   fire   events   captured   the   

attention   of   the   public   and   press   in   recent   months,   in   the   aftermath ,    it   is   important   to   look   at   these   events   

objectively.   In   particular,   it   is   essential   to   determine   if   they   were   unusual   in   the   context   of   the   historical   record   

and   if   so ,    what   might   be   new   and   emerging   drivers.   
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There   are   many   ways   to   assess   drivers   of   historical   fire   events.   Some   studies   simply   correlate   individual   drivers   

with   burnt   area   in   isolation     (Andela   et   al.,   2017;   Van   Der   Werf   et   al.,   2008) .   However,   these   do   not   consider   the  

complex   interaction   of   multiple   drivers   on   fire   and   are   therefore   unable   to   go   beyond   a   loose   attribution   of   a   

particular   forcing   to   fire ,   which   can   easily   be   confused   as   causations   due   to   the   number   of   drivers .   Fire   Danger   

Indices   (FDIs),   which   can   capture   simultaneous   drivers,   are   useful   for   calculating   the   level   of   risk   of   a   fire  

spreading   and   becoming   severe   in   a   particular   area    (de   Groot   et   al.,   2015) .   FDIs   have   been   adapted   to   assess   

recent   and   future   trends   in   climate   on   fire   weather    (Burton   et   al.,   2018;   Jolly   et   al.,   2015)    and   attribute   increases   

in   fire   risk   to   anthropogenic   changes   in   climate    (van   Oldenborgh   et   al.,   2020) .   These   metrics   thereby   provide   

rapid   policy-relevant   information   for   fire   management    (De   Groot   et   al.,   2010;   Perry   et   al.,   2020) .   However,   FDIs   

by   themselves    do   not   account   for    available    fuel   or    ignition,   which   differentiates ignitions,   differentiating    them   

from   fire   observations   such   as   burnt   area,    and   makes making    them   an   unsuitable   tool   for   assessing   fire   in   the   

holistic   context   of   weather,   fuel   dynamics,    ignition ignitions    and   human   land   and   fire   management    (Kelley   and   

Harrison,   2014) .   Fire-enabled   Land   Surface   Models   (LSMs)   can,   however,   account   for   these   drivers    (Kelley   and   

Harrison,   2014;   Lasslop   et   al.,   2016;   Prentice   et   al.,   2011b)    to   simulate   a   physical,   observable   measure   of   fire   

regimes,   such   as   burnt   area   or   number   of   fires     (Rabin   et   al.,   2017 .   Some   LSM   fire   schemes   achieve   this   by   

modelling   fuel   moisture   using   FDIs    (Lenihan   et   al.,   1998;   Rabin   et   al.,   2017;   Venevsky   et   al.,   2002 ) .   However,   

most   LSMs   have   been   developed   to   study   long-term,   often   decadal   timescale   carbon   dynamics   and    Earth   

System   feedbacks   and    therefore   often   fail   to   reproduce   year-to-year   patterns   of   fire   with   the   required   accuracy   to   

be   used   to   determine determine   the    causes   of   individual   fire   seasons    (Andela   et   al.,   2017;   Hantson   et   al.,   2016,   

2020) .    Embedding   fire   within   a   complex   vegetation   model   system   also   prevents   rapid   observation-model   fusion,   

as   iterative   optimisation   techniques   are   too   computationally   expensive   and   instabilities   arise   from   non-linear   

responses   of   fire   to   simulated   vegetation   and   fuel   dynamics.   Many   large   scale   vegetation-modelling   projects,   

therefore,   simulate   up   to   a   “present-day”   that   can   be   several   months   or   years   out   of   date    (Friedlingstein   et   al.,   

2019;   Hantson   et   al.,   2020) .    This   lack   of    annual    predictive   capability   has   led   to   calls   for   simulation   frameworks   

that   fuse   statistical   representations   of   fire   drivers   with   modelling   techniques ,   and    that   consider   such   interactions   

(Fisher   and   Koven,   2020;    Forkel   et   al.,   2017;    Krawchuk   and   Moritz,   2014;   Sanderson   and   Fisher,   2020;   

Tollefson,   2018;   Williams   and   Abatzoglou,   2016) .     

Kelley   et   al.    (2019)     recently    developed   a   methodology   which   addresses   this   gap   by   coupling    process   

representation the   same   representation   of   processes    found   in   simple   fire   enabled   LSMs    (Rabin   et   al.,   2017)   

with using    a   Bayesian   inference   framework.    This   system The   main   advantage   of   this   system   is   that   it    can   assess   

the   contribution   of   different   fire   drivers   directly   from   observations   and   track   uncertainty   in   the   model   

parameters   and   the   models’   ability   to   reproduce   observations .   We   apply   this   methodology   here,   using   monthly   

meteorological   conditions   and   burnt   area   (BA)   observations   to   constrain   and   drive   the   model,   thus   capturing   

interannual   variability   within   the   context   of    a    changing   meteorological   conditions.   We   use   this   framework   to   

answer   the   specific   question:   Did   the   meteorological   conditions   contribute   to   the   Amazonia   Fires   of   2019?   

2   Methods   
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We   largely   followed   the   modelling   protocol   and   optimization   framework   from The   modelling   protocol   and   

optimisation   framework   largely   follow    Kelley   et   al.    (2019) ,    which   contains where    a   more   detailed   description   

may   be   found.   Here,   we   summarise   and   outline   further   refinements .   Monthly   burnt   area   (BA)   is   modelled   as   a   

product   of   limitations   imposed   by   four   controls:   1)   fuel   availability;   2)   moisture   in   live   and   dead   fuel;   3)   

anthropogenic   and   natural   ignition;   4)   both   active   suppression   and   landscape   fragmentation   effects   from   human   

land   use   (Table   S1   in   Supplement).   Each   control   is   calculated   as   a   linear   combination   of   its   respective   drivers.   

The   impact   each   control   has   on   fire   is   represented   by   a   logistic   curve   describing   the   maximum   allowed   burnt   

area .   Overall   burnt   area   is   then    based   on   that   control,   and    the   product   of    these all    four   limitations .   ¶  

We   made   a   small   number   of    is   used   to   determine   BA.     

We   made   several    changes   to   the   previous   modelling   protocol   in   order   to   utilise   near-real-time   meteorological   

and   fire   variables   so   that   we   can   produce   relevant   results   that   closely   follow   the   fire   event ,   and   to   better   describe   

the   conditional   probability   distribution   between   parameter   samples   and   burnt   area   observations .   We   used    the   

MODIS   Collection   6   MCD64A1   burned   area   product    (Giglio   et   al.,   2018)    as   our   target   dataset   and   replaced   

actual   over   potential   evapotranspiration   in   the   moisture   control   with   soil   moisture   (Table   S1).   We   also   used   both   

the   top   10cm   and   10-200cm   soil   moisture    (Kalnay   et   al.,   1996)    as   independent   moisture   drivers   in   order   to   

capture   the   impact   of   previous   drought   years   on   deepwater   availability   for   live   fuel.   As   near-real-time   wetday   

information   is   also   not   available,   we   replaced   wet   days   in   the   calculation   of   dead   fuel   drying   potential    (Kelley   et   

al.,   2014)    with   a   proxy   for   wetdays    ( WD ) ,   using   GPCP   precipitation    (Adler   et   al.,   2003)    ( pr )   based   on    (Prentice   

et   al.,   2011a) :   

 D 1 e W =  −  wd x pr−  (1)   

where     is   an    optimized optimised    parameter.  dw  

All   variables   were   resampled   and,   where   necessary,   interpolated   to   a   monthly    timestep time-step    as   per   Kelley   et   

al.    (2019)    although   here   too   a   resolution   of   2.5°,   which   was   the   coarsest   and   most   common   grid   across   all   

variables   used.   MCD64A1,   soil   moisture   and   equilibrium   fuel   moisture   content   were   translated   to   a   2.5-degree   

grid   as   per   Kelley   et   al.    (2014) , .   All   driving   variables   were   provided   on   a   resolution   of   2.5°   except   land   use,   

provided   at   0.5°.   We,   therefore,   choose   to   regrid   all   datasets   to   a   resolution   of   2.5°,   as   interpolating   to   a   finer   

resolution   would   provide   no   new   information   about   the   meteorological   drivers   tested.    MCD64A1,   soil   moisture   

and   equilibrium   fuel   moisture   content   were   processed    using   the   “rgdal”    (Bivand   et   al.,   2016)    and   “raster”   

(Hijmans   and   van   Etten,   2014)    packages   in   R    (R   Core   Team,   2015) .   For   MODIS   Vegetation   Continuous   Fields   

(VCF)   fractional   covers    (Dimiceli   et   al.,   2015) ,   tiles   were   merged   and   resampled   to   the   model   grid   using   the   

“gdal”   package    (GDAL/OGR   contributors,   2018) .   Land   use,   population   density,   precipitation,   humidity,   

temperature   and   lightning,   were   processed   using   the   iris   package    (Met   Office,   2013)    with    python Python    version   

3         (Python   Software   Foundation,    https://www.python.org/ ) .   
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The   model     was   optimised   against   MCD64A1   burned   area    (Giglio   et   al.,   2018)    for   the   period   July   2002   to   June   

2018,   which   was   the   common    years   among period   for    all   datasets   (Table   S2)   over   South   America,   south   of   13°N.   

We   used   the   same   Bayesian   Inference   technique   as   per   Kelley   et   al    (2019) .    For   the   purposes   of   this   study,   

Bayes’   theorem   states   that   the   likelihood   of   the   values   of   the   set,   ,   which   contain   our    23 24    unknown  ß  

parameters   (i.e.   the   21   parameters   from   Kelley   et   al    (2019) ,     from   equation   2,    an and    error   term  dw  

parameter parameters          in   equation   3 )   and   our   known   model   inputs,   given   a   set   of   observations       is  σ P 0 σ Y s  

proportional   to   the   prior   probability   distribution   of     ( )   multiplied   by   the    conditional    probability   of    ß (ß)P Y s  

given   ß:   

(β∣Y )  P (β) (Y ∣β)  P s ∝  · P s (2)   

where As   41.47%   of   the   burnt   area   observations   are   zero,   and   the   remaining   are   normally   distributed   under   

    was   defined   as transformation   (Fig.   A1).   We,   therefore,   defined   the   likelihood,     using   a  (Y ∣ ß)  P s ogitl (Y ∣ ß),  P s  

zero-inflated   normal   distribution   on   the   logit   transformed   burnt   area,   as   opposed   to    a    truncated simple    normal   

distribution :     as   used   in   Kelley   et   al    (2019) .   This   better   described   the   observational   to   the   simulated   difference   in   

burnt   area   during   times   of   very   low   or   very   high   burning.   Our   zero-inflation   likelihood   term   is   therefore   

described   as:   

(Y ∣ ß) ℵ(F , σ) exp  P s =   =  N
σ√2 π Σ{ i

N( σ 

y   BAi − i )2} (Y ∣ ß) 1 BA  1 P )P s = 0 =  −  i
2 × ( −  0  

                                     (3)  (Y ∣ ß) exp  P s > 0 = 1 (Y ∣β) [ − P s = 0 ]  ×  N
σ√2 π Σ{ i

N( σ 

logit(y )  logit(BA )i − i )2}  

and    where     represents   an   individual   data   point,       is   the   burnt   area   observations    and ,     N    is   the   observation  i yi  

sample   size .     and    .  ogit(x) og  l = l ( x
1 x− )  

  

The   posterior   solution   was   inferred    for    the   models'   parameters   ( all   model   parameters    )     using   a  (Y ∣ ß)  P s  

Metropolis-Hastings   Markov   Chain   Monte   Carlo   (MCMC)   step   with   the    pymc3   python PyMC3   Python    package   

(Salvatier   et   al.,   2016) ,   running    10   chains   each   over   10,000   iterations.    Unlike   Kelley   et   al.    (2019) ,   we We    used   

all   of   the   44750    data   points grid   cells    on   our   2.5°   grid   and   monthly   time   step   for   16   years    in   our   assimilation   

procedure.   This   is   a   departure   from   Kelley   et   al.    (2019) ,   where   only   10%   of   grid   cells   were   used,   as   our   sample   

size   was   much   smaller   and   we   did   not   face   the   same   computational   demand .   Due   to   our   sample   size,   our   

posterior   probability likelihood    dominates   over   our   priors,   and   as   with   Kelley   et   al.    (2019) ,   priors   predominantly   

were   employed   to   set   physically   plausible   bounds   on   our   parameters.   

  

Once    optimized optimised ,   the   model   was   then   run   from   January   2002   -   December   2019   and   so   the   trained   

model   was   in   a   predictive   mode   for   2019.   Due   to   data   availability   at   the   time   of   writing,        July   2017   -   June   2018   

land   cover,   land   use   and   population   density   were   recycled   for   July   2018   onwards   (Table   S2).   We   sampled   100   

parameter   ensemble   members   from   the   last   5000   iterations   of   each   of   the   10   chains,   providing   us   with   1000   
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ensemble   members   to   estimate   the   models’   posterior   solution   to   equation   2.    The   posterior   solution,   inferred   by   

maximising   equation   3, Sampling   was   performed   using   the   iris   package    (Met   Office,   2013)    with   Python   version   

3     (Python   Software   Foundation,    https://www.python.org/ ) .   The   posterior   solution    provides   an   estimate   of    a the   

burnt   area   based   on   the   parameter   uncertainty   of   our   model,   corresponding   to   the   yellow   areas   in   time   series   in   

Fig.   1 .   This   was   validated   as   per   Kelley   et   al.     (2019) ,   along   with   additional   checks   of   the   models’   ability   to   

reproduce   seasonality   and   inter-annual   variability   of   fire.   See   Fig.   S1-S3   and   model   evaluation   supplement   for   

validation   methods   and   results.  ¶ 

¶ 

In   the   predictive   model,   the   probability   of   a   burnt   area     and   2.   The   mean   burnt   area   for   a   particular   parameter   

combination   (    (where    ),   was   obtained   from:  y BAß  

 can   be   outside   training   data  y  (BA∣ ß) A dBABAß =  ∫
1

0
P × B  

(4)   

 ,   as   is   the   case   for   our   year   2019   analysis),   being   explained   by   our   model   ( was   evaluated   using   the  Y s BAß  

implementation   of   the   fireMIP   benchmarking   metrics    (Hantson   et   al.,   2020;   Kelley   et   al.,   2013;   Rabin   et   al.,   

2017)    as   per   Kelley   et   al.    (2019) .   We   also   performed   additional   benchmarking   metrics   of   the   models’   ability   to   

reproduce   seasonality   and   inter-annual   variability   of   fire.   See   Fig.   S1-S3   and   model   evaluation   supplement   for   

validation   methods   and   results.   

We   chose   five   regions   (marked   A-E   in   Fig.   1,   2.   See   Fig.   A2   for   locations)   to   represent   forest   areas   already   

under   pressure   from   deforestation.   Regions   A-C   form   a   transect   (west   to   east)    across   the   agricultural-humid   

tropical   forest   interface   in   Brazil's   arc   of   deforestation,   often   associated   with   deforestation   (Fig.   S4),   whereas   D   

and   E   regions   are   found   in   agricultural   regions   embedded   in   savanna   and   grassland   regions   that   experience   

frequent   burning:   

A. Acre,   Southern   Amazonas   States   and   Brazilian/Peruvian   border   

B. Rondônia    and   Northern   Mato   Grosso,   Brazil.   

C. Tocantins,   Brazil,     

D. Maranhão   and   Piau    in   coastal   deforestation   regions     

Brazilian,   Bolivian   and   Paraguayan   border  -   full   model   uncertainty,   or   model   error,   in   tan   areas   on   time  (y)P  

series   in   Fig.   1)   is   proportional   to   the   probability   of      given   a   parameter   set,    ,   weighted   by      :  ¶ y β (β∣Y )  P s

   (y) (β∣Y ) (y∣β) dβ P ∝  ∫
 

P S
P s × P  (4)  ¶ 

where    is   all   parameter   space.  ¶ SP

We   chose   five   regions   (marked   A-E   in   Fig.   1   and   Fig.   S4)   to   represent   forest   areas   already   under   pressure   from   

deforestation:  ¶ 
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E. Acre   and   the   Southern   Amazonas   States   in   Brazil   at   the   western   extent   of   the   “arc   of   deforestation”   in   

the   Tropical   Moist   Forest  ¶ 

F. Northern   Mato   Grosso,   Brazil,   towards   the   central   regions   of   the   arc   of   deforestation  ¶ 

G. Maranhão   and   Piauí,   Brazil,   in   coastal   deforestation   regions  ¶ 

H. Bolivian   dry   forest  ¶ 

I. Paraguay   dry   forests   and   woodland   

We   also   assessed   an   overall   Area   of   Active   Deforestation   (AAD)   in   the   Amazon   region   (     Fig.    S4 A2 ).   This   area   

is   defined   as   the   parts   of   South   American   southern   tropics   with   significant   decreasing   tree   cover   trends,   as   seen   

in   VCF        (Dimiceli   et   al.,   2015)    and    significant    increasing   agricultural   fractions   in   the   HYDEv3.1   dataset    (Klein   

Goldewijk   et   al.,   2010) .   Trend   analysis   used   the   same   technique   described   in   Kelley   et   al.    (2019) .   ¶  

We   assessed   the   probability   of   2019   fire   activity   being   explained   by   information   provided   to   the   model   in   three   

ways   (Table   1):   ¶  

What   was   the   likelihood   of   the   observed   monthly   burnt   area   occurring,   which   is   where ,   where   we   took   

significance   as   p<0.05   on   the   linear   trend   for   each   month   in   the   year   on   logit   transformed   cover   variables,   using   

the   greenbrown   R   package    (Forkel   and   Wutzler,   2015) .   AAD   was   additionally   assessed   over   3   sub-regions   

areas,   primarily   to   evaluate   the   models’   historic   performance   and   assess   the   increase   in   2019   fires   across   the   

humidity   gradient:   

J. Area   of   Active   Deforestation   

K. The   Southern   end   of   agricultural- humid   tropical   forest    interface   in   Brazil's   central   states,   often   

associated   with   the   arc   of   deforestation   in   Brazil's   central   states   

L. Drier   savanna   and   woodland    in   Cerrado   and   Caatinga   in   the   eastern   Basin   were   land   has   already   

been   heavily   converted   to   agriculture   

M. Southern    seasonally   dry-deciduous    Chiquitano   and   Gran   Chaco   forests,   mainly   along   the   Amazon,   La   

Plata   watersheds.     

We   assessed   the   probability   of   2019   fire   activity   being   explained   by   information   provided   to   the   model   in   three   

ways   (Table   1):     

1. The    likelihood   of   observed   monthly   burnt   area    based   on   the   information   provided   to   our   model.   In   

the   predictive   model,   the   probability   of   a   burnt   area      (where    can   be   outside   training   data    ,   as   is  y y Y s  

the   case   for   our   year   2019   analysis)   being   explained   by   our   model   (  -   full   model   uncertainty,   or  red(y)P  

model   error,   in   tan   areas   on   time   series   in   Fig.   1,   2)   is   proportional   to   the   probability   of      given   a  y  

parameter   set,   ,   weighted   by      :  β (β∣Y )  P s  

 red(y) (β∣Y ) (y∣β) dβ P ∝  ∫
 

P S
P s × P  (5)   
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1. Where    the   observed   burnt   area ,     ,     falls   within   the    main   range   e.g.   5%-95%   of   the   model’s   full  y  

posterior   (red   line   vs   tan   area   in   the   time   series   in   Fig.   1);  ¶ 

How   likely   was   it   that model’s   full   posterior   (  )   is   then   the   sum   of   all   probabilities   greater   than    ,  (y)L y  

 (y) P red(y) dBAD =  ∫
1

y
  (6)   

 ~0,   1   therefore   suggests   y   is   towards   the   extremes   of   the   posterior.   As   our   posterior   solution   is   not  (y)D  

normally   distributed,   observations   can   fall   at   the   extremes   (i.e.   when   there   is   no   burnt   area,      and  y = 0  

by   definition    ),   and   still   have   a   high   likelihood   (i.e.   if      in   equation   (3)   is   much  (y) 1D =  (Y ∣ ß)  P s = 0  

greater   than   0.   See   Fig   B2   as   an   example).   We,   therefore,   define   the   significance   of    as   the  (y)D  

probability   of      occurring    by   chance    (  )   from   the   sum   of   all   probabilities   below      (Fig.   A2):  y v(y)p (y)P  

 v(y) 1  p =  −  ∑
i ≤ n

iε2Ζ
(x) dx P (y) y  y )[ ∫

yi

yi 1−

P −  × ( i −  i  1− ]  (7)   

where    is   the   set   of   solutions   to    {y , ...., y } 1   n (y ) P (y)P i =   

Whenever      and      are   low   indicates   burning   significantly   higher   than   expected   by   the   model  (y)D v(y)p  

in   that   month.   

2. The    likelihood    burnt   area   would   have   been   higher   than   the   annual   average ,   i.e .    the   fraction   of   the   

model’s   full   posterior   greater   than   the    models model's    annual   average   climatological   posterior   (the   point   

where   the   vertical   lines   cross   1   in   right-hand   columns   in   Fig.    1)  ¶ 

3.   What   was   the   likelihood   of   such   an   anomalous   year   occurring   in   the   observations?   Calculated   as   the   

fraction   of   the   models’   full   posteriors   anomaly   being   greater   than   the   observed   anomaly.   ¶  

3   Results  ¶ 

3.1   Burnt   area   in   2019   in   context  ¶ 

2. The   year   2019   burnt   area   during   the   early   fire   season   (defined   as   June   to   August)   was   higher   than   the  

2002-2019   average   in   areas   of   recent   historic   deforestation,   despite   a   lower   than   average   burnt   area   

over   much   of   the   rest   of   the   continent   (Fig.   2).   The   AAD   as   a   whole   saw   the   2nd   highest   levels   of   

burning   in   the   fire   season   (Fig.   1F,   August),   behind   2010,   with   11%   of   the   area   experiencing   more   

burning   than   in   any   previous   year.   Burnt   area   for   what   is   normally   the   climatological   peak   of   the   fire   

season   in   September   (Fig.   S2-S3)   returned   to   lower-than-normal   levels   along   the   Brazilian   arc   of   

deforestation,   though   remained   high   along   the   border   between   Brazil,   Bolivia   and   Paraguay   (Fig.   1   D,   
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E   and   3).   This   meant   that,   while   the   burnt   area   was   higher   than   usual   in   2019,   it   was   not   exceptionally   

higher   over   the   entire   fire   season   (June   -September).   Other   high   years   were 1,2).   A   climatological   burnt   

area      for   a   given   month,    ,   in   the   year   (i.e.   January,   February,   etc.)   can   be   calculated   from   the  limc m  

convolution   of   each   year’s   posterior   solutions,    .   Note   that   it   is   the   model   inputs,   incorporated   in  βyr, m  

 ,   and   not   the   model   parameters   that   vary   with   time:  βm  

(BA ∣ clim ) P  P m =  BA ∣ β   ...  ( 2001, m ⋂  β2002, m ⋂  β2019, m )   

Where      and  xP BA 2 ∣ β  ( / i ⋂  βj)  =  ∫
BA

0
P BA  ∣ β( − x j) × P (BA ∣ β )i d  

xP BA 3 ∣ β  ( / i ⋂  βj ⋂  βk)  =  ∫
BA

0
P (BA  ∣ β )− x k × P x 2 ∣ β  ( / i ⋂  βj) d (8)   

The   probability   of   an   anomaly      in   a   given   year,    ,   for   month    is,   therefore:  A ry m  

(A A ∣ β ) (BA ∣ clim) dBAP A∣ β  clim( yr, m ⋂  m)  =  ∫
1

0
P × B yr, m × P (9)   

  

The   likelihood   of   a   year   having   a   higher   anomalous,    ,   is   the   sum   of   probabilities   of    :  A < A  

AL A∣ β  clim( yr, m ⋂  m)  =  ∫
A

0
P A∣ β  clim( yr, m ⋂  m) d (10)   

And   the   likelihood   of   the   year   an   average   burnt   area   is   given     L 1∣ β  clim( yr, m ⋂  m)  

3. The    likelihood   of   the   observed   anomalous   year    occurring   is   given   by   :   

  L  ∣ β  clim( ym

ym, yr / yr, m ⋂  m)  (11)   

where      is   the   burnt   area   for   the   month,    m ,   and   year,    yr ,   in   question,   and      is   the   climatological  ym, yr ym  

average   of   that   month   

  

3   Results   

3.1   Burnt   area   from   2001-2018   

The   highest   historic   burnt   areas   are   found   in   the   Savanna   regions   of   tropical   South   America   (Fig.   3),   though   

some   burning   still   occurs   in   forested   areas,   particularly   in   areas   which   have   experienced   an   increase   in   

agriculture   and   decrease   in   tree   cover   since   2002   (Fig.   S4).   The   model   reproduces   this   spatial   pattern,   and   the   

models   full   posterior   encompass   the   full   range   of   burnt   areas   (Fig.   3,   and   benchmarking   SI).   Burnt   area   starts   to   

increase   in   May   and   dies   out   in   October   throughout   most   of   the   Area   of   Active   Deforestation,   though   can   start   
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as   late   as   July   in   more   humid   areas   can   continue   through   to   December   in   drier   Savanna   (Fig   S3).   The   bulk   of   the   

burnt   area   occurs   in   August   and   September.   September   typically   sees   the   highest   burnt   area   in   central   Brazil,   

whereas   fire   peaks   in   August   around   Bolivia   and   Paraguay   (Fig.   2F,   S3).    Our   model   reproduces   this   seasonal   

pattern   in   burning   across   all   regions   (see   benchmarking   SI),   including   onset   and   peak   (Fig   S3).   As   our   model   

maintains   constant   human   ignitions   and   suppression   throughout   the   year,   this   suggests   that   the   seasonal   pattern   

can   be   largely   reproduced   from   meteorological   variations.   Though   a   slight   increase   in   uncertainty   in   early   fire   

season   burning   could   point   to   increased   human   ignitions   not   captured   in   the   model   (Fig.   S3).     

Unusually   high   levels   of   burning   occurred   in    2004   in   the   Bolivian /Paraguayan    dry   forest   (red   line   in   Fig.    1D 1E ),   

2005   in   the   eastern   arc   of   deforestation   (Fig.   1A)   and   Paraguay   dry   forest   (Fig.    1E),     2002   in   Paraguay,    2007   in   

monsoonal   coastal   forests   (Fig.    1C 1D )   and   2010   in   Bolivia   and   Paraguay   dry   forests   (Fig.    1C   and   D).   

Deforestation   rates   in   2004/05   were   high    (Marengo   et   al.,   2018) ,   whereas 1D   and   E).    2005   and   2010   burning   

have   previously   been   associated   with   droughts   driven   by   a   Tropical   North   Atlantic   warming   anomaly    (Marengo   

and   Espinoza,   2016) .   The    model   reproduced   the   spatial   pattern   of   this   increased   burning   in   2005   and   2010   (Fig   

C1,    C2 ).   In   our   different   regions,   observed   levels   of   buring   fall   within,   although   at   the   higher   end,   of   our   models   

posterior   (Fig.   B1,   B2)   with   a   high   value   of   expectation   (height   of   the   posterior   curve   in   Fig   B1,   B2)   and   high   

p-value   (   blue   shaded   area,   B1   and   B2).   This,   along   with   the   model   high   spearman's   rank   performance   (Fig   S1   

and   S2)   suggests   that   the   model   is   able   to   capture   the   interannual   variations   driven   by   meteorological   

conditions.   Deforestation   rates   in   2004/05   were   high    (Marengo   et   al.,   2018) ,   and   an    increase   in   fire   activity   in   

2007     has    also    been   linked   to   deforestation   across   the   Amazon    (Morton   et   al.,   2008) .  ¶ 

3.2   Climatic   conditions   in   2019  ¶ 

The   model   shows   with   statistical   high   confidence   that   most   of   Amazonia   should   have,   in   fact,   experienced   less   

fire   than   normal   for   June-August   when   accounting   for   2019   meteorological   conditions.   This   expected   low   fire   

rate   included   areas   in   the   AAD   that   saw   higher   than   annual   average   burning   in   observations   (Fig.   2).   Only   2   ±   

0%   area   (i.e.   one   grid   cell   throughout   the   sampled   posterior)   showed   unprecedented   high   burning   in   the   model.   

This   is   despite   a   good   agreement   between   the   modelled   and   the   observed   burnt   area   in   preceding   years   across   all   

locations   (yellow   in   time   series   in   Fig.   1),   and   the   model   also   ranking   the   order   of   most   previous   fire   seasons   

across   the   region   accurately   (Fig.   S1-S3   and   model   evaluation   supplement).   The   model   also   identifies   an   

increase   in   burning   across   the   region   in   the   meteorological   dry   years   of   2004/2005   and   2010   (Fig.   1F   

Additionally,   in   the   early   part   of   our   observational   record,   much   of   the   region   has   been   shown   to   be   less   coupled   

to   meteorological   drivers   and   more   heavily   influenced   by   human   fire   and   land   management    (Aragão   et   al.,   

2018) .   This   is   reflected   by   the   improved   performance   of   the   model,   which   depends   solely   on   changing   

population   density   and   land   use   cover   and   not   on   changes   in   landscape   management,   during   this   later   period   in   

the   AAD   (Fig   2F,   2011   onwards),   particularly   in   areas   dominated   by   agriculture   (Fig.   2H).   

On   the   whole,   the   frameworks   posterior   is   better   able   to   encompass   extremes   in   observations   in   humid   regions   

(Fig   2G   vs   Fig   2H,   I),   particularly   across   the   Brazilian   arc   of   deforestation   (Fig1A-C   vs   D   and   E).   19   out   of   204   

months   up   to   2018   for   the   AAD   (~9%)   fall   outside   the   90%   confidence   interval   (tan   in   Fig   2F),   suggesting   that   
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the   frameworks   posterior   accurately   describes   the   occurrence   of   more   extreme   months   for   the   region   as   a   whole.   

That   only   13   months   out   of   (204   months   x   5   regions)   1020   months   (~1%)    fall   outside   the   posterior   for   smaller  

regions   (Fig   1)   suggest   that   the   posterior   is   wider   than   expected.   Our   assessments   of   mismatch   between   

observations   and   model   for   these   regions   will,   therefore,   likely   be   conservative,   particularly   for   humid   regions   B   

and   C,   with   no   months   prior   to   2019   falling   outside   the   90%   confidence   interval.   

  

3.2   Burnt   area   in   2019   in   context   

The   year   2019   burnt   area   during   the   early   fire   season   (defined   as   June   to   August)   was   higher   than   the   2002-2019   

average   in   areas   of   recent   historical   deforestation,   despite   a   lower   than   average   burnt   area   over   much   of   the   rest   

of   the   continent   (Fig.   3).   The   AAD   as   a   whole   saw   the   3rd   highest   levels   of   burning   in   the   fire   season   (Fig.   2F,   

August),   behind   2007   and   2010.   11%   of   the   AAD,   particularly   around   the   central   region   of   Brazil's   arc   of   

deforestation,   experienced   more   burning   in   August   than   any   previous   year   since   our   observation   record   started   

in   2002   (Fig   1B,   C).    Despite   burnt   area   returning   to   normal   levels   in   September   across   most   of   the   AAD   (Fig.   

4),   burning   remained   high   in   humid   forest   areas   (Fig.   G),   particularly   in   central   Brazil   (Fig.   B,   C).   Burning   also   

remained   higher   than   average   along   the   border   between   Brazil,   Bolivia   and   Paraguay   (Fig.   1E,   Fig   2I   and   Fig   4).   

This   meant   that,   while   the   burnt   area   was   higher   than   usual   in   2019,   it   was   not   exceptionally   higher   over   the   

entire   fire   season   (June   -September)   for   the   entire   AAD,   though   individual   regions   still   stand   out   as   having   

much   higher   burning   than   any   previous   year,   particularly   in   Brazil's   central   states   (Fig2.   B   and   C).     

3.3   Climatic   conditions   in   2019   

The   model   shows   with   high   confidence   that   most   of   the   Eastern   Amazonia   should   have,   in   fact,   experienced   less   

fire   than   normal   for   June-August   when   accounting   for   2019   meteorological   conditions.   This   expected   low   fire   

rate   included   areas   in   the   Brazilian   humid   forest-agricultural   interface   in   the   AAD   that   saw   higher   than   annual   

average   burning   in   observations   (Fig.   1C   and   Fig.   3).   Western   Amazon   shows   an   increase   in   fire   compared   to   

the   annual   average   (Fig   3. ).   The   observed   burnt   area ,   however,   still    exceeds   the   model   in   all   our   regions   in   2019   

(Fig.   1)   except   region    C D    in   the   already   heavily   converted   agricultural   land   near   the   Brazilian   coast   (Fig.   S4).   

While   the   observed   burnt   area Only   0-2%   area   of   the   AAD   showed   unprecedented   high   burning   in   the   model,   

compared   to   the   11%   in   observations.   Observed   burnt   area   in   August    falls    within outside    the   full   models   

posterior    for   regions   A-C,   for   regions   D   and   E   it   exceeds   the   99%   confidence   interval   of   the   full   model   posterior   

for   June-September,   and   in   August   for   the   entire   deforested   region   (tan   in   Fig.   1,   Table   1),   indicating   that   the   

fire   levels   in   2019   fall   outside   of   the   expected   range,   especially   in   southern   Amazonia (at   90%   confidence   

interval)   for   the   AAD   (Fig   2F),   with   only   a   9%   likelihood   of   being   explained   by   the   model   (Table   1).   This   is   

particularly   prominent   in   more   humid   areas,   with   a   10%   likelihood   in   humid   forests   (Fig   1G,   Table   1,   G)   -   tied   

as   lowest   likelihood   in   the   observational   record   with   September   2005,   compared   to   17%   likelihood   in   seasonally   

dry   forests   regions   (Fig.   1I)   and   17%   the   driest,   savanna   areas   (Fig.   1H)   where   observations   tend   to   fall   outside   

the   model   posterior   more   often   (see   3.1).   Regions   B,   C   in   Central   Brazil,   and   E   on   the   Brazilian,   Bolivia   and   
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Paraguay   border   are   even   less   likely   to   be   explained   by   the   model   (7%   for   B,   6%   for   C   and   8%   for   E,   Table   1),   

despite   all   previous   months   falling   within   the   full   model’s   posterior   confidence   range   in   these   regions,   except   

for   August   and   September   in   2005   in   region   A.   Although   it   is   more   likely   that   burnt   area   regions   A   and   D   at   

either   end   of   Brazil's   arc   of   deforestation   could   be   explained   by   the   model   (18%   and   20%   respectively) .     

The   observed   anomaly   for    August    2019   is   higher   than   the    modelled   anomaly   for   August   in   all   regions   (Fig.   1,   

“August”   column,   red   points).   This   is   particularly   prominent   in   regions   D   and   E   where model   across   all   regions   

except   D.   This   is   particularly   prominent   in   regions   B   and   C,   where   observations   show   that   burnt   area   was   196%   

and   138%   greater   than   the   August   average   (Table   1).   Whereas    the   model   suggests   that   meteorological   

conditions   alone   should   have   resulted   in   a   fire   season   with   a    67-89%   reduction   in   burnt   area   in   D   and   

57-76% 16-22%   increase   (based   on   5-95%   parameter   uncertainty   range   for   parameter   uncertainty)   in   burnt   area   

in   B   and   2%   reduction   to   4%   increase    for    E C    compared   to   the   August   average    based   on   parameter   uncertainty ,   

with   only   a    6 57 %   and    8 53 %   chance   of   a   greater   burnt   area   than   the   average   for    D   and   E   respectively.   

Observations   instead   show   that   burnt   area   was   45%   and   130%   greater   than   the   August   average   (Table   1).   Even   

in   regions   A   and   B,   where   there   was   a   48%   and   22%   probability   of   seeing   greater   than   average   burning,   the   

model   suggests   that   the   likely   burnt   area   was   42-70%   and   71-80%    reduction   in   burnt   area   compared   to   the   

August   average.   These   meteorologically-based   estimates   are   much   less   than   the   154%   and   148%   increases   seen   

in   the   observations.  ¶ 

There   are   other   anomalous   years   in   individual   regions   (2014/2015   in   region   E,   which   the   model   suggests   should   

have   had   a   higher   burnt   area   than   observed,   and   2007,   2012   in   C   and   2010   in   D,   where   the   models   suggest   less   

there   should   have   been   less   fire).   However,   none   are   as   far   outside   the   model   range   as   2019.   For   the   AAD,   only   

2019   is   shown   to   be   a   significantly   anomalous   year,   with   only   a   7-8%   chance   of   the   levels   of   burning   seen   in   

observations   (Table   1),   or   just   1%   in   regions   B,   D   and   E. B   and   C   respectively.   The   likely   occurrence   of   the   

observed   anomaly   was   7   and   10%   for   B   and   C,   respectively   (Table   1)   -   much   greater   than   any   previous   year   (Fig   

1B   and   C,   August   column).     

The   higher   observed   anomaly   vs   the   model   extends   over   much   of   the   AAD   (Fig.   2    “August”   column,   red   

points).   The   model   suggests   a   4-6%   reduction   for   the   AAD,   with   a   49%   probability   of   greater   than   the   annual   

average   burnt   area   (Table   1).   By   comparison,   the   observed   burnt   area   was   45%   greater   than   the   annual   average,   

with   a   20%   likelihood.   Again,   the   observed   anomaly   seems   to   be   least   likely   in   more   humid   regions.   For   our   

humid   area,   G,   the   model   suggests   a   small   (10-14%)   increase   in   burnt   area,   with   only   a   12%   probability   of   

107%   increase   seen   in   observations,   whereas   the   5%   observed   reduction   in   drier   savanna   regions   in   H   seems   to   

be   in   line   with   the   model   (at   67%   likelihood).   

By   September,   there   was   less   disparity   between   observations   and   models.   In   region   B   and   C,   for   example,   

observations   had   a   14   and   26   %   probability   of   being   explained   by   the   model,   and   a   66%   and   25%   likelihood   of   

the   anomalous   year   as   seen   in   the   observations.   Across   the   AAD,   the   more   modest   16%   increase   in   the   

observations   had   a   likelihood   of   40%.     
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4   Discussion   

The   observed   spatial   pattern   of   burnt   area   in   June-August   2019   shows   that   unprecedented   burning   was   only   seen   

in    Brazilian    regions   normally   associated   with   deforestation.   Our   modelling   framework   demonstrates   that,   based   

on   meteorological   conditions   alone,   reduced   burning   seen   across   the   rest   of   Tropical   South   America   should   have  

extended   into   these   regions.   Specifically,   our   analysis   suggests   that   there   is   only   a    7 9 %   probability   that   the   

levels   of   burning   in   the   early   fire   season   would   have   been   caused   by   2019   meteorological   conditions   or   natural   

ignitions   alone   (time   series   Fig.   1 ,   2 ).   Eastern   areas   normally   associated   with   deforestation   did   show   expected   

levels   of   burning,   but   in   the   western   and   central   parts   of   the   arc   of   deforestation   and   Bolivia   and   Paraguay   dry   

forests,   burning   was   much   higher.   Here   there   is   a    <1 6-8 %   of   such    anomalous high    levels   of   burning   compared   to   

the   background   rate   (Fig.   1   “August”   column) .   As   we   account   for   deep   soil   moisture,   we   can   also   eliminate   the   

possibility   that   longer-term   drier   conditions   contributed   to   the   2019   fires ,   with   areas   where   agriculture   meets   

more   humid   forest   seeing   the   most   unusual   levels   of   burning.   As   our   model’s   posterior   reflects   the   levels   of   

burning   in   previous   dry   years,   we   can   eliminate   drier   conditions   as   a   possible   driver   of   increased   2019   fires.   We   

also   account   for   and   therefore   eliminate,   longer-term   drier   conditions   through   deep   soil   moisture   as   a   possible   

driver .   The   cause   of   increased   burning   in   2019   is   therefore   either   a   driver   left   static   in   the   model   for   2019,   or   a   

process   not   considered.   Because   of   the   non-availability   of   near-real-time   data,   drivers   held   unchanged   at   2018   

values   for   2019   are   tree   cover,   land   use   and   human   population.   The   only   plausible   way   tree   cover   could   have   

substantially   changed   is   through   increased   deforestation   rates    (Zhang   et   al.,   2015) .   Thereby   changes   in   drivers   

not   accounted   for   in   2019   would   only   have   caused   increased   burning   through   direct   human   manipulation   of   the   

landscape   rather   than   the   particular   meteorological   features   of   that   year.   

Improved   descriptions   of   evolving   changes   in   human   fire   and   landscape   interactions   over   time   may   also   be   

required   to   capture   direct   human-driven   changes   in   burnt   area.   This   is   likely   to   include   changes   in   demography   

or   human   behaviour ,   for .   For    example ,    we   currently   account   for   the   impact   of   a   changing   population   on   fire   

starts   and   suppression,   but   not   how   fire   ignitions   per   person   change   over   time.   An   evolving   policy   could   have   

also   been   the   cause   of   the   unusual   fire   activity.   It   should   also   be   noted   that   observed   fire   activity   returned   to   

expected   levels   given   meteorological   conditions   in   September    in   the   Northern   end over   most    of   the   deforestation   

region   (Fig.   1,    3 4 ).   This   reduction   could   be   after   the   June-August   fires   received   international   media   coverage,   

triggering   efforts   in   combating   fires   from   South   American   governments    (BBC   news,   2019;   NASA,   2019) .     

5   Conclusion   

In   this   study,   we   have   used   a   novel   Bayesian   modelling   approach    to   track ,   which   tests   the   likelihood   of   observed   

extremes   in   fire   against   inferred   historical   relationships   by   tracking    uncertainties   in   modelling   fire   in   the   land   
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surface.   Our   framework   provides   a   rapid   assessment   of   whether   there   was   any   influence   of   meteorological   

conditions   across   the   Amazon   that   exacerbated   fire   levels   in   2019.   

The   model   predicts   a   lower   burnt   area   than   we   see   in   the   observations   for   Amazonia   during   June-August   2019,   

indicating   that   from   observed   meteorological   data   alone,   we   would   not   expect   2019   to   be   a   high-fire   year.   This   

result   points    strongly   to   the   importance   of   including to    socio-economic   factors   having   a   strong   role   in   the   high   

recorded   fire   activity.    Specifically,   we   conclude   that   it   is   likely   ( 93 >90 %   probability)   based   on   past   

relationships   between   burnt   area   and   meteorological   conditions,   that   the   weather   conditions   did   not   trigger   the   

increase   in   burning   in   Amazonia   during   the   early   fire   season   in   2019.   This   result   holds   over   the   entire   area   of   

active   deforestation   and   furthermore   is    extremely    likely   ( >99 93 %)   in   central    and   Southeastern    Amazonia.   
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Figure   1:   Time   series   and   fire   season   anomalies   for   modelled   and   observed   burnt   area.    Top   5   rows   show   regions   A   -   

E,   while   the   bottom   row   shows   F,   the   “Area   of   Active   Deforestation”   region   which   incorporates   areas   where   there   has   

been   a   significant   increase   in   agriculture   and   decrease   in   tree   cover.   See   Fig.   S4   for   location See   Fig.   A2   for   locations   

of   A-E .    Red   lines   show   monthly   burnt   area   observations   from   MCD64A1,   yellow   shows   model   accounting   for   

parameter   uncertainty   ( 5-95 10-90 %)   and   brown   shows   full   model   uncertainty   ( 5-95 10-90 %).    The   red   line   is   dashed   

when   observations   and   model   accounting   for   parameter   uncertainty   overlap.   Vertical   grid   lines   are   positioned   for   

August   each   year.   Right-hand   plots   show   observed   (x-axis)   and   modelled   (y-axis)   anomaly,   calculated   as   2019   burnt   

area   over   2002-2019   climatological   average   burnt   area   for   (first   column)   August   and   (second   column)   September.   

The   colour   indicates   the   year,   with   2019   in   red.    Thin   lines   show    5-95 10-90 %   full   model   uncertainty,   while   dots   and   

thick   line   indicate    5%   and   95%   parameter   uncertainty.    10-90%   parameter   uncertainty   
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Figure   2:   As   Fig.   1,   but   for   the   “Area   of   Active   Deforestation”   region   which   incorporates   areas   where   there   has   been   

a   significant   increase   in   agriculture   and   decrease   in   tree   cover.   See   Fig.   S4,   and   regions   and   increased   agriculture   and   

decreased   tree   cover   in   the   (G)    humid   tropical   forest ,   (H)   savanna   and   (I)   dry-deciduous   Forest.       

22   



Figure    2 3 :   Maps   of   modelled   and   observed   %   burnt   area.   First   row:   observed   burnt   area,   June-August   2002-2019   

annual   average   (left)   and    anomaly   in   2019    difference   between   June-August   2019   and   2002-2019   average     (centre),   and   

the   number   of   years   2019   burnt   area   exceeds   (right).   Second    and   third- row:   as   top   row,    as   simulated   by   the   model.   

Annual   stippling   represents   where   the   5%   percentile   >   half   the   95%   percentile   of   models   posterior,   2019   anomaly   
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stripling   when   95%   of   the   models   posterior   agree   on   the   direction   of   the   anomaly,   and   no   of   years   stippling   when   

95%   of   the   models   posterior   agree   on   the   number   of   years   2019   exceeds     for   model   posteriors   5%   and   95%   

percentile .     
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Figure    3 4 :   Same   as   Fig.    2 3    but   for   September.       
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Table   1:   Observed   and   model   anomaly   in   burnt   area   for   August   and   September   2019   as   a   fraction   of   August   and   

September   averages   2002-2019   across   selected   regions   (see   methods).   Red   indicates   more   burning   than   normal,   blue   

less   and   yellow   around   average   burning.   The   model   is   expressed   as   5-95%   of   the   posterior   accounting   for   parameter   

uncertainty.   Likelihood   gives   the   percentage   probability   that   (1st   column)   the   observed   burnt   area    is as    suggested   by   

the   model    and    (2nd)    it’s   p-value;    (3rd)    that   the   model   suggests   a   higher   than   average   burnt   area   for   the   given   month,   

and   ( 3rd 4th )   that   the   model   captures   the   observed   anomaly   based   on   the   full   model   posterior.  ¶ 

Regions  ¶ Observed   
anomaly  ¶ 
¶ 
¶ 

Model   anomaly  ¶ Likelihood   (%)  ¶ 

A  ¶ 

¶ 5%  ¶ 95%  ¶Burnt   area  ¶ 
Higher   than   
average  ¶ Anomaly  ¶ 

Aug   2019  ¶ 2.539  ¶ 0.296  ¶ 0.584  ¶ 37  ¶ 48  ¶ 8  ¶

Sep   2019  ¶ 0.758  ¶ 0.149  ¶ 0.689  ¶ 75  ¶ 49  ¶ 59  ¶

B  ¶ 

¶ ¶ ¶ ¶¶ ¶ ¶ 

Aug   2019  ¶ 2.484  ¶ 0.200  ¶ 0.292  ¶ 13  ¶ 22  ¶ 1  ¶

Sep   2019  ¶ 1.008  ¶ 0.49  ¶ 1.089  ¶ 61  ¶ 43  ¶ 43  ¶

C  ¶ 

¶ ¶ ¶ ¶¶ ¶ ¶ 

Aug   2019  ¶ 0.812  ¶ 0.245  ¶ 0.413  ¶ 12  ¶ 45  ¶ 60  ¶

Sep   2019  ¶ 0.607  ¶ 0.225  ¶ 0.592  ¶ 22  ¶ 41  ¶ 80  ¶

D  ¶ 

¶ ¶ ¶ ¶ ¶ ¶ ¶ 

Aug   2019  ¶ 1.454  ¶ 0.106  ¶ 0.330  ¶ 1  ¶ 6  ¶ 1  ¶

Sep   2019  ¶ 1.650  ¶ 0.472  ¶ 0.812  ¶ 1  ¶ 45  ¶ 7  ¶

E  ¶ 

¶ ¶ ¶ ¶ ¶ ¶ ¶ 

Aug   2019  ¶ 2.303  ¶ 0.239  ¶ 0.428  ¶ 1  ¶ 8  ¶ 1  ¶

Sep   2019  ¶ 2.664  ¶ 0.519  ¶ 0.707  ¶ 1  ¶ 35  ¶ 1  ¶

F  ¶ 

¶ ¶ ¶ ¶ ¶ ¶ ¶ 

Aug   2019  ¶ 1.596  ¶ 0.280  ¶ 0.630  ¶ 8  ¶ 29  ¶ 7  ¶

Sep   2019  ¶ 1.248  ¶ 0.402  ¶ 1.187  ¶ 13  ¶ 45  ¶ 26  ¶
  

Regions   Observed   
anomaly   

  

Model   anomaly   Likelihood   (%)   

A   

  5%  95%  
Burnt   
area   p-value   

Higher   than   
average   Anomaly   

Aug   2019  1.82  0.88  0.96  18  0.1  52  18  

Sep   2019  0.57  1.29  1.32  18  0.09  48  58  

B   

             

Aug   2019  2.96  1.16  1.22  7  0  57  7  

Sep   2019  0.76  1.11  1.25  14  0  57  66  
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C   

              

Aug   2019  2.38  0.98  1.04  6  0.07  53  10  

Sep   2019  1.15  0.94  1.04  26  0.98  51  25  

D   

                

Aug   2019  0.68  0.68  0.7  20  0.76  46  64  

Sep   2019  0.46  0.91  0.95  43  0.88  52  53  

E   

                

Aug   2019  2.18  1.09  1.14  8  0.03  54  14  

Sep   2019  2.31  1.21  1.28  12  0.02  56  24  

F   

               

Aug   2019  1.45  0.94  0.96  9  0.01  49  20  

Sep   2019  1.16  1.06  1.08  9  0.19  50  40  

G   

         

Aug   2019  2.07  1.1  1.14  10  0.01  55  12  

Sep   2019  0.74  1.09  1.15  31  0.02  53  56  

H   

         

Aug   2019  0.95  0.85  0.87  17  0.01  44  67  

Sep   2019  0.95  0.9  0.92  10  0.74  44  65  

I   

         

Aug   2019  1.78  0.95  0.98  17  0.03  55  20  

Sep   2019  1.72  1.21  1.29  14  0.02  52  27  
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Figure   A1:   Distribution   of   burnt   areas   in   MODIS   Collection   6   MCD64A1   burned   area   product    (Giglio   et   

al.,   2018)    and   (red   line)   fitted   normal   distribution   of   logit   transformed   burnt   areas   greater   than   0.     
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Figure   A2:   Study   regions.   Boxes   mark   areas   used   for   time   series   in   Fig   1   and   rows   A-E   in   Table   1.   

Coloured   areas   for   time   series   if   Fig   2   and   F-I   in   Table   1,   with   the   entire   coloured   region   being   used   for   F   

AAD.   See   Fig.   S4   for   construction   of   AAD   and   areas   G-I.     
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Figure   B1:    Full   model   posterior   solution   (black   line)   for   August   2005   across   each   of   the   sub-regions   compared   

to   MODIS   Collection   6   MCD64A1   burned   area   product    (Giglio   et   al.,   2018)    (red   dashed   line).   Red   shaded   area   

(posterior   solution   smaller   than   observed)   shows   the   likelihood   high   burnt   areas   were   influenced   by   factors   

external   to   the   modelling   framework.   Blue   shaded   area   is   the   area   of   the   posterior   which   has   less   chance   of   

occurrence   than   the   observed   burnt   area   (given   by   blue   dashed   line).   
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Figure   B2:    As   Fig.   B1   but   for   August   2010.   
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Figure   B3:    As   Fig.   B1   but   for   August   2019.     
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Figure   C1:   Same   as   Fig.   3   but   for   June-September   annual   average   compared   to   2005.       
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  ¶  

  ¶  

   Figure   C2:   Same   as   Fig.   C1   but   for   2010.     
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Model   Evaluation   

We   used   the   same   set   of   evaluation   as   Kelley   et   al.    (2019) .   As   we   are   also   looking   at   annual   variations   

for   seasonal   and   sub-seasonal   model   simulation   of   burnt   area,   we   also   included   additional   

comparisons   for   seasonal   and   interannual   variability.   Comparisons   were   made   against   MCD64A1   for   

July   2002   -   June   2018.   Monthly   gridded   simulations   for   all   1000   posterior   samples   were   compared   

using   Normalised   Mean   Squared   Error   ( NMSE )    (Kelley   et   al.,   2013) .   Annual   average   and   June   to   

September   average   comparisons   used   Normalised   Mean   Error   ( NME )    (Kelley   et   al.,   2013)     as   

recommended   by   the   Fire   Model   Intercomparison   Project   (FireMIP,    (Rabin   et   al.,   2017) ).    NMSE    and   

NME    sum   the   squared   (for    NMSE )   or   absolute   (for    NME )   distance   between   observations    ( obs )   and   

reconstructed   burnt   area   from   a   parameter   set   ( sim(𝛽) )   over   all   cells    ( i )   weighted   by   cell   area   (    A i )   and   

normalised   by   mean   variation   in    obs :   

  and    (S1)   

NME    and    NMSE    comparisons   were   conducted   in   three   steps:   

1. As   described   above;   

2. Comparing    obs i     and    sim i    after   taking   the   difference   between   their   respective   means,   thereby   

removing   systematic   bias   

3. obs i    and    sim i    are   additionally   divided   by   the   mean   deviation,   which   therefore   describes   the   

models'   ability   to   reproduce   the   spatial   pattern   in   burnt   area.   
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Seasonality   comparisons   were   conducted   in   three   parts:   1)   modality   -   i.e   how   many   “seasons”   there   

are   in   a   given   year;   2)   phase,   or   timing,   of   the   season;   and   3)   seasonal   concentration   (inverse   of   

season   length).   

To   determine   the   modality   of   a   given   cell,   we   first   calculated   the   monthly   climatology   ( v 0 ).   The   month   

of   the   minimum   burnt   area   from   this   climatology   was   defined   as   the   start   of   the   “fire   year”.   We   then   

found   the   position   ( P )   of   each   maxima   turning   point   ( p i )   throughout   the   year:   

  

(S2)   

  

The   modality   ( MOD )   was   then   the   prominence   of   each   of   these   turning   points   (i.e   the   minimum   drop   

required   to   the   next   turning   point),   weighted   by   the   phase   distance   ( θ )   to   the   next   turning   point.   This   

is   normalised   by   the   height   of   the   month   of   maximum   burnt   area   

(S3)   

(S4)   

If   there   was   no   fire,   then    MOD    is   undefined   and   no   comparison   was   made   for   that   grid   cell.   If   there   

were   no   turning   points,   then   modality   was   set   to   0.   If   there   was   one   turning   point,    MOD    was   set   to   1.   

The   higher   the   number   beyond   that,   the   higher   the   modality   the   more   “seasons”   within   a   year.   Two   

equally   prominent   peaks   6   months   apart   have   a   modality   of   2.   Observational   and   simulated    MOD    was   

then   compared   using    NME .   

Phase   and   concentration   comparisons   were   conducted   as   per    (Kelley   et   al.,   2013) ,   each   month,    p ,   is   

represented   by   a   vector   whose   direction   corresponds   to   the   time   of   year   (equation   S3)   and   length   to   

the   magnitude   of   the   variable   for   that   month.   A   mean   vector    L    was   calculated   by   averaging   the   x   ( L x )   

and   y   ( L y )    components   of   the   12   vectors   ( x p ).   

  

(S5)   
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The   mean   vector   length   by   the   annual   average   described   the   seasonal   concentration   ( C )   of   burnt   area,   

whilst   it’s   direction   ( P )   described   season   timing:   

(S6)   

(S7)   

  

If   burnt   area   in   a   given   cell   was   concentrated   all   in   one   month,    C    was   equal   to   1   and    P    corresponded   

to   that   month.   If   burnt   area   was   evenly   spread   throughout   the   year   then   concentration   was   set   to   zero   

and   phase   undefined   and   was   not   used   in   the   comparison.   Likewise,   if   a   cell   had   zero   annual   average   

burnt   area   for   either   observations   or   simulation,   then   that   cell   was   not   included   in   the   comparisons.   

Concentration   was   compared   using   NME   step   1.   Phases   were   compared   using   mean   phase   difference   

( MPD )   

  

P D  A rccos Σ A  M =  π
1 · Σi i · a cos[ P( sim, i − P obs, i)] / i i (S8)   

  

MPD    represents   the   average   timing   error,   as   a   proportion   of   the   maximum   phase   mismatch   (6   

months).   

We   assessed   temporal   variations   using   spearman's   rank    (Dodge,   2008;   Lasslop   et   al.,   2018) .   This   was   

performed   for   each   grid   cell   both   monthly   and,   to   assess   inter-annual   variability,   annually-averaged   

burnt   area.   The   score   was   then   the   area-weighted   average   comparison   of   all   grid   cells.   

Smaller    NME ,    NMSE    and    MPD    scores   indicate   a   better   agreement   between   simulation   and   

observation,   with   a   perfect   score   (i.e.,   simulation   that   perfectly   matches   observations)   of   0.   Greater   

spearman's   rank   scores   indicate   better   performance,   with   a   score   of   1   occurring   with   perfect   ordering   

in   the   simulation   and   -1   complete   reverse   ordering.   We   also   used   three   null   models   to   help   interpret   

the   score   as   per    (Burton   et   al.,   2019;   Kelley   et   al.,   2019) .   The   mean   null   model   compared   the   mean   of   

all   observations   with   the   observations.   For    NME    and    NMSE ,   the   mean   null   model   was   always   1   as   

these   metrics   are   normalised   by   the   mean   difference.   As   there   is   no   ordering   in   a   mean   null   model,   the   

spearman's   rank   comparison   gives   a   score   of   0.   The   best   “single   value”   model   compared   the   median   

of   observations   to   observations.   By   definition,   it’s   score   is   less   than   or   equal   to   the   mean   model   score   

for    NME    and,   again,   a   score   of   0   for   spearman's   rank.   The   mean   and   median   null   model   scores   for   

MPD    depends   on   the   observations.   The   “randomly   resampled”   null   model   compared   

randomly-resampled   observations   (without   replacement)   to   the   observations.   The   score   depends   on   

the   resampling   order,   so   we   used   1000   bootstraps   to   determine   the   null   models’   distribution.     

3   
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Our   monthly    NMSE    step   1   scores   of    0.678-0.693 0.896-0.931    (based   on   5-95%   percentile,   Fig.   S1)   are   

much   better   than   all   null   models.    NMSE    is   proportional   to   our   error   term   in   equation   3,   indicating   

good   convergence   of   the   model,   though   the   Fig.   1   time   series   demonstrates   that   a   lot   of   the   models’   

posterior   spread   is   still   within   the   error   term   rather   than   parameter   uncertainty,   suggesting   that   further   

development   of   the   models’   process   representation   is   still   possible   (see   discussion).     

Our   reconstructed   annual   average   burnt   area    NME    step   1   scores   of    0.606-0.616 0.687-0.711     is   

comparable   to   the   comparison   between   training   observations   and   simulation   in   the   global   model,   

which   obtained   scores   of   0.603-0.630    (Kelley   et   al.,   2019) .   Our   conversion   to   a   coarser   grid   and   

pragmatic   choice   of   variables   have   therefore   not   been   detrimental   for   model   performance,   possibly   

helped   by   our   restricted   geographic   range.   Step   3   scores   of    0.680-0.691 0.726-0.773 ,   are    17-19 7-13 %   

better   than   our   best   null   model   which   suggests   good   performance   in   the   spatial   pattern   of   burnt   areas.   

The   model   spatial   burnt   area   is   even   better   for   the   fire   season   (Fig.   2   and   3),   with   step   1   scores   of   

0.468-0.485 0.605-0.626    and   step   3   of    0.532-0.548 0.573-0.623 .   However,   the   median   null   model   also   

improves,   which   suggests   that   capturing   the   fire   season   should   be   easier,   though   it   should   be   noted   

that   other   fire   models   normally   struggle   to   pick   up   high   burnt   areas   during   fire   season   peaks    (Hantson   

et   al.,   2020) .   

The   model   largely   identifies   regions   with   bimodal   fire   seasons   (Fig.   S2),   though   with   33.6%   of   the   

posteriors   Step   3   scores   being   greater   than   the   mean   null   model   suggests   that   this   is   not   easily   

captured   by   the   model.   Seasonal   human   fire   manipulation   is   often   a   cause   of   bimodal   fire   systems   

(Archibald   et   al.,   2009;   Hall   et   al.,   2016) ,   which   is   not   included   in   the   modelling   framework   and   again   

would   be   useful   in   future   studies   (see   discussion).   For   single   modal   systems,   the   timing   of   the   fire   

season   is   very   well   captured   in   the   model   (Fig.   S3),   with   a   score   of    0.153-0.164,   48-52 0.170-0.172,   

45-56 %   better   than   the   closest   null   model.   Most   ( 58.1 93.6 )    seasonal   concentrations   of   the   model   are   

better   than   the   mean   null   model    for   step   3 .   However,   the   fire   season   is   often   too   short   in   agricultural   

areas   (Fig.   S2).   Again,   this   could   be   due   to   the   lack   of   seasonal   variation   in   human   fire   starts   

(Archibald   et   al.,   2009;   Hall   et   al.,   2016) .   

Overall,   the   model   correctly   ranks   the   months’   burnt   area   (Fig.   S1   and   S2)   with   a   score   of   

0.497-0.543,   demonstrating   that   the   overall   season   is   well   represented.   The   model   also   correctly   ranks   

the   ordering   of   annual   burnt   areas   (Fig.   S3),   scoring   0.227-0.236   -   better   than   all   null   models,   thereby   

showing   that   it   is   able   to   capture   the   interannual   variability.   For   our   AAD   region,   these   improve   

further,   with   0.703-0.724   for   monthly   ranking   and   0.412-0.422   for   annual   ranking   (Fig.   S1).     
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Figure   S1:   Metric   scores   for   the   models   posterior   for   steps   1-3   (red,   orange   and   yellow)   and   median   (grey   dot-dashed   

line),   mean   (light   blue   dashed)   and   randomly-resampled   (blue   distribution)   null   models.   
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Figure   S2:   Seasonal   comparisons   for   (top   row)   MCD64A1   observed   and   (2nd   row)    50%   percentile   of   the   models   

posterior   for   (1st   column)   modality,   (2nd   column)   phase   of   the   timing   of   the   fire   season   and   (3rd   column)   

concentration   (inverse   of   season   length)   of   the   fire   season.   The   bottom   row   shows   the   spatial   pattern   of   spearman’s   

rank   comparisons   between   MCD64A1   and   the   50%   percentile   of   the   models   posterior   and   a   monthly   and   annual   

timestep.   
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Figure   S3:   2002-2018   climatology   for   MCD64A1   observed   burnt   area   on   the   50%   percentile   model   for   each   region.   

The   thick   line   shows   the   median   of   all   cells   in   the   region,   while   shaded   areas   show   full   range.   
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Figure   S4:   Changes   in   tree   cover   and   agriculture   from   2002-2018.   Top   row   shows   (from   left   to   right)   percentage   tree   

cover   from   VCF    (Dimiceli   et   al.,   2015) ,   and   cropland,   pasture   and   total   agricultural   cover   from    HYDEv3.1 (Klein   

Goldewijk   et   al.,   2010) .   The   2nd   row   shows   the   corresponding   trends   in   tree   cover   and   agriculture   in   percentage   

over   2002-2018.   As   variables   are   bounded,   we   use   the   trend   analysis   from    (Kelley   et   al.,   2019)    using   the   

“greenbrown”   R   package    (Forkel   et   al.,   2013,   2015) .   Dots   signify   areas   of   significant   trends   (p-value   <   0.05).   The   

bottom   map   shows   areas   of   increases,   decreases   on   no   significant   trend   in   tree   cover   and   agriculture.   Red   areas   

indicate   our   “area   of   active   deforestation”   (F   in   Fig.   1).     

11   

https://paperpile.com/c/fbrh5F/rDXV9
https://paperpile.com/c/fbrh5F/lA8BZ
https://paperpile.com/c/fbrh5F/lA8BZ
https://paperpile.com/c/fbrh5F/xgKmM
https://paperpile.com/c/fbrh5F/lCHz+mZrJ


Table   S1:   Controls,   drivers   and   target   variables   and   data   sources   used   in   the   model   

Control   Variable   Calculated   as   Data   source   

Fuel   continuity   
“Fuel”   
(%)  

Total   vegetation   cover   (%)   1   -   bare   cover   MODIS   Vegetation   Continuous   
Fields   (VCF)    (Dimiceli   et   al.,   
2015)   

Maximum   seasonal   anomalies   
in   water   availability   

 θ
θmean

− 1  
(see   row   
below)   

NCEP/NCAR   soil   moisture   
(Kalnay   et   al.,   1996)   

Fuel   moisture   
“Moisture”   (%)   

Soil   moisture   
(%)   -    θ  

    

Equilibrium   fuel   moisture   
content   
(%)  

as   per    (Kelley   
et   al.,   2014)   

NCEP/NCAR   relative   humidity,   
temperature.    (Kalnay   et   al.,   1996)   

GPCP   
precipitation   (monthly)    (Adler   et   
al.,   2003)   

Tree   Cover   
(%)  

  VCF    (Dimiceli   et   al.,   2015)   

Potential   ignitions   
“Ignitions”   
(no.   km -2 )   

Lightning   strikes   
(strikes   km -2 )   

Cloud-to-grou 
nd   as   per   
(Kelley   et   al.,   
2014)     

LIS/OTD   lightning   flash   
counts (Cecil   et   al.,   2014)   

Population   density     
(people   km -2 )   

  HYDEv3.1 (Klein   Goldewijk   et   
al.,   2010)   

Pasture   
(%)  

  

Anthropogenic   
suppression   
“Suppression”   

Cropland   
(%)  

  

Population   density   
(people/km 2 )   

  

Target   Burnt   area     MCD64A1   burned   area    (Giglio   et   
al.,   2018)   
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Table   S2:   Driving   data   for   optimization   and   simulation.   

  July   2002   -   June   2018   Jul   2019   -   Jun   2020   Jul   2019   -   Jan   2020   

Land   cover,   land   use,   
Population   density   

July   2002   -   June   2018   July   2018   -   Jun   2019   Jul   2018   -   Jan   2020   

All   other   variables   July   2002   -   June   2018   Jul   2019   -   Jun   2020   Jul   2019   -   Jan   2020   

Optimization   Used   Note   used   

Simulation   Used   
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